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Fix O a special nilpotent co-adjoint orbit and write A(O) for the group of components of the

centralizer of an element f in O. Let 1 denotes the trivial representation of A(O). The Springer

correspondence attaches to the pair (O,1) an irreducible representation of the Weyl group W

which we denote by Sp(O). Sp(O) admits two natural bases consisting of homogeneous

polynomials on h∗. One of the bases is parametrized by a set Primρ(O), consisting of certain

primitive ideals of the universal enveloping algebra. The second basis consists of character

polynomials, parametrized by a set of geometric objects. The relation between these bases

encodes significant representation theoretical information. We study the change-of-basis matrix

and derive consequences relevant to the computation of invariants of Harish-Chandra modules.

1 Introduction

The Springer correspondence attaches to each special complex nilpotent orbit O, an
irreducible representation of the Weyl group, Sp(O). This representation admits two natural
bases. It was initially suspected that the two bases coincide (up to scaling). However,
Tanisaki provided examples showing that this is not the case and conjectured an upper
triangular relation between the two, see [22]. The relationship between the bases has been
studied by McGovern (using algebraic/combinatorial methods) and by Trapa (using a
geometric approach), see ([16], [24]). The aim of this paper is to relate and combine the
results in [16] and [24] in order to derive information relevant to the computation of invariants
of Harish-Chandra modules.

We focus on the pairs (G,K) of complex groups

(Sp(2n,C),Sp(p,C)× Sp(q,C)), p+ q = n

(SO(2n),GL(n,C))
(1.1)
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and their real forms GR = Sp(p, q) and SO∗(2n).

Before describing our results in detail we introduce some notation. We write g for
the Lie algebra of G and we let N denote the nilpotent cone of g. The variety of Borel
subalgebras is denoted by X. We fix a base point b = h⊕ n and we let B = HN ⊂ G denote
the corresponding Borel subgroup. We write ρ for half the sum of the roots of h in n.

If O is a special nilpotent orbit, then the set of primitive ideals in the enveloping algebra

Primρ(O) = {I : primitive 2-sided ideals in U(g)

I = I(ρ) contains the augmentation ideal of the center of U(g)

with respect to the degree filtration, the variety of zeros of gr(I) = O}

is non-empty, see [2]. For λ ∈ h∗ dominant regular, let I(ρ+ λ) stand for the primitive ideal
in U(g) obtained from I(ρ) using the translation functor from ρ to ρ+ λ. Jospeh attaches to
each I ∈ Primρ(O) a polynomial qI ∈ P(h∗), the so called Goldie rank polynomial. The value
of qI at ρ+ λ is the Goldie rank of the primitive quotient U(g) /I(ρ+ λ), see [12]. The set
{qI : I ∈ Primρ(O)} is linearly independent and its span over C is the special representation
Sp(O).

A second basis of Sp(O) consists of character polynomials, see [12]. Character
polynomials are parameterized by a set of geometric objects, i.e.

{Υ : Υ irreducible component of O ∩ n}. (1.2)

These irreducible varieties are H-stable subvarieties of n. (They are called orbital varieties.)
If I(Υ) is the ideal of definition of Υ in the polynomial algebra P(n), then the character
polynomial pΥ measures the growth rate of the H-module P(n) /I(Υ).

The relation between the bases {qI} and {pΥ} encodes significant representation
theoretical information. In [16], the author works within the category Mρ(g, B) of
finitely generated B-finite (g, B)-modules with infinitesimal character ρ. In this con-
text, the author defines a bijection between the parameter spaces Primρ(O) and {Υ :
Υ irreducible component of O ∩ n}. He introduces an order on the set {Υ} and studies the
matrix that relates the bases {qI} and {pΥ}.

The results in [24] are presented within the category Mρ(g,K) of Harish-Chandra
modules having trivial infinitesimal character. The author defines a bijection, from Primρ(O)
to {Υ} and introduces various orders on the set {Υ}. In each of such orders, the change-of-
basis matrix is upper triangular. This triangularity result imposes restriction on the possible
shape of the leading term of the characteristic cycle of irreducible modules in Mρ(g,K).

For the groups (1.1) we prove that the algebraically defined bijection between Primρ(O)
and {Υ} in [16] agrees with the geometrically defined one in [24]. As a consequence, in §5 we
derive strong restrictions on the shape of leading term cycles of irreducible Harish-Chandra
modules. Low rank computations lead Trapa to ask if leading term cycle of Harish-Chandra
modules for the pairs (1.1) were always irreducible. We show that this is not the case, see
§5.2. We give an example of one such module with reducible leading term cycle. We outline
a general strategy to find examples of sp(n, n)-modules with reducible leading term cycle.
Both Theorem 5.4 and the example just mentioned rely heavily on Trapa’s work in [24].

Let T ∗K(X) be the generalized Steinberg variety for the action of K on the flag variety
X (the union of conormal bundles to the finitely many K orbits on X). The topological
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construction of the Springer representation can be adapted to prove that the top Borel-
Moore homology Htop(T ∗K(X)) is a Weyl group representation. On the other hand, the
Grothendieck group of Mρ(g,K) affords an action of W , via coherent continuation. The
characteristic cycle descends to the Grothendieck group K(Mρ(g,K)) of Mρ(g,K). The
resulting linear map

CC : K(Mρ(g,K))→ Htop(T ∗K(X)) (1.3)

is W -equivariant, [21]. An important ingredient in the discussion is the notion of Harish-
Chandra cells (see, e.g [1]). Cells partition the irreducible modules in Mρ(g,K). Each
Harish-Chandra cell C determines a cell representation VC, a minimal subquotient of the
coherent continuation representation of the Weyl group W on K(Mρ(g,K)) that is spanned
by C. Theorem 4.13 and Theorem 4.17 concern the structure of Harish-Chandra cells as
Q[W ]-modules. Theorem 4.17 identifies, within each Harish-Chandra cell, a small number
of irreducible modules with the property that they generate the cell representation as Q[W ]-
module. In particular, the computation of invariants of modules in the cell is determined by
the invariants of one such module and coherent continuation. A simpler version of Theorem
4.17 is used in [3] to compute the associated cycles of all irreducible representation in cells
that contain representations in the discrete series.

2 Background and Notation

2.1 Primitive ideals with trivial infinitesimal character

We summarize in this sub-section some results on primitive ideals that are relevant to our
work. We recall the notion of generalized τ -invariant and we include a very brief discussion
on the classification of primitive ideals with infinitesimal character ρ in types C and D. The
reference cited here is not exhaustive.

We can assume that g is any complex reductive Lie algebra except when indicated
otherwise. Fix a Cartan subalgebra h ⊂ g and a Borel subalgebra b = h⊕ n. The choice
of Borel subalgebra determines a positive system ∆+(g, h). Let ρ ∈ h∗ stand for half the
sum of the roots of h in n. Let wo denote the long element in the Weyl group W (g, h).
Write Primρ(U(g)) for the set of primitive ideals in U(g) with infinitesimal character ρ. For
w ∈W (g, h) put

• Mw = U(g)⊗U(b) Cwwoρ−ρ
• Lw = irreducible quotient of Mw

• Iw = annihilator of Lw in U(g).

Duflo proved in [7] that the map from W (g, h) to Primρ(U(g)) given by w → Iw is
surjective. Hence the classification of Primρ(U(g)) is reduced to the determination of the fiber
of Duflo’s map. Relevant to such classification are the notions of τ -invariant and generalized
τ -invariant. For any w ∈W the τ -invariant is defined as

τ(w) = {simple roots in ∆(g, h) : wα /∈ ∆+(g, h)}.

Following the notation in [16] we write τ r(w), the right τ -invariant of w, for

τ r(w) = {simple roots in ∆(g, h) : w−1α /∈ ∆+(g, h)}.
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Even when τ(w) depends only on the primitive ideal Iw, it is not a complete invariant
of Iw. Vogan introduced in [25] the notion of generalized τ -invariant; denoted by τ∞. He
proved, in type An, that the generalized τ -invariant (together with infinitesimal character)
determines primitive ideals. Analogous results hold when g is of classical type (with an
appropriate definition of τ∞ in type D), see for example [2], [8], [9].

The notion of generalized τ -invariant is closely related to that of coherent continuation
action of the Weyl group W (g, h) (implemented by composition of translation functors) on
the Grothendieck group of highest weight modules. If α, β are adjacent simple roots, Vogan
defined sets Dα,β = {w ∈W (g, h) : β ∈ τ(w) and α /∈ τ(w)} and operators

Tα,β :Dα,β → Dβ,α

Tα,β(w) = {sαw, sβw} ∩Dβ,α.

When α, β are roots of the same length Tα,β(w) is single-valued. When α, β are roots
of different length Tα,β(w) is a one or two-elements set, see [25]. When g is of type D,
the operators Tα,β are supplemented by an operator TD, see [9]. Two Weyl group elements
w,w′ have the same generalized τ -invariant if, for every (possibly empty) composition C of
operators Tα,β and TD, Cw is defined if and only if Cw′ is and the elements in Cw and Cw′

match up in such a way that matching elements have the same τ -invariant.

A second action of W (g, h) on the Grothendieck group of highest weight modules is
implemented, for example by compositions of Enright completion functors. This action is
called left coherent continuation action in [16], (unfortunately the literature is not consistent
on the usage of right versus left.) Then one can analogously define the notion of generalized
right τ -invariant, τ r∞. A careful explanation of these notions is given for example in [[8], II,
page 4].

When g is of type An, Joseph determined when two irreducible highest weight modules
have the same annihilator using the Robinson-Schensted algorithm. For other classical Lie
algebras, an algorithmic characterization of primitive ideals is given in [2]. Garfinkle proved,
for g classical, that the generalized τ -invariant is a complete invariant of primitive ideals with
trivial infinitesimal character, see [8]. Garfinkle extends the Robinson-Schensted algorithm
to classical Weyl groups other than type An. To each w ∈W (g, h) she attaches a pair of
standard domino tableaux (L(w), R(w)) of the same shape that satisfy R(w) = L(w−1).
Such tableaux consists, in types Cn and Dn of n dominos labeled by integers from one to
n occupying the shape of a Young diagram, so that rows are left justified and the length
decreases weakly as one moves down. The labels on the dominos increase as one moves
down or to the right. As in type An, two Weyl group elements determine the same primitive
ideal if they have the same left domino tableaux. The converse is not true. To remedy this,
Garfinkle introduced an equivalence relation on domino tableaux. Within each equivalence
class there is exactly one tableau of “special” shape. She proved that Iw = Iw′ if and only
if L(w) and L(w′) are equivalent to the same standard domino tableau of special shape,
see [8]. Furthermore, she interpreted the operators Tα,β and TD as operators at the level of
domino tableaux and characterized the set of pairs of domino tableau that can be connected
via compositions of such operators. As a result the τ∞ of a primitive ideal can be read of
the corresponding left domino tableau , [8].
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2.2 Cells of the Weyl group

In the study of primitive ideals of complex semisimple Lie algebras, Joseph introduced the
notion of cells of the Weyl group W . For each w ∈W and Iw = Ann(Lw) Joseph associates
a left and a right cell. These cells are equivalence classes for the relations w ∼L w′ if
I(w) = I(w′) and w ∼R w′ if I(w−1) = I(w′−1), respectively. Then

• CLw = {w′ ∈W : I(w′) = I(w)}
• CRw = {w′ ∈W : I(w′−1) = I(w−1)}
• Dw = { smallest set generated by ∼L,∼R from w}

Dw is called the double cell of w. At times we write CI for {w′ ∈W : I(w′) = I}.
The triangularity results studied in this paper are closely related to the notion of

associated variety of Lw, see §2.3. It is important for us to recall that the associated variety
is an invariant of the right cells, see [[1], Prop. 2.9].

Each cell can be regarded in a natural manner as a basis of a (non-necessarily
irreducible) representation of W , see for example [1]. We denote the respective representation
by V Lw , V

R
w and VDw .

2.3 Geometric background

Through the next sections (G,K) is one of the pairs (1.1). The subgroup K is the fixed point
group of an involution Θ of G. The (complexified) Cartan decomposition of the Lie algebra
of G (for θ be the differential of Θ) is written as g = k + p. We fix h a Cartan subalgebra
contained in k and a Borel subalgebra b = h⊕ n ⊂ g. Relevant to our discussion are various
geometric objects. Some are the K-orbits on the flag variety X, the conormal bundle to the
K-orbit Q, T ∗QX. Also relevant are the nilpotent cone N , Nθ = N ∩ p, the moment map
µ : T ∗X → N . We describe some of these objects more explicitly.

We identify the cotangent bundle of X with the homogeneous bundle G×
B
n. Under this

identification, the moment map for the natural action of G on T ∗X is

µ : G×
B
n→ N (2.1)

µ(g, ξ) = g · ξ (:= Ad(g)ξ). (2.2)

The fibers to µ are referred to as Springer fibers; we often use the common notation
Xf for µ−1(f).

The group K acts on X with finitely many orbits. The moment map image of the
conormal bundle to a K-orbit Q is a subvariety of Nθ. Since µ is proper and T ∗QX is
irreducible, µ(T ∗QX) is irreducible. Indeed,

µ(T ∗QX) = K · f (2.3)

is the closure of a single nilpotent K-orbit.

For f ∈ Nθ we let O = G · f and write A(O) for the component group of ZG(f), the
centralizer of f in G. Similarly AK(f) is the component group of ZK(f). For the groups
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under consideration A(O) is a product of copies of Z/Z2. The finite group A(O) acts on
the set of irreducible components of the Springer fiber µ−1(f). It is known that conormal
bundles to K-orbits in X partition the fiber of µ into AK(f)-orbits. For the groups under
consideration, one can show that those AK(f)-orbits are singletons.

There is a closed relation between A(O)-obits in the set of irreducible components of
the Springer fiber µ−1(f) and the set of orbital varieties for O, [19]. Indeed, Spaltenstein
defined a bijection

{Υ : irreducible comp. O ∩ n} ↔ {A(O)-orbits in Irr(µ−1(f))}. (2.4)

On the other hand, as T ∗Q(X) ∩ µ−1(f) is dense in a unique irreducible component CQ,
the assingment

Υ ≡ A(O) · C ↔ SΥ = {Qi ∈ K /X : µ(T ∗QiX) = K · f and CQi ∈ A(O) · C} (2.5)

defines a bijection between {Υ : irreducible comp. O ∩ n} and sets consisting of K-orbits
in X. The map (2.5) will play an important role in our discussion on invariants of Harish-
Chandra modules.

Remark 2.6. When O is special, #Prim(O)ρ = #{A(O)\Irr(µ−1(f))}.

As in the case of primitive ideals, orbital varieties are parametrized by appropriate
standard domino tableaux. Given O a special nilpotent orbit attached to a partition p,
McGovern parametrized orbital varieties for O by standard tableaux of shape p (with
Roman numerical I or II in type D), see [[14], Thms. 1 and 3]. His parametrization relies in
the generalized Robinson-Schensted algorithm as Garfinkle’s parametrization of primitive
ideals does. Garfinkle’s equivalence relation at the level of domino tableaux is too strong to
describe orbital varieties. McGovern defines a new equivalence relation and shows that within
each equivalence class there is a unique domino tableau of shape p. Once again the notion
of τ -invariant is defined at the level of domino tableaux. In particular if Υw = B(n ∩ nw)
corresponds to a domino tableau T , then τ(T ) = τ r(w) = τ(w−1). It is worth mentioning
that a different parametrization of orbital varieties in terms of signed domino tableux is
given in [17]. Both McGovern and Pietraho’s parametrization yield tableux with the same
generalized τ -invariant. (This is verified by inspecting the action of Tα,β at the level of
tableaux.)

3 Characteristic Cycles and Associated Varieties

3.1 Category Mρ(g, B)

Consider the category of finitely generated B-finite (g, B)-modules, Mρ(g, B). The study
of invariants of such modules gave rise to a rich and deep theory involving objects such as
primitive ideals, nilpotent orbits, the flag variety and representations of the Weyl group W .
Crucial to this is the equivalence of the category Mρ(g, B) and the category Mcoh(DX , B)
of B-equivariant coherent DX -modules on X, [4]. The characteristic cycle of a module in
Mρ(g, B), or rather its localization in the flag variety X, is defined as usual in the theory
of DX -module, see for example [5]. The characteristic cycle of Lw, the localization of Lw,
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is a formal integer combination of closures of conormal bundles to B-orbits on X. These
B-orbits are parameterized by W ; we write them as X(y). Thus, the characteristic cycle of
Lw ∈Mρ(g, B) may be written as

CC(Lw) = CC(Lw) =
∑
y∈W

mw,y T ∗X(y)X. (3.1)

Theorem 3.2 ([5], §6.9 and 6.11). (1) If CC(Lw) =
∑

y∈W mw,y T ∗X(y)X, then

CC(Lw−1) =
∑

y∈W mw,y T ∗X(y−1)
X.

(2) If mw,y 6= 0, then τ(w) ⊂ τ(y) and τ r(w) ⊂ τ r(y).
(3) AV (Lw) = µ(CC(Lw)) = ∪Υi where Υi is orbital for O with O = AV (Ann(Lw)).

As mentioned in the introduction, Joseph associated to each Υ a homogeneous
polynomial pΥ ∈ P(h∗), see [12]. The set {pΥ : Υ irreducible component of O ∩ n} is linearly
independent.

Sp(O) = spanC{pΥ : Υ irreducible component of O ∩ n} (3.3)

is an irreducible representation of W ; it is called the special representation attached to O.
Sp(O) admits a second basis that arises in the study of primitive ideals in the enveloping
algebra. The second basis, also defined by Joseph, associates the Goldie rank polynomial,
qI , to each primitive ideal in Primρ(O). A very strong connection between the two sets of
polynomials and the associated variety is the following.

Theorem 3.4. [10] Suppose Lw−1 is an irreducible highest weight module and write the
Goldie rank polynomial of Ann(Lw−1) as qAnn(Lw−1 ) =

∑
mi pΥi . Then,

mi 6= 0 if and only if Υi is an irreducible component ofAV (Lw).

When g is a classical Lie algebra, McGovern studied the change-of-basis matrix between
{qI} and {pΥ} in connection to the structure of associated varieties of highest weight
modules.

Theorem 3.5. [[14], Theorem 2] Assume g is a classical Lie algebra. For each Lw, there

exists w′ ∈W with AV (Lw) = AV (Lw′) such that the orbital variety Υw′ = B(n ∩ nw′) is
an irreducible component of AV (Lw). Moreover, Υw′ is parametrized by domino tableau of
special shape T such that, in the notation of §2.1, τ∞(T ) = τ∞(w−1).

Theorem 3.6. [[14] and [16]] Keep the notation of Theorem 3.5. The map

Primρ(O)→ {Υ : Υ irreducible component of O ∩ n}
Iw−1 → Υw′ = ΥT

is a bijection of sets.

Using the parametrization of orbital varieties via standard domino tableaux, as
mentioned in §2.3, and Theorems (3.5) (3.6) McGovern introduced a combinatorial order on
the set {Υ : Υ irreducible component of O ∩ n}, see [16]. For Υ1,Υ2 parametrized by T1, T2,
he defined Υ1 < Υ2 if τ∞(T1) ⊂ τ∞(T2) and showed that in that order the relation between
Goldie rank polynomials and characteristic polynomials is upper triangular.
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3.2 Category Mρ(g,K)

Let DX denote the sheaf of algebraic differential operators on the flag variety X of g. Let
M be a Harish-Chandra module with infinitesimal character ρ. Since U(g) acts by global
differential operators on X, the localization M = DX ⊗U(g) M is a well defined (DX ,K)-
module. The support of a Harish-Chandra moduleM with infinitesimal character ρ is defined
to be the support of its localization M. When M is irreducible, the support of M is the
closure of a unique K-orbit in X. Keeping the notation used by Trapa in [24], we write for
M irreducible

supp(M) = suppo(M)

.

The (DX ,K)-module M admits good K-equivariant filtrations compatible with the
degree filtration of DX . Then gr(M) becomes a (OT∗X ,K)-module, where OT∗X denotes
the ring of regular function on T ∗X. The characteristic cycle of M is then the support
(counting multiplicities) of gr(M). In particular, for each irreducible M ∈Mρ(g,K) there
are positive integers ni and K-orbits Qi so that

CC(M) = CC(M) =
∑
i

ni[T ∗QiX ]. (3.7)

The characteristic variety of M is the support of gr(M), i.e

CV (M) = CV (M) = ∪Qi:ni 6=0T
∗
Qi
X.

The associated cycle (see, [26]) is related to the characteristic cycle through the moment
map µ : T ∗X → N . In fact,

AV (M) = µ(CV (M)) ⊂ Nθ

By (2.3) AV (M) is a union of nilpotent K-orbits closure. If OK is open in AV (M),
then O = G · OK = AV (Ann(M)).

Theorem 3.8. ([24], Theorem 5.2) Assume that GR = Sp(p, q) or GR = SO∗(2n). Let M
be an irreducible (g,K) module with support Q. Then,

AV (M) = µ(T ∗Q(X)).

In particular, AV (M) is irreducible.

Definition 3.9. Assume that GR = Sp(p, q) or GR = SO∗(2n). Let M be an irreducible
(g,K) module with AV (M) = OK . Define, the leading term of M as

LTC(M) =
∑

Qi∈µ−1(OK)

ni[T ∗QiX ]

where µ−1(OK) = {Q : µ(T ∗Q(X)) = OK}.

Remark 3.10. The set µ−1(OK) is partially ordered by the closure order on K\X.
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Keep the assumption GR = Sp(p, q) or GR = SO∗(2n) and let M be an irreducible
(g,K) module. Write Ann(M) = Iw−1 = Ann(Lw−1), O = AV (Ann(M)), AV (M) = OK =
K · f and in the notation of (1.2) O ∩ n = ∪ Υi. Recall the polynomials qIw , pΥi of §1. In
[24], the author uses the geometry of LTC(M) to define various orders on {Υi} and to
deduce that in such orders the matrix that relates {qIw} to {pΥi} is upper triangular. Key
to this result is bijection (2.5) that assigns to each orbital variety Υ a set SΥ ⊂ µ−1(OK).
Within each SΥ, Trapa choses an orbit QΥ ∈ SΥ such that QΥ is minimal in the order closure
restricted to SΥ and defines

µ−1(K · f)′ = {QΥi}.

Theorem 3.11. ([24], Theorem 3.20) Choose any total order order on µ−1(K · f)′ ⊂ K\X
compatible with closure order inclusion in K\X. Enumerate µ−1(K · f)′ as Q0, . . .Qr in this
total order. Write M(Qi) for the (g,K) module with support Qi and write Ij = Ann(M(Qj)).
Use (2.5) to compatibly order the set {Υi}. The matrix (mi,j) such that

qIj =
∑

mi,j pΥi .

is upper triangular.

A very practical tool in relating invariants attached to irreducible modules inMρ(g, B)
to those of irreducible modules inMρ(g,K) is the geometric interpretation of Theorem 3.4
given below.

Theorem 3.12. ([24], Corollary 4.2 and Theorem 5.2) Assume that GR = Sp(p, q) or
GR = SO∗(2n). For M irreducible write AV (M) = K · f and Ann(M) = Ann(Lw−1).

(1) If the conormal bundle T ∗Q(X) contributes to the leading term cycle of M then the

orbital variety Υ that corresponds to A(O) · (µ−1(f) ∩ T ∗Q(X)) = A(O) · C occurs and
it is open in AV (Lw).

(2) If Υ is open in AV (Lw) then there exists T ∗Q(X) contributing to the leading term cycle

of M so that Υ is the orbital variety attached to A(O) · (µ−1(f) ∩ T ∗Q(X)).

4 Harish-Chandra Cells and Harish-Chandra Cells Representations

The set of Harish-Chandra modules with infinitesimal character ρ partitions into cells.
We call these cells Harih-Chandra cells. Cells are designed to capture information of
tensoring Harish-Chandra modules with finite dimensional representations. Indeed, all the
representations in a Harish-Chandra cell have the same associated variety. In §4.1 we
summarize relevant information on Harish-Chandra cells when GR = Sp(p, q) or SO∗(2n).
Proposition 4.2 will play a key role in our discussion on leading term cycles.

The Weyl group W acts on the Grothendieck group of Harish-Chandra modules with
infinitesimal character ρ via coherent continuation. Each Harish-Chandra cell defines a W -
representation VC , a minimal subquotient of the coherent continuation representation which
is spanned by the irreducible modules in C. See for example [1]. Sub-section 4.2 concerns
the W -structure of Harish-Chandra cell representations for the pairs (1.1).



10 L. Barchini

4.1 Harish-Chandra cells

When GR = Sp(p, q) or GR = SO∗(2n), cells of Harish-Chandra modules have special
properties that make the study of leading term cycles possible. We summarize such
properties in the following Theorem.

Theorem 4.1. Assume that GR = Sp(p, q) or GR = SO∗(2n) and let C be a cell of Harish-
Chandra modules with infinitesimal character ρ.

(1) Each irreducible module in C has irreducible associated variety.

(2) If M ∈ C has supp(M) = Q, then µ(T ∗Q(X)) = AV (M).

(3) Let O be a special complex nilpotent orbit and O ∩ (g/k)∗ = ∪j OjK with Ojk nilpotent
K-orbits. Then for each j there exists exactly one Harish-Chandra cell Cj so that

irreducible modules in Cj have associated variety OjK .

(4) #C = #{Q ∈ K\B : µ(T ∗Q(X)) = K · f} = #Irr(µ−1(f)).

McGovern proved that Harish-Chandra cells are parametrized by nilpotent K-orbits,
see [[15], Theorem 6]. Parts (3) follows from [[15], Theorem 6] and [[24], Theorem 5.2]. Parts
(1) and (4) are due to Peter Trapa, see [[24], Theorem 5.2].

Proposition 4.2. Let C be a cell of Harish-Chandra modules with infinitesimal character ρ.
Denote by K · f the associated variety of modules in C. Assume that M,M ′ ∈ C are distinct
modules and write their supports as Q and Q′, respectively. Let C = µ−1(f) ∩ T ∗Q(X) and

C ′ = µ−1(f) ∩ T ∗Q′(X). If C ′ /∈ A(O) · C, then Ann(M) 6= Ann(M ′).

Proof . We proceed by contradiction. Assume that Ann(M) = Ann(M ′). Choose an order
on µ−1(K · f)′ compatible with orbit closure inclusion on K\B. Interpret such order as an
order on A(O)\Irr(µ−1(f)).

By Theorem 4.1 and Theorem 3.11,

LTC(M) = T ∗Q(X) +
∑

mkT ∗Qk(X)

with mk 6= 0 only if A(O) · Ck < A(O) · C in the chosen order. Similarly

LTC(M ′) = T ∗Q′(X) +
∑

m`T ∗Q`(X)

with m` 6= 0 only if A(O) · C` < A(O) · C ′. Without lost of generality assume that A(O) ·
C < A(O) · C ′. Write Υi for the orbital variety that corresponds, via Spaltenstein bijection,
to A(O) · Ci. Similarly write Υ (Υ′) the orbital variety dual to A(O) · C (A(O) · C ′,
repectively). By Theorem 3.11, there are constants βi, i = 1, 2 so that

β1 qAnn(M) = pΥ +
∑

mk pΥk (4.3)

β2 qAnn(M ′) = pΥ′ +
∑

m` pΥ` . (4.4)

Since we are assuming that Ann(M) = Ann(M ′), the right hand sides of (4.3) and (4.4) are
proportional. Observe that pΥ′ does not contribute to the right hand side of (4.3). Hence, pΥ′

is a linear combination of polynomials pΥ, pΥi . This is a contradiction as such polynomials
are linearly independent.
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Corollary 4.5. Let C be a cell of Harish-Chandra modules with infinitesimal character ρ.
Denote by K · f the associated variety of modules in C. For M ∈ C write Q = supp(M) and

let C = µ−1(f) ∩ T ∗Q(X). Then,

#{Y ∈ C : Ann(Y ) = Ann(M)} = #{C ′ ∈ Irr(µ−1(f)) : C ′ ∈ A(O) · C}.

Proof . On the one hand, #C =
∑

I∈Prim(O)ρ
#{Y ∈ C; Ann(Y ) = I}. On the other hand,

by Theorem 4.1, #C = # Irr(µ−1(f)). Hence,

#C = # Irr(µ−1(f)) =
∑

{A(O)·Ci:i=1...d}

#{A(O)) · Ci} (4.6)

=
∑

I∈Prim(O)ρ

#{Y ∈ C; Ann(Y ) = I}.

By Proposition 4.2 we know that #{Y ∈ C : Ann(Y ) = Ann(M)} ≤ #{C ′ ∈
Irr(µ−1(f)) : C ′ ∈ A(O) · C}. Since both sums in equation (4.6) have the same number of
summands, see Remark 2.6, the Corollary follows.

Corollary 4.7. M,M ′ ∈ C have the same annihilator if and only if the component
C,C ′ ∈ Irr(µ−1(f)), attached to the support of M and M ′, belong to the same A(O)-
orbit.

4.2 Harish-Chandra cell representations

We keep the notation C for a Harish-Chandra cell and CL for a Kazhdan-Lusztig left cell.
Similarly, VC denotes the Harish-Chandra cell representation generated by the irreducible
modules in C and VCL stands for the Kazhdan-Lusztig left cell representation attached to
CL. An important result by McGovern states, for the pairs (1.1), that Harish-Chandra
cell representations are isomorphic as W -modules to certain Kazhdan-Lusztig left cell
representation, see Theorem 4.9. The aim of this sub-section is to study VC in more detail.
Relevant to our discussion is the following definition.

Definition 4.8. Fix O = G · f a special nilpotent orbit. Write OK = K · f and let C be
a Harish-Chandra cell with associated variety OK . Let I be an ideal in Primρ(O). Define
CI = {Y ∈ C : Ann(Y ) = I} and nI = #CI .

Theorem 4.9. ([15], Theorem 6) Assume that GR = Sp(p, q) or GR = SO∗(2n). Let C

be a cell of Harish-Chandra modules with infinitesimal character ρ and denote by VC the
corresponding Harish-Chandra cell representation. There exists a left cell CLIo so that VC is

isomorphic as W -module to VCLIo
. Moreover, if K · f is the associated variety of irreducible

modules in C then

VC ' VCLIo ' Htop(Xf ) as W -module.
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Theorem 4.9 states that as W -module VC is isomorphic to a W -left cell representation.
The notation CLIo is used to emphasize that the left cell in Theorem 4.9 determines a
primitive ideal denoted by Io. It follows from [[13], Theorem 12.13] that Harish-Chandra
cell representations for the groups under consideration are multiplicity free W -modules.
Moreover, the number of irreducible constituents in VC is known; see [[13], Chapter 12]. It
is useful to recall that Htop(Xf ) affords an action of the finite group A(O). The actions of
A(O) and W commute. For the pairs (1.1), the group A(O) is a product of copies of Z/Z2.

The set ˆA(O) of irreducible representations consists of characters. As W -module

Htop(Xf ) =
⊕
σ∈S

H(σ), (4.10)

where S is a subset of the irreducible representations of A(O) and H(σ) is the σ-isotypic

subspace of Htop(Xf ). If A(O) = A(O)\ ∩σ∈S ker(σ), then #S = #A(O).

Theorem 4.11. ([15], Proof of Theorem 1 and Corollary 3) Assume that GR = Sp(p, q) or
GR = SO∗(2n). Let C be a cell of Harish-Chandra modules with infinitesimal character ρ.

(1) Fix I ∈ Prim(O)ρ and assume that M ∈ CI . Then, Q[W ] ·M ⊂ VC decomposes into
the sum of nI irreducible W -modules. Each such submodule is isomorphic to a
submodule of VCLI .

(2) The number of irreducible constituents in the Harish-Chandra cell representation
VC ' VCLIo is nIo .

Corollary 4.12. There exists C ∈ Irr(µ−1(f)) such that the number of irreducible
constituents in Htop(Xf ) equals #{C ′ ∈ Irr(µ−1(f)) : C ′ ∈ AG(f) · C}.

Proof . By Theorem 4.9, there exists a left cell CLIo such that VC ' Htop(Xf ) ' VCLIo as

W -modules. By Theorem 4.11 the number of irreducible constituents in VCLIo
is nIo . On the

other hand, Theorem 4.11 implies that Q[W ] ·M has exactly nIo distinct W -irreducible
constituents whenever M ∈ CIo . Thus, Q[W ] ·M ' VCLIo and the number of irreducible

constituents in Htop(Xf ) equals #{Y ∈ C : Ann(Y ) = Io}. Now the Corollary follows from
Corollary 4.5.

Theorem 4.13. Assume that GR = Sp(p, q) or GR = SO∗(2n). Let C be a cell of Harish-
Chandra modules with infinitesimal character ρ. For M ∈ C, write AV (M) = K · f .

(1) There exists C ∈ Irr(µ−1(f)) so that Q[W ] · [C] ≡ Htop(Xf ) as W -module.
(2) If C ′ is an arbitrary component of µ−1(f) and AG(f, C ′) = {z ∈ A(O) : z · C ′ = C ′},

then Q[W ] · [C ′] ' Htop(Xf )AG(f,C′) as W -module.

Proof . Theorem 4.9 tells us that the top-homology of the Springer fiber Xf is isomorphic as
W -module to the Harish-Chandra cell representation VC . On the other hand, by Theorem
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4.11, there exists an irreducible module M ∈ C with annihilator Ann(M) = Io such that
Q[W ] ·M ≡ VC as W -module. The number of irreducible W -constituents in Q[W ] ·M is

nIo . Write Q for the support of M . The intersection µ−1(f) ∩ T ∗Q(X) is dense in a component
C of the Springer fiber. We claim that Q[W ] · [C] ≡ Htop(Xf ).

Write, as in equation(4.10),

Htop(Xf ) =
⊕
σ∈S

H(σ). (4.14)

In order to prove the claim it is enough to show that C has non-zero projection to each
H(σ) with σ ∈ S. We use an argument similar to that in ([3], Proposition 2.2).

By Corollary 4.5

nIo = #{Y ∈ C : Ann(Y ) = Io)} = #A(O)/AG(f, C). (4.15)

Thus, #S = #A(O) = #A(O)/AG(f, C).

Write [C] =
∑
hσ according to the decomposition (4.10). Apply z ∈ A(O) to get

[z · C] =
∑
σ

z · hσ. (4.16)

Let σ′ be an irreducible representation of A(O) and write χσ′ for its character. Multiple

both sides of (4.16) by dim(σ′)

#(A(O)
χσ′(z) and sum over z ∈ A(O):

dim(σ′)

#(A(O))

∑
z

χσ′(z) [z · C] =
∑
σ

( dim(σ′)

#(A(O)

∑
z

χσ′(z) z · hσ
)

= hσ′ .

The last equality holds because Pσ′ = dim(σ′)

#(A(O))

∑
z χσ′(z) z is the projection onto the

σ′-isotypic subspace. The left-hand side is nonzero since {[z · C] : z ∈ A(O)} is independent

and χσ′(z) 6= 0 for some z ∈ A(O). We conclude that in the expression for [C], hσ 6= 0 for
each σ ∈ S. Since H(σ) is an irreducible W -representation we have

Q[W ] · [C] ⊃ Q[W ] · Pσ([C]) = H(σ).

Therefore, Q[W ] · [C] contains all isotypic subspaces. This proves the first assertion of
the Theorem.

Let C ′ ∈ Irr(µ−1(f)) be arbitrary. By Part (1), we have [C ′] ∈ Q[W ] · [C]. In particular,
Q[W ] · [C ′] ⊂ Htop(Xf )AG(f,C′). Now, an argument analogous to that used to settle part (1)
proves that Pσ(C ′) 6= 0 for each σ so that σ|AG(f,C′) = 1.

The following theorem is a generalization of Proposition 12 and Corollary 13 in [3].
These results have shown instrumental in the computation of associated cycles of Harish-
Chandra modules.
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Theorem 4.17. Assume that GR = Sp(p, q) or GR = SO∗(2n). Let C be a cell of Harish-
Chandra modules with infinitesimal character ρ. Write the associated variety of irreducible
modules in C as K · f . Let M ∈ C be an irreducible module with Ann(M) = I and

supp(M) = Q. Write CQ = µ−1(f) ∩ T ∗Q(X). Then,

Q[W ] ·M ≡ Q[W ] · [C] ' Htop(Xf )AG(f,C).

Proof . By Theorem 4.11, if M and M ′ are irreducible (g,K)-modules in C with the same
annihilator, then Q[W ] ·M ≡ Q[W ] ·M ′. Moreover, if the closures of the K-orbits Q and Q′

are the supports of M and M ′ respectively, then the components C = µ−1(f) ∩ T ∗Q(X) and

C ′ = µ−1(f) ∩ T ∗Q′(X) belong to the same A(O)-orbit; see Theorem 4.2 and Corollary 4.5.
Consider the set {supp(Y ) : Y ∈ CH,Ann(M)} and impose on the set an order compatible
with orbit closure inclusion of K-orbits in X. Let Q be the smallest orbit in such
set with respect to this order. Let M(Q) be the irreducible module in CH,Ann(M) with

supp(M(Q)) = Q. It follows that the leading term cycle of M is of the form LTC(M(Q)) =

T ∗Q(X) +
∑

imi T ∗Qi(X) where Ci = µ−1(f) ∩ T ∗Qi(X) do not belong to A(O) · C . The
assingment

Mo → [C] +
∑
i

mi [Ci] ∈ Htop(Xf ),

extends to a W -equivariant map ψ : Q[W ] ·M → Htop(Xf ), see ([18]). By composing ψ
with the projection from Htop(Xf ) to Htop(Xf )AG(f,C) we obtain a W -map

ψ′ : Q[W ] ·M → Htop(Xf )AG(f,C)

ψ′(M) = [C] +
∑
i

mi

( ∑
z∈AG(f,C)

z · [Ci]
)
.

Since {
∑

z∈AG(f,C) z · [Cj ] : Cj ∈ Irr(µ−1(f))} is a basis of Htop(Xf )AG(f,C), ψ′ is a non-

zero W -equivariant map. We claim that ψ′ is an isomorphism. Arguing as in Theorem 4.13
we show that ψ′ is onto. By part (2) in Theorem 4.13, the number of irreducible constituents
in Htop(Xf )AG(f,C) is equal to #A(O) · C, which in turn equals #{Y ∈ C : Ann(Y ) = I},
according to Corollary 4.5. On the other hand, by Theorem 4.9, we know that the number
of irreducible constituent in Q[W ] ·X is #{Y ∈ C : Ann(Y) = I}. It follows that ψ′ is also
injective.

Example 4.1. Assume that GR = Sp(1, 1) and let C be the Harish-Chandra cell of modules
with infinitesimal character ρ that contains the holomorphic discrete series. The associated
variety of the annihilator of modules in this cell is the nilpotent G-orbit O parametrized by
the partition [2, 2].

The cell consists of three representations; π1, π2 in the discrete series and a third
representation π3 that is cohomologically induced. One can verify that Ann(π1) = Ann(π2)
while π3 has a different annihilator. ( These computations can be verified by using the
software ATLAS, for example.)

It follows that

Q[W ]πi ' VC , for i = 1, 2

Q[W ]π3 ( VC
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On the other hand, as each of the irreducible modules πi is cohomologically induced,
we have

CC(πi) = T ∗Qi(X) with Qi = supp(πi).

Write Ci for the component of the Springer fiber corresponding to T ∗Qi(X) ∩
µ−1(f). A basis for Htop(µ

−1(f))AG(f,C3) is given by {[C1 + C2], [C3]}. As Q[W ]π3 '
Htop(µ

−1(f))AG(f,C3) and the characteristic cycle is W -equivariant, we can explicitly
describe the action of W on this basis,i.e.

sα1 [C3] = −[C3] sα1 [C1 + C2] = [C1 + C2] + 2[C3]

sα2
[C3] = [C3] + [C1 + C2] sα2

[C1 + C2] = −[C1 + C2].

5 Leading term cycle

5.1 Two triangularity results and the leading term cycles

Throughout this section (g,K) stands for (sp(2n),GL(n,C)) or (sp(2n),Sp(p,C)×
Sp(q,C)) with p+ q = n. We fix O a nilpotent orbit and we assume that O occurs as
the associated variety of the annihilator of some (g,K)-module. In [24], a geometric argu-
ment is used to define a bijection between Primρ(O) and the set of orbital varieties
{Υ : Υ irreducible component of O ∩ n}. On the other hand, in [14] a bijection between these
sets is defined by using an algebraic/combinatoric argument. In this section we prove that
the algebraically defined and the geometrically defined bijections coincide. We use results
from [24] and [14] to derive information on leading term cycles of irreducible Harish-Chandra
modules.

For the pairs (g,K) under consideration, in view of Proposition 4.2, the geometric
bijection

φ : Primρ(O)→ {Υ : Υ irreducible component of O ∩ n} (5.1)

can be described as follows. Let C be a Harish-Chandra cell of modules with trivial
infinitesimal character such that AV (Ann(M)) = O for M ∈ C. Write AV of irreducible
modules in C as K · f . Given I ∈ Primρ(O), choose M ∈ C with Ann(M) = I. Let
suppo(M) ∈ K\X be the K-orbit dense in the support of M and write Csuppo(M) ∈
Irr(µ−1(f)) for the component attached to T ∗suppo(M)X. Then,

φ(I) = Υsuppo(M)

where Υsuppo(M) is the orbital variety that corresponds to A(O) · Csuppo(M) under the
Spaltenstein bijection. It is worth observing that:

(1) the geometric bijection attaches to a primitive ideal an orbit of A(O) acting on µ−1(f).
By (2.5), such A(O)-orbit corresponds to a set of K-orbit contained in µ−1(K · f).

(2) Υsuppo(M) = Υsuppo(M ′) implies that Ann(M) = Ann(M ′), see Proposition 4.2.
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In the algebraic setting, I ∈ Primρ(O) is identified as I = Ann(Lw−1) for some w ∈W .
Then, [[14], Theorem 2] gives a Weyl group element w′ ∈W with two key properties (a)
AV (Lw) = AV (Lw′) and (b) Υw′ is open in AV (Lw). Note that w,w′ belong to the same
right Khazdan-Lusztig cell. In particular, τ∞(w−1) = τ∞(w′−1). The algebraic bijection
assigns to I the orbital variety Υw′ . In the combinatorial language, Υw′ is indexed by a
standard domino tableau as explained in §3.1 . We write Υw′ = ΥTI .

Theorem 5.2. The algebraically defined and geometrically defined bijections between
Primρ(O) and {Υ : Υ irreducible component of O ∩ n} coincide.

Proof . Fix OK = K · f ⊂ O = G · f . Let C be the Harish-Chandra cell with associated
variety OK . For Q ∈ K\X denote by M(Q) the irreducible Harish-Chandra module with
support equal to Q.

Identify each ideal I ∈ Primρ(O), via the geometric bijection, with the set {Q ∈ K\X :
µ(T ∗QX) = OK and Ann(M(Q)) = I}. Choose from each such set of K-orbits in the flag
variety X one orbit as prescribed in [[24], §3.3] to form the set µ−1(OK)′, see (3.2). Order
the set µ−1(OK)′ as in [[24], §3.3]. List the orbits in µ−1(OK)′ = {Q0,Q1, . . . ,Qr} in the
chosen order.

Let I0 = Ann(M(Q0)) = Ann(Lw−1
0

). By Trapa’s upper triangularity result we know

that AV (Lw0
) = Υsuppo(M(Q0)). On the other hand, [[14], Theorem 2] says the ΥTI0

is open in AV (Lw0
). Hence, Υsuppo(M(Q0)) = ΥTI0

. Similarly, for Q1 ∈ µ−1(OK)′ write
I1 = Ann(M(Q1)) = Ann(Lw−1

1
). By the triangularity result in [24], AV (Lw1) contains

Υsuppo(M(Q1)) and no other orbital variety but possibly Υsuppo(M(Q0)). On the other hand,
[Theorem 2, [14]] guarantees that ΥTI1

is open in AV (Lw1). Since ΥTI0
6= ΥTI1

, we conclude
that Υsuppo(M(Q1)) = ΥTI1

. An inductive argument settles the theorem.

There is no known algorithm to compute characteristic cycles or leading term cycles of
Harish-Chandra modules. For the pairs (1.1) information concerning leading term cycles is
implicit in the material presented so far. For example, we know

(1) T ∗suppo(M)X contributes to LTC(M),

(2) if T ∗QX contributes to LTC(M), then Q should be smaller than suppo(M) in the orders
defined in [24],

(3) ifM ∈ C with AV (M) = K · f and T ∗QX contributes to LTC(M), then Q is the support
of an irreducible module M ′ ∈ C.

Our observation (3) follows from three facts:

(1) each irreducible module has its support contributing to the leading term cycle, [24];
(2) there exists exactly one Harish-Chandra cell with associated variety OK , [14];
(3) #C = #{Q ∈ K\X : µ(T ∗QX) = OK}.

The following Proposition relies on the triangularity result given in [24].

Proposition 5.3. Assume that (G,K) is one of the pairs (1.1). Fix O a special nilpotent
orbit and let OK = K · f ⊂ O ∩ p. Let C be the Harish-Chandra cell attached to OK .
If M ∈ C and LTC(M) = T ∗suppo(M)X +

∑
i mi T

∗
Qi
X with mi 6= 0, then τ(Ann(M)) ⊂

τ(Ann (M(Qi)).



Leading Term Cycle 17

Proof . Write, with the notation already introduced, µ−1(OK)′ = {Q0,Q1, . . . ,Qr} and
Ii = Ann(M(Qi)) = Ann(Lw−1

i
). For each M(Q) write CQ ∈ µ−1(f) for the irreducible

component of the Springer fiber that is dense in µ−1(f) ∩ T ∗QX.

Let M be an irreducible module in C. Assume first that Ann(M) = I0. The argument in
the proof of Theorem 5.2 gives AV (Lw0

) = Υsuppo(M). The triangularity result in [24] implies
that any conormal bundle T ∗QX contributing to LTC(M) has A(O) · CQ = A(O) · Csuppo(M).
By Proposition 4.2, Ann(M) = Ann(M(Q)). Hence, the proposition follows in this case.
Next, assume that Ann(M) = Ann(Lw−1

1
) = I1. By the geometric triangularity result,

AV (Lw1
) contains Υsuppo(M) and possibly Υsuppo(M(Q0)). As before, if T ∗QX contributes

to LTC(M), then Ann(M) is either I0 = Ann(Lw−1
0

) or I1 = Ann(Lw−1
1

). Moreover, if

Υsuppo(M(Q0)) is open AV (Lw1
) then CC(Lw1

) contains a conormal bundle T ∗X(w′)X such

that µ(T ∗X(w′)X) = Υw′ = ΥTI0
. By (3.2), τ(w−1

1 ) ⊂ τ(w′−1). Since τ(w−1
1 ) = τ(I1) and

τ(w′−1) = τ(I0) we conclude that τ(Ann(M)) ⊂ τ(Ann (M(Q0)). The general case is settled
in a similar manner.

Proposition 5.3 can be strengthen if we use the triangularity result in [16]. The argument
is analogue to the one used in the proof of the proposition.

Theorem 5.4. Assume that (G,K) is one of the pairs (1.1). Fix O a special nilpotent
orbit and let OK = K · f ⊂ O ∩ p. Let C be the Harish-Chandra cell attached to OK .
If M ∈ C and LTC(M) = T ∗suppo(M)X +

∑
i mi T

∗
Qi
X with mi 6= 0, then τ∞(Ann(M)) ⊂

τ∞(Ann(M(Qi)).

5.2 A module with reducible leading term cycle

In this sub-section we give an example of a (sp(8),Sp(4,C)× Sp(4,C)) Harish-Chandra
module with reducible leading term cycle. We outline a method to find families of
(sp(2n),Sp(n,C)× Sp(n,C)) Harish-Chandra modules with reducible leading term cycle.
A detailed and systematic construction of such families will appear in a sequel to this
paper. Trapa asked if (sp(2n),Sp(n,C)× Sp(n,C)) Harish-Chandra modules always have
irreducible leading term cycle. This is not the case.

The results presented in this sub-section rely heavily on

(1) the relationship between leading term cycles of irreducible Harish-Chandra modules
and associated varieties of highest weight modules, see [[24], Cor. 4.2]

(2) the fact that there exist Sp(2n,R) and Sp(n, n) modules that share the same
annihilator.

The strategy to construct (sp(2n),Sp(n)× Sp(n)) Harish-Chandra modules with
reducible leading term cycle is as follows:

(1) Construct (sp(2n),GL(n,C)) Harish-Chandra modules which have reducible leading
term cycle. This can be done by using cohomological induction. The key idea is an
observation made by Peter Trapa that the computation of leading terms is not closed
under induction.
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(2) For a (sp(2n),GL(n,C)) module M as in (1), write Ann(M) = Ann(Lw−1) and
O = G · f = AV (Ann(Lw−1)). Use Corollary 4.2 in [24] to conclude that AV (Lw)
is reducible. Here is a reason. The finite groups A(O) and AK(f) act on µ−1(f).
When GR = Sp(2n,R) the A(O) and AK(f) orbits on µ−1(f) coincide. Hence, distinct
conormal bundles contribution to the leading term cycle of M yield distinct irreducible
components of AV (Lw).

(3) Identify Sp(n, n) modules with annihilator equal to Ann(Lw−1). Apply Corollary 4.2
in [24] to conclude that the leading term cycles of such modules are reducible.

A concrete example when GR = Sp(8,R).

We work in the categoryMρ(sp(8),GL(4,C)) and construct a cohomologicaly induced
highest weight module with reducible leading term cycle. Write g = sp(8) = k⊕ p. As
GL(4,C)-representation p decomposes into the direct sum p = p+ ⊕ p−. Our construction
will yield a module M with AV (M) = p+. (Observe that p+ is the closure of a K =
GL(4,C)-nilpotent orbit, i.e. p+ = K · f for an appropriate nilpotent element f .)

Fix h ⊂ k a Cartan subalgebra. Fix a positive system ∆+(g, h) = ∆+(k, h) ∪∆(p+).
Let b be the Borel subalgebra determined by ∆+(g, h). Define s = l⊕ u the θ-stable
parabolic subalgebra with l ' sp(4,C)⊕C2 and u ∩ p = u ∩ p−. In what follows we identify
a (l, L ∩K) Harish-Chandra module Y such that M = Rs(Y ) has reducible leading term
cycle and AV (M) = p+.

Consider the Harish-Chandra cell of (l, L ∩K)-modules that contains the holomorphic
discrete series. This cell consists of three highest weight Harish-Chandra modules. Moreover,
the associated variety of the annihilators of these modules is the closure of the nilpotent
orbit O attached to the partition [2, 2], see [6]. It is useful to recall that the dimension of
the special representation associated to the orbit with partition [2, 2] is 2, see [6]. We argue
that exactly one of the irreducible modules in this cell has reducible characteristic cycle.
This is the module Y that is relevant to our construction.

The Harish-Chandra cell under consideration contains (π1, Y1) the holomorphic discrete
series, (π2, Y2) a module that is cohomologicaly induced from a character and a third module
(π, Y ). As (πj , Yj) with j = 1, 2 are cohomologically induced from a character, it is known

that CC(Yj) = T ∗Qj (XL) where Qj = supp(Yj) andXL is the flag variety for L. The bijections

(2.4) and (2.5) associate to Qj , j = 1, 2 two distinct orbital varieties Υj , j = 1, 2. By Theorem
3.4, the characteristic polynomials pΥj , j = 1, 2 are linearly independent. As dimSp(O) = 2,

the set {pΥ1 , pΥ2} is a basis of Sp(O). It follows form this discussion that for Q = supp(Y ),

µ(T ∗Q(XL)) ( p+. On the other hand, AV (Y ) = AV (Yi) with i = 1, 2. Hence, CC(Y ) must

contain T ∗Q′(XL) with Q′ ⊂ Q and µ(T ∗Q(XL)) = p+. It is well-known how to compute
moment map images of conormal bundles when g is a classical Lie algebra , see for example
[28], [23]. Using the algorithm in [23] we conclude that CC(Y ) = T ∗Q(XL) + T ∗Q1

(XL). In
particular, LTC(Y ) is irreducible but CC(Y ) is not.

Next, we consider the characteristic cycle of M = Rs(Y ). It is known that CC(Rs(Y ))
can be written in terms of CC(Y ). Let F be the generalized flag variety of all parabolic
subalgebra conjugate to s. Denote by p : X → F the canonical projection. Then

CC(Rs(Y )) = T ∗
Q̃

(X) + T ∗
Q̃1

(X)

where Q̃ (Q̃1) is the GL(4,C)-orbit that fibers over its projection to F with fiber isomorphic
to Q (Q1 respectively). We use once more the algorithm in [23] to show that both µ(T ∗

Q̃
(X))
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and µ(T ∗
Q̃

(X)) are open in AV (M). In other words, M has reducible leading term cycle. The

associated variety of the annihilator of M is the orbit with parametrized by [2, 2, 2, 2]. As this
orbit also occurs as associated variety of annihilators of (sp(8),Sp(2, C)× Sp(2,C)) modules,

we conclude that there exists M̃ a (sp(8),Sp(2, C)× Sp(2,C)) module with reducible leading
term cycle.

The modules M and M̃ can be identified using the ATLAS software. The Langlands

data of M and M̃ can be computed using the software REALX. Here we use the Beilinson-

Berstein classification of irreducible modules to identify M and M̃ via their support Q and

Q̃. Write Q = GL(4,C) · bQ and Q̃ = Sp(2,C)× Sp(2,C) · b
Q̃

. In order to give an explicit
description of the base points bQ, b

Q̃
we need to introduce some notation.

Realize Sp(8,R) as the group of matrices which leave invariant the symplectic form
determined by J4,4 = antidiagonal(−I4×4, I4×4). Identify Sp(2, 2) with the group of matri-
ces in Sp(8,C) which leave invariant the Hermitian from of signature (4, 4) determined
by K2,2 = diag(I2×2,−I2×2, I2×2,−I2×2). Fix h = {diag(t1, t2, t3, t4,−t1,−t2,−t3,−t4), ti ∈
C} ⊂ sp(8,C) a Cartan subalgebra of sp(8,C). Write, in the usual notation,
∆(sp(8,C), h) = {±(εi ± εj1 ≤ i < j ≤ 4} ∪ {2εi, 1 ≤ i ≤ 4}.
Description of the base point bQ.

Choose the set of simple roots
∑+

= {β1 = ε1 − ε2, β2 = ε2 − ε3, β3 = ε3 − ε4, β4 =

2ε4}. Write b for the Borel subalgebra of sp(8,C) determined by (h,
∑+

). Here GR =
Sp(8,R) and the simple root 2ε4 is a non-compact imaginary root. Let c2ε4 : sp(8,C)→
sp(8,C) be the Cayley transform through the root 2ε4. Set h1 = c2ε4(h) and c2ε4(

∑+
) =

{αi : αi = c2ε4(βi) 1 ≤ i ≤ 4}. Write W1 = W (sp(8,C), h1) the corresponding Weyl group.
Let sα3

∈W1 denote the simple reflection through the root α3. Then bQ = sα3
(c2ε4 · b).

Description of the base point b̃Q.

Now GR = Sp(2, 2). Choose
∑+

= {β1 = ε1 − ε3, β2 = ε3 − ε4, β3 = ε4 − ε2, β4 = 2ε2}
a set of simple roots for ∆(sp(8,C)h). Observe that the roots β1 and β3 are imaginary
non-compact. Let cβi : sp(8,C)→ sp(8,C), i = 1, 3 be the Cayley transforms through the

roots βi with i = 1, 3. Set h′ = cβ3cβ1h and (cβ3cβ1

∑+
) = {αi : αi = cβ3cβ1βi 1 ≤ i ≤ 4}.

Then b̃Q = sα1
sα3

sα4
sα2

cβ3
cβ1

b.
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