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OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE

MICHAEL BATANIN AND MARTIN MARKL

Abstract. The purpose of this paper is two-fold. In Part 1 we introduce a new theory
of operadic categories and their operads. This theory is, in our opinion, of an indepen-
dent value.

In Part 2 we use this new theory together with our previous results to prove that multi-
plicative 1-operads in duoidal categories admit, under some mild conditions on the underly-
ing monoidal category, natural actions of contractible 2-operads. The result of D. Tamarkin
on the structure of dg-categories, as well as the classical Deligne conjecture for the Hochschild
cohomology, is a particular case of this statement.
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Introduction

In [9] we proposed a notion of center and homotopy center of a monoid in a monoidal

category enriched in a duoidal category. Examples include classical centers but also the

2-category of categories, the symmetric monoidal closed category Gray of 2-categories, 2-

functors and pseudonatural transformations [22] and Tamarkin’s homotopy 2-category of

dg-categories, dg-functors and their coherent natural transformations [30].

It is well-known that the center of an associative algebra is a commutative algebra. A ho-

motopical analogue of this statement is the famous Deligne conjecture which states that

there is a natural action of an E2-operad on the Hochschild complex of an associative alge-

bra lifting the Gerstenhaber algebra structure from the cohomology to the chain level. We

conjectured in [9] that our generalized (homotopical) center admits a closely related alge-

braic structure. Namely, there is a natural action of a contractible 2-operad in the sense of

the first author [3] on the homotopical center of a monoid [9, Corollary 11.20]. We call this

statement duoidal Deligne’s conjecture. Tamarkin’s main theorem from [30] is a particular

case of this conjecture. Classical Deligne’s conjecture also follows from the duoidal version

[9, Corollary 11.22]. The main goal of this paper is to prove this conjecture under some

mild homotopical conditions on the base symmetric monoidal category V.

Our secondary goal is to advertise a new theory which, as we believe, has an independent

value. During our work on the proof of duoidal Deligne’s conjecture we discovered that the

existing language is not adequate for our purposes. Some operad-like structures that we

wanted to use were not operads in any of the existing senses. To overcome these difficulties,

we introduce a concept of an operadic category and of an operad corresponding to such a

category.

Examples of operadic categories are abundant. They include categories like finite sets,

finite ordinals, the categories of n-ordinals [4] and n-trees [3, 10], Barwick operator cate-

gories [2], ordered graphs and many other. Examples of the corresponding operads are (col-

ored) classical symmetric and nonsymmetric operads, n-operads [3], hyperoperads of Getzler
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OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 3

and Kapranov [21], charades of Kapranov [23], &c. As classical operads, our generalized

operads have algebras, which now include other operad-like structures such as (wheeled)

properads or PROPs, cyclic operads and (twisted) modular operads.

We believe that operadic categories admit a rich and interesting theory. They are closely

connected to other existing and emerging approaches to generalized operad-like structures

such as Feynman categories of Kaufmann [24], polynomial monads [6], moment categories of

Berger [13] and operator categories of Barwick [2]. To keep the focus, we decided to choose

a ‘minimalistic’ approach and to include as much or as little theory of operadic categories

as necessary for the proof of Deligne’s conjecture. A deeper theory, including 2-categorical

aspects of operadic categories and relation to other notions with more applications, will be

developed in subsequent papers.

Plan of the paper

According to our goals we decided to subdivide our paper into two parts. Part 1 contains

all necessary definitions and facts about operadic categories.

An operadic category is a category over the (skeletal) category of finite sets whose mor-

phisms come with a finite set of objects of the same category, called fibers. The motivating

example is the category of finite sets itself, where the set of fibers of a map f : T → S is the

set of preimages f−1(i), i ∈ S. The axioms of operadic category are designed to make the

assignment of fibers to morphisms an abstract algebraic structure on a category. Operadic

functors are functors which preserve fibers and some other elements of this structure.

With each operadic category one associates its category of operads with values in a sym-

metric monoidal category. In many respects the category of operads plays the rôle of the

presheaf category over a small category, but other aspects of operadic categories make it

closer to multicategories. We show that several standard categorical notions such as the

left Kan extensions, discrete fibrations, the Grothendieck construction or Beck-Chevalley

squares extend to operadic categories and operads. On the other hand, some important no-

tions from the theory of classical operads, such as the Day-Street convolution, multitensors

and the condensation can be easily carried over to the context of operadic categories.

Part 2 of our paper shows how all these notions work together in the proof of duoidal

Deligne’s conjecture. In Section 5 we describe an operadic category LTr and an LTr-operad

I
LTr that canonically acts on any multiplicative 1-operad in any duoidal category.

In the subsequent sections we demonstrate that this action induces an action of a colored

2-operad TmN

2 on the same multiplicative 1-operad. This induced action is crucial and the

most complicated part of our proof. The 2-operad TmN

2 is constructed as a pullback of

the Tamarkin-Tsygan colored symmetric operad L(2) [31, 7] whose definition we recall in

[duodel.tex] [September 24, 2018]



4 M. BATANIN AND M. MARKL

Section 6. Algebras of L(2) are multiplicative nonsymmetric operads. While this observation

was enough to prove classical Deligne’s conjecture [7], for the duoidal version we have to take

into account that the two units of a duoidal category can be different, though connected by

a noninvertible morphism. This asymmetry cannot be captured by the classical approach

via symmetric operads. This was our reason for introducing operadic categories.

Once this induced action of TmN

2 is constructed, we obtain the proof of duoidal Deligne’s

conjecture using the condensation of [7] generalized to the context of operadic categories.

This is the subject of the last section of our paper.

Conventions

Throughout this article, V will be a complete, cocomplete closed symmetric monoidal

category. A tree will always mean a rooted (i.e. directed) tree [27, II.1.5]. The arity of

a vertex of a directed tree is the number of incoming edges of that vertex.

Categories will be denoted by typewriter letters O, P, TamN2 , Ω
N

2 , &c. Exceptions are our

basic monoidal category which we keep denoting V from historical reasons, and the basic

duoidal category D used in Part 2. Operads in V will be denoted by the calligraphic letters

O, P, &c., while a typical operad in D will be denoted by the script A . A more specific

notation used in Part 2 is summarized in Table 1. Finally, N denotes the set of natural

numbers (inducing 0).

Acknowledgment. We enjoyed the wonderful atmosphere of the Max-Planck Institut

für Mathematik in Bonn during the period when the first draft of this paper was completed.

We also wish to express our gratitude to C. Berger, R. Garner, R. Kaufmann, S. Lack,

R. Street, D. Tamarkin and M. Weber for many useful comments and conversations.

Part 1. Theory of operadic categories

1. Operadic categories and their operads

Let sFSet be the skeletal category of finite sets. The objects of this category are linearly

ordered sets n̄ = {1, . . . , n}, n ∈ N. Morphisms are arbitrary maps between these sets. We

define the ith fiber f−1(i) of a morphism f : T → S, i ∈ S, as the pullback of f along the

map 1̄ → S which picks up the element i, so this is an object f−1(i) = n̄i ∈ sFSet which is

isomorphic as a linearly ordered set to the preimage
{
j ∈ T | f(j) = i

}
. Any commutative

diagram in sFSet

T
f //

h ��❅
❅❅

❅ S

g��⑧⑧
⑧⑧

R
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OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 5

then induces a map fi : h−1(i) → g−1(i) for any i ∈ R. This assignment is a functor

Fibi : sFSet/R → sFSet. Moreover, for any j ∈ S we have the equality f−1(j) = f−1
g(j)(j).

The above structure on the category sFSet motivates the following abstract definition.

A strict operadic category is a category O equipped with a ‘cardinality’ functor | - | : O →

sFSet having the following properties. We require that each connected component of O has

a chosen terminal object Uc, c ∈ π0(O). We also assume that for every f : T → S in O and

every element i ∈ |S| there is given an object f−1(i) ∈ O, which we will call the ith fiber of f ,

such that |f−1(i)| = |f |−1(i). We also require that

(i) For any c ∈ π0(O), |Uc| = 1.

A trivial morphism f : T → S in O is a morphism such that, for each i ∈ |S|, f−1(i) = Udi
for some di ∈ π0(O).

The remaining axioms for a strict operadic category are:

(ii) The identity morphism id : T → T is trivial for any T ∈ O;

(iii) For any commutative diagram in O

(1) T
f //

h ��❅
❅❅

❅ S

g��⑧⑧
⑧⑧

R

and every i ∈ |R| one is given a map

fi : h
−1(i) → g−1(i)

such that |fi| : |h
−1(i)| → |g−1(i)| is the map |h|−1(i) → |g|−1(i) of sets induced by

|T |
|f |

//

|h| !!❇
❇❇

❇
|S|

|g|~~⑤⑤
⑤⑤

|R|

.

We moreover require that this assignment forms a functor Fibi : O/R → O. If R = Uc,

the functor Fib1 is required to be the domain functor O/R → O.

(iv) In the situation of (iii), for any j ∈ |S|, one has the equality

(2) f−1(j) = f−1
|g|(j)(j).

(v) Let

S
g

��

a

%%❑❑
❑❑

❑❑
❑❑

T

f
99ssssssss b

h %%❑
❑❑

❑❑
❑❑

// Q

cyysss
ss
ss

R

[duodel.tex] [September 24, 2018]



6 M. BATANIN AND M. MARKL

be a commutative diagram in O and let j ∈ |Q|, i = |c|(j). Then by axiom (iii) the

diagram

h−1(i)
fi //

bi
%%❑❑

❑❑
❑

g−1(i)

aiyyttt
tt

c−1(i)

commutes, so it induces a morphism (fi)j : b
−1
i (j) → a−1

i (j). By axiom (iv) we have

a−1(j) = a−1
i (j) and b−1(j) = b−1

i (j).

We then require the equality

fi = (fi)j.

We will also assume that the set π0(O) of connected components is small with respect to a

sufficiently big ambient universe.

Remark 1.1. It follows from axiom (iii) that the unique fiber of the canonical morphism

!T : T → Uc is T .

A strict operadic functor between two strict operadic categories is a functor F : P → O over

sFSet which preserves fibers in the sense that F
(
f−1(i)

)
= F (f)−1(i), for any f : T → S ∈ P

and i ∈ |S| = |F (S)|. We also require that F preserves the chosen terminal objects in each

connected component, and equality (2). This gives the category OpCat of strict operadic

categories and their strict operadic functors.

Remark 1.2. Our notion of operadic category is not invariant under categorical equiv-

alences. It is, nevertheless, very convenient and sufficient for our applications. There is

a more general non-strict version of the above definition which we are going to consider in

a subsequent paper. We will also consider non-strict operadic functors and operadic natural

transformations. We hope to prove a coherence theorem saying that every general operadic

category is equivalent in an appropriate sense to a strict one. Since in this paper we only

use strict operadic categories we will call them simply operadic categories for brevity.

Example 1.3. The terminal category 1 with the cardinality functor | - | : 1 → sFSet which

sends the unique object of 1 to 1̄ ∈ sFSet is operadic.

Example 1.4. The category ∆alg of finite ordinals (including the empty one) has an obvious

structure of an operadic category

Example 1.5. The categories sFSet and ∆alg are examples of operator categories in the sense

of Barwick [2]. It is easy to see that, in fact, any Barwick’s operator category is equivalent

to an operadic category in our sense. Recall that an operator category is an essentially small

category Φ which satisfies the following conditions:

(i) the set of morphisms Φ(T, S) is finite for any pair of objects T, S ∈ Φ,

[September 24, 2018] [duodel.tex]



OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 7

(ii) the category Φ has a terminal object 1, and

(iii) there is a pullback T ×S i of i along f for any morphisms f : T → S and i : 1 → S.

To find an equivalent operadic category we take a skeletal version of Φ, fix 1 as the chosen

terminal object, take Φ(1, T )) = |T | ∈ sFSet as the cardinality of T and choose pullbacks

T ×S i, i ∈ |S|, as the fiber functors. The rest of the structure is clear.

Example 1.6. Each category C determines the ‘tautological’ operadic category C+1 which,

as a category, is C with a formally added terminal object 1. The cardinality | - | :C+1 → sFSet

is defined by

|T | :=

{
0̄, if T ∈ C, and

1̄, if T = 1.

The axioms dictate that the only maps that have fibers are !T : T → 1 with the unique

fiber T , and the identity id : 1 → 1 whose fiber is 1. This construction constitutes a fully

faithful embedding of the category of small categories to the category of operadic categories.

Example 1.7. Let C be a set. A C-bouquet is a map b : X+1 → C, where X ∈ sFSet. In

other words, a C-bouquet is an ordered (k + 1)-tuple (c1, . . . , ck; c), X = k̄, of elements of C.

It can also be thought of as a planar corolla whose all edges (including the root) are colored.

The extra color b(1) ∈ C is called the root color . The finite set X is the underlying set of

the bouquet b.

A map of C-bouquets b → c whose root colors coincide is an arbitrary map f : X → Y

of their underlying sets. Otherwise there is no map between C-bouquets. We denote the

resulting category of C-bouquets by Bq(C).

The cardinality functor | - | : Bq(C) → sFSet assigns to a bouquet b : X + 1 → C its

underlying set X . The fiber of a map b → c given by f : X → Y over an element y ∈ Y is

a C-bouquet whose underlying set is f−1(y), the root color coincides with the color of y and

the colors of the elements are inherited from the colors of the elements of X .

It is easy to see that Bq(C) is an operadic category with C its set of connected components.

It is an example of an operadic category whose fibers are not pullbacks. It has the following

important property:

Proposition 1.8. For each operadic category O with π0(O) = C, there is a canonical operadic

‘arity’ functor Ar : O → Bq(C) giving rise to the factorization

(3) OAr

��

| - |

��
Bq(C)

| - |
// sFSet

of the cardinality functor | - | : O → sFSet.

[duodel.tex] [September 24, 2018]



8 M. BATANIN AND M. MARKL

Proof. Let the source s(T ) of T ∈ O be the set of fibers of the identity id : T → T . We define

Ar(T ) ∈ Bq(C) as the bouquet b : s(T ) + 1 → C, where b associates to each fiber Uc ∈ s(T )

the corresponding connected component c ∈ C, and b(1) := π0(T ). We leave as an exercise

to check that the assignment T 7→ Ar(T ) extends into an operadic functor. �

The assignment C 7→ Bq(C) extends to a functor Bq : Set → OpCat, and the functor

Ar : O → Bq(C) is the initial object of the comma-category O/Bq . This explains why the

bouquets will play such a prominent rôle among operadic categories. Indeed, the arity functor

will be used to define the endomorphism operads in Example 1.19.

Proposition 1.9. Pullbacks in the category of categories create pullbacks in the category of

operadic categories and operadic functors.

Proof. Let us consider the ordinary pullback

(4) R
r //

̟

��

O

π

��
Q

p // P

of the diagram Q
p // P O

πoo of operadic categories and their operadic functors. We may

assume that objects of R are pairs (t, S), t ∈ O, S ∈ Q, such that π(t) = p(S). Morphisms

(t, T ) → (s, S) in R are couples (σ, f), where σ : t → s is a morphism in O and f : T → S

a morphism in Q such that π(σ) = p(f). The functors r : R → O and ̟ : R → Q are the

obvious projections to the first resp. the second factor.

We equip R with a structure of an operadic category as follows. We define the cardinality

functor | - | : R → sFSet by |(t, T )| := |t|.1 The chosen terminal objects are

Uπ0(t,S) := (Uπ0(t), Uπ0(S)).

The fibers are defined componentwise, i.e. for a morphism (σ, f) : (t, T ) → (s, S) we put

(σ, f)−1(i) :=
(
σ−1(i), f−1(i)

)
, i ∈ |s| = |S|.

Notice that, since p and π are operadic functors,

π
(
σ−1(i)

)
= (πσ)−1(i) = (pf)−1(i) = p

(
f−1(i)

)
,

so indeed (σ, f)−1(i) ∈ R.

We leave the verification that the diagram (4) is indeed a pullback in the category of

operadic categories as an exercise. �

1Since |t| = |S| we could as well put |(t, T )| := |T |.

[September 24, 2018] [duodel.tex]



OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 9

Pullbacks can be used to define colored versions of operadic categories. Given an operadic

category O and a finite set C, we define the operadic category OC of C-colored objects in O as

the pullback

(5) OC //

��

Bq(C)

| - |
��

O
| - |

// sFSet

Notice that π0(O
C) ∼= π0(O)×C.

Remark 1.10. Since sFSet is the terminal object in the category of operadic categories,

the pullback OC is actually the product O× Bq(C) in OpCat.

A O-collection in V is a collection E = {E(T )}T∈O of objects of V indexed by the objects

of the category O. The category of O-collections in V will be denoted CollO(V ). For a

O-collection E and a morphism f : T → S let

E(f) =
⊗

i∈|S|

E(Ti)

In the following definition we tacitly use equalities (2).

Definition 1.11. An O-operad is a collection P = {P(T )}T∈O in V together with units

I → P(Uc), c ∈ π0(O),

and structure maps

µ(f) : P(f)⊗ P(S) → P(T ), f : T → S,

satisfying the following axioms.

(i) Let T
f
→ S

g
→ R be morphisms in O and h := gf : T → R as in (1). Then the

following diagram of structure maps of P combined with the canonical isomorphisms

of products in V commutes:
⊗

i∈|R|

P(fi)⊗ P(g)⊗ P(R)
⊗

i µ(fi)⊗id

**
id⊗µ(g)

��
P(h)⊗ P(R) .

µ(h)

tt⊗

i∈|R|

P(fi)⊗P(S) ∼= P(f)⊗ P(S)
µ(f)

// P(T )

(ii) The composition

P(T ) //
⊗

i∈|T |

I⊗P(T ) //
⊗

i∈|T |

P(Uci)⊗P(T )
= //P(idT )⊗P(T )

µ(id)
//P(T )

is the identity for each T ∈ O, as well as the identity is

[duodel.tex] [September 24, 2018]



10 M. BATANIN AND M. MARKL

(iii) the composition

P(T )⊗I // P(T )⊗P(Uc)
= // P(!T )⊗P(Uc)

µ(!T )
// P(T ) , c := π0(T ).

Notice that for an arbitrary operad P and c ∈ π0(O), P(Uc) with the multiplication

µ(id) : P(Uc)⊗P(Uc) → P(Uc)

forms a unital monoid in V .

A morphism ς : P ′ → P ′′ of O-operads in V is a collection {ςT}T∈O of V -morphisms

ςT : P ′(T ) → P ′′(T ) commuting with the structure operations. We denote by OpO(V ) the

category of O-operads in V . Each operadic functor F : O → P obviously induces the restriction

F ∗ : OpP (V ) → OpO(V ).

We can put the definition of O-operad in a 2-categorical context as follows2. Let ΣV denote

the symmetric monoidal bicategory with one object ⋆ and V as its category of morphisms

⋆→ ⋆. Recall that a part of a lax-functor structure on P from a category O to the bicategory

ΣV are morphisms

P(f)⊗P(g) → P(h)

for each commutative diagram like (1), as well as morphisms I → P(id). For such a lax-

functor and an object T ∈ O we denote P(T ) := P(T
!T→ Uc).

Definition 1.12. An operad-like functor from O to V is a lax-functor P : O → ΣV equipped,

for each f : T → S with fibers Ti := f−1(i), i ∈ |S|, with an isomorphism

(6) P(f) ∼=
⊗

i∈|S|

P(Ti)

which satisfies the following axioms:

(i) For any commutative diagram (1) the following diagram commutes

P(f)⊗ P(g) //

∼=

��

P(h)

∼=

��⊗

j∈|S|

P
(
f−1(j)

)
⊗

⊗

i∈|R|

P
(
g−1(i)

)

id

��

⊗

i∈|R|

P
(
h−1(i)

)

⊗

j∈|S|

P
(
f−1
|g|(j)(j)

)
⊗

⊗

i∈|R|

P
(
g−1(i)

) ∼= //
⊗

j∈|R|

( ⊗

|g|(j)=i

P
(
f−1
i (j)

)
⊗P

(
g−1(i)

))

OO

where the bottom vertical arrow on the left side is an identity due to equality

(7) P
(
f−1
|g|(j)(j)

) =
−→ P

(
f−1(j)

)

2We were inspired by the definition of a non-symmetric operad as a strict monoidal lax-functor ∆alg → ΣV
given by Day and Street in [19].
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OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 11

and the up-going right vertical arrow is given by the lax-constraints induced by

commutative diagrams:

h−1(i)
fi //

! ##●
●●

●●
g−1(i)

!{{✇✇✇
✇✇

Uc

.

(ii) For each object T ∈ O, the following diagram commutes

I

��

// P(idT )

∼=

��⊗

i∈|T |

P(Uci)
= //

⊗

i∈|T |

P(id−1
T (i)) .

The proof of the following lemma is straightforward:

Lemma 1.13. The category OpO(V ) is equivalent to the category of operad-like functors

from O to V and their lax-natural transformations which commute with the structure isomor-

phisms (6).

Example 1.14. Operads over the terminal category 1 of Example 1.3 are monoids in V .

Example 1.15. The category of operads over the category sFSet is isomorphic to the

category of classical symmetric operads. Operads over ∆alg are ordinary non-Σ operads [5,

Sec. 3, Prop. 3.1]. Applying the construction of diagram (5) to the operadic category ∆alg

we obtain the category ∆Calg describing C-colored non-Σ-operads. More examples of this

construction will be given in Section 5.

Example 1.16. An operad over the category C+1 from Example 1.6 is the same as a monoid

M = P(1) in V , together with the ‘actions’

(8) µ(!T ) :M ⊗P(T ) → P(T ), T ∈ C,

and a contravariant functor Φ : C → V such that the maps

Φ(f) := P(f) : P(T ) → P(S), f : T → S ∈ C,

commute with the actions (8). In particular, C+1-operads with P(1) = I are precisely

presheaves Cop → V .

Example 1.17. Operads over the category Bq(C) of C-bouquets introduced in Example 1.7

are ordinary C-colored operads. Therefore, for each C-colored collection E = {Ec}c∈C of

objects of V one has the endomorphism Bq(C)-operad End
Bq(C)
E , namely the ordinary colored

endomorphism operad [15, §1.2].
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12 M. BATANIN AND M. MARKL

Example 1.18. The category OpO(V ) of O-operads in V = (V,⊗, I) has a monoidal structure

given by the ’componentwise’ multiplication in V . The unit for this structure is the operad

I
O with I

O(T ) := I for each T ∈ O. Clearly F ∗(IP ) = I
O for any operadic functor F : O → P .

Example 1.19. For a C-colored collection E = {Ec}c∈C in V and an operadic category O

with π0(O) = C, one defines the endomorphism O-operad EndO
E as the restriction

EndO
E := Ar ∗

(
End

Bq(C)
E

)

of the Bq(C)-endomorphism operad of Example 1.17 along the arity functor Ar of Proposi-

tion 1.8.

Definition 1.20. An algebra over an O-operad P in V is a collection A = {Ac}c∈π0(O),

Ac ∈ V , equipped with an O-operad map α : P → EndO
A.

An algebra is thus given by suitable structure maps

αT :
⊗

c∈π0(s(T ))

Ac ⊗P(T ) → Aπ0(T ), T ∈ O,

where s(T ) denotes, as before, the set of fibers of the identity id : T → T . This notion of

P-algebras will further be generalized in Section 3.

Example 1.21. The category Γ of stable labelled graphs [26, Section 7] is an operadic cate-

gory. Morphisms are given by contractions of subgraphs. The cardinality functor associates

to a graph its set of vertices. Fibers of a morphism are the subgraphs contracted to a vertex.

If V is the category of differential graded vector spaces, then Γ-operads are precisely

hyperoperads in the sense of [21]. Algebras over these operads are (twisted) modular operads,

see [21] or [27, Def. II.5.5].

Example 1.22. This is our only example of a large operadic category. Let A be an abelian

category and let Epi(A) be its subcategory of epimorphisms. The cardinality functor on

Epi(A) maps all objects to the one point set 1̄. The (unique) fiber of any morphism is its

(chosen) kernel. It is easy to check that this defines an operadic category structure on

Epi(A). An Epi(A)-operad in the category of vector spaces is the same as a charade over A

in Kapranov’s sense [23, Definition 3.2].3

3Generally speaking, Epi(A) is not a strict operadic category but we can easily “strictify” it if we use a
skeletal version.
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1.1. The category of k-trees. We are going to recall briefly the category Ωk of k-trees, for

k ≥ 0; the details can be found in [3, Sec. 3, Example 8] or [10]. The category of 0-trees Ω0

is the terminal category 1. Its unique object is denoted by U0.

The category of 1-trees Ω1 is the category of finite ordinals (n) := {1, . . . , n}, n ≥ 0, and

their order-preserving maps. As usual, we interpret {1, . . . , n} for n = 0 as the empty set.

The terminal object of Ω1 is U1 := (1). When the meaning is clear from the context, we

will simplify the notation and denote the object (n) ∈ Ω1 simply by n. The category Ω1 is

isomorphic to the operadic category ∆alg recalled in Example 1.4.

Let k ≥ 2. A k-tree is a chain

(9) T = ( nk
tk−1 // nk−1

tk−2 // · · ·
t1 // n1 )

of morphisms in Ω1. A morphism

(10) σ : ( nk
tk−1 // nk−1

tk−2 // · · ·
t1 // n1 ) −→ ( mk

sk−1 // mk−1

sk−2 // · · ·
s1 // m1 )

of k-trees is a diagram in Set

nk
tk−1 //

σk

��

nk−1

σk−1

��

tk−2 // · · ·
t1 // n1

σ1

��
mk

sk−1 // mk−1

sk−2 // · · ·
s1 // m1

such that

(i) σ1 is order preserving and

(ii) for any p, k > p ≥ 1, and i ∈ np, the restriction of σp+1 to t−1
p (i) is order-preserving.

We denote by Ωk the category of k-trees and their morphisms as defined above. Its terminal

object is the k-tree Uk := (1 → 1 → · · · → 1), its initial object is zkU0 := (0 → 0 → · · · → 0).

Notice that we have the obvious truncation functors

Ωk
trk−1// Ωk−1

trk−2 // · · ·
tr2 // Ω2

tr1 // Ω1 = ∆alg .

One also has the suspension functor z : Ωk → Ωk+1, k ≥ 0, that to an k-tree as in (9)

associates the (k + 1)-tree

zT := ( nk
tk−1 // nk−1

tk−2 // · · ·
t1 // n1

// 1 ).

An s-leaf (or a leaf of height s) of a k-tree T as in (9) is, for s = k, by definition an

element of nk. For 1 ≤ s < k an s-leaf is an element i ∈ ns such that t−1
s (i) = ∅. We denote

by Lfs(T) the set of all s-leaves of T.

Let σ : T → S be a map of k-trees as in (10) and i ∈ mk = Lfk(S) a k-leaf of S. Let us

define the fiber σ−1(i) over i as the chain

(11) σ−1(i) :=
(
σ−1
k (i) // σ−1

k−1sk−1(i)) // · · · // σ−1
1 (s1 · · · sk−1(i))

)
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14 M. BATANIN AND M. MARKL

of the restrictions of the maps in (9). Analogously one may define also fibers over the s-leaves

for s < k, but we will not use them in this article.

The category Ωk with the cardinality functor |T| := Lfk(T), with the fibers defined as

above and the chosen terminal object the k-tree Uk, is an operadic category. Operads in

Op Ωk(V ) are precisely k-operads in the monoidal globular k-category ΣkV , see [9, §11.3].

1.2. The category of k-ordinals. Let, as in the Section 1.1 , k ≥ 0. Recall [4, Sec. II]

that a k-ordinal is a finite set O equipped with k binary relations <0, . . . , <k−1 such that

(i) <p is nonreflexive,

(ii) for every pair a, b of distinct elements of O there exists exactly one p such that

a <p b or b <p a,

(iii) if a <p b and b <q c then a <min(p,q) c.

A morphism of k-ordinals σ : O → N is a map of the underlying sets such that i <p j in O

implies that

(i) σ(i) <r σ(j) for some r ≥ p, or

(ii) σ(i) = σ(j), or

(iii) σ(j) <r σ(i) for r > p.

Let Ordk be the skeletal category of k-ordinals and their morphisms. The category Ordk

is operadic. The cardinality | - | : Ordk → sFSet associates to a k-ordinal O its underlying

set (denoted O again). The fiber of a map σ : O → N over i ∈ N is the preimage σ−1(i) with

the induced structure of a k-ordinal. The category Ordk is connected, the unique terminal

object being the one-point k-ordinal 1k. Operads in OpOrdk(V ) are pruned k-operads in the

monoidal globular n-category ΣkV [4].

There is a natural k-ordinal structure on the set of k-leaves of each k-tree in Ωk. Let T be

as in (9) and a, b ∈ nk = Lfk(T) its distinct k-leaves. We say that a <p b if a precedes b in

nk and p is such that

tptp−1 · · · tk−1(a) = tptp−1 · · · tk−1(b)

but

tp−1 · · · tk−1(a) 6= tp−1 · · · tk−1(b).

If such a p does not exist, we put a <0 b. It is easy to show that this construction extends

to an operadic functor

(12) p : Ωk → Ordk.

On the other hand, Ordk can be identified with the full subcategory of Ωk consisting

of pruned trees. Recall that a k-tree T ∈ Ωk as in (9) is pruned if all tk−1, . . . , t1 are
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epimorphisms. Equivalently, all leaves of T are its k-leaves, so T is “fully grown.” For

example, the 2-ordinal

0 <0 2, 0 <0 3, 0 <0 4, 1 <0 2, 1 <0 3, 1 <0 4, 0 <1 1, 2 <1 3, 2 <1 4, 3 <1 4,

is represented by the following pruned tree
0 1 2 3 4

See [4, Theorem 2.1] for a more detailed discussion. We thus have an inclusion of categories

l : Ordk →֒ Ωk which is left adjoint to the pruning functor (12).

It will sometimes be useful to identify a k-ordinal O ∈ Ordk with the corresponding pruned

tree l(O) ∈ Ωk. The functor p : Ωk → Ordk then appears as the pruning associating to each

T ∈ Ωk its maximal pruned subtree. We must emphasize that l : Ordk →֒ Ωk is not an

operadic functor, since it does not preserve fibers in general. It is only lax operadic in an

appropriate sense.

2. Discrete fibrations of operadic categories

Definition 2.1. An operadic functor F : O → P is called a discrete operadic fibration if

(i) F induces an epimorphism π0(O) ։ π0(P) and

(ii) for any morphism f : T → S in P and any ti, s ∈ O, where i ∈ |S|, such that

F (s) = S and F (ti) = f−1(i) for i ∈ |S|,

there exists a unique σ : t→ s in O such that

F (σ) = f and ti = σ−1(i) for i ∈ |S|.4

We have the following simple

Lemma 2.2. A discrete operadic fibration F : O → P induces an isomorphism π0(O)
∼=
→ π0(P).

Proof. Assume that Va′ , Va′′ , a
′, a′′ ∈ π0(O), are chosen terminal objects in components of

the category O such that F (Va′) = F (Va′′) = Uc for c ∈ π0(P). Then (ii) of Definition 2.1

taken with T = S = Uc, f : Uc → Uc the identity map, t1 = Va′ and s = Va′′ produces a map

σ : t → Va′′ whose unique fiber σ−1(1) is Va′ . Since Fib1 : O/Va′′ → O is the domain functor

by (iii) of the definition of the operadic category, t = Va′ , so σ is in fact a map Va′ → Va′′ ,

therefore Va′ and Va′′ belong to the same component of O, i.e. a′ = a′′. �

4Notice that F (s) = S implies |s| = |S| and F (σ) = f implies F (t) = T .
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16 M. BATANIN AND M. MARKL

For an O-operad O ∈ OpO(V ) and T ∈ P put

(13) F!O(T ) :=
∐

F (t)=T

O(t).

Proposition 2.3. Assume that F is a discrete operadic fibration. Then (13) is the under-

lying collection of a naturally defined P-operad.

Proof. For each f : T → S ∈ P and Ti := f−1(i), i ∈ |S|, we need the structure map

µ(f) :
⊗

i∈|S|

F!O(Ti)⊗ F!O(S) → F!O(T ).

Expanding the definition of F!O and invoking the distributivity of the monoidal product

over coproducts we see that it is the same as to give a map

µ(f) :
∐

F (tj)=Tj , j∈|S|
F (s)=S

⊗

i∈|S|

O(ti)⊗O(s) −→
∐

F (w)=T

O(w).

It clearly amounts to specifying, for each ti’s and s as above, a map

(14)
⊗

i∈|S|

O(ti)⊗O(s) −→
∐

F (w)=T

O(w).

The defining property of discrete operadic fibrations provides a unique t ∈ O with F (t) = T ,

and a morphism σ : t → s such that σ−1(i) = ti for i ∈ |S|. We then choose (14) to be the

composition
⊗

i∈|S|

O(ti)⊗O(s)
µ(σ)

−−−→ O(t)
ιt−→

∐

F (w)=T

O(w),

where µ(σ) is the structure map of the O-operadO and ιt the canonical map to the coproduct.

Let Uc, c ∈ π0(P), be a chosen terminal object of a component of P. By Lemma 2.2, there

is a unique chosen terminal object Va, a ∈ π0(O), such that F (Va) = Uc. We define the unit

I → F!O(Uc) as the composition

I −→ O(Va) −→
∐

F (t)=Uc

O(t) = F!O(Uc).

of the unit map for O with the coprojection. Since all constructions were functorial lifts of

the operad structure of O, the resulting structure is an operad again. �

Theorem 2.4. Let F : O → P be a discrete operadic fibration of operadic categories. Then

the assignment O 7→ F!O described above defines a left adjoint F! : Op
O(V ) → OpP(V ) to the

restriction functor F ∗ : OpP(V ) → OpO(V ).
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Proof. We need to establish, for O ∈ OpO(V ) and P ∈ OpP(V ), a natural isomorphism

OpP(V )
(
F!O,P

)
∼= OpO(V )

(
O, F ∗P

)
.

There is an isomorphism of the sets of morphisms of collections

(15) CollP(V )
(
F!O,P

)
∼= CollO(V )

(
O, F ∗P

)
.

This follows immediately since (13) is the formula for the left Kan extension along the

induced functor Ob(F ) : Ob(O) → Ob(P) between the discrete categories of objects.

The proof is finished by showing that a morphism of collections in the left hand side of (15)

is an operad morphism (i.e. it commutes with the operad structure maps) if and only if the

corresponding morphism in the right hand side of (15) does. We leave this as an exercise. �

Let now V be the monoidal category Set of sets, F : O → P a discrete operadic fibration

and I
O ∈ OpO(Set) the terminal O-operad with I

O(t) = {t}. Theorem 2.4 gives the operad

(16) O := F!(I
O) ∈ OpP(Set)

with O(T ) =
{
t ∈ O; F (t) = T

}
.

Vice versa, assume that one is given an operad O ∈ OpP(Set). One then has the category

O whose objects are t ∈ O(T ) for some T ∈ P. A morphism σ : t → s from t ∈ O(T )

to s ∈ O(S) is a couple (ε, f) consisting of a morphism f : T → S in P and of some

ε ∈ ×
i ∈ |S|

O
(
ti), ti := f−1(i), such that

µ(f)(ε, s) = t,

where µ is the structure map of the operad O. Compositions of morphisms are defined in

the obvious manner. The category O thus constructed is clearly an operadic category such

that the functor F : O → P given by

F (t) := T for t ∈ O(T ) and F (ε, f) := f

is a discrete operadic fibration. We call this construction the operadic Grothendieck construc-

tion. It is a direct generalization of the classical Grothendieck construction for presheaves [29,

p. 44] as the following proposition shows.

Proposition 2.5. The above construction establishes an equivalence between the category

OpP(Set) of P-operads in Set and the category of discrete operadic fibrations over P.

Proof. A direct verification. �

Example 2.6. As we saw in Example 1.16, Set-operads P in the operadic category C+1 of

Example 1.6 such that P(1) = 1 are presheaves on O. The restriction of the correspondence

of Proposition 2.5 to operads P with this property is an equivalence between the category of

presheaves on O and the category of discrete fibrations P → C of categories. Proposition 2.5

therefore indeed generalizes the discrete version of the Grothendieck construction.
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18 M. BATANIN AND M. MARKL

Proposition 2.7. Assume that in the pullback (4), the functor π : O → P is a discrete

operadic fibration. Then ̟ : R → Q is a discrete operadic fibration, too.

Proof. We rely on the notation in the proof of Proposition 1.9. Suppose we are given a mor-

phism f : T → S in Q with fibers Ti := f−1(i), i ∈ |S|. Suppose we are also given objects

(ti, T̃i) and (s, S̃) of the category R such that S = ̟(s, S̃) and Ti = ̟(ti, T̃i) for each

i ∈ |S|. We must find a unique (σ, f̃) : (t, T̃ ) → (s, S̃) in R such that ̟(σ, f̃) = f and

(σ, f̃)−1(i) = (ti, T̃i) for each i ∈ |S|.

It follows from definitions that S = ̟(s, S̃) implies S̃ = S, Ti = ̟(ti, T̃i) implies T̃i = Ti
and ̟(σ, f̃) = f implies f̃ = f . Since (s, S̃) and (ti, T̃i) are objects of R we see that

π(s) = p(S), and π(ti) = p(Ti) for all i ∈ |S|. Similarly, we conclude that π(σ) = p(f).

We therefore need to prove the following statement. Given f : T → S in Q with fibers

Ti := f−1(i) and objects ti, s of O, i ∈ |S|, such that π(s) = p(S), and π(ti) = p(Ti), there

exists a unique σ : t → s in O such that σ−1(i) = ti and π(σ) = p(f). The above statement

however follows from the lifting property in the discrete operadic fibration π : O → P applied

to the data p(f) : p(T ) → p(S) ∈ P and s, ti ∈ O, i ∈ |S|. This finishes the proof. �

We close this section by proving that squares of adjoint functors between the associated

categories of operads induced by pullbacks of discrete operadic fibrations satisfy the Beck-

Chevalley property [29, p. 205]. Therefore operads over operadic categories behave similarly

as presheaves over small categories.

Proposition 2.8. If in the pullback of operadic categories (4) the functor π : O → P is

a discrete operadic fibration, then the induced functors between the associated categories of

operads satisfy the Beck-Chevalley condition, meaning that there is a natural isomorphism

(17) ̟!(r
∗(P)) ∼= p∗(π!(P))

for any operad P ∈ OpO(V ).

Proof. Notice that the functor ̟ : R → Q is a discrete operadic fibration by Proposition 2.7.

We will use the explicit description of the left adjoint along discrete fibrations provided by

Theorem 2.4. For T ∈ P it gives

π!(P)(T ) =
∐

π(t)=T

P(t),

therefore, for S ∈ Q,

p∗
(
π!(P)

)
(S) = π!(P)(p(S)) ∼=

∐

π(t)=p(S)

P(t).

On the other hand,

̟!

(
r∗(P)

)
(S) =

∐

̟(t,S̃)=S

r∗(P)(t, S̃) ∼=
∐

̟(t,S̃)=S

P
(
r(t, S̃)

)
=

∐

π(t)=p(S)

P(t),

[September 24, 2018] [duodel.tex]



OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 19

therefore indeed p∗
(
π!(P)

)
(S) ∼= ̟!

(
r∗(P)

)
(S) for each S ∈ Q. In the last display we used the

fact that̟(t, S̃) = S implies S̃ = S so, since (t, S̃) ∈ R, we have the equality π(t) = p(S). �

3. O-multi(co)tensors and generalized algebras of O-operads

We start by showing how the standard notion of a multitensor on a V -category C, see [11,

Def. 2.1] or [5, 18], generalizes to the realm of operadic categories. Let EndC be the endomor-

phism sFSet-operad of C, so EndC(n) is, for n ≥ 0, the category of V -functors C⊗n → C. The

restriction along the cardinality functor | - | : O → sFSet gives a categorical O-operad |EndC|
∗.

Let 1O be the terminal categorical O-operad. An O-multitensor on C is then a lax-morphism

of categorical operads 1O → |EndC|
∗. Unpacking this definition we obtain:

Definition 3.1. An O-multitensor on a V -category C is an O-collection E = {ET}T∈O of

V -functors

ET : C⊗ · · · ⊗ C︸ ︷︷ ︸
|T |−times

→ C, T ∈ O,

equipped with

(i) V -natural transformations

µf : ES(ET1 , . . . , ETk) → ET

defined for any f : T → S in O with fibers T1, . . . , Tk, and

(ii) V -natural transformations (the units)

ηc : id → EUc
, c ∈ π0(O),

satisfying the obvious associativity and unitality conditions.

Multitensors create operads, as shown in the following lemma whose simple proof we leave

to the reader. For an object T ∈ O, let π0s(T ) denote the set of connected components of

the fibers of the identity id : T → T , and π0(T ) the connected component of T , cf. the proof

of Proposition 1.8.

Lemma 3.2. Let E be an O-multitensor on a V -category C and δ = {δ(i)}i∈π0(O) an arbitrary

collection in C. Then the collection

coEndEδ =
{
coEndEδ (T )

}
T∈O

with coEndEδ (T ) the enriched hom

C
(
δ(i), ET (δ(i1), . . . , δ(ik))

)
, i = π0(T ), {i1, . . . , ik} = π0s(T ),

is a natural O-operad in V .
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Dually, we introduce O-multicotensors on C as colax-morphisms of the categorical O-operads

1O → |EndC|
∗. An explicit definition can be obtained by inverting arrows in Definition 3.1.

Multicotensors create operads in a similar way as multitensors do:

Lemma 3.3. Let D be an O-multicotensor on a V -category C and X = {X(i)}i∈π0(O) an

arbitrary collection of objects of C. Then the collection

EndDX =
{
EndDX(T )

}
T∈O

with EndEX(T ) := C
(
DT (X(i1), . . . , X(ik)), X(i)

)
and i1, . . . , ik, i ∈ π0(O) having the meaning

as in Lemma 3.2, is a natural O-operad in V .

Example 3.4. Let 1 be the terminal category of Example 1.3. A 1-(co)multitensor on C is

the same as a V -(co)monad on C.

For an arbitrary operadic category O and c ∈ π0(O), there is an operadic functor 1 → O

which sends the unique object of 1 to Uc. Restricting along this functor we verify that

EUc
(resp. DUc

) is a V -monad (resp. V -comonad) on C for an arbitrary O-multitensor E

(resp. multicotensor D).

Example 3.5. The tensor product ⊙ of a symmetric monoidal V -category C gives rise to

a sFSet-multitensor
⊙

on C, which is simultaneously a sFSet-multicotensor on C. Namely,

for a finite set S of cardinality n and X1, . . . , Xn ∈ C we put

⊙
T (X1, . . . , Xn) :=

⊙
i∈SXi.

For any operadic category O we then have an O-multitensor
⊙O on C (which is also a O-

multicotensor) given by restricting
⊙

along the cardinality functor:

⊙O

T (X1, . . . , Xn) :=
⊙

|T |(X1, . . . , Xk), T ∈ O.

The case C = V of the above construction along with Lemmas 3.2 and 3.3 explains the

standard fact that an object of a symmetric monoidal category V has both the (classical)

endomorphism and coendomorphism operads, see [27], Definitions II.1.7 and II.1.9.

Definition 3.6. Let D be a fixed O-multicotensor and P an O-operad. An algebra of P in C

is a π0(O)-collection A in C with a morphism of O-operads

P → EndDA .

Example 3.7. If C = V and D =
⊙O, then P-algebras in the sense of the above definition

are the same as P-algebras of Definition 1.20.

[September 24, 2018] [duodel.tex]



OPERADIC CATEGORIES AND DUOIDAL DELIGNE’S CONJECTURE 21

Assume that D is a O-multicotensor and suppose that C is cocomplete as a V -category.

This means, in particular, that there is a left action functor V ⊗ C → C which we denote by

⊗, believing that it would not lead to confusion. We have an adjunction

C(B ⊗X, Y ) ∼= V (B, C(X, Y ))

for any B ∈ V and X, Y ∈ C.

Since D is a V -functor in each variable, there is for each T ∈ O, |T | = n, X1, . . . , Xn ∈ C,

and B ∈ V , a V -natural transformation

B ⊗DT (X1, . . . , Xi, . . . , Xn) −→ DT (X1, . . . , B ⊗Xi, . . . , Xn), 1 ≤ i ≤ n,

called the strength of D. We will require that D interacts with the left V -action in such a

way that the following conditions are satisfied:

(i) The diagram

B ⊗DUc
(X) //

B⊗ηc ''PP
PP

PP
P

DUc
(B ⊗X)

ηcww♥♥♥
♥♥
♥♥

B ⊗X

commutes for any c ∈ π0(O), X ∈ C and B ∈ V .

(ii) Let f : T → S be a morphism in O with fibers T1, . . . , Tk. Let n = |T |, and 1 ≤ i ≤ n,

1 ≤ s ≤ k be such that i ∈ |T | belongs to |Ts|. Then the diagram

B ⊗DT (X1, . . . , Xi, . . . , Xn) //

��

B ⊗DS

(
DT1(X1, . . .), . . . , DTk(. . . , Xn)

)

ww♣♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

DT (X1, . . . , B ⊗Xi, . . . , Xn)

))❚❚❚
❚❚❚

❚❚

DS

(
DT1(X1, . . .), . . . , DTs(. . . , B ⊗Xi, . . .), . . . , DTk(. . . , Xn)

)

commutes for any B ∈ V and X1, . . . , Xn ∈ C.

Definition 3.8. An O-multicotensor D on a cocomplete V -category C satisfying properties

(i) and (ii) above will be called strong . We will call a V -category C equipped with a strong

multitensor D for which the comonad DUc
of Example 3.4 is the identity comonad for each

c ∈ π0(O) a colax O-monoidal V -category .

Remark 3.9. The terminology above has been adapted from the classical definition of a

strong monad on a closed monoidal category [25]. Indeed, when O is the terminal category 1,

the notion of a strong O-multicotensor coincides with the notion of a strong comonad, cf. Ex-

ample 3.4.

For a π0(O)-collection X in C and T ∈ O denote

XT := DT

(
X(i1), . . . , X(ik)

)
, {i1, . . . , ik} = π0s(T ).
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The structure of a P-algebra on a π0(O)-collection A in a colax monoidal V -category C can

be expressed in terms of an action defined as a collection of morphisms

P(T )⊗ AT → A(i), T ∈ O, i = π0(T ),

satisfying the following conditions:

(i) The square

I ⊗ AUc
∼= //

��

AUc

ηc

��
P(Uc)⊗AUc // A

in which ηc is the counit of the comonadDUc
(−) = (−)Uc , commutes for any c ∈ π0(O).

(ii) For any morphism f : T → S in O with fibers T1, . . . , Tk, the following diagram in

which i = π0(T ) commutes

P(S)⊗P(T1)⊗ · · · ⊗ P(Tk)⊗A
T //

��

P(S)⊗P(T1)⊗ · · · ⊗ P(Tk)⊗DS(A
T1 , . . . , ATk)

��

P(T )⊗AT

��

P(S)⊗DS(P(T1)⊗A
T1 , . . . ,P(Tk)⊗A

Tk)

��

A(i) P(S)⊗ASoo

4. Convolution and condensation

The condensation described in this section creates, in a controlled manner, out of col-

ored operads and their algebras, non-colored ones. The main statement of this section is

Proposition 4.6.

Fix a finite set C and consider the pullback OC in (5). Objects of OC can be interpreted as

objects of O colored by elements of C. A typical object of OC will therefore be denoted by

T (i1, . . . , ik; i), where k := |T | and i1, . . . , ik, i ∈ C.

The operadic category OC contains a full operadic subcategory LOC5 whose objects are

objects of OC of the form Uc(i; j), i, j ∈ C, c ∈ π0(O). It is easy to see that LOC-operads are

precisely π0(O)-families of V -enriched categories with the set of objects C. In other words,

OpLO
C

(V ) ∼= CatC(V )π0(O), where CatC(V ) denotes the category of V -categories with the set

of objects C, and the set π0(O) is considered as a discrete category.

The inclusion ι : LOC →֒ OC induces the restriction functor ι∗ : OpO
C

(V ) → OpLO
C

(V )

between the categories of operads. We define the functor U : OpO
C

(V ) → Cat(V ) as the

5“L” abbreviating “linear.”
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composition

U : OpO
C

(V )
ι∗ // OpLO

C

(V ) ∼= CatC(V )π0(O)
∐

c∈π0(O) // Cat(V ) ,

where the coproduct exists because V is cocomplete.

Definition 4.1. We will call the V -enriched category U(P) the underlying category of an

OC-operad P in V .

Explicitly, the set of objects of U(P) is π0(O)×C, while the enriched hom-set between

(c, i) ∈ π0(O)×C and (d, j) ∈ π0(O)×C is

U(P)
(
(c, i), (d, j)

)
=

{
the initial object 0 of V , if c 6= d, and

P
(
Uc(i; j)

)
, otherwise.

Since Uc(i; i) are the chosen terminal objects of OC, we have the identity morphisms

I → U(P)
(
(c, i), (c, i)

)
, (c, i) ∈ π0(O)×C,

given by the operad units of P. The composition in U(P) is induced by the (unique) maps

between objects of the form Uc(i; j), i, j ∈ C, c ∈ π0(O).

Let C be a colax O-monoidal V -category with a multicotensor D as in Definition 3.8. We

are going to define the convolution product on the category CU(P). Assume first for simplicity

that O is connected so that the objects of U(P) are elements of C. For any T ∈ O, k = |T |,

the operad P generates a V -functor

P(T ) : U(P)op ⊗ · · · ⊗ U(P)op︸ ︷︷ ︸
k−times

⊗ U(P) → V

defined on objects i1, . . . , ik, i ∈ (U(P)op)⊗k ⊗ U(P) by

(18) P(T )(i1, . . . , ik; i) := P
(
T (i1, . . . , ik; i)

)
.

To see how P acts on morphisms, we observe that in OC we have morphisms of the form

T (i1, . . . , ik; i) −→ T (j1, . . . , jk; i), i1, . . . , ik, j1, . . . , jk, i ∈ C,

whose underlying morphism in O is the identity of T . The multiplication in the OC-operad

P with respect to these morphisms induces the contravariant part of the functor P(T ). The

covariant part is induced by the multiplication in P corresponding to the morphisms in OC

of the form

T (i1, . . . , ik; i) → Uc(n; i), i1, . . . , ik, i, n ∈ C.

For T as above and X1, . . . , Xk ∈ CU(P), the convolution product DEP
T (X1, . . . , Xk) ∈ CU(P)

is given by the coend in C:

(19) DEP
T (X1, . . . , Xk)(i) =

∫ U(P)⊗n

P(T )(i1, . . . , ik; i)⊗DT

(
X1(i1), . . . , Xk(ik)

)
, i ∈ U(P).
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The above constructions easily extend to the case of an arbitrary π0(O), we just take the

products of the corresponding constructions for the individual connected components.

The convolution (19) generalizes the Day-Street convolution product [18] of a substitude

related to an ordinary (that is sFSet-) operad. If C is a symmetric monoidal V -category

and D =
⊙O is the O-multicotensor from Example 3.5, many standard facts about the

convolution remain valid in this generalized situation. For example we have

Proposition 4.2. The convolution product determines an O-multitensor ⊙EP = {⊙EP
T }T∈O

on CU(P) whose unital part
∏

c∈π0(O)
⊙EP

Uc
is the identity monad.

Remark 4.3. The O-multitensor structure of ⊙EP is induced by the O-multitensor structure

of the O-multicotensor
⊙O. The fact that

⊙O is both a multicotensor and a multitensor

makes this situation very special – the convolution product (19) need not be a O-multitensor

for general D. To simplify the notation, we will sometimes write EP instead of ⊙EP .

An O-multicotensor D on C induces an OC-multicotensor DC on C by ‘forgetting the colors’

(20) DC

T (i1,...,ik;i)
:= DT , T (i1, . . . , ik; i) ∈ OC

which in turn restricts to an LOC-multicotensor LDC. Since, by assumption, DUc
is the

identity comonad for each c ∈ π0(0), the colax unitality of multicotensors gives natural

morphisms

(21) LDC

Uc(i;j)(X) = DUc
(X)

∼=
−→ X, Uc(i; j) ∈ LOC.

Let now A be an algebra of an OC-operad P in C as in Definition 3.6. The action α :

P → EndD
C

A induces, via the restriction along the inclusion ι : LOC →֒ OC combined with the

canonical transformations (21), an action

ι∗(α) : ι∗(P) −→ ι∗(EndD
C

A ) = EndLD
C

A −→ End id
A ,

where id is the obvious identity LOC-multitensor on C. This gives rise to a functor

(22) ι∗ : AlgP(C) → CU(P)

from the category of P-algebras in C to the functor category CU(P). If O is connected, the

algebra A is a collection {A(i)}i∈C in V , the functor ι∗(α) takes i ∈ C to A(i), and the map

ι∗(α) : P
(
U(i; j)

)
→ C

(
A(i), A(j)

)

of the enriched hom-sets is given by the P-algebra structure of A. The description of ι∗(α)
for a general π0(O) is similar.

In the particular case when C is a symmetric monoidal V -category, EP = ⊙EP is a mul-

titensor on CU(P) by Proposition 4.2. It turns out that ι∗(A) is an algebra over EP in the

sense of the following definition.
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Definition 4.4. An algebra over an O-multitensor E on a V -category C is an object Z ∈ C

equipped with a family of morphisms

αT : ET (Z, . . . , Z) → Z, T ∈ O,

such that

(i) the composition Z
ηc // EUc

(Z)
αUc // Z is the identity for each c ∈ π0(O), and

(ii) the diagram

ES
(
ET1(Z, . . . , Z), . . . , ETk(Z, . . . , Z)

) µσ //

ES(αT1
,...,αTk

)

��

ET (Z, . . . , Z)

αT

��
ES(Z, . . . , Z)

αS // Z

commutes for any morphism σ : T → S in O with fibers T1, . . . , Tk.

As in the classical case [7, Proposition 1.8] we obtain

Proposition 4.5. The functor ι∗ : AlgP(C) → CU(P) induces an isomorphism between the

category of P-algebras in C and the category of EP-algebras in CU(P).

Let us return to a general colax O-monoidal V -category C. Assume that, in addition, C is

complete as a V -category, so we have cotensors Y α ∈ C such that

C(X, Y α) ∼= V
(
α, C(X, Y )

)
for X, Y ∈ C, α ∈ V.

For an P-algebra A in C and an object δ of the functor category V U(P) we define the δ-

totalization of A as the end

(23) Totδ(A) :=

∫

i∈U(P)

(
ι∗(A)(i)

)δ(i)
.

Since EP = ⊙EP is a multitensor, the O-collection coEndP
δ with

coEndP
δ (T ) :=

∫

i∈U(P)

V
(
δ(i), EP

T (δ, . . . , δ)(i)
)

is an O-operad in V by Lemma 3.2. The main statement of this section reads:

Proposition 4.6. Let P be an OC-operad in V and A a P-algebra in C. Then the π0(O)-

collection Totδ(A) is a natural coEndP
δ -algebra.

Definition 4.7. We will call the O-operad coEndP
δ the δ-condensation of P and its algebra

Totδ(A) the δ-totalization of A.

Remark 4.8. If C = V , the δ-totalization (23) can be given by a simplified formula

Totδ(A) :=

∫

i∈U(P)

V
(
δ(i), ι∗(A)(i)

)
.

Proposition 4.6 in this case can be proved using Proposition 4.5 by a straightforward gener-

alization of [7, Proposition 1.5], see also the appendix to [8].
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Proof of Proposition 4.6. We will assume for simplicity that O is connected, the general case

can be handled similarly. The action

(24) coEndP
δ (T )⊗ Totδ(A)

T −→ Totδ(A), T ∈ O,

where Totδ(A)
T = DT

(
Totδ(A), . . . ,Totδ(A)

)
, will be constructed using a natural morphism

(25) ℧T : Totδ(A)
T −→

∫

i∈U(P)

DEP
T (ι

∗A, . . . , ι∗A)(i)E
P
T
(δ,...,δ)(i).

To simplify the notation, we will implicitly assume that the symbols i1, . . . , in, j1, . . . , jn

and i denote objects of the underlying category U(P). We will also drop ι∗ from the notation,

writing A instead of ι∗A. Notice that the target of (25) is equal to
∫

i

∫

i1,...,in

DEP
T (A, . . . , A)(i)

P(T )(i1,...,in;i)⊗δ(i1)⊗...⊗δ(in), n = |T |,

so the morphism (25) is the same as a family of morphisms

Totδ(A)
T → DEP

T (A, . . . , A)(i)
P(T )(i1,...,in;i)⊗δ(i1)⊗...⊗δ(in),

which satisfy some obvious naturality conditions. By adjunction, this amounts to a family

of morphisms

P(T )(i1, . . . , in; i)⊗ δ(i1)⊗ · · · ⊗ δ(in)⊗ Totδ(A)
T

−→ P(T )(i1, . . . , in; i)⊗DT

(
δ(i1)⊗

∫

j1

A(j1)
δ(j1), . . . , δ(in)⊗

∫

jn

A(jn)
δ(jn)

)

−→

∫ i1,...in

P(T )(i1, . . . , in; i)⊗DT

(
A(i1), . . . , A(in)

)
.

We also have, for each 1 ≤ k ≤ n, the evaluation morphisms

δ(ik)⊗

∫

jk

A(jk)
δ(jk) −→ A(ik)

which induce a map

P(T )(i1, . . . , in; i)⊗DT

(
δ(i1)⊗

∫

j1

A(j1)
δ(j1), . . . , δ(in)⊗

∫

jn

A(jn)
δ(jn)

)

−→ P(T )(i1, . . . , in; i)⊗DT

(
A(i1), . . . , A(in)

)
.

Composing this map with the canonical coprojection to the coend

P(T )(i1, . . . , in; i)⊗DT

(
A(i1), . . . , A(in)

)

−→

∫ i1,...,in

P(T )(i1, . . . , in; i)⊗DT

(
A(i1), . . . , A(in)

)

we obtain the required morphism (25). The necessary naturality conditions for the above

construction is obvious.
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Let us finally explain how the map ℧T in (25) leads to the action (24). To this end, observe

that a P-algebra structure on A generates a morphism

(26) DEP
T (A, . . . , A)(i) =

∫ i1,...,in

P(T )(i1, . . . , in; i)⊗DT

(
A(i1), . . . , A(in)

)
→ A(i).

The action (24 is then the composition

coEndP
δ (T )⊗ Totδ(A)

T =
(∫

i

V
(
δ(i), EP

T (δ, . . . , δ)(i)
))

⊗ Totδ(A)
T

id⊗℧T

−−−→
∫

i

V
(
δ(i), EP

T (δ, . . . , δ)(i)
)
⊗

∫

i

DEP
T (A, . . . , A)(i)

EP
T (δ,...,δ)(i) −→

∫

i

DEP
T (A, . . . , A)(i)

δ(i) −→

∫

i

A(i)δ(i) = Totδ(A)

whose last arrow is generated by (26). We leave a straightforward but tedious verification

that this composition is, indeed, a P-algebra structure to the reader. �

Part 2. Duoidal Deligne’s conjecture

Reminders

In this part we work with many particular examples of operadic categories and their

operads. We included Table 1 to simplify the reader’s navigation through them. We also

briefly recall, following [9] closely, duoidal categories and the necessary related notions.

A duoidal V -category is a pseudomonoid in the 2-category of monoidal V -categories, lax-

monoidal V -functors and their monoidal V -transformations. Explicitly, a duoidal V -category

is a quintuple D = (D , �0, �1, e, v) such that

(i) (D , �0, e) and (D , �1, v) are monoidal V -categories, equipped with

(ii) a V -natural interchange transformation

(27) (X �1Y )�0(Z �1W ) → (X �0Z)�1(Y �0W ),

(iii) a map e→ e�1e,

(iv) a map v�0v → v, and

(v) a map e→ v.

The above data should enjoy the coherence properties listed e.g. in [9, p. 1816]. Moreover,

we require that v is a monoid in (D , �0, e) and e a comonoid in (D , �1, v).

A duoidal category D is called strict if both monoidal categories (D , �0, e) and (D , �1, v)

are strict monoidal categories. Since every duoidal category is equivalent to a strict one by [9,

Theorem 2.16], we assume that all duoidal categories in this article are strict.

A 1-operad in a duoidal category D = (D , �0, �1, e, v) is a collection A = {A (n)}n≥0 of

objects of D such that
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Categories

Name: type of objects: introduced in: typical object:

Ωk Batanin’s k-trees Section 1.1 T, S, . . .

ΩNk N-colored k-trees Section 5.1 T = (T, c), S = (S, c)

Ord2 2-ordinals Section 1.2 O,N

OrdN2 N-colored 2-ordinals Section 5.1 O = (O, c), N = (N, c)

LTr trees with levels Section 5.2 β, α, . . .

TamN2 OrdN2 -labelled trees Section 6 (O, δ), (N, γ)

TmN2 ΩN2 -labelled trees Section 6 (T, δ), (S, γ)

T̃amN2 trees with labeled bc -vertices Proof of Lemma 7.5 ζ

T̃mN

2 trees with labeled bc -vertices Proof of Lemma 7.5 ξ

Operads:

Name: type of operad: introduced in: typical element:

L(2)
N-colored Σ-operad Section 6 tree δ, γ, . . .

TmN

2 N-colored 2-operad Definition 6.1 ΩN2 -labelled tree (T, δ)

TamN

2 pruned N-colored 2-operad pullback (54) OrdN2 -labelled tree (O, δ)

Table 1. Notation.

(i) for each integers n ≥ 1, k1, . . . , kn ≥ 0, one is given a structure morphism

(28) γ :
(
A (k1)�1 · · · �1A (kn)

)
�0A (n) → A (k1 + · · ·+ kn),

(ii) one is given a map j : e→ A (1) (the unit) and

(iii) a left v-module structure v �0A (0) → A (0)

such that appropriate axioms are satisfied, see [9, p. 1825] for details. An example is the

operad Ass with Ass(n) = v for each n ∈ N [9, Example 4.4]. Recall finally that a multi-

plicative 1-operad is a 1-operad A equipped with an operad morphism

(29) α : Ass→ A .

For a duoidal category D we denote by Cat(D) the 2-category of (D , �0, e)-enriched

categories. As observed by Forcey [20], Cat(D) has a monoidal structure. The tensor

product ×1 of two D-categories K and L is given by the cartesian product on the objects

level while

(K ×1L )
(
(X, Y ), (Z,W )

)
:= K (X,Z)�1L (Y,W ), for X,Z ∈ K , Y,W ∈ L .

The unit for this tensor product is the category 1v which has one object ∗ and 1v(∗, ∗) = v.
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A monoidal D-category K = (K ,⊙, η) is defined as a pseudomonoid in the monoidal

2-category (Cat(D), ×1, 1v), see [9, pp. 1820–21] for a detailed description of this structure.

Each object X ∈ K has its endomorphism 1-operad EndX in D with components

EndX(n) := K (⊙nX,X), n ≥ 1,

see [9, Def. 4.7].

A monoid in K is a lax monoidal functor 1v → K . More explicitly, a monoid in K is

an object M ∈ K together with:

(i) a morphism (neutral element) i : η → M,

(ii) a morphism (multiplication) m : M⊙M → M and

(iii) a morphism (the unit) u : v → K (M,M) in D .

These data should satisfy axioms listed in [9, p. 1823]. The endomorphism 1-operad EndM

of a monoid M ∈ K is multiplicative by [9, Prop. 4.9].

The center of a monoid M is the following equalizer in D :

(30) Z(M) → K (η,M) ❥

✯
K (M,M).

The center has a natural structure of a duoid (double monoid in the terminology of [1])

in D . This is, by definition, an object D ∈ D together with

(i) a structure of a monoid D�0D → D , e → D with respect to the first monoidal

structure of D , and

(ii) a structure of a monoid D�1D → D , v → D with respect to the second monoidal

structure of D

such that suitable axioms listed in [9, p. 1818] are satisfied.

5. Operadic categories of trees and ordinals.

In this section we introduce several operadic categories of colored trees and ordinals, and

study various functors between them. We also define endomorphism operads of collections

in duoidal categories and prove, in Theorem 5.4, the existence of canonical actions on mul-

tiplicative 1-operads.
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5.1. The category of coloured 2-trees. We will need the N-colored version ΩNk of the

category Ω of k-trees recalled in Section 1.1. It is constructed by taking O = Ωk and C = N in

the pullback (5). Explicitly, an N-colored k-tree is a couple T = (T, c) consisting of a k-tree

T ∈ Ωk and of a coloring c : Lfk(T)+1 → N of its set of k-leaves plus one more color c(1)

interpreted as the ‘output’ color of T. Morphisms (T, c′) → (S, c′′) are morphisms T → S of

the underlying k-trees if c′(1) = c′′(1), while there are no morphisms if c′(1) 6= c′′(1). This

explicit description follows the ideas of Tamarkin’s [30].

The category ΩNk with |T| := Lfk(T) is operadic. The fiber Ti of a map f : T = (T, c′) →

S = (S, c′′) over a k-leaf i ∈ |S| is the fiber as in (11), with the coloring of its k-leaves induced

by c′ and the output color c′′(i). One has π0(Ω
N

k )
∼= N, the chosen terminal object for n ∈ N

being the terminal k-tree U
n
k with its unique k-leaf colored by n and the output color n.

One analogously defines an N-colored version OrdNk of the operadic category Ordk of k-

ordinals of Example 1.2. We leave its detailed description to the reader. One has π0(Ord
N

k )
∼=

N, the chosen terminal object for n ∈ N being the terminal k-ordinal 1nk colored by n, with

the output color n.

In the rest of this article we will however need the categories Ωk and Ordk, resp. their

colored versions ΩNk and OrdNk , only for k ≤ 2.

Definition 5.1. We will call Ω2-operads, resp. ΩN2 -operads, 2-operads, resp. N-colored 2-

operads . Similarly, Ord2-operads, resp. Ord
N

2 -operads, will be called pruned 2-operads , resp.

pruned N-colored 2-operads .

Proposition 5.2. There is a natural Ω2-multicotensor � on any duoidal V -category D =

(D , �0, �1, e, v). If D is a cocomplete V -category then the multicotensor � is strong.

In particular, each N-colored collection E = {E (n)}n≥0 of objects in D admits its N-colored

endomorphism 2-operad End
ΩN2
E

:= End �
N

E ∈ OpΩ
N
2 (V ).

Proof. The proof is based on a simple modification of a construction given in [9, p. 1853].

Let T ∈ Ω2 be a 2-tree. Let the 1-truncation of T be {1, . . . , t}, with its set of 2-leaves over

the 1-vertex d ∈ {1, . . . , t} being {vd1 , . . . , v
d
qd
}, and let X = {Xc,i}1≤d≤t, 1≤i≤qd be a family of

objects in D .

We then define, for 1 ≤ d ≤ t,

(31) X
�

qd
1

T
:=

{
Xd,1 �1 · · · �1Xd,qd, if qd > 1

v, if qd = 0.

With this notation,

�T(X1,1, . . . , Xt,qt) := X
�

qt
1

T
�0X

�
qt−1
1

T
�0 · · · �0X

�
q2
1

T
�0X

�
q1
1

T
.6

6Observe the reversed order of the factors.
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The counit of the multicotensor � is the identity. The comultiplication

(32) µσ : � T
// � S(� T1, . . . , � Tk

)

corresponding to a morphism σ : T → S in Ω2 with fibers T1, . . . ,Tk can be described by

induction. We do not provide the details here but refer to the construction of the morphism

Xσ in the proof of [9, Lemma 11.13] which is exactly the comultiplication µσ in the case

when all members of the family X are equal to the same object X. The argument however

does not depend on this difference. We will repeat the same kind of construction in the

description of the endomorphism 2-operad End
ΩN2
E

in the second part of this proof.

The proof that � is a strong multitensor also goes by an induction following the con-

struction of the comultiplication, using the fact that both �0, �1 are V -functors and the

interchange morphism (27) is a V -natural transformation. We leave the details to the reader.

As shown in (20), the Ω2-multicotensor � induces an ΩN2 -multicotensor �
N. The N-

colored 2-operad End
ΩN2
E

∈ OpΩ
N
2 (V ) of an N-collection E = {E (n)}n≥0 in D is the endomor-

phism operad related to this multicotensor as in Lemma 3.3. We describe it in detail because

we will need this description later.

We start by associating, to each N-colored 2-tree T = (T, c) ∈ ΩN2 , the �-power E T of

E as follows. Let the 1-truncation of the underlying 2-tree T be {1, . . . , t}, with its set of

2-leaves over the 1-vertex d ∈ {1, . . . , t} being {vd1 , . . . , v
d
qd
}.

We then define, for 1 ≤ d ≤ t,

(33) E
�

qd
1

T
:=

{
E
(
c(vd1)

)
�1 · · · �1E

(
c(vdqd)

)
, if qd > 1

v, if qd = 0.

With this notation,

E
T := E

�
qt
1

T
�0E

�
qt−1
1

T
�0 · · · �0E

�
q2
1

T
�0E

�
q1
1

T
.

We believe that the portrait of E T in Figure 1 borrowed from [9] clarifies our definition.

Define finally

End
ΩN2
E
(T) := D

(
E

T , E (n)
)
,

where n is the output color of T. Let us describe the operad multiplication

(34) µ(f) : End
ΩN2
E
(T1)⊗ · · · ⊗ End

ΩN2
E
(Tk)⊗ End

ΩN2
E
(S) // End

ΩN2
E
(T)

corresponding to a morphism f : T → S in ΩN2 with fibers T1, . . . ,Tk. For

φ : E
S → E (n) ∈ End

ΩN2
E
(S) and φi : E

Ti → E (ni) ∈ End
ΩN2
E
(Ti), i ∈ |S|,

we use an auxiliary natural morphism

(35) Φf (φ1, . . . , φk) : E
T −→ E

S
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Figure 1. An ‘ideological’ picture of E T . Leaves of height 2 (resp. 1) are
decorated by E = {E (n)}n≥0 (resp. v). The decorations of vertices of height
2 (resp. 1) are then multiplied by �1 (resp. �0), with the �1-multiplication
performed first. For brevity we did not show the colors.

described below, and define µ(f) by the formula

µ(f)(φ1 ⊗ · · ·φk ⊗ φ) := φ ◦ Φf(φ1, . . . , φk).

Let us define (35). Suppose first that tr1(S) = (1), so S is the suspension of the 1-tree

(1, . . . , k). In this case the exchange rule (27) in D induces a natural map

E
f : E

T −→ E
T1 �1 · · · �1E

Tk

and Φf (φ1, . . . , φk) is the composite

E T E f
//E T1 �1 · · · �1E

Tk
φ1 �1··· �1φk //E (n1)�1 · · · �1E (nk) = E S.

To address the general case denote, for T1,T2 ∈ ΩN2 , by T1∨T2 the colored 2-tree obtained

by identifying the root of T1 with the root of T2.
7 Observe that

(36) E
T1∨T2 = E

T1 �0E
T2.

A general S uniquely decomposes into the product S1∨· · ·∨Sp of the suspensions of 1-trees;

f : T → S is then of the form

(37) f = f1 ∨ · · · ∨ fp : T = T1 ∨ · · · ∨ Tp −→ S1 ∨ · · · ∨ Sp = S.

Suppose the fibers of fa : Ta → Sa are T
a
1, . . . ,T

a
pa
, 1 ≤ a ≤ s, then the fibers of f are

T1, . . . ,Tk = T
1
1, . . . ,T

1
p1
, . . . ,Ts

1, . . . ,T
s
ps
.

For φab : E T
a
b → E (nab ) we define Φf (φ1

1, . . . , φ
1
p1
, . . . , φs1, . . . , φ

s
ps
) : E T → E S by

(38) Φf (φ1
1, . . . , φ

1
p1
, . . . , φs1, . . . , φ

s
ps
) := Φf1(φ1

1, . . . , φ
1
p1
)�0 · · · �0Φ

fs(φs1, . . . , φ
s
ps
),

where we tacitly used (36). This defines (35) for arbitrary trees. �

7In [9] we denoted this operation by T1 + T2.
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Figure 2. A tree in LTr. It has 7 levels numbered from the left to the right,
4 of type (i), 3 of type (ii). The vertices on the same level and the input leaves
are ordered from the bottom up.

5.2. The category of levelled trees. The category LTr has objects planar rooted trees

with three types of vertices: ‘white’ vertices bc , ‘vertical’ vertices bc⊗ and ‘horizontal’ ver-

tices b .8 These vertices may have arbitrary arities ≥ 0 and are lined up into levels of two

types:

(i) levels consisting of white vertices bc and/or vertical vertices bc⊗ , and

(ii) levels consisting only of horizontal vertices b .

An example of a tree in LTr is given in Figure 2 which uses the convention that levelled trees

are drawn horizontally, with the root on the left. Morphisms in LTr are generated by three

types of ‘elementary’ morphisms:

Type 1. Maps of trees f : β → α, where α is obtained from β by choosing two adjacent levels

and contracting all edges connecting vertices in these two chosen levels. This contraction

results in a single level with vertices determined by the following rules:

(i) contracting an edge adjacent to a bc -vertex produces a bc -vertex,
(ii) contracting an edge connecting two bc⊗ -vertices or a b -vertex with a bc⊗ -vertex pro-

duces a bc⊗ -vertex and

(iii) contracting an edge connecting two b -vertices produces a b -vertex.

If we ‘order’ the types of vertices by

(39) b ≺ bc⊗ ≺ bc

then the above rules say that the ‘higher takes everything.’

Type 2. Maps of trees f : β → α, where α is obtained from β by replacing a bc⊗ -vertex by

a bc -vertex of the same arity, or by replacing all b -vertices in the same level by bc⊗ -vertices.

Therefore only replacements that increase order (39) are allowed.

8The terminology will be explained in Section 5.3.
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2 3 0 0 2 1 1

10

Figure 3. An N-colored 2-tree corresponding to the leveled tree of Figure 2.

Type 3. Maps of trees f : β → α, where α is obtained from β by introducing a new level

consisting only of bc -vertices of arity 1.

We require the following relations between these elementary morphisms: a contraction of

two levels does not depend on the order, contractions commute with replacement of vertices,

and introducing a level and then contracting it is an identity morphism.

The category LTr is operadic. The cardinality functor LTr → FSet assigns to β ∈ LTr the

set bc (β) of its white vertices. The fibers of a map σ : β → α are preimages of white vertices

of α. Trees in LTr belong to the same connected component if they have the same arity (=

number of input edges), one therefore clearly has π0(LTr) ∼= N. The (in this case unique)

terminal objects are white corollas bc n of arity n ∈ N.

There is an operadic functor

(40) Ω : LTr → ΩN2

assigning to β ∈ LTr an N-colored 2-tree T = (T, c) defined as follows. Assume that the

white and vertical vertices of β are lined up, from the root down, as in the table

(41)

v11 v12 · · · v1q1
v21 v22 · · · v2q2
...

...
...

vt1 vt2 · · · vtqt

(the table therefore does not show type (ii) levels). The 1-truncation of T is the 1-ordinal

{1, . . . , t} represented by the corolla with t leaves numbered from the left to the right. The

leaves of T are elements of the set

(42)
{
vcd, 1 ≤ c ≤ t, 1 ≤ d ≤ qc, v

c
d is white

}
.9

The leaf vcd is connected to the cth 1-vertex c. Finally, the color c(vcd) of the leaf v
c
d is the arity

of the vertex vcd, while the output color c(1) of T is the arity of β. We put Ω(β) := (T, c).

An example of this construction is in Figure 3. Observe that the functor Ω in (40) does not

see horizontal vertices.

9So we use the same symbols for both the white vertices of β and for the leaves of T.
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5.3. Endomorphism object for levelled trees. By Proposition 5.2, each collection E =

{E (n)}n≥0 of objects of a duoidal category D = (D , �0, �1, e, v) has its N-colored endomor-

phism 2-operad End
ΩN2
E
. Likewise, one can define a LTr-collection EndLTr

E
=

{
EndLTr

E
(β)

}
β∈LTr

which becomes, under the mild assumption of the commutativity of diagram (49) below, an

operad in OpLTr(V ).

Its construction is similar to the one in the proof of Proposition 5.2. Assume that all (not

only bc - and bc⊗ -) vertices of a leveled tree β ∈ LTr are organized as in the table

(43)

u11 u12 · · · u1p1
u21 u22 · · · u2p2
...

...
...

uℓ1 uℓ2 · · · uℓpℓ

Notice that necessarily p1 = 1. Then we define, for 1 ≤ b ≤ ℓ,

E
�

pb
1

β := E (ub1)�1 · · · �1E (ubpb),

where, for 1 ≤ c ≤ pb,

(44) E (ubc) :=





E (nbc), if ubc is a white vertex of arity nbc,

v, if ubc is a vertical vertex, and

e, if ubc is a horizontal vertex.

Vertical vertices bc⊗ are therefore represented by the vertical unit v and the horizontal ver-

tices b by the horizontal unit e, which explains the terminology. Finally we put

E
β := E

�
pℓ
1

β �0 · · · �0E
�

p1
1

β

or, in the expanded form,

(45) E
β =

(
E (uℓ1)�1 · · · �1E (uℓpℓ)

)
�0 · · · �0

(
E (u11)�1 · · · �1E (u1p1)

)
,

and define EndLTr
E (β) := D

(
E β, E (n)

)
with n the arity of β.

One has a natural morphism of LTr-collections

(46) Λ : EndLTr
E

→ Ω∗End
ΩN2
E

whose components

Λβ : EndLTr
E

(β) → End
ΩN2
E
(T), β ∈ LTr, T := Ω(β),

are induced by a natural map

(47) θβ : E
T → E

β

defined as follows. Let us introduce first an auxiliary reduced �-power

E
β
:= E

�
pℓ
1

β �0E
�

pℓ−1
1

β �0 · · · �0E
�

p2
1

β �0E
�

p1
1

β
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whose factors are, for 1 ≤ b ≤ ℓ, given as

E
�

pb
1 :=

{
E �

pb
1 , if the bth level of β is of type (i), and

e, if the bth level of β is of type (ii).

Clearly, E
β
is obtained from E β by replacing multiple �1-powers of e by a single instance

of e. The comonoid structure

(48) e→ e�1e

therefore gives rise to a canonical map ̟ : E
β
→ E β. More precisely,

̟ = ̟ℓ
�0 · · · �0̟

1 : E
β
= E

�
pℓ
1

β �0 · · · �0E
�

p1
1

β −→ E
β = E

�
pℓ
1

β �0 · · · �0E
�

p1
1

β ,

where ̟b : E
�

pb
1

T
→ E

�
pb
1

β , 1 ≤ b ≤ ℓ, are the following canonical morphisms.

If the bth level of β is of type (i), then ̟b is the identity E
�

pb
1

β = E
�

pb
1

β . When the bth

level is of type (ii), then by definition E
�

pb
1

β = e while E
�

pb
1

β = e�1 · · · �1e (pb-times). In

this case we take as ̟b the map given by iterating the comonoid structure of e.

Comparing the definitions of E
β
and E T we see that E

β
differs from E T by (possibly

multiple) �0-products with e and/or �1-products with v. Recalling that e (resp. v) is the

unit for the horizontal (resp. vertical) multiplication in D , we conclude that E
β
and E T are

canonically isomorphic. The map Λβ in (47) is the composition E T ∼= E
β ̟
−→ E β .

Remark 5.3. One can check that if the diagram

(49) e�1e //

��

e�1v

��
v �1e // e

induced by the canonical map e → v and by the unit constraint for v commutes, the con-

struction of Section 5.3 gives rise to an LTr-multicotensor that induces a natural LTr-operad

structure on EndLTr
E

.

This in particular happens when the comultiplication (48) is an isomorphism, in which

case ̟ is an isomorphism, too, and Λ is an isomorphism of LTr-operads. An important

instance of such a situation is when D is the duoidal category Sp2(C, V ) of span V -objects

over a small category C [9, Def. 6.3].

Theorem 5.4. For each multiplicative 1-operad A in a duoidal category D there exists

a natural map of LTr-collections

(50) Ψ : ILTr → EndLTr
A

such that the composite

(51) Ξ : ILTr
Ψ

−→ EndLTr
A

Λ
−→ Ω∗End

ΩN2
A
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is a morphism of LTr-operads. If the diagram (49) commutes, all maps in (51) are operad

morphisms.

Proof. The map (29) gives rise to a map αv : v → A (n) and, when precomposed with the

canonical map e → v, to a map αe : e → A (n) for each n ≥ 0. By the definition of ILTr,

morphism (50) is determined by specifying a map Ψβ : A β → A (n) for each β ∈ LTr, where

n is the arity of β. Assume again that the vertices of β are as in table (43) and denote, only

for purposes of this proof,

(52) A (β) :=
(
A (nℓ1)�1 · · · �1A (nℓpℓ)

)
�0 · · · �0

(
A (n1

1)�1 · · · �1A (n1
p1
)
)

where nbc is the arity of the vertex vbc, 1 ≤ b ≤ ℓ, 1 ≤ c ≤ pb. It is clear that the structure

morphisms (28) of the 1-operad A give rise to a map γβ : A (β) → A (n).

For A (ubc) as in (44) define ωbc : A (ubc) → A (nbc) by

ωbc :=





the identity id : A (nbc) → A (nbc), if ubc is white

the map αv : v → A (nbc), if ubc is vertical, and

the map αe : e→ A (nbc), if ubc is horizontal.

Comparing (52) and (45), we see that the above maps assemble to a morphism

(53) ωβ : A
β → A (β)

We finally define Ψβ : A β → A (n) as the composite

Ψβ : A
β ωβ

−→ A (β)
γβ
−→ A (n).

The category LTr was designed to model the ‘pasting schemes’ for multiplicative 1-operads

and all related constructions were ‘tautological.’ This makes the desired properties of the

above objects obvious. �

6. The Tamarkin operad

We are going to give an alternative definition of Tamarkin’s operad seq acting on dg-

categories and study various related categories and operads. The second part of this section

is devoted to the construction of the functor (56) needed in Section 7. We consider as in the

introduction to [7] the pruned N-colored 2-operad TamN

2 given by the pullback

(54) TamN

2

��

// K(2)/a2

��

Des2(L
(2))

Des2(c) // Des2(K
(2))

where L(2) is the second filtration of the lattice-path operad, K(2) is the second filtration of

the complete graph operad of Berger [12], c : L(2) → K(2) is the complexity index functor and

a2 is the canonical internal 2-operad in K(2) consisting of 2-ordinals. The prominent rôle of
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Figure 4. A tree δ ∈ L(2)(2, 3, 0, 0, 2, 1, 1; 10).

TamN

2 is given by the fact that the operad seq of [30, §5.6.1] acting on dg-categories equals

its restriction along the pruning functor (12). To keep the notation compatible with the rest

of the paper, we denote the Tamarkin operad by TmN

2 and take the above observations as

its definition.

Definition 6.1. The Tamarkin operad TmN

2 is the restriction p∗TamN

2 of the pullback (54)

along the pruning functor p : ΩN2 → OrdN2 .

An alternative description of TmN

2 is given in Remark 7.2. Without going into details of

all objects above, we give below an explicit description of TamN

2 and the related objects.

It was shown in [8, Prop. 4.10] or [7, Prop. 2.14] that L(2) is isomorphic to the Tamarkin-

Tsygan operad [31]. Our exposition will use this description of L(2). The operad L
(2) is an

ordinary symmetric N-colored operad in the monoidal category Set of sets. Its component

L(2)(n1, . . . , nk;m) is the set of planar rooted trees δ with m input leaves and two types of

vertices:

(i) white vertices bc labelled 1, . . . , k such that the ith vertex has arity ni, and

(ii) black vertices b of arbitrary arities different from 1.

We moreover require that δ has no internal edge connecting two black vertices. An example

is given in Figure 4.

The symmetric groups permute the labels of white vertices. The ◦i-operation

L
(2)(n1, . . . , nk;m)×L

(2)(m1, . . . , ml;ni) → L
(2)(n1, . . . , ni−1, m1, . . . , ml, ni+1, . . . , nk;m)

inserts the tree γ ∈ L(2)(m1, . . . , ml;ni) to the ith vertex of δ ∈ L(2)(n1, . . . , nk;m) and

contracts the edges connecting two black vertices if necessary. The units are represented by

planar corollas whose unique vertex is white.

There is a canonical complementary order [4, Def. 2.2] on the set bc (δ) of white vertices

of a tree δ ∈ L(2) given as follows. For i, j ∈ bc (δ),

(i) i ⊳0 j if and only if there is a directed path in δ from i to j, and
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(ii) i ⊳1 j if and only if the edge path connecting i with the root lies on the left from the

path connecting j to the root, where ‘left’ refers to the planar structure of δ.

The following definition will be useful in the sequel; recall that N-colored 2-ordinals were

reviewed in Section 5.1.

Definition 6.2. An OrdN2 -labelled tree is a couple (O, δ), where δ ∈ L(2) and O ∈ OrdN2 is an

N-colored 2-ordinal whose underlying set is bc (δ) and the coloring given by the arity of the

corresponding vertex of δ.

Let ⊳ be some complementary order on the underlying set of a 2-ordinal O. We say that

O dominates ⊳ if, for all i, j ∈ O,

(55) i 6 ⊲0 j if i <0 j, and i ⊳1 j if i <1 j.

The pullback (54) represents the pruned 2-operad TamN

2 as a suboperad of the desym-

metrisation of the operad L(2) whose arity- O operations are OrdN2 -labelled trees (O, δ) such

that O dominates the canonical complementary order on the set bc (δ) of white vertices of δ.

Let us define the operadic category TamN2 as the Grothendieck construction of Proposi-

tion 2.5 applied to the pruned 2-operad TamN

2 . By definition, the objects of TamN2 are pairs

(O, δ) ∈ TamN

2 (O) of OrdN2 -labeled trees such that O dominates the canonical complementary

order on bc (δ). The rest of this section will be devoted to the definition of a functor

(56) u : LTr → TamN2 ,

where LTr is the category of leveled trees introduced in Section 5.2. This functor will play

a key rôle in Section 7.

We start by noticing that the set bc (β) of bc -vertices of β ∈ LTr has a natural lexicographic

order defined by saying that u < v if the level of u is closer to the root than the level of v;

if u lies on the same level as v then u < v if and only if u is on the left from v in the sense

of the planar structure of β. Given a leveled tree β ∈ LTr, we consider an OrdN2 -labelled tree

u(β) = (O, β̄) with O := p
(
Ω(β)

)
, where Ω : LTr → ΩN2 is the functor in (40), p : ΩN2 → OrdN2

the pruning functor, and β̄ produced from β in four steps:

(i) labelling the white vertices of β by 1, . . . , k using the above lexicographical order,

(ii) forgetting the level structure of β,

(iii) converting all bc⊗ -vertices of β to b -vertices and

(iv) contracting edges connecting two b -vertices and erasing all b -vertices of arity one.

As an exercise, we recommend to check that applying the above steps to the tree β in Figure 2

produces the tree in Figure 4. To show that indeed u(β) = (O, β̄) ∈ TamN2 means to verify

that the 2-ordinal O dominates the complementary order generated by β̄.
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Figure 5. The cases i <0 j (two left pictures) and i <1 j (rightmost picture).

Let i <0 j in O and let wi, wj be the corresponding white vertices from β̄. The relation

i <0 j means that, in β, the vertex wj lies on the level closer to the root than the level of

wi. There are two possibilities: either wi and wj are connected by a directed path and then

wi ⊳0wj in bc (β̄), or there is no such a directed path, in which case either wi ⊳1wj or wj ⊳1w1

in β̄. The domination condition (55) clearly holds for the pair i, j in this case.

Assume that i <1 j in O. This means that wi precedes wj in the lexicographical order

and also that there is no directed path connecting wi and wj in β. Hence wi ⊳1 wj in bc (β̄)
which finishes the verification that O dominates β̄. The idea is indicated in Figure 5.

A morphism φ : (O, δ) → (N, γ) in TamN2 is, by definition of the Grothendieck construction,

an |N|+1-tuple

(57)
(
σ, (O1, δ1), . . . , (Ok, δk)

)

where σ : O → N is a morphism of 2-ordinals, Oi = σ−1(i) and (Oi, δi) ∈ TamN

2 (Oi), i ∈ |N|,

are such that

(58) m
(
(O1, δ1), . . . , (Ok, δk); (N, γ)

)
= (O, δ),

where m is the multiplication in the pruned 2-operad TamN

2 .

For any morphism f : β → α in LTr, the functor Ω : LTr → ΩN2 induces a map of 2-trees

Ω(f) : Ω(β) → Ω(α) so, denoting O := p
(
Ω(β)

)
and N := p

(
Ω(α)

)
, we have the induced

map

(59) σ : O −→ N, σ := p(Ω(f))

of N-colored 2-ordinals.

To define the functor u : LTr → TamN2 on morphisms, it suffices to specify it on elementary

morphisms listed in Section 5.2. Let f : β → α be an elementary morphism of Type 1

collapsing two consecutive levels. Each bc -vertex w of α has the fiber f−1(w) ∈ LTr. Such

a w also corresponds to a unique element i = i(w) of the 2-ordinal presented N = p(Ω(α)).

So, we associate to w the element (Oi, δi) :=
(
σ−1(i), f−1(w)

)
∈ TamN2

(
σ−1(i)

)
. It is easy to

check that then (58) with (Oi, δi) as above, (O, δ) := u(β) and (N, γ) := u(α) is satisfied, so

we constructed a morphism u(f) : u(β) → u(α) in TamN2 .
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If f : β → α is an elementary morphism of Type 2 that replaces a level of b -vertices

by a level of bc⊗ -vertices, then clearly u(β) = u(α) and we define u(f) to be the identity

morphism.

Assume that f : β → α replaces a bc⊗ -vertex of β by a bc -vertex w and denote by

e = e(w) the corresponding ‘exceptional’ element of the 2-ordinal N. To describe the fibers

of f : β → α and of the induced map (59) denote, for c ∈ N, by 1c ∈ OrdN2 the terminal

2-ordinal whose input and output colors equal c, 0c2 ∈ OrdN2 the initial 2-ordinal whose output

color is c, and by bc c (resp. bc⊗ c) the bc - (resp. bc⊗ -) corolla of arity c. With this notation,

f−1(u) =

{
bc cv , if v 6= w, and
bc⊗ cv , if v = w,

where cv is the arity of a bc -vertex v of α. The induced map (59) is an inclusion and

σ−1(u) =

{
1
ci
2 , if i 6= e, and

0ci2 , if i = e,

where ci ∈ N denotes the color of i ∈ S. We define u(f) : u(β) → u(α) by taking in (57)

(Oi, δi) :=

{
(1ci2 ,

bc ci), if i 6= e, and

(0ci2 ,
bc⊗ ci), if i = e.

The discussion of Type 3 elementary morphisms f : β → α is analogous. The exceptional

fibers of f are now the exceptional trees with no vertices, while the exceptional fibers of

the induced map σ : O → N are the initial of 2-ordinals 12 with the output color 1 This

completes the definition of the functor u.

7. Action of the Tamarkin operad

The aim of this section is to prove the following statement in which TmN

2 is the Tamarkin

operad recalled in Definition 6.1.

Theorem 7.1. For any multiplicative 1-operad A in a duoidal category one has a natural

action

(60) TmN

2 → End
ΩN

2
A
.

Proposition 2.5 associates to the operad TamN

2 the operadic category TamN2 , together with

a discrete operadic fibration

s : TamN2 → OrdN2 .

By (16), TamN

2 = s!(I
TamN2 ), therefore TmN

2 = p∗(TamN

2 ) = p∗
(
s!(I

TamN2 )
)
, so the map in (60)

is the same as a morphism

(61) p∗
(
s!(I

TamN2 )
)
→ End

ΩN

2
A
.
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On the other hand, define the operadic category TmN2 using Proposition 1.9 as the pullback

of operadic categories:

(62) TmN2

t
��

r // TamN2

s

��

ΩN

2

p // OrdN2 .

The induced functors of the associated categories of operads enjoy the Beck-Chevalley prop-

erty by Proposition 2.8, so

(63) p∗
(
s!(I

TamN2 )
)
∼= t!

(
r∗(ITam

N

2 )
)
.

The map in (61) is thus the same as a morphism

t!
(
r∗(ITam

N

2 )
)
→ End

ΩN

2
A

which is, by adjunction, the same as an operad morphism

r∗(ITam
N

2 ) → t∗(End
ΩN2
A
).

Since clearly r∗(ITam
N

2 ) = I
TmN2 , Theorem 7.1 will be proved if we construct a natural morphism.

(64) I
TmN2 → t∗(End

ΩN2
A
).

Remark 7.2. Notice that r∗(ITam
N

2 ) = I
TmN2 together with (63) implies that TmN

2 = t!(I
TmN2 ),

so TmN

2 is the result of the application of the functor inverse to the Grothendieck construction

to the discrete fibration TmN2 → ΩN2 .

It is obvious that the diagram

LTr

Ω
��

u // TamN2

s

��

ΩN2
p // OrdN2

in which Ω : LTr → ΩN2 is the functor (40) and u : LTr → TamN2 the functor (56) commutes,

so we have the induced operadic functor w : LTr → TmN2 to the pullback of (62) as in the

commutative diagram

(65) LTr
w

''PP
PP

PP
PP

Ω

))

u

''
TmN2
t ��

r // TamN2
s��

ΩN2
p // OrdN2 .

Recall that we already constructed a canonical morphism (51) of LTr-operads

Ξ : ILTr → Ω∗(End
ΩN2
A
).
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By (65), tw = Ω, so Ω∗(End
ΩN2
A
) = w∗(t∗(End

ΩN2
A
)). Noticing the isomorphism I

LTr = w∗(ITm
N

2 ),

we see that we therefore also have a natural morphism of LTr-operads

(66) Υ : w∗(ITm
N

2 ) −→ w∗
(
t∗(End

ΩN2
A
)
)
.

The requisite map in (64) will be constructed by ‘inverting w∗’ in (66), using:

Lemma 7.3. Let F : O → P be an operadic functor and P,O ∈ OpP(V ). Assume that F is

surjective on objects. Suppose we are also given a morphism ς : F ∗(P) → F ∗(O) of O-operads

such that, for arbitrary Q′, Q′′ ∈ O such that F (Q′) = F (Q′′),

(67) ςQ′ : F ∗P(Q′) → F ∗O(Q′) equals ςQ′′ : F ∗P(Q′′) → F ∗O(Q′′).

Then there exist a unique morphism ρ : P → O of P-operads satisfying ς = F ∗(ρ).

Proof Lemma 7.3. For T ∈ P choose Q ∈ O such that T = F (Q). Since F ∗P(Q) = P(T ) and

F ∗O(Q) = O(T ), we may define ρT : P(T ) → O(T ) by ρT := ςQ. We leave as an exercise to

verify that the collection ρ = {ρT} is a well-defined morphism of operads. �

We wish to apply the lemma to the situation when O = LTr, P = TmN2 , F is the functor

w in (65), P = I
TmN2 , O = t∗(End

ΩN2
A
) and ς the morphism ε of (66). Since w is clearly

surjective on objects, we only need to verify (67). In this particular case it means that, given

β ′, β ′′ ∈ LTr such that w(β ′) = w(β ′′), Υβ′ = Υβ′′. Recalling again that ILTr = w∗(ITm
N

2 ) and

tw = Ω, we easily see that it is enough to prove:

Lemma 7.4. Let Ξ = {Ξβ} : ILTr → Ω∗(End
ΩN2
A
) be the composite (51). If β ′, β ′′ ∈ LTr are

such that w(β ′) = w(β ′′), then Ψβ′ = Ψβ′′.

As the first step in proving Lemma 7.4 we characterize, in Lemma 7.6 below, pairs β ′, β ′′ ∈

LTr having the same w-image in TmN2 . For this, the following alternative description of objects

of the categories TamN2 and TmN2 will be useful.

Lemma 7.5. Objects of TamN2 can be described as the isomorphism classes of planar rooted

trees ζ with white vertices bc , vertical vertices bc⊗ and horizontal vertices b . While bc -
vertices have arbitrary arities ≥ 0, b -vertices have either arity ≥ 2 or 0, and all bc⊗ -vertices

are of arity 1.

We moreover require that ζ has no internal edge connecting two b -vertices and no internal

edge starting from a b -vertex and ending in a bc⊗ -vertex, i.e. the following edges

(68) bb or bbc⊗

are not allowed. Finally, bc - and bc⊗ -vertices are lined up in levels such that each level

contains at least one bc -vertex.

Objects of TmN2 can similarly be identified with the isomorphisms classes of trees as above,

but this time allowing also levels consisting solely of bc⊗ -vertices.
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2 3 0 0 2 1 1

10

✤ pruning
//

2 3 0 0 2 1 1

10

Figure 6. A 2-tree T ∈ ΩN2 and its pruning O = p(T) ∈ OrdN2 .

Proof. Let us denote provisionally by T̃amN

2 the set of isomorphism classes of trees which,

according to the lemma, should describe objects of TamN2 , and let T̃mN

2 be similarly related

to TmN2 . We are going to construct two couples of mutually inverse maps,

T̃amN2

φ
**
TamN2ψjj and T̃mN

2

̺
))
TmN2ςii .

While the definitions of φ : T̃amN2 → TamN2 and ̺ : T̃mN

2 → TmN2 are very simple, our construc-

tions of their inverses will involve intuitive geometric arguments. A formal combinatorial

construction should use a straightforward but lengthy induction on the number of vertices

of the trees involved. We leave it to the interested reader.

Before we begin, notice that each planar rooted tree ω with levels of bc - and bc⊗ -vertices

determines an N-colored 2-tree Ω(ω) ∈ ΩN2 by same procedure as described for the leveled

trees of LTr in Section 5.2. That is, we organize bc - and bc⊗ -vertices of ω to table (41); the

1-truncation of Ω(ω) will then be the set {1, . . . , t} and its 2-leaves the same as in (42). The

N-coloring of the 2-leaves of Ω(ω) is given, as always in this article, by the arities of the

corresponding bc -vertices. It is clear that Ω(ω) is pruned if and only if ω does not have

levels consisting solely of bc⊗ -vertices.

Let us describe φ : T̃amN2 → TamN2 . As in Section 6, the level structure of ζ ∈ T̃amN2 induces

the lexicographic order on the set bc (ζ) of its white vertices. We label the bc -vertices of ζ

by {1, . . . , k} accordingly, remove the levels and denote the resulting tree by ζ.

Since, by assumption, all levels of ζ contain at least one white vertex, the 2-tree Ω(ζ)

is pruned and can therefore be interpreted as a 2-ordinal. Then, by construction, φ(ζ) :=(
Ω(ζ), ζ̄

)
is an OrdN2 -labelled tree. It is moreover clear that the 2-ordinal Ω(ζ) dominates the

canonical complementary order on bc (ζ), so in fact φ(ζ) ∈ TamN2 .

On the other hand, take (O, δ) ∈ TamN2 and define ζ = ψ(O, δ) ∈ T̃amN2 as follows. First,

organize the bc -vertices of δ to levels such that Ω(δ) = O. The domination condition for

(O, δ) guarantees that it is possible. Then move the b -vertices of δ so close to the root that

none of the edges bbc⊗ intersect a level line and that none of the b -vertices lies on

a level line. Finally, introduce unary bc⊗ -vertices at the intersection points of the level lines

with the edges of δ. Then φ : T̃amN2 → TamN2 and ψ : TamN2 → T̃amN2 are obviously mutual

inverses.

For instance, if O is the N-colored 2-ordinal represented by the pruned N-colored 2-tree in

the right side of Figure 6 and δ the tree in Figure 4, then (O, δ) ∈ TamN2 , and ψ(O, δ) ∈ T̃amN2
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bc

b

bbc
bc

b

bc

b
b

bbc

bc

bc

bc

bcbc

bc
bc

bc

bc
bc

⊗

⊗
⊗

bc

Figure 7. The tree ζ = ψ(O, δ) ∈ T̃amN2 .

is the tree in Figure 7.

Let us describe ̺ : T̃mN

2 → TmN2 . Notice that elements of TmN2 are, by the definition via the

pullback in (62), couples (T, δ) such that T ∈ ΩN2 and
(
p(T), δ)

)
∈ TamN2 , where p(T) ∈ OrdN2

is the pruning of the N-colored 2-tree T. We can call couples (T, δ) ∈ TmN2 ΩN2 -labelled trees .

For ξ ∈ T̃mN

2 denote by p(ξ) be the tree obtained from ξ by removing levels all consisting

only of bc⊗ -vertices. Clearly p(ξ) ∈ T̃amN2 , so it makes sense to put ξ := φ
(
p(ξ)

)
. It is then

clear that the rule ξ 7→
(
Ω(ξ), φ(p(ξ))

)
defines a map ̺ : T̃mN

2 → TmN2 .

Let us construct its inverse ς : TmN2 → T̃mN

2 . Suppose that (T, δ) ∈ TmN2 . As we already

observed, (p(T), δ) ∈ TamN2 , so we may use the previous construction and consider, as an

intermediate step, the tree ζ := ψ
(
p(T), δ

)
∈ T̃amN2 . The tree ξ = ς(T, δ) will be constructed

by adding additional levels of bc⊗ -vertices of arity 1 to ζ as follows.

Let tr1(T) = {1, . . . , u} and tr1
(
p(T)

)
= {1, . . . , t}. If t = u, there is nothing to do as T

is pruned; in this case we take ξ := ζ . Assume therefore that t < u.

Since tr1
(
p(T)

)
is a subset of tr1(T), we have an inclusion ι : {1, . . . , t} →֒ {1, . . . , u}. The

complement {1, . . . , u} \ Im(ι) is the disjoint union S1 ∪ · · · ∪Sk of non-empty intervals. For

instance, for T as Figure 6, tr1(T) = {1, . . . , 8}, tr1
(
p(T)

)
= {1, 2, 3}, Im(ι) = {2, 5, 7}, so

{1, . . . , 8} \ Im(ι) = (1) ∪ (3, 4) ∪ (6) ∪ (8).

For i, 1 ≤ i ≤ k, such that t 6∈ Si, let ri := ι−1(max(Si) + 1). In the example above,

r1 = 1, r2 = 2 and r3 = 3. For each such an i we add to ζ card(Si) new levels consisting

of bc⊗ -vertices of arity 1 placed above the rith level of ζ so close to it that all vertices of

ζ above this level are also above these newly introduced levels. If t ∈ Si
10 we introduce

card(Si) new levels of bc⊗ -vertices of arity 1 intersecting the input leaves of ζ .

We denote the resulting tree by ξ and define ς(T, δ) := ξ. We believe that Figure 8 makes

the construction of β out of ζ obvious. It is also clear that the maps ̺ : T̃mN

2 → TmN2 and

ς : TmN2 → T̃mN

2 are inverse to each other, showing that T̃mN

2
∼= TmN2 . This finishes the proof. �

10This may obviously happen only when i = k.

[duodel.tex] [September 24, 2018]



46 M. BATANIN AND M. MARKL

bc

b

bbc
bc

b

bc

b

b
bbc

bc

bc

bc

bcbc

bc
bc

bc

bc
bc

⊗

⊗
⊗

bc

bc bc
bcbc

bcbc
bcbc

⊗
⊗

⊗
⊗

⊗
⊗

⊗
⊗

bc
bc

bc

bc

bc

⊗

⊗

⊗

⊗

⊗

bc
bc
bc
bc
bc

bc

bc
bc
bc
bc

⊗

⊗
⊗
⊗
⊗
⊗
⊗
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Figure 8. The tree ξ = ς(T, δ) ∈ T̃mN

2 .

In the description of Lemma 7.5, the w-image of a leveled tree β ∈ LTr in TmN2 can be

obtained in four steps. First we forget all type-(ii) levels of β, so the b -vertices are allowed

to move freely. In the second step we split all bc⊗ -vertices of arity n > 1 into one b -vertex

of arity 1 followed by n bc⊗ -vertices of arities 1, graphically:

bc

⊗

⊗bc⊗ b

bc

bc
bc

⊗

⊗
⊗

bc⊗7−→

The third step removes all internal edges starting at a b -vertex and ending at a bc⊗ -vertex

by allowing b -vertices to penetrate through bc⊗ -vertices as in:

bc

⊗

⊗b

bc

bc
bc

⊗

⊗
⊗

bc⊗⊗ bc⊗ b 7−→

In the final step we contract all edges connecting two horizontal vertices and remove hori-

zontal vertices of arity 1. The result is the image w(β).

We leave as an exercise to show that if we apply the above steps to the tree β in Figure 2,

we get the tree w(β) in Figure 9. The following lemma describes all β’s in LTr with the same

w-image.

Lemma 7.6. Let β ′, β ′′ ∈ LTr. Then w(β ′) = w(β ′′) if and only if β ′′ is obtained from β ′ by

a finite sequence of the following elementary moves and their inverses:

(i) introducing a new level of horizontal vertices of arity one,

(ii) choosing two adjacent levels of horizontal vertices and contracting all edges connecting

vertices in these two chosen levels, creating one level of horizontal vertices,

(iii) replacing an arity-1 vertical vertex followed by an arity-n horizontal vertex with an

arity-n vertical vertex followed by an arity 1 horizontal vertex:
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b
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bc bc

⊗

⊗

⊗
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bc⊗

bcbc

⊗

⊗

bcbcbc⊗
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⊗

⊗
⊗

b
bc

bc

Figure 9. The w-image of the tree β ∈ LTr from Figure 2.

7−→ b
⊗
⊗

bc⊗ b

b

b
b

bc⊗

(iv) replacing an arity-1 horizontal vertex followed by an arity-n vertical vertex with an

arity-n horizontal vertex followed by an arity 1 vertical vertex:

bc⊗b b
bc
bc
bc

bc

⊗
⊗

⊗

⊗7−→

Notice that moves (iii) and (iv) are ‘local’ in that they do not change the level structure

of β and that one can be obtained from the other by interchanging the rôles of bc⊗ and b .

Proof of Lemma 7.6. It is immediate to see that none of the moves changes the w-images.

Therefore, if β ′ and β ′′ differ by a sequence of the moves and their inverses, w(β ′) = w(β ′′).

To prove the opposite implication, let us say that a leveled tree β ∈ LTr is in the canonical

form, if β has no levels consisting only of b -vertices of arity 1, and no internal edges as

in (68). It is obvious that, if β ′, β ′′ ∈ LTr are in the canonical form, then w(β ′) = w(β ′′) if

and only if β ′ = β ′′ in LTr. The proof is finished by observing that each β ∈ LTr can be

brought to the canonical form by a finite sequence of moves (i)–(iv) and their inverses. �

Lemma 7.7. Let A be a multiplicative 1-operad A in a duoidal category D. If two leveled

trees β ′, β ′′ ∈ LTr differ by a finite sequence of elementary moves listed in Lemma 7.6, then

the structure morphisms

Ξβ′(I) : A
T → A (n) and Ξβ′′(I) : A

T → A (n),

where T := Ω(β ′) = Ω(β ′′) and Ξ = {Ξβ}β∈LTr is the morphism (51), are equal.
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Proof. Expanding the definitions we see that we must establish that the diagram

(69) A β′ ωβ′
// A (β ′) γβ′

**❱❱❱
❱❱❱

❱❱

A T

θβ′′ 44❥❥❥❥❥❥❥❥
θβ′

**❚❚❚
❚❚❚

❚❚ A (n)

A β′′ ωβ′′
// A (β ′′)

γβ′′ 44❤❤❤❤❤❤❤❤

in which θβ′ , θβ′′ are the maps (47), ωβ′, ωβ′′ the maps (53) and γβ′, γβ′′ the operad composi-

tions, commutes for each move of Lemma 7.6.

Move (i). Assume that β ′′ is obtained from β ′ by adding a level of horizontal vertices of

arity 1. It follows from the defining formula (45) that there are some A
β′

l ,A β′

r ∈ D such

that

A
β′

= A
β′

l �0A
β′

r while A
β′′

= A
β′

l �0(e�1 · · · �1e)�0A
β′

r .

Likewise, it follows from (52) that there are some Al(β
′),Ar(β

′) ∈ D such that

A (β ′) = Al(β
′)�0Ar(β

′) while A (β ′′) = Al(β
′)�0

(
A (1)�1 · · · �1A (1)

)
�0Ar(β

′).

The unitality axiom [9, Def. 4.1] for 1-operads then implies the commutativity of the diagram

A
β′

l �0A
β′

r

∼=��

ω // Al(β
′)�0Ar(β

′)
γ

++❳❳❳❳
❳❳❳❳

❳❳❳❳
❳❳❳❳

❳❳❳

A
β′

l �0e�0A
β′

r

��

A (n)

A
β′

l �0(e�1 · · · �1e)�0A
β′

r

ω // Al(β
′)�0

(
A (1)�1 · · · �1A (1)

)
�0Ar(β

′)

γ
33❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

which, along with the obvious commutativity of

A
β′

l �0A
β′

r

∼=��

A T

θβ′ 33❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣❣

θβ′′

++❲❲❲❲
❲❲❲❲

❲❲❲❲
❲❲❲ A

β′

l �0e�0A
β′

r

��

A
β′

l �0(e�1 · · · �1e)�0A
β′

r

implies the commutativity of (69).

Move (ii). By analyzing the definitions of the objects involved in (69), we easily see that its

commutativity would follow from the commutativity of the diagram

(70) (e�1 · · · �1e)�0e

��

// (v�1 · · · �1v)�0v

∼=

��
e // v

whose left vertical arrow is constructed in [9, Example 4.5], and the remaining arrows are

induced by the monoid structure of v and by the canonical map e→ v.
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Move (iii). The commutativity of (69) would in this case follow from the commutativity of

(71) (e�1 · · · �1e)�0v // (v�1 · · · �1v)�0v

∼=
��

e�0v //

OO

v�0v

whose maps are induced by the comonoid structure of e, monoid structure of v and the

canonical map e→ v.

Move (iv). The commutativity of (69) would follow from the commutativity of the diagram

(72) (v�1 · · · �1v)�0e //

∼=
��

(v �1 · · · �1v)�0v

∼=
��

v�0e // v�0v

whose arrows are given by the module structure of v and the canonical map e→ v. The com-

mutativity of diagrams (70)–(72) above is however an easy consequence of general properties

of duoidal categories. �

8. Duoidal Deligne’s conjecture

Let D be a complete V -category and δ : ∆ → V a cosimplicial object in V . Recall [9, §5.2]

that the δ-totalization of a cosimplicial object φ : ∆ → D is the V -enriched end

Totδ(φ) :=

∫

n∈∆

φ(n)δ(n) ∈ D .

By Proposition 5.2 of [9], any multiplicative 1-operad A in D bears a canonical structure

of a cosimplicial object Å = {A (n), n ≥ 0} in D . In Definition 5.3 of [9] we introduced the

Hochschild δ-object of a A as the δ-totalization

CH δ(A ) := Totδ(Å).

We claim that the canonical cosimplicial structure on A is induced by the action (60) of

the 2-operad TmN

2 . By this we mean that the underlying category U(TmN

2 ) is the simplicial

category ∆ and that Å = ι∗(A ), where ι∗ is the functor (22) with P = TmN

2 and C = D .

It follows from definition that the objects of the underlying category U(TmN

2 ) are natural

numbers. Its hom-sets are

U(TmN

2 )(i, n) = TmN2
(
U2(i, n)

)
, i, n ∈ N,

where U2(i, n) is the terminal 2-tree U2 with its unique 2-leaf colored by i and the root

by n. Morphisms in U(TmN

2 )(i, j) are thus represented by trees as in Lemma 7.5 with one
bc -vertex of arity i, no bc⊗ -vertices, and n leaves. It is obvious from this description that
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TmN

2 and L(2) have isomorphic underlying categories, while U(L(2)) ∼= ∆ by [7, Lemma 2.5].

The identification Å = ι∗(A ) is now a simple exercise. We conclude that

CH δ(A ) ∼= Totδ(A ),

where Totδ(A ) is given by (23).

As we already recalled from [9, Prop. 4.9], the endomorphism 1-operad EndM of a monoid

M in a D-monoidal category is multiplicative. The Hochschild δ-object of EndM was called

the δ-center of M and denoted

CH δ(M,M) := CH δ(EndM).

Since V is a cocomplete symmetric monoidal category it has Set-tensors. For a set S the

tensor S ⊗ X is equal to the coproduct
∐

S X of S-copies of X. For any operadic category

O and any O-operad P in Set we can construct then an enrichment of P in V which on an

object T ∈ O takes value P(T ) ⊗ I. By abusing notations we will denote such an enriched

O-operad by the same letter P. In particular we will consider the operad TmN

2 as a colored

2-operad in V for any cocomplete V.

Proposition 4.6 immediately gives:

Theorem 8.1. Let δ be a cosimplicial object in V. Then there is a canonical action of

the 2-operad coEnd
TmN

2
δ on the Hochschild object CH δ(A ) of a multiplicative 1-operad A .

In particular, there is a canonical action of coEnd
TmN

2
δ on the δ-center CH δ(M,M) of any

monoid M in any D-monoidal category

When V is the category of chain complexes, coEnd
TmN

2
δ is the chain 2-operad Ø considered

by Tamarkin in [30, §5.2]. Let I be the constant cosimplicial object whose all terms equal

the unit object I ∈ V .

Proposition 8.2. The 2-operad coEnd
TmN

2
I is isomorphic to the canonical 2-operad I

Ω2.

Proof. It is sufficient to observe that the value of the multitensor E
TmN

2
T

(I, . . . , I) is the

constant cosimplicial object I for any T ∈ Ω2 . Indeed, if it is so, then clearly

coEnd
TmN

2
I = Nat(I, I) = V (I, I) ∼= I

where Nat(I, I) means the space of natural transformations (i.e. cosimplicial maps) between

the constant cosimplicial objects I.

It is clear that for each n ≥ 0 the coend E
TmN

2

T
(I, . . . , I)(n) in (19) equals the colimit of the

k-simplicial object TmN

2 (T)(•, . . . , •;n)⊗I, k := |T|, so it is enough to check that the colimit

of the k-simplicial set TmN

2 (T)(•, . . . , •;n) is a one point set. This boils down to verification

that the equivalence relation generated by the simplicial operators on TmN

2 (T)(0, . . . , 0;n)

has only one equivalence class.
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b

b

bc

bc

bc

∂i0

∂i1

i

i

i

Figure 10. The local surgery defining the operators ∂i0, ∂
i
1 in (73).

Notice that, by the definition (18),

TmN

2 (T)(i1, . . . , ik;n) = TmN

2 (T
i1,...,ik
n ),

where Ti1,...,ik
n ∈ ΩN2 is the 2-tree T ∈ Ω2 with its 2-leaves colored by i1, . . . , ik ∈ N and the root

by n. The elements of TmN

2 (T)(0, . . . , 0;n) are thus represented by T-labelled leveled trees

whose bc -vertices have no incoming edges. In this description, the two simplicial operators

(73) ∂i0, ∂
i
1 : Tm

N

2 (T
0,...,1,...,0
n ) → TmN

2 (T
0,...,0
n ), 1 ≤ i ≤ k,

in i-th direction are local operations acting on a tree ξ ∈ TmN

2 (T
0,...,0
n ) by the following

surgery: ‘cut off’ the unique incoming edge of the ith bc -vertex of ξ and then ‘glue’ it to the

outcoming edge of this vertex in two possible ways introducing a new b -vertex, as indicated

in Figure 10 – compare with the differential in the brace operad [8, Example 5.8]. It is

simple to prove by induction that any two trees from TmN

2 (T)(0, . . . , 0;n) can be connected

by a zig-zag of such elementary surgery operations, so the colimit of TmN

2 (T)(•, . . . , •;n) is

a one-point set as claimed. �

The center of a monoid M in a D-monoidal category K , defined as Z(M) := CH I(M,M)

or, more explicitly, as the equalized (30), has a canonical structure of a duoid in D by [9,

Theorem 5.6]. On the other hand, according to [9, Example 11.15], duoids in D are the same

as IΩ2-algebras in D .11 The following proposition is easy to prove.

Proposition 8.3. The action of the operad coEnd
TmN

2
I

∼= I
Ω2 equips Z(M) with its canonical

duoid structure.

Let now V be a monoidal model category and δ be a standard system of simplices for V

in the sense of [16, Definition A.6]. Recall that this means that

(i) δ is cofibrant for the Reedy model structure on V ∆,

(ii) δ0 is the unit object I of V and the simplicial operators [m] → [n] act via weak

equivalences δm → δn in V , and

11The operad I
Ω2 was denoted Ass

2
in [9].
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(iii) the simplicial realization functor | - |δ = ( -)⊗∆ δ : V
∆op → V is a symmetric monoidal

functor whose structural maps

|X|δ ⊗V |Y |δ → |X ⊗V Y |δ

are weak equivalences for Reedy-cofibrant objects X, Y ∈ V ∆op .

Since E
TmN

2

T
(I, . . . , I) = I, the canonical map of cosimplicial objects δ → I induces a map

of 2-operads

coEnd
TmN

2
δ −→ coEnd

TmN

2
I .

Theorem 8.4. Let δ be a standard system of simplices for a monoidal model category V

such that the lattice path operad is strongly δ-reductive in the sense of [7, Definition 3.7].

Then the canonical morphism of 2-operads

(74) coEnd
TmN

2

δ −→ coEnd
TmN

2
I

∼= I
Ω2

is a weak equivalence. In other words, the 2-operad coEnd
TmN

2
δ is contractible.

Proof. The proof follows closely the proof of Theorem 3.8 from [7], with the simplification

that we do not need to take a colimit over the complete graph operads. The only fact we

should know is that the map of 0-objects

f 0 : (E
TamN

2
T

(δ, . . . , δ))0 → I0 = I

is a weak equivalence for every T. In the notation used in the proof of [7, Theorem 3.8], the

object on the left side is the same as ξ(µ,σ)(δ)
0 for (µ, σ) equal to aT ∈ K(2). It is shown at

the end of the proof of [7, Theorem 3.8] that the map f 0 is a weak equivalence. �

The map δ → I induces a canonical map

(75) Z(M) = CH I(M,M) −→ CH δ(M,M),

The map (74) equips the duoid Z(M) with a structure of coEnd
TmN

2
δ -algebra such that (75)

becomes a map of coEnd
TmN

2
δ -algebras.

Let F (M) be a fibrant replacement of M in the category of monoids with the projective

model structure, and δ a standard system of simplices for V . The δ-center CH δ

(
F (M), F (M)

)

of F (M) was called in [9] the homotopy center of M. The above considerations imply the

central result of our paper:

Corollary 8.5 (Duoidal Deligne’s conjecture). Under the assumptions of Theorem 8.4, the

Hochschild δ-object of a multiplicative 1-operad in a duoidal category D admits an action of

a contractible 2-operad.

The homotopy center of a monoid M in a multiplicative D-category admits an action of a

contractible 2-operad that lifts the duoid structure on the center Z(M).
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The assumptions of Theorem 8.4 are satisfied for instance when V is the category of

compactly generated topological spaces or chain complexes over a commutative ring, and δ

the cosimplicial space of topological simplices or normalized cellular chains on topological

simplices, respectively, see [7, Examples 3.10(a),(c)]. It is also not difficult to show that

these assumptions are satisfied for V = Cat with the Joyal-Tirney model structure and δ the

cosimplicial chaotic groupoid on finite sets, cf. [9, Example 5.10].

On the other hand, it was shown in [7, Example 3.10(b)] that for the category of simplicial

sets and δ = δYon the cosimplicial simplicial set of representables, the assumption of strongly

δ-reductivity of the lattice operad fails. We however believe that the second part of Corollary

8.5 remains true even without this assumption, because taking fibrant replacement of M

should counterweight the poor homotopical property of δ. We leave this refined version of

Deligne’s conjecture as a subject for a future work.
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pages 1–33. Soc. Math. France, Paris, 2011.

[9] M.A. Batanin and M. Markl. Centers and homotopy centers in enriched monoidal categories.Adv. Math.,
230(4-6):1811–1858, 2012.

[10] M.A. Batanin and R. Street. The universal property of the multitude of trees. J. Pure Appl. Algebra,
154(1-3):3–13, 2000. Category theory and its applications (Montreal, QC, 1997).

[11] M.A. Batanin and M. Weber. Algebras of higher operads as enriched categories. Appl. Categ. Structures,
19(1):93–135, 2011.

[12] C. Berger. Combinatorial models for real configuration spaces and En-operads. In J.L. Loday, J.D
Stasheff, and A.A. Voronov, editors, Operads: Proceedings of Renaissance Conferences, volume 202 of
Contemporary Math., pages 37–52. Amer. Math. Soc., 1997.

[13] C. Berger. Private communication.
[14] C. Berger and B. Fresse. Combinatorial operad actions on cochains. Math. Proc. Cambridge Philos.

Soc., 137(1):135–174, 2004.
[15] C. Berger and I. Moerdijk. Resolution of coloured operads and rectification of homotopy algebras. In

Categories in algebra, geometry and mathematical physics, volume 431 of Contemp. Math., pages 31–58.
Amer. Math. Soc., Providence, RI, 2007.

[16] C. Berger and I. Moerdijk. The Boardman-Vogt resolution of operads in monoidal model categories.
Topology, 45(5):807–849, February 2006.

[17] J.M. Boardman and R.M. Vogt. Homotopy Invariant Algebraic Structures on Topological Spaces.
Springer-Verlag, 1973.

[duodel.tex] [September 24, 2018]



54 M. BATANIN AND M. MARKL

[18] B. Day and R. Street. Abstract substitution in enriched categories. J. Pure Appl. Algebra, 179(1-2):49–
63, 2003.

[19] B. Day and R. Street. Lax monoids, pseudo-operads, and convolution. In Diagrammatic morphisms and
applications (San Francisco, CA, 2000), volume 318 of Contemp. Math., pages 75–96. Amer. Math.
Soc., Providence, RI, 2003.

[20] S. Forcey. Enrichment over iterated monoidal categories. Algebr. Geom. Topol., 4:95–119 (electronic),
2004.

[21] E. Getzler and M.M. Kapranov. Modular operads. Compos. Math., 110(1):65–126, 1998.
[22] R. Gordon, A.J. Power, and R. Street. Coherence for Tricategories, volume 558 of Mem. Amer. Math.

Soc. AMS, 1995.
[23] M.M. Kapranov. Analogies between the Langlands correspondence and topological quantum field theory.

In Functional analysis on the eve of the 21st century, Vol. 1 (New Brunswick, NJ, 1993), volume 131
of Progr. Math., pages 119–151. Birkhäuser Boston, Boston, MA, 1995.

[24] R.M. Kaufmann and B.C. Ward. Feynman Categories. Preprint arXiv:1312.1269, December 2013.
[25] A. Kock. Strong functors and monoidal monads. Archiv der Math. 23: 113–120, (1972).
[26] M. Markl. Operads and PROPs. In Handbook of algebra. Vol. 5, volume 5 of Handb. Algebr., pages

87–140. Elsevier/North-Holland, Amsterdam, 2008.
[27] M. Markl, S. Shnider, and J.D. Stasheff. Operads in algebra, topology and physics, volume 96 of Math-

ematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2002.
[28] J.E. McClure and J.H. Smith. A solution of Deligne’s Hochschild cohomology conjecture. In Recent

progress in homotopy theory (Baltimore, MD, 2000), volume 293 of Contemp. Math., pages 153–193.
Amer. Math. Soc., Providence, RI, 2002.

[29] S. Mac Lane and I. Moerdijk. Sheaves in geometry and logic. Universitext. Springer-Verlag, New York,
1994. A first introduction to topos theory, Corrected reprint of the 1992 edition.

[30] D. Tamarkin. What do dg-categories form? Compos. Math., 143(5):1335–1358, 2007.
[31] D. Tamarkin and B. Tsygan. Cyclic formality and index theorems. Lett. Math. Phys., 56:85–97, 2001.

Macquarie University, NSW 2109, Australia

E-mail address : michaelbatanin@mq.edu.au
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