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Abstract. Let S be a noncompact, finite area hyperbolic surface of
type (g, n). Let ∆S denote the Laplace operator on S. As S varies
over the moduli space Mg,n of finite area hyperbolic surfaces of type
(g, n), we study, adapting methods of Lizhen Ji [Ji] and Scott Wolpert
[Wo], the behavior of small cuspidal eigenpairs of ∆S . In Theorem 2 we
describe limiting behavior of these eigenpairs on surfaces Sm ∈ Mg,n

when (Sm) converges to a point inMg,n. Then we consider the i-th cus-
pidal eigenvalue, λci (S), of S ∈Mg,n. Since non-cuspidal eigenfunctions
(residual eigenfunctions or generalized eigenfunctions) may converge to
cuspidal eigenfunctions, it is not known if λci (S) is a continuous func-
tion. However, applying Theorem 2 we prove that, for all k ≥ 2g − 2,
the sets

C
1
4
g,n(k) = {S ∈Mg,n : λck(S) >

1

4
}

are open and contain a neighborhood of ∪ni=1M0,3 ∪Mg−1,2 in Mg,n.
Moreover, using topological properties of nodal sets of small eigenfunc-

tions from [O], we show that C
1
4
g,n(2g − 1) contains a neighborhood of

M0,n+1 ∪Mg,1 in Mg,n. These results provide evidence in support of
a conjecture of Otal-Rosas [O-R].

1. Introduction

In this paper a hyperbolic surface is a two dimensional complete Rie-
mannian manifold S with sectional curvature equal to −1. Such a surface
is isomorphic to the quotient H/Γ, of the Poincaré upper halfplane H by a
Fuchsian group Γ, i.e. a discrete torsion-free subgroup of PSL(2,R). The
Laplace operator on H is the differential operator which associates to a C2-
function f the function

∆f(z) = y2(
∂2f

∂x2
+
∂2f

∂y2
).

Since the action of PSL(2, R) on H leaves ∆ invariant, ∆ induces a differ-
ential operator on S = H/Γ which extends to a self-adjoint operator ∆S

densely defined on L2(S). It is a general fact that the Laplace operator is a
non-positive operator whose spectrum is contained in the smallest interval
(−∞,−λ0(S)] ⊂ R− ∪ {0} with λ0(S) ≥ 0.

Definition 1.1. Let λ > 0 be a real number and f ∈ L2(S) be a nonzero
function on S. The pair (λ, f) is called an eigenpair of S if ∆Sf+λf ≡ 0 on
S where λ and f are respectively called an eigenvalue and an eigenfunction
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2 SUGATA MONDAL

(sometimes a λ-eigenfunction). When 0 < λ ≤ 1/4, we add the adjective
small i.e. (λ, f), λ and f are respectively called a small eigenpair, a small
eigenvalue and a small eigenfunction.

We begin with a noncompact, finite area hyperbolic surface S of type
(g, n) i.e. S ∈ Mg,n. The Laplace spectrum of such a surface is composed
of two parts: the discrete part and the continuous part [I]. The continuous
part covers the interval [14 ,∞) and is spanned by Eisenstein series with
multiplicity n. Eisenstein series are not eigenfunctions although they satisfy

∆E(., s) + s(1− s)E(., s) = 0,

because they are not in L2. For this reason, they are called generalized
eigenfunctions. The discrete spectrum consists of eigenvalues. They are dis-
tinguished into two parts: the residual spectrum and the cuspidal spectrum.
An eigenpair (λ, f) is called residual if f is a linear combination of residues
of meromorphic continuations of Eisenstein series. Such λ and f are respec-
tively called a residual eigenvalue and a residual eigenfuction. The residual
spectrum is a finite set contained in [0, 14). On the other hand, an eigenpair
(λ, f) is called cuspidal if f tends to zero at each cusp. In this case λ and
f are respectively called a cuspidal eigenvalue and a cuspidal eigenfuction.
These eigenvalues with multiplicity are arranged by increasing order and we
denote λcn(S) the n-th cuspidal eigenvalue of S. For an arbitrary Fuchsian
group Γ, it is not known whether the cardinality of the set of cuspidal eigen-
values of H/Γ is infinite. However, a famous theorem of A. Selberg says that
it is the case when Γ is arithmetic. Any cuspidal eigenpair (λ, f) with λ ≤ 1

4
is called a small cuspidal eigenpair and in that case, λ and f are respectively
called a small cuspidal eigenvalue and a small cuspidal eigenfunction.

In [O-R], Jean-Pierre Otal and Eulalio Rosas proved that the total number
of small eigenvalues of any hyperbolic surface of type (g, n) is at most 2g −
3 + n. In the same paper they formulate the following:

Conjecture. Let S be a noncompact, finite area hyperbolic surface of
type (g, n). Then λc2g−2(S) > 1

4 .
This conjecture is motivated by the following two results

Proposition 1.2. (Huxley [Hu], Otal [O]) Let S be a finite area hyperbolic
surface of genus 0 or 1. Then S does not carry any small cuspidal eigenpair.

Proposition 1.3. (Otal [O]) Let S be a finite area hyperbolic surface of
type (g, n). Then the multiplicity of a small cuspidal eigenvalue of S is at
most 2g − 3.

The set Mg,n carries a topology for which two surfaces H/Γ and H/Γ′

are close when the groups Γ and Γ
′

can be conjugated inside PSL(2,R)
so that they have generators which are close. With this topology Mg,n is
not compact. However it can be compactified by adjoining ∪iMgi,ni ’s for

each (g1, n1), ..., (gk, nk) with 2
∑k

i (gi − 2) +
∑k

i ni = 2g − 2 + n. In this

compactification a sequence (Sm) ∈ Mg,n converges to S∞ ∈ Mg,n if and

only if for any given ε > 0 the ε-thick part (S
[ε,∞)
m ) converges to S

[ε,∞)
∞ in

the Gromov-Hausdorff topology. Recall that the ε-thick part of a surface S
is the subset of those points of S where the injectivity radius is at least ε.
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Recall also that the injectivity radius of a point p ∈ S is the radius of the
largest geodesic disc that can be embedded in S with center p.

For any N ∈ N and t ∈ R>0 we define the sets

Ctg,n(N) = {S ∈Mg,n : λcN (S) > t}.

It is clear that C
1
4
g,n(k) ⊂ C

1
4
g,n(k + 1) for k ≥ 1. With this notation the

conjecture can be formulated by saying that

C
1
4
g,n(2g − 2) =Mg,n.

In this paper, we study the sets C
1
4
g,n(k). The methods developed here are

not sufficient to prove the conjecture but we show that the sets C
1
4
g,n(2g− 2)

and C
1
4
g,n(2g − 1) (C

1
4
g,n(2g − 2) ⊆ C

1
4
g,n(2g − 1)) contains neighborhoods of

certain strata in the compactification of Mg,n.

Theorem 1.4. (i) For any integer k, C
1
4
g,n(k) is an open subset of Mg,n.

(ii) C
1
4
g,n(2g − 2) contains a neighborhood of ∪ni=1M0,3 ∪Mg−1,2 in Mg,n.

(iii) C
1
4
g,n(2g − 1) contains a neighborhood of M0,n+1 ∪Mg,1 in Mg,n.

Observe that it is theoretically possible for a residual eigenfunction to
converge to a cuspidal eigenfunction. Therefore indicating that λc2g−1 may

not be continuous. Also, the result [P-S] suggest that λc2g−1 may not be

continuous at those S ∈ Mg,n where it takes value strictly more than 1
4 .

Therefore, the first assertion is not completely trivial.
The paper is organized as follows. In §1 we recall some preliminaries for

convergence of hyperbolic surfaces in Mg,n. In §2 and §3 we study con-
vergence properties of eigenpairs on converging hyperbolic surfaces. Similar
study has already been carried out by Scott Wolpert [Wo], Lizhen Ji [Ji]
and Christopher Judge [J]. We shall first make precise the notions of con-
vergence in Mg,n and the notion of convergence of a sequence of functions
on a converging sequence of surfaces.

1.1. Convergence of functions. Let (Sm) be a sequence of surfaces in
Mg,n converging to a surface S∞ in the compactification Mg,n. Another
way of understanding this convergence is as follows:

Let Sm = H/Γm and let 0 < c0 < ε0 (ε0 is the Margulis constant; see

thick/thin decomposition for details) be a fixed constant. Let xm ∈ S[c0,∞)
m .

Up to a conjugation of Γm in PSL(2,R), one may assume that i ∈ H is
mapped to xm under the projection H → H/Γm. Then up to extracting a
subsequence we may suppose that Γm converges to some Funchsian group
Γ∞. We say that the pair (H/Γm, xm) converges to (H/Γ∞, x∞) where x∞
is the image of i ∈ H under the projection H → H/Γ∞. Let S∞ be the hy-
perbolic surface of finite area whose connected components are the H/Γ∞’s
for different choices of base point xm in different connected components of

S
[c0,∞)
m . The surface S∞ does not depend, up to isometry, on the choice of

the base point xm in a fixed connected component of S
[c0,∞)
m (i.e. if ym be
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a point in the same connected component of S
[c0,∞)
m as xm then the corre-

sponding limiting surfaces are isometric). One can check that (Sm) → S∞
in Mg,n.

Convergence of functions

Fix an ε > 0 and choose a base point xm ∈ Sm[ε,∞) for each m. Assume that
the pair (H/Γm, xm) converges to (H/Γ∞, x∞) where, for each m ∈ N∪{∞},
the point i ∈ H maps to xm under the projection H→ H/Γm.

For a C∞ function f on Sm denote by f̃ the lift of f under the projection
H → H/Γm. Let (fm) be a sequence of functions in C∞(Sm) ∩ L2(Sm).

One says that (fm) converges to a continuous function f∞ if f̃m converges,

uniformly over compact subsets of H, to f̃∞ for each choice of base points
xm ∈ Sm[ε,∞) and for each ε < ε0.

With the above understanding of convergence of functions we shall prove
the following theorem which has close resemblance with [Ji, Theorem 1.2]
and [Wo, Theorem 4.2]. However, our result does not follow from these. We
would like to mention that a similar limiting theorem might not be true (see
[Wo, p-71] if one considers λm ≥ 1

4 instead of λm ≤ 1
4 (see Theorem 2).

In the following, for a function f ∈ L2(S), we shall denote the L2 norm
of f by ‖f‖. Also, for f ∈ L2(V ) and U ⊂ V we denote the L2-norm of
the restriction of f to U by ‖f‖U . A function f ∈ L2(V ) will be called
normalized if ‖f‖ = 1. An eigenpair (λ, φ) will be called normalized if φ is
normalized.

Theorem 1.5. Let Sm → S∞ in Mg,n. Let (λm, φm) be a normalized small
cuspidal eigenpair of Sm. Assume that λm converges to λ∞. Then one of
the following holds:
(1) There exist strictly positive constants ε, δ such that lim sup ‖φm‖S[ε,∞)

m
≥

δ. Then, up to extracting a subsequence, (φm) converges to a λ∞-eigenfunction
φ∞ of S∞.
(2) For each ε > 0 the sequence (‖φm‖S[ε,∞)

m
) → 0. Then S∞ ∈ ∂Mg,n and

λ∞ = 1
4 . Moreover, there exist constants Km →∞ such that, up to extract-

ing a subsequence, (Kmφm) converges to a linear combination of Eisenstein
series and (possibly) a cuspidal λ∞-eigenfunction of S∞.

Remark 1.6. For s = 1
2 , by Eisenstein series we understand a linear com-

bination of the following two:
(i) the classical (meromorphic continuation) Eisenstein series Ei(., 12) corre-
sponding to the cusps (i is the index for cusps) on the surface,
(ii) the derivatives ∂

∂sE
i(., s)|s= 1

2
of Ei(., s) at s = 1

2 .

The first Fourier coefficient of such functions in any cusp have the form

αy
1
2 + βy

1
2 log y. Each moderate growth 1

4 -eigenfunction is a linear com-
bination of Eisenstein series, in the above sense, and (possibly) a cuspidal
eigenfunction.

Theorem 2 will be applied to prove all three statements of Theorem 1.
The first one is a direct application; in §4 we prove:

Lemma 1 For any k ≥ 1, C
1
4
g,n(k) is an open subset of Mg,n.
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The second statement of Theorem 1 is also an easy application of Theorem
2 and the Buser construction [Bu]: we explain it now since the proof is short.
We argue by contradiction and assume that there is a sequence (Sm) in
Mg,n such that Sm converges to S∞ ∈ ∪ni=1M0,3∪Mg−1,2 and λc2g−2(Sm) ≤
1
4 . Then S∞ has exactly n + 1 components of which exactly n are thrice
punctured spheres. Observe that each component of S∞ contains an old
cusp i.e. cusps of S∞ which are limits of cusps of Sm (see Proof of Theorem
2).

The construction used in the proof of [Bu, Theorem 8.1.3] implies that,
for m large, Sm has at least n eigenvalues that converge to zero as m tends
to infinity. Let us suppose by contradiction that one of the corresponding
eigenfunctions φm is cuspidal. Then by Theorem 2, φm converges uniformly
over compacta to a function φ and φ is an eigenfunction for the eigenvalue 0.

So φ is constant in each component of S∞. On those components of S
[ε,∞)
∞

that contains an old cusp φ is necessarily zero because φm being cuspidal
the average of φm over any horocycle is zero. On the the other component
(the one that does not contain an old cusp) φ is zero because the mean of
φ over S∞ is equal to the mean of φm over Sm which is zero (follows from
Theorem 3.36). Therefore, φ is the zero function which is a contradiction by
Theorem 2. Hence, for large m each eigenfunction corresponding to any of
the first n eigenvalues of Sm is necessarily residual. Now if λc2g−2(Sm) ≤ 1

4
then each Sm has at least 2g−2+n small eigenvalues. This is a contradiction

to [O-R, Theorem 2]. Therefore we have proved that C
1
4
g,n(2g − 2) contains

a neighborhood of ∪ni=1M0,3 ∪Mg−1,2 in Mg,n.
In the last section we prove the last statement of Theorem 1. We consider

Mg,1∪M0,n+1 as a subset of ∂Mg,n =Mg,n \Mg,n and show the following

Proposition 1.7. There exists a neighborhood N (Mg,1∪M0,n+1) ofMg,1∪
M0,n+1 in Mg,n such that for each S ∈ N (Mg,1 ∪M0,n+1): λ

c
2g−1(S) > 1

4
i.e.

N (Mg,1 ∪M0,n+1) ⊂ C
1
4
g,n(2g − 1).

Now we briefly sketch a proof of this proposition. We argue by con-
tradiction and consider a sequence (Sm) in Mg,n that converges to S∞ in
(Mg,1 ∪M0,n+1) ⊂ ∂Mg,n such that λc2g−1(Sm) ≤ 1

4 . Then, for 1 ≤ i ≤
2g− 1 and for each m, we choose a small cuspidal eigenpair (λim, φ

i
m) of Sm

such that
(i) {φim}

2g−1
i=1 is an orthonormal family in L2(Sm),

(ii) λim is the i-th eigenvalue of Sm.
For 1 ≤ i ≤ 2g − 1 let (λim) converges to λi∞ as m → ∞. By Theorem

2 there are two possible types of behavior that the sequence (φim) can ex-
hibit. Either, for each 1 ≤ i ≤ 2g − 1 the sequence (φim) converges to a
λi∞-eigenfunction φi∞ on S∞, or for some i the sequence (λim, φ

i
m) satisfies

condition (2) in Theorem 2. However, in our case we have the following
lemma:

Lemma 2 For each i, 1 ≤ i ≤ 2g − 1, up to extracting a subsequence,
the sequence (φim) converges to a λi∞-eigenfunction φi∞ of S∞. The limit

functions φi∞ and φj∞ are orthogonal for i 6= j i.e. S∞ has at least 2g − 1
small eigenvalues. Moreover none of the φi∞ is residual.
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Then we count the number of small eigenvalues of S∞ using [O-R] to
conclude that at least one of φi∞ is nonzero on the component of S∞ of type
(0, n + 1). This leads to a contradiction by Huxley [Hu] or [O, Proposition
2].

1.2. Acknowledgement. The author would like to express his sincere grat-
itude to his advisor Jean-Pierre Otal for his patience, encouragement and
insight. The author was supported during this research by the Indo-French
CEFIPRA-IFCPAR grant.

2. Preliminaries

In this section we shall recall some preliminary concepts that are impor-
tant for our purpose. Metric convergence of a sequence (Sm) ∈ Mg,n to

S∞ ∈Mg,n is one of the prime aspects of our study. We start by explaining
the thick/thin decomposition of a hyperbolic surface which is convenient to
understand the metric convergence.

2.1. The thick / thin decomposition of a hyperbolic surface. Let

S ∈Mg,n. Recall that for any ε > 0, the ε-thin part of S, S(0,ε), is the set of

points of S with injectivity radius < ε. The complement of S(0,ε), the ε-thick
part of S, denoted by S[ε,∞), is the set of points where the injectivity radius
of S is ≥ ε.

2.1.1. Cylinders. Let γ be a simple closed geodesic on S. It can be viewed
as the quotient of a geodesic in H by a hyperbolic isometry Υ fixing the
geodesic. We may conjugate Υ such that the geodesic is the imaginary
axis and the isometry is τ : z → e2πlz, 2πl = lγ being the length of the
geodesic. We define the hyperbolic cylinder C with core geodesic γ as the
quotient H/ < τ >. Recall that the Fermi coordinates on C assign to each
point p ∈ C the pair (r, θ) ∈ R × {γ} where r is the signed distance of p
from γ and θ is the projection of p on γ [Bu, p. 4]. These coordinates give a
diffeomorphism of this hyperbolic cylinder to R×R/2πZ. In terms of these
coordinates the hyperbolic metric is given by:

ds2 = dr2 + l2cosh2rdθ2.

For w ≥ l we define the collar Cw around γ by

Cw = {(r, θ) ∈ C : lγ cosh r < w, 0 ≤ θ ≤ 2π}.
Then Cw is diffeomorphic to an annulus whose each boundary component has
length w. The Collar Theorem of Linda Keen [Ke] says that C1 embeds in S

(more precisely, Cw(lγ) embeds in S where w(lγ) = lγ cosh(sinh−1( 1

sinh
lγ
2

)) >

1 and w(lγ) ≈ 2).

2.1.2. Cusps. S has n ends called punctures. Cusps are particular neighbor-
hood of the punctures. Denote by ι the parabolic isometry ι : z → z + 2π.
For a choice of t > 0, a cusp Pt is the half-infinite cylinder {z = x+ iy : y >
2π
t }/ < ι >. The boundary curve {y = 2π

t } is a horocycle of length t that we
identify with R/tZ. One can parametrize Pt using the horocycle coordinates
[Bu, p. 4] with respect to its boundary horocycle {y = 2π

t }. The horocycle
coordinates assigns to a point p ∈ Pt the pair (r, θ) ∈ R≥0 × {R/tZ} where
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r is the distance from p to the horocycle and θ the projection of p on the
horocycle. In terms of these coordinates the hyperbolic metric takes the
form:

ds2 = dr2 + (
t

2π
)2e−2rdθ2.

Recall that the cusp P1 (in fact P2) around each puncture embeds in
S and that those cusps corresponding to distinct punctures have disjoint
interiors (ref. [Bu, Chapter 4]). We call them standard cusps. Observe that
the area and boundary length of a standard cusp is equal to 1. For t ≤ 1

denote the disjoint union
⋃
c∈S Pt by S

(0,t)
c where c ranges over distinct

cusps in S.

2.1.3. The decomposition. By Margulis lemma there exists a constant ε0 >
0, the Margulis constant, such that for all ε ≤ ε0, S

(0,ε) is a disjoint union
of embedded collars, one for each geodesic of length less than 2ε, and of
embedded cusps, one for each puncture. The collar around a geodesic of
length ≤ ε is called a Margulis tube.

2.2. Metric degeneration of a collar to a pair of cusps. We describe
how a collar around a geodesic of length lγ = 2πl converges as l tends to
zero to a pair of cusps. First shift the origin of the Fermi coordinates of
Cw(lγ) to the right boundary of Cw(lγ) by making the change of variable
t = r− sinh−1( 1

sinh
lγ
2

). In the shifted Fermi coordinates the metric on Cw(lγ)

is equal to

ds2 = dr2 + l2cosh2(r − sinh−1(
1

sinh
lγ
2

))dθ2.

For r in a compact region we have the limiting

lim
l→0

lcosh(r − sinh−1(
1

sinh
lγ
2

)) =
e−r

π
.

Now the hyperbolic metric on P2 is equal to

ds2 = dr2 +
e−2r

π2
dθ2

with respect to the boundary horocycle {y = π} of P2.

Choose a base point pl on the right half of Cw(lγ)[ε,∞)
. Then by above,

as l → 0, the pair (Cw(lγ), pl) converges, up to extracting a subsequence, to

(P2, p) where p ∈ P2[ε,∞)
. Since one can choose the base point on the left

half of Cw(lγ) also, the metric limit of Cw(lγ) is a pair of P2.

3. Mass distribution of small cuspidal functions over thin
parts

Our goal is to study the behavior of sequences of small cuspidal eigenpairs
(λn, fn) of Sn ∈ Mg,n when (Sn) converges to S∞ ∈ Mg,n and finally to
prove Theorem 1. For this we need to understand how the mass (L2 norm) of
a small eigenfunction is distributed over the surface, and in particular how it
is distributed with respect to the thin/thick decomposition. Let S ∈ Mg,n.

Recall that for any ε ≤ ε0 the ε-thin part, S(0,ε), of S consists of cusps
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and Margulis tubes. We separately study the mass distribution of a small
cuspidal eigenfunction over these two different types of domains.

3.1. Mass distribution over cusps. For 2π ≤ a < b consider the annulus
P(a, b) = {(x, y) ∈ P1 : a ≤ y < b} contained in a cusp P1 and bounded by
two horocycles of length 2π

a and 2π
b . We begin our study with the following

lemma.

Lemma 3.1. For any b > 2π there exists K(b) <∞ such that for any small
cuspidal eigenpair (λ, f) of P1 one has

‖f‖P(b,∞) < K(b)‖f‖P(2π,b). (3.2)

If λ < 1
4 − η for some η > 0 then there exists a constant T (b, η) < ∞

depending on b and η such that for any small eigenpair (λ, f) one has

‖f‖P(b,∞) < T (b, η)‖f‖P(2π,b). (3.3)

Furthermore, K(b), T (b, η)→ 0 as b→∞.

Proof. We begin with the first part. Since f is cuspidal inside P1 it can
be expressed as

f(z) =
∑
n∈Z∗

fnWs(nz) (3.4)

where s(1 − s) = λ and Ws is the Whittaker function (see [I, Proposition
1.5]). The meaning of (3.4) is that the right hand series converges to f in
L2(P1) and that the convergence is uniform over compact subsets. Recall
also that for n ∈ Z∗ the Whittaker functions is defined by

Ws(nz) = 2(|n|y)
1
2Ks− 1

2
(|n|y)einx

where Kε is the McDonald’s function and that for any ε (see [Le, p. 119])

Kε(y) =
1

2

∫ +∞

−∞
e−y coshu−εudu (3.5)

whenever the integral makes sense. From the expression it is clear that the
functions (Ws(n.)) form an orthogonal family over P(a, b) (independent of
the choices of a and b). Hence (1) will follow from the following claim.

Claim 3.6. Let s ∈ [12 , 1]. Then for any b > 2π there exists K(b) <∞ such
that for all n ∈ Z∗

‖Ws(nz)‖P(b,∞) ≤ K(b)‖Ws(nz)‖P(2π,b).

Furthermore, K(b)→ 0 as b→∞.

Proof. From the expression of Ws we have

‖Ws(nz)‖P(a,b) = 2π

(∫ b

a
4|n|yKs− 1

2
(|n|y)2

dy

y2

)
.

To prove the claim we may suppose that n ≥ 1. Our next objective is to
obtain bounds for the functions Ks− 1

2
(y) for s ∈ [12 , 1]. We start from the
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above integral representation of Kε(y). We write Kε(y) =
1

2
{c(ε, y)+d(ε, y)}

where

c(ε, y) =

∫ 1

−1
e−y coshu−εudu (3.7)

and

d(ε, y) =

∫ −1
−∞

e−y coshu−εudu+

∫ ∞
1

e−y coshu−εudu. (3.8)

Now we treat c(ε, y) and d(ε, y) separately.
Bounding c(ε, y):
We have

c(ε, y) =

∫ 1

−1
e−y coshu.e−εudu ≤ eε.

∫ 1

−1
e−y coshudu = eε

∫ 1

−1
e−y(1+

u2

2!
+u4

4!
+...)du

= eε.e−y
∫ 1

−1
e−y(

u2

2!
+u4

4!
+...)du ≤ 2eε.e−y

∫ 1

0
e−y

u2

2! du.

Since e
yu2

2 > 1 + yu2

2 for u > 0, we have:∫ 1

0
e−y

u2

2! du <

∫ 1

0

du

1 + yu2

2

=
2

y
tan−1(

y

2
) ≤ 2

y
.
π

2
.

Therefore

c(ε, y) ≤ 2πeε
e−y

y
.

To obtain a lower bound, we write∫ 1

−1
e−y coshu.e−εudu ≥ e−ε.

∫ 1

−1
e−y coshudu = e−ε

∫ 1

−1
e−y(1+

u2

2!
+u4

4!
+...)du

= 2e−ε.e−y
∫ 1

0
e−y(

u2

2!
+u4

4!
+...)du.

Since for all u ∈ (0, 1] one has

u2

2!
+
u4

4!
+ ... < u(

1

2
+

1

4
+

1

8
+ ...) = u.

Hence

c(ε, y) ≥ 2e−ε.e−y
∫ 1

0
e−uydu = 2e−ε

e−y

y
(1− e−y).

Combining the above two inequalities

2e−ε
e−y

y
(1− e−y) ≤ c(ε, y) ≤ 2πeε

e−y

y
.

Bounding d(ε, y):

d(ε, y) =

∫ −1
−∞

e−y coshu−εudu+

∫ ∞
1

e−y coshu−εudu

=

∫ ∞
1

e−y coshu−εudu+

∫ ∞
1

e−y coshu+εudu.

Now for any u > 1,
u2

2!
+
u4

4!
+ ... > γ0u

2 > γ0u
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where γ0 =
∞∑
n=1

1

(2n)!
.

Thus

d(ε, y) = e−y
∫ ∞
1
{e−y(

u2

2!
+u4

4!
+...)−εu + e−y(

u2

2!
+u4

4!
+...)+εu}du

≤ e−y
∫ ∞
1
{e−yγ0u−εu + e−yγ0u+εu}du

=
e−y

y

(
e−(yγ0+ε)

γ0 + ε
y

+
e−(yγ0−ε)

γ0 − ε
y

)
.

Thus combining the estimates for c(ε, y) and d(ε, y) we obtain

2e−ε
e−y

y
(1− e−y) < Kε(y) < 2πeε

e−y

y
+
e−y

y

(
e−(yγ0+ε)

γ0 + ε
y

+
e−(yγ0−ε)

γ0 − ε
y

)
.

Let

δ(ε, y) =
e−(yγ0+ε)

γ0 + ε
y

+
e−(yγ0−ε)

γ0 − ε
y

.

Observe that for ε < 1 and y ≥ 2
γ0

δ(ε, y) <
4 cosh 1

γ0
e−γ0y = δ0(y).

So, for y ≥ 2
γ0

large enough

2e−ε
e−y

y
< Kε(y) <

e−y

y

(
2πeε + δ0(y)

)
. (3.9)

Going back to the expression of Ws, for s ∈ [12 , 1], we find:

1

2π
‖Ws(nz)‖2P(2π,b) =

∫ b

2π
4nyKs− 1

2
(ny)2

dy

y2
=

∫ b

2π
4nKs− 1

2
(ny)2

dy

y

≥
∫ b

2π

4n

b
Ks− 1

2
(ny)2dy >

16ne1−2s

b

∫ b

2π

e−2ny

(ny)2
dy =

16ne1−2s

n2b

∫ b

2π

e−2ny

y2
dy

=
16ne1−2s

n2b

(∫ b
2

2π

e−2ny

y2
dy +

∫ b

b
2

e−2ny

y2
dy

)
>

16ne1−2s

n2b

(∫ b

b
2

e−2ny

y2
dy

)
=

16e1−2s

nb

e−nb

n b
2

4

{1 +O(e−nb +
2

b
)}

i.e.

‖Ws(nz)‖2P(2π,b) > 2π
16e1−2s

nb

e−nb

n b
2

4

{1 +O(e−nb +
1

b
)} (3.10)

Also,

1

2π
‖Ws(nz)‖2P(b,∞) =

∫ ∞
b

4nyKs− 1
2
(ny)2

dy

y2
=

∫ ∞
b

4nKs− 1
2
(ny)2

dy

y

≤
∫ ∞
b

4n

b
Ks− 1

2
(ny)2dy ≤ 4n(2πe(s−

1
2
) + δ0(b))

2

b

∫ ∞
b

e−2ny

(ny)2
dy

=
4(2πe(s−

1
2
) + δ0(b))

2

nb

e−2nb

2nb2
{1 +O(

1

b
)}
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i.e.

‖Ws(nz)‖2P(b,∞) ≤ 2π
2(2πe(s−

1
2
) + δ0(b))

2

nb

e−2nb

nb2
{1 +O(

1

b
)} (3.11)

In the last inequality, we used the following estimate from [Le, Section 3.2]:∫ t2

t1

e−2αy

y2
dy =

e−2αt1

2αt12
{1 +O(e2(t1−t2) + t1

−1)}

with an absolute constant for the O-term for α > 1.
Comparing (3.10) and (3.11) we get, for any n ∈ Z∗

‖Ws(nz)‖P(b,∞) ≤ K(b)‖Ws(nz)‖P(2π,b) (3.12)

where

K2(b) =
e2s−1

8
(2πe(s−

1
2
) + δ0(b))

2e−|n|b
(1 +O(1b ))

1 +O(e−|n|b + 2
b )
.

From the expression it is clear that K is bounded independent of n, b (once
b is large enough) and s ∈ [12 , 1]. So we obtain the claim by choosing some

b > 2
γ0

sufficiently large (once and for all) such that the O-terms in the

expression of T are small enough. It is also clear from the expression that
when b→∞, K(b)→ 0. This proves the Claim 3.6 and hence the first part
of Lemma 3.1.

Now we prove the second part. Let λ < 1
4 − η for some η > 0 and let

(λ, f) be a residual eigenpair. The Fourier expansion of f inside P1 has the
form

f(z) = f0y
s +

∑
n∈Z∗

fnWs(nz) = f0y
s + g(z) (3.13)

where s(1 − s) = λ, s ∈ (0, 12) (see [I]) and g(z) =
∑

n∈Z∗fnWs(nz). Since
f0y

s and g are orthogonal and since the first part can be applied to g, one
needs only to prove the lemma for the term f0y

s. So we calculate:∫ c

a
y2s

dy

y2
=

1

1− 2s

(
1

a1−2s
− 1

c1−2s

)
.

Therefore, for b > 2π,

‖f0ys‖2P(b,∞) =
1

( b
2π )1−2s − 1

‖f0ys‖2P(2π,b). (3.14)

The lemma is satisfied by T2(b, η) such that

T 2
2 (b, η) = max

(
K2(b),

1

( b
2π )1−2s − 1

)
.

From the expression it is clear that T2(b, η) depends only on two quantities:
b and 1

2 − s. Since 1
2 − s >

√
η > 0, 1

( b
2π

)1−2s−1 → 0 when b → ∞. This

proves the second part.
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3.2. Mass distribution over Margulis tubes. Now we study the distri-
bution of the mass of a small eigenfunction over Margulis tubes. Let γ be a
simple closed geodesic of length lγ = 2πl. Recall that Ca denotes the collar
around γ bounded by two equidistant curves of length a. Any f ∈ L2(C1)
can be written as a Fourier series in the θ-coordinate:

f(r, θ) = a0(r) +
∞∑
j=1

(
aj(r) cos jθ + bj(r) sin jθ

)
. (3.15)

The functions aj = aj(r) and bj = bj(r) are defined on [−cosh−1( 1
lγ

), cosh−1( 1
lγ

)]

and are called the j-th Fourier coefficients of f (in C1). When f is a λ-
eigenfunction, aj and bj are solutions of the differential equation

d2φ

dr2
+ tanh r

dφ

dr
+ (λ− j2

l2cosh2r
)φ = 0. (3.16)

We set [f ]0 = a0(r) and [f ]1 = f − [f ]0. The following lemma concerns the
distribution of masses of [f ]0 and [f ]1 inside C1.

Lemma 3.17. For any lγ < ε ≤ ε0 there exist constants T1(ε), T2(ε) <
∞, depending only on ε, such that for any small eigenpair (λ, f) of C1 the
following inequalities hold:

‖[f ]1‖Cε < T1(ε)‖[f ]1‖C1\Cε (3.18)

and

‖[f ]0‖Cε0\Cε < T2(ε)‖[f ]0‖C1\Cε0 . (3.19)

Therefore, for any lγ < ε ≤ ε0 and any small eigenpair (λ, f) of C1 one has

‖f‖Cε0\Cε < max {T1(ε0), T2(ε)}‖f‖C1\Cε0 . (3.20)

If λ < 1
4 − η for some η > 0 then there exists a constant T0(ε, η) < ∞,

depending only on η and ε, such that

‖[f ]0‖Cε < T0(ε, η)‖[f ]0‖C1\Cε . (3.21)

Furthermore, T1(ε), T0(ε, η)→ 0 as ε→ 0.

Before starting the proof of the above lemma we make a few observations

about the solutions of (3.16). The change of variable u(r) = cosh
1
2 (r)φ(r)

transforms (3.16) into

d2u

dr2
=

(
(
1

4
− λ) +

1

4cosh2r
+

j2

l2cosh2r

)
u. (3.22)

Let sj (resp. cj) be the solution of (3.22) satisfying the conditions: sj(0) = 0

and s
′
j(0) = 1 (resp. cj(0) = 1 and c

′
j(0) = 0). Since (3.22) is invariant

under r → −r one has: sj(−r) = −sj(r) and cj(−r) = cj(r) for all j ≥ 0.

Therefore there exists t > 0 such that sj > 0 and c
′
j > 0 on (0, t]. Now we

prove the following claim.

Claim 3.23. Let L > 0. Let g : [0, L]→ R be a C2-function which satisfies
the inequality:

d2g

dr2
> δ2g
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for some δ > 0. If g
′
(0) ≥ 0 then

g(r)

cosh δr
is a monotone increasing function

of r in (0, L].

Proof. Observe that(
g(r)

cosh δr

)′
=
g
′
(r) cosh δr − δg(r) sinh δr

cosh2(δr)
.

Consider the function H defined on [0, L] by

H(r) = g
′
(r) cosh δr − δg(r) sinh δr.

Since g is a C2 function H is continuous on [0, L]. Observe that the claim
follows if H(r) > 0 in (0, L]. Now for any r ∈ (0, L]

H
′
(r) = g

′′
(r) cosh δr − δ2g(r) cosh δr = (g

′′
(r)− δ2g(r)) cosh δr > 0.

Therefore for r > 0, H(r) > H(0) = g
′
(0) ≥ 0. Hence the claim.�

Proof of Lemma 3.17. We need to estimate, for lγ ≤ t < w ≤ 1, the
quantities:

‖[f ]1‖2Cw\Ct = lγ

∫ −Lt
−Lw

( ∞∑
j=1

α2
j + β2j

)
dr + lγ

∫ Lw

Lt

( ∞∑
j=1

α2
j + β2j

)
dr

and

‖[f ]0‖2Cw\Ct = lγ

∫ −Lt
−Lw

α2
0dr + lγ

∫ Lw

Lt

α2
0dr

where α0(r) = cosh
1
2 (r)a0(r), αj(r) = aj(r)cosh

1
2 (r), βj(r) = bj(r)cosh

1
2 (r)

and Lu = cosh−1( ulγ ). Since sj is odd and cj is even, for any symmetric

subset U ⊂ [−L1, L1], sj and cj are orthogonal in L2(U). Now αj and βj
are linear combinations of sj and cj for j ≥ 1 and α0 is a linear combination
of s0 and c0. Therefore, since sj and cj are orthogonal, it is enough to
prove the lemma with sj and cj instead of [f ]1 and with s0 and c0 instead
of [f ]0. We detail the computations for sj . The computations for cj are
similar. Let us choose ε such that lγ < ε < ε0. The lemma reduces to find
K1(ε),K2(ε) < ∞, depending on ε, and K0(ε, η) < ∞, depending on ε, η
(> 0), such that

‖sj‖Cε < K1(ε)‖sj‖C1\Cε , ‖s0‖Cε0\Cε < K2(ε)‖s0‖C1\Cε0

and

‖s0‖Cε < K0(ε, η)‖s0‖C1\Cε .

Let η < 1
4 − λ and set δ0 =

√
η and set for j ≥ 1, δj = 1. Notice

that l cosh r < 1 on [0, L1). Hence by (3.22) sj : [0, L1) → R satisfies the
inequality:

d2sj
dr2

> δ2j sj .

Hence by Claim 3.23 hj(r) =
sj(r)
cosh r , for j ≥ 1, is strictly increasing on (0, L1).

The same is true for h0 = s0(r)
cosh δ0r

(even when δ0 = 0).
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We begin with the proof of the second part of the Lemma. So we assume
η > 0. For 0 ≤ a < b consider the integral:∫ b

a
s20(r)dr =

∫ b

a
h20(r)cosh2(δ0r)dr.

Since h0 is strictly increasing we have

h20(a)

∫ b

a
cosh2(δ0r)dr <

∫ b

a
s20(r)dr < h20(b)

∫ b

a
cosh2(δ0r)dr. (3.24)

Now choosing a = 0 and b = Lε the last inequality in (3.24) gives

‖s0‖2Cε < 2lγh
2
0(Lε)

∫ Lε

0
cosh2(δ0r)dr. (3.25)

Next choosing a = Lε and b = L1 the first inequality in (3.24) gives

‖s0‖2C1\Cε > 2lγh
2
0(Lε)

∫ L1

Lε

cosh2(δ0r)dr. (3.26)

Therefore
‖s0‖Cε < T0‖s0‖C1\Cε (3.27)

where

T 2
0 =

sinh 2δ0Lε + 2δ0Lε
sinh 2δ0L1 − sinh 2δ0Lε + 2δ0(L1 − Lε)

. (3.28)

We see that T0 depends only on ε, δ0 and lγ . Now Lε = cosh−1( εlγ ) =

log( εlγ +
√

( εlγ )2 − 1). Therefore, for ε and δ20 = η > 0 fixed, and lγ small

T 2
0 < K0

1

ε−2δ0 − 1
,

and the constant K0 is independent of lγ as soon as lγ is small compared
to ε. Thus we can choose T0(ε, η) independent of lγ satisfying (3.27). This
proves (3.21)

For sj , j ≥ 1, exactly the same computations for s0 work with δ0 replaced
by δj = 1. Hence in this case our constant,

T 2
1 (ε) < K1

1

ε−2 − 1
,

depends only on ε. This proves (3.18).
Now we prove (3.20). Since s0 : [0, L1] → R+ is strictly increasing we

have:∫ Lε0

Lε

s20(r)dr < s20(Lε0)(Lε0 − Lε) and

∫ L1

Lε0

s20(r)dr > s20(Lε0)(L1 − Lε0).

Combining the two inequalities we obtain

‖s0‖Cε0\Cε < T2(ε)‖s0‖C1\Cε0 (3.29)

where

T 2
2 (ε) =

Lε0 − Lε
L1 − Lε0

< K2

(
log 1

ε

log 1
ε0

− 1

)
. (3.30)

The constant K2 is independent of lγ as soon as lγ is small compared to ε.
Thus we can choose T2(ε) independent of lγ satisfying (3.29). This proves
(3.20).
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3.3. Applications. Let S be a finite area hyperbolic surface with n punc-
tures. Denote by Pi the standard cusp around the i-th puncture. Recall that
Pi’s have disjoint interiors and that each of them is isometric to the half-
infinite annulus P1 (see 2.1.2). Applying Lemma 3.1 in each Pi separately
we obtain the following corollary which will be useful in our analysis.

Corollary 3.31. For any 0 < ε < ε0 there exists T (ε) <∞, depending only
on ε, such that for any small cuspidal eigenpair (λ, f) of S one has

‖f‖
S
(0,ε)
c

< T (ε)‖f‖
S
(0,1]
c \S(0,ε]

c
. (3.32)

If λ < 1
4−η for some η > 0 then for any 0 < ε < ε0 there exists T1(ε, η) <∞,

depending only on ε and η, such that for any λ-eigenfunction f of S one has

‖f‖
S
(0,ε)
c

< T1(ε, η)‖f‖
S
(0,1]
c \S(0,ε]

c
. (3.33)

Furthermore, T (ε) and T1(ε, η) tends to zero as ε→ 0.

Using this corollary and (3.20) we deduce the following

Corollary 3.34. For any 0 < ε < ε0 there exists a constant L(ε) < ∞,
depending only on ε, such that for any small cuspidal eigenfuction f of S
one has

‖f‖S[ε,∞) < L(ε)‖f‖S[ε0,∞) . (3.35)

Now we give a new proof of the following theorem of D. Hejhal [H].

Theorem 3.36. Consider a sequence (Sm) ∈ Mg,n converging to S∞ ∈
Mg,n. Let (λm, φm) be a normalized small eigenpair of Sm such that λm →
λ∞. If λ∞ < 1

4 then, up to extracting a subsequence, φm converges to a
normalized λ∞-eigenfunction φ∞ of S∞.

D. Hejhal’s proof uses convergence of Green’s functions of Sm to that of
S∞. Our approach is more elementary and uses the above estimates on the
mass distribution of eigenfunctions over thin part of surfaces.

Proof of Theorem 3.36. First we prove that, up to extracting a sub-
sequence, φm converges to a λ∞-eigenfunction φ∞ of S∞. By Theorem 2
(which will be proven in §3) it is enough to prove that there exist ε, δ > 0
such that ‖φm‖S[ε,∞)

m
≥ δ up to extracting a subsequence. We argue by

contradiction. Suppose that for any ε > 0 the sequence ‖φm‖S[ε,∞)
m

→ 0 as

m → ∞. Let η > 0, such that λm < 1
4 − η for all m ≥ 1. By Lemma 3.17

we have

‖φm‖Cε < max{T0(ε, η), T1(ε)}‖φm‖C1\Cε . (3.37)

Therefore from (3.33) and (3.37) we have

‖φm‖S(0,ε)
m

< max{T0(ε, η), T1(ε), T1(ε, η)}‖φm‖S[ε,∞)
m

. (3.38)

Hence if ‖φm‖S[ε,∞)
m

→ 0 as m → ∞ then ‖φm‖ → 0 as m → ∞. This is a

contradiction to the fact that each φm is normalized i.e. ‖φm‖ = 1.
Next we prove that ‖φ∞‖ = 1. By uniform convergence over compacta,

in each cusp and in each pinching collar, the Fourier coefficients of φm will
converge to the corresponding Fourier coefficients of φ∞. Therefore, by
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(3.18), (3.21) and (3.33), φm’s are uniformly integrable: for any δ > 0 there
exist ε > 0 such that for all large values of m

‖φm‖S[ε,∞)
m

> 1− δ. (3.39)

Hence ‖φ∞‖ = 1. This finishes the proof. �

4. Proof of Theorem 2

Let (Sm) be a sequence in Mg,n which converges in Mg,n to S∞. Let
Γm,Γ∞ be such that Sm = H/Γm and S∞ = H/Γ∞. Recall that the conver-
gence Sm → S∞ means that for any fixed positive constant ε1 ≤ ε0 (ε0 is the

Margulis constant) and a choice of base point pm ∈ S[ε1,∞)
m , after conjugating

Γm so that the projection H→ H/Γm maps i to pm, (H/Γm, pm) converges
to a component (H/Γ∞, p∞) of S∞. We begin by fixing some ε < ε0 and

pm ∈ S[ε,∞)
m . In the following we assume that ε1, pm, Γm, p∞ and Γ∞ satisfy

the previous statement.
To simplify notations we shall assume that only one closed geodesic γm

gets pinched as Sm → S∞ ∈ ∂Mg,n. In particular the limit surface S∞
(which may be disconnected) has two new cusps. Denote the standard cusps
of Sm by P1(m), P2(m), ...,Pn(m) and the limits of these in S∞ ∈ ∂Mg,n

by P1(∞),...,Pn(∞) and denote by Pn+1(∞),Pn+2(∞) the new cusps which
arise due to the pinching of γ. The cusps Pi(∞) for 1 ≤ i ≤ n will be called
old cusps.

Recall that we have a sequence of small cuspidal eigenpairs (λm, φm) of
Sm = H/Γm such that the L2-norm of φm is 1 and λm → λ∞ ≤ 1

4 .

Notation 4.1. In what follows dµm will denote the area measure on Sm
for m ∈ N ∪ {∞} and dµH will denote the area measure on H. The lift of
f ∈ L2(Sm) to H under the projection H→ H/Γm, defined as above, will be

denoted by f̃ .

By Green’s formula one has:∫
Sm

|∇φm|2dµm = λm

∫
Sm

|φm|2dµm = λm.

Let K ⊂ H be compact. One can cover K by finitely many geodesic balls of
radius ρ. If ρ is sufficiently small then each of these balls maps injectively

to Sm since Γm → Γ∞. Therefore, since ‖φm‖ = 1 ‖φ̃m|K‖ is bounded
depending only on K. From the mean value formula [F, Corollary 1.3] there
exists a constant Λ(λ∞, ρ) such that for λm close to λ∞,

|φ̃m(q)| ≤ Λ(λ∞, ρ)

∫
N(K, ρ

2
)
|φ̃m|dµH

for each q ∈ K where N(K, r) denotes the closed neighborhood of radius r
of K in H. Next we use the Lp-Schauder estimates [B-J-S, Theorem 4, Sect.

II.5.5] to obtain a uniform bound for ∇φ̃m on N(K, ρ2). This makes (φ̃m|K)
an equicontinuous family. So, by Arzela-Ascoli theorem, up to extracting

a subsequence, (φ̃m) converges to a continuous function φ̃∞ on K. By a
diagonalization argument one may suppose that the sequence works for all

compact subsets of H. Therefore, up to extracting a subsequence, φ̃m → φ̃∞
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uniformly over compacta. By this uniform convergence it is clear that φ̃∞
is a weak solution of the Laplace equation: ∆u + λ∞u = 0. Therefore, by

elliptic regularity, φ̃∞ indeed a smooth and satisfies

∆φ̃∞ + λ∞φ̃∞ = 0.

Also by the convergence φ̃∞ induces a function φ∞ on S∞ that satisfies

∆φ∞ + λ∞φ∞ = 0.

However, φ∞ may not be an eigenfunction since it could be the zero func-
tion. In order to discuss this point, we shall consider two cases according to

whether the L2-norm ‖φm‖S[ε,∞)
m

of the restriction of φm to S
[ε,∞)
m is bounded

below by a positive constant or not.

Case 1: ∃ ε, δ > 0 such that lim sup ‖φm‖S[ε,∞)
m

≥ δ. We may assume that

lim ‖φm‖S[ε,∞)
m

≥ δ. Then by the uniform convergence of φ̃m → φ̃∞ over

compacta, ∫
S
[ε,∞)
∞

φ2∞dµ∞ = lim
mj→∞

∫
S
[ε,∞)
mj

φ2mjdµmj ≥ δ > 0.

Therefore φ∞ is not the zero function and its L2 norm is less than 1. There-
fore it is a λ∞-eigenfunction.

Case 2: For any ε > 0 the sequence ‖φm‖S[ε,∞)
m

→ 0. Then we will prove the

following statements:
(i) S∞ ∈ ∂Mg,n,
(ii) λ∞ = 1

4 and

(iii) ∃ constants Km such that, up to extracting a subsequence, (Kmφ̃m)
converges uniformly to a function which is a linear combination of Eisenstein
series and (possibly) a 1

4 -cuspidal eigenfunction.
(i) Suppose by contradiction that S∞ ∈ Mg,n. Then all the cusps of S∞

are old cusps. Let s(S∞) denote the systole of S∞. Then, for 0 < ε < s(S∞)
2

and for m large enough, we have S
(0,ε)
m ⊂ ∪ni=1Pi(m). Therefore, applying

Corollary 3.31, the assumption ‖φm‖S[ε,∞)
m

→ 0 implies that ‖φm‖ → 0. This

is a contradiction since each φm is normalized. Thus S∞ ∈ ∂Mg,n.
(ii) follows from Theorem 3.36.

(iii) Fix some ε, 0 < ε < ε0. Choose constants Km ≥ 1 such that∫
S
[ε,∞)
m

|Kmφm|2dµm = 1.

Therefore the sequence (Km) must diverge to∞. Using mean value formula
[F, Corollary 1.3], Lp-Schauder estimates [B-J-S] and elliptic regularity, as
earlier, and Corollary 3.34 we obtain that, up to extracting a subsequence,

(K̃mφm) converges, uniformly over compacta, to a C∞ function φ̃∞ that
satisfies

∆φ̃∞ +
1

4
φ̃∞ = 0.
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Moreover, φ̃∞ induces a function φ∞ on S∞ that satisfies

∆φ∞ +
1

4
φ∞ = 0. (4.2)

Using the uniform convergence over compacta we have∫
S
[ε,∞)
∞

φ2∞dµ∞ = lim
m→∞

∫
S
[ε,∞)
m

Kmφ
2
mdµm = 1.

Therefore φ∞ is not the zero function. From Lemma 3.1 and Lemma 3.17
(3.18) we deduce that φ∞ satisfies moderate growth condition [Wo, p. 80]
in each cusp. It is known that for any λ ≥ 1

4 the space of moderate growth
λ-eigenfunctions of S∞ is spanned by Eisenstein series and (possibly) λ-
cuspidal eigenfunctions (see §3 in [Wo]). In particular, φ∞ is a linear com-
bination of Eisenstein series and (possibly) a cuspidal eigenfunction. This
finishes the proof of (iii).�

5. Proof of Theorem 1

We begin by proving Lemma 1 which says that C
1
4
g,n(k) is open in Mg,n.

5.1. Proof of Lemma 1. Empty set is open by convention. Therefore,

we argue by contradiction and assume that there exists a S ∈ C
1
4
g,n(k) such

that every neighborhood of S contains points from Mg,n \ C
1
4
g,n(k). In other

words, there exists a sequence (Sm) ⊆ Mg,n that converges to S and, for
all m, λck(Sm) ≤ 1

4 . For 1 ≤ i ≤ k, let us denote by φim a normalized

λci (Sm)-cuspidal eigenfunction such that {φim}ki=1 is an orthonormal family
in L2(Sm). Since we are considering small eigenvalues, up to extracting a
subsequence, the sequence (λci (Sm)) converges. For simplicity we assume
that, for 1 ≤ i ≤ k, the sequence (λci (Sm)) converges and denote by λi∞ its
limit. Observe that, for 1 ≤ i ≤ k, λi∞ ≤ 1

4 . Now, since S ∈ Mg,n by Theo-

rem 2, up to extracting a subsequence, (φim) converge to λi∞-eigenfunction
φi∞ of S. Moreover, by the result about uniform integrability inside cusps
in Corollary 3.31: ‖φi∞‖ = 1. Hence {φi∞}ki=1 is an orthonormal family in
L2(S) so that the k-th cuspidal eigenvalue λck(S) of S is below 1

4 . This is a

contradiction because by our assumption λck(S) > 1
4 as S ∈ C

1
4
g,n(k).�

Now we give a proof of Proposition 1.7 which says
Proposition 1.7 There exists a neighborhood N (Mg,1∪M0,n+1) ofMg,1∪

M0,n+1 in Mg,n such that for each S ∈ N (Mg,1 ∪M0,n+1): λ
c
2g−1(S) > 1

4
i.e.

N (Mg,1 ∪M0,n+1) ⊂ C
1
4
g,n(2g − 1).

5.2. Proof of Proposition. We argue by contradiction and assume that
there is a sequence Sm ∈Mg,n converging to S∞ ∈Mg,1∪M0,n+1 ⊂ ∂Mg,n

such that λc2g−1(Sm) ≤ 1
4 . For 1 ≤ i ≤ 2g − 1 and for each m we choose

small cuspidal eigenpairs (λim, φ
i
m) of Sm such that

(i) {φim}
2g−1
i=1 is an orthonormal family in L2(Sm),

(ii) λim is the i-th eigenvalue of Sm.
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Theorem 2 provides two possible behaviors of the sequence (φim). However
in our case we have Lemma 2:

Lemma 2 For each i, 1 ≤ i ≤ 2g − 1, up to extracting a subsequence,
the sequence (φim) converges to a λi∞-eigenfunction φi∞ of S∞. The limit

functions φi∞ and φj∞ are orthogonal for i 6= j i.e. S∞ has at least 2g − 1
small eigenvalues. Moreover none of the φi∞ is residual.

5.2.1. Proof of Lemma 2. By uniform convergence of φim to φi∞, we have
‖φi∞‖ ≤ 1. To prove the first two statements of the lemma it is enough to
prove that, for 1 ≤ i ≤ 2g − 1, ‖φi∞‖ = 1 because this will imply that φi∞ is
not the zero function and that (φim) is uniformly integrable over the thick
parts: for any t > 0 there exists ε such that for all m one has,

‖φm‖S[ε,∞)
m

> 1− t.

To prove that, for each 1 ≤ i ≤ 2g− 1, ‖φi∞‖ = 1 we argue by contradiction
and assume that for some 1 ≤ i ≤ 2g − 1, ‖φi∞‖ = 1 − δ. To simplify the
notation, denote the sequence (λim, φ

i
m) by (λm, φm) and the limit (λi∞, φ

i
∞)

by (λ∞, φ∞). By Corollary 3.31 the functions φm are uniformly integrable
over the union of cusps of Sm: for any t > 0 there exists ε > 0 such that for
all m one has:

‖φm‖S(0,ε)
m,c

< t. (5.1)

Since S∞ ∈ Mg,1 ∪ M0,n+1 there is only one closed geodesic, γm ⊂ Sm,
whose length lγm tends to zero. For any l ≤ 1 and for m large enough such

that lγm < l denote by Clm ⊂ Sm the collar around γm bounded by two
equidistant curves of length l. In view of the uniform integrability inside
cusps (5.1), there exists ε0 > 0 such that for any ε ≤ ε0 there exists m(ε)
such that for m ≥ m(ε) we have:

‖φm‖Cεm >
δ

2
. (5.2)

Now we distinguish again two cases depending on whether λ∞ < 1
4 or λ∞ =

1
4 . If λ∞ < 1

4 then we have a contradiction since ‖φ∞‖ = 1 by Theorem

3.36. Hence we may suppose that λ∞ = 1
4 . So, by Theorem 2 either φ∞ is

the zero function or, for instance by [I, Theorem 3.2], φ∞ is cuspidal. Now
recall that by lemma 3.17 we have uniform integrability of [φm]1: for any t
there exists ε such that for all m:

‖[φm]1‖Cεm < t.

Hence by (5.2), there exists ε1 such that for any ε ≤ ε1 the exists m1(ε) such
that for m ≥ m1(ε) one has:

‖[φm]0‖Cεm >
δ

4
(5.3)

In particular, if c(ε,m) = supz∈Cεm |[φm]0| then, since area of Cεm is less than

1, we have for any ε ≤ ε1 and m ≥ m1(ε):

c(ε,m) >
δ

4
. (5.4)

Now we prove that [φm]1 is uniformly small inside Cεm. More precisely,
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Lemma 5.5. Let ε be such that 0 < ε < 1. There exists a constant K <∞,
independent of ε, and m2(ε) ∈ N such that for m ≥ m2(ε) and z ∈ Cεm:

|[φm]1|(z) < K
ε
1
2

1− ε
.

Proof. Consider the expansion of φm inside C1m with respect to the Fermi
coordinates (see 2.1.1):

φm(r, θ) = am0 (r) +
∞∑
j=1

(
amj (r) cos jθ + bmj (r) sin jθ

)
. (5.6)

Here, for each j ≥ 0, (amj , b
m
j ) are the j-th Fourier coefficients of φm inside

C1m and are defined for all |r| ≤ L1,m. Recall that, for any ε ∈ [lγm , 1] we

denote by Lε,m the number cosh−1( ε
lγm

). Recall also that since φm is a

λm-eigenfunction, amj and bmj satisfy (3.16) with 2πl = lγm and λ = λm.
Therefore, for j ≥ 1, one can express:

(1) amj (r) = am,jsm,j(r) + bm,jcm,j(r)

(2) bmj (r) = am,j
′
sm,j(r) + bm,j

′
cm,j(r) (5.7)

where sm,j(r) and cm,j(r) are the two linearly independent solutions of (3.16)
with l = l(γm) and λ = λm.

Recall that sm,j(r)cosh
1
2 (r) and cm,j(r)cosh

1
2 (r) satisfy:

d2u

dr2
=

(
1

4cosh2r
+

j2

l2cosh2r

)
u.

Since, for r ≤ Lε,m, l2cosh2r ≤ 1 by Claim 3.23, for each j ≥ 1, there exists
strictly increasing functions hm,j : [0, L1,m] → R>0 and km,j : [0, L1,m] →
R>0 such that

(i) sm,j(r)
√

cosh(r) = hm,j(r) cosh jr

(ii) cm,j(r)
√

cosh(r) = km,j(r) cosh jr. (5.8)

We denote by Pn+1(∞) and Pn+2(∞) the two new cusps of S∞ that appear
as the limit of C1m as m→∞. Now, let us assume:

supz∈∂Pn+1(∞)∪∂Pn+2(∞)|φ∞|(z) <
t

4
.

Then, by the uniform convergence of φm to φ∞ over compacta, we have a
N ∈ N such that for m ≥ N and z ∈ ∂C1m:

|φm|(z) <
t

4
.

By (5.6) for any j ≥ 1:

|amj |(±L1,m) =
1

π
|
∫ 2π

0
φm(±L1,m, θ) cos jθdθ| ≤ t

2
. (5.9)

Similar calculations for bmj provide: |bmj |(±L1,m) ≤ t
2 . Recall that sm,j is

odd and cm,j is even. So by (5.2.1) and (5.2.1):

(i) amj (L1,m) + amj (−L1,m) = 2bm,jkj(L1,m)
cosh jL1,m√

coshL1,m
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(ii) amj (L1,m)− amj (−L1,m) = 2am,jhj(L1,m)
cosh jL1,m√

coshL1,m

. (5.10)

Therefore, by (5.9) and (5.2.1):

(i) |bm,j |kj(L1,m)
cosh jL1,m√

coshL1,m

<
t

2

(ii) |am,j |hj(L1,m)
cosh jL1,m√

coshL1,m

<
t

2
. (5.11)

Therefore, for any r ≤ L1,m:

|amj |(r) = |am,jsm,j(r) + bm,jcm,j(r)| < |am,j |sm,j(r) + |bm,j |cm,j(r).
The last term of the inequality is

|am,j |hm,j(r)
cosh jr√

cosh r
+ |bm,j |km,j(r)

cosh jr√
cosh r

< t
cosh jr√

cosh r

√
coshL1,m

cosh jL1,m

since hm,j and km,j are strictly increasing functions (by (5.2.1)). Similarly,

|bmj |(r) < t
cosh jr√

cosh r

√
coshL1,m

cosh jL1,m
.

Hence

|[φm]1|(r, θ) < 2t
∞∑
j=1

cosh jr√
cosh r

√
coshL1,m

cosh jL1,m
. (5.12)

Since, for j ≥ 1, the function cosh jr√
cosh r

is strictly increasing, for any r ≤ Lε,m :

∞∑
j=1

cosh jr√
cosh r

√
coshL1,m

cosh jL1,m
<

∞∑
j=1

cosh jLε,m√
coshLε,m

√
coshL1,m

cosh jL1,m
(5.13)

Now fix an ε such that 0 < ε < 1. Observe that Lε,m = log( ε
lγm

+√
( ε
lγm

)2 − 1). So, for m large such that lγm is small compared to ε:

∞∑
j=1

cosh jLε,m√
coshLε,m

√
coshL1,m

cosh jL1,m
< K

′
∞∑
j=1

εjε−
1
2 = K

′ ε
1
2

1− ε
(5.14)

where the constant K
′

can be chosen independently of ε as soon as m is
larger than some number m2(ε) ∈ N. Therefore, by (5.12) and (5.14), for
m ≥ m2(ε) and (r, θ) ∈ Cεm

|[φm]1|(r, θ) < 2tK
′ ε

1
2

1− ε
. (5.15)

This proves the lemma.�

Now fix ε < ε1 (see (5.3)) such thatK ε
1
2

1−ε <
δ
4 and choosem ≥ max{m1(ε),m2(ε)}.

Then by Lemma 5.5 and (5.4): for each z ∈ Cεm
c(ε,m) > |[φm]1|(z). (5.16)

So the parallel curve αm with distance r0 (≤ Lε,m) from γm such that c =
|[φm]0|(r0) has the property that φm has constant sign on it. In other words,
the nodal set Z(φm) does not intersect this curve. This is a contradiction
to the next lemma.
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Lemma 5.17. Let S be a noncompact, finite area hyperbolic surface of type
(g, n). Let γ be a simple closed geodesic that separates S into two connected
components T1 and T2 such that T1 is topologically a sphere with n+1 punc-
tures and T2 is topologically a genus g surface with one puncture. Let f be
a small cuspidal eigenfunction of S. Then the zero set Z(f) of f intersects
every curve homotopic to γ.

cusps

Proof. Recall that Z(f) is a locally finite graph [Ch]. Let us assume that
Z(f) does not intersect some curve τ homotopic to γ. We have S \ τ = T1∪
T2 and all the punctures of S are contained in T1. Consider the components
of T1\Z(f). Recall that since f is cuspidal Z(f) contains all the punctures of
S and therefore these components give rise to a cell decomposition of a once
punctured sphere. The Euler characteristic of the component F containing
τ as a puncture is either negative or zero (since γ and each component of
Z(f) are essential; see [O]). Each component of T1 \ Z(f) other than F
(at least one such exists since g changes sign in T1) is a nodal domain of f
and hence has negative Euler characteristic [O]. Also Z(f) being a graph
has non-positive Euler characteristic. Let C+ (resp. C−) be the union of
the nodal domains contained in T1 which are different from F and where
f is positive (resp. negative). Denote by χ(X) the Euler characteristic of
the topological space X. Since the Euler characteristic of a once punctured
sphere is 1, by the Euler-Poincaré formula one has:

1 = χ(F) + χ(C+) + χ(C−) + χ(Z(f)).

This is a contradiction because the right hand side of the equality is strictly
negative.�

Now we prove that φ∞ is not a residual eigenfunction. It is clear from the
uniform convergence that φ∞ is cuspidal at the old cusps. If φ∞ is a residual
eigenfunction then the only possibility is that φ∞ is not cupsidal at one of
the two new cusps. Let us assume that φ∞ is residual in Pn+1. Then, for
sufficiently large t, φ∞ has constant sign in Ptn+1. Therefore, by the uniform
convergence φm|S[ε,∞)

m
→ φ∞|S[ε,∞)

∞
it follows that, for all m large, φm has
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constant sign on a component of ∂C
1
t
m. Since this component is homotopic

to γm this leads to a contradiction to Lemma 5.17 as well. This finishes the
proof of Lemma 2.�

5.2.2. Continuation of Proof of Proposition. Let us denote the two compo-
nents of S∞ by N1 and N2 such that N1 ∈Mg,1 and N2 ∈M0,n+1. Lemma
2 says that S∞ must have at least 2g − 1 many small cuspidal eigenvalues.
By [O-R, Théoréme 0.2] the number of non-zero small eigenvalues of N1 is
at most 2g − 2. In particular, the number of small cuspidal eigenvalues of
N1 is at most 2g − 2. Thus for some i, 1 ≤ i ≤ 2g − 1, φi∞ is not the
zero function when restricted to N2 i.e. φi∞ is a cuspidal eigenfunction of
N2. This is a contradiction because N2 does not have any small cuspidal
eigenfunction by [H] or [O]. �

Remark 5.18. The arguments in the proof of Proposition are applicable
to more general settings. In particular, let (Sm) be a sequence inMg,n that
converges to S∞ ∈ ∂Mg,n. Let (λm, φm) be a normalized small eigenpair of
Sm. Let λm → λ∞ as m tends to infinity. The arguments show the follow-
ing: If lim infm→∞‖φm‖ < 1 then there exists a curve αm, homotopic to a
geodesic of length tending to zero, on which, up to extracting a subsequence,
φm has constant sign.
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