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CHIRAL DE RHAM COMPLEX OVER LOCALLY COMPLETE

INTERSECTIONS

FYODOR MALIKOV AND VADIM SCHECHTMAN

To Borya Feigin on his 60th birthday

Abstract. Given a locally complete intersection X →֒ Y we define a version of a derived
chiral De Rham complex, thereby “chiralizing” a result by Illusie and Bhatt. A similar
construction attaches to a graded ring a dg vertex algebra, which we prove to be Morita
equivalent to a dg algebra of differential operators. For example, the dg vertex algebra
associated to a fat point, which also arises in the Landau-Ginzburg model, is shown to be
derived rational.

1. introduction

Grothendieck has attached an algebra of differential operators, DA, to any commutative
ring A. However, if SpecA is not a smooth variety then this algebra may be pathological,
and the usual approach is to abandon the algebra and define the category of D-modules by
embedding SpecA into a smooth algebraic variety Y and letting D −mod be the category of
DY -modules supported on SpecA. (All algebras will be supposed to be of finite type over C.)

The definition of an algebra of chiral differential operators [MSV, GMS] does not even hint
at a method to construct it on a singular variety. In this paper we suggest a homotopical
version of such construction which uses the ideas of derived algebraic geometry.

Let P be a finite polynomial differential graded (dg) algebra and P → A a dga resolution.
(All our dg algebras are nonpositively graded with differential of degree +1; A is placed in
degree 0 and has zero differential. As is well known, the existence of a finite dga resolution is
equivalent to A being a complete intersectiion.) We verify that DP is a dg algebra determined
uniquely up to homotopy, and so we denote by LDA its homotopy class. D.Gaitsgory has
explained to us that the derived category of dg DP -modules is equivalent to the derived
category of D-modules over SpecA defined as above.

It is perfectly clear what the dg algebra of chiral differential operators, Dch
P , is, and our

proposal is to consider the assignment A 7→ Dch
P , or its De Rham version A 7→ Dch

Ω•
P
. The

merit of this proposal depends on how natural such assignments are, and we admit that we
do not know much about this. Let us now describe the results.

The fundamental problem is that there is no such thing as a free vertex algebra, and we
have to rely on stopgap measures. If we fix a locally complete intersection X →֒ Y , where
Y is a smooth algebraic variety, then the De Rham version of our proposal gives LΩch

X →֒Y , a
sheaf on X with values in an appropriate homotopy category of vertex algebras.

The construction manifestly depends on the embedding, but part of it does not. The sheaf
LΩch

X →֒Y is conformally graded, and its 0th component, LΩch
X →֒Y [0], is essentially the derived De

Rham complex, LΩ•
X , of Illusie [Ill2]. There arises a natural projection LΩch

X →֒Y → LΩch
X →֒Y [0],

which gives an isomorphism H
•(X,LΩch

X →֒Y )
∼
−→ H

•(X,LΩch
X →֒Y [0]).

1

http://arxiv.org/abs/1406.0284v1


2 FYODOR MALIKOV AND VADIM SCHECHTMAN

On the other hand, Grothendieck’s classic result on the algebraic description of singular co-
homology has been generalized by Illusie in the case of locally complete intersections and Bhatt
[Bh] in general as follows: H

•(X,LΩ•
X)

∼
−→ H•(X,C). Combined the last two isomorphisms

give

H
•(X,LΩch

X )
∼
−→ H•(X,C).

This can be thought of as a chiralization of the Bhatt-Illusie theorem. Of course, this isomor-
phism is also a generalization of an analogous result for the chiral De Rham complex Ωch

X over
a smooth X proved in [MSV].

The homotopy content of the assignment A 7→ Dch
P is mirkier, although we do prove that

given two polynomial dga resolutions P → A ← Q the dg vertex algebras Dch
P and Dch

Q

are quasiisomorphic provided A,P,Q all carry an “inner” grading. More interesting insight
into the situation is provided by a representation-theoretic point of view. We show that the
categories of dg modules over DP and Dch

P are equivalent, which via the Gaitsgory’s result
mentioned above implies that the derived category of D-modules over SpecA is equivalent to
the derived category of dg modules over Dch

P . This result is of course independent of the choice
of P .

A nice illustration is provided by A = C[x]/(xn). In this case P is naturally chosen to be
the Koszul resolution K(C[x], xn), and the dg algebra DK(C[x],xn) is quasiisomorphic to the
matrix algebra gln(C). It follows that in this case the derived category of dg modules over
Dch

K(C[x],xn) is equivalent to the derived category of finite dimensional vector spaces. One may

want to think of this result as either a version of Morita equivalence or an “odd Stone-von
Neumann theorem.”

The Milnor algebra C[x]/(xn) was for us a starting point. The dg vertex algebra Dch
K(C[x],xn)

is intimately related to the Landau-Ginzburg model [Witt], and its cohomology was computed
in a beautiful paper by B.Feigin and A.Semikhatov [FS]. A little thought will convince the
reader that the above description of the derived category of dg modules can be given the
following form: the Feigin-Semikhatov vertex algebra is derived rational. In fact, whenever
SpecA is a union of finitely many fat points, the corresponding vertex algebra is derived
rational.

Another motivational example was provided by the Berkovits model, see e.g. [BN]. It was
explained by N.Nekrasov [N] that the Berkovits model requires an algebra of chiral differential
operators on the space of pure spinors, which is a cone singular at its vertex. This space,
however, is not a complete intersection, and dealing with infinite resolutions appears to be a
major challenge in the present context.

Acknowledgments. The authors have greatly benefited from conversations with A.Beilinson,
D.Gaitsgory, A.Gerasimov, V.Gorbounov, V.Hinich, M.Kapranov, M.Kontsevich, N.Nekrasov.
Parts of this work were done when the authors were visiting MPIM in Bonn and (the first
author) IHES. We are grateful to these institutions for excellent working conditions. F.M. was
partially supported by an NSF grant.

2. derived chiral de rham complex

2.1. Vertex algebras. We shall merely set up the notation referring the reader to sources
such as [FBZ, K, BD] for the introduction to the subject.
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2.1.1. A vertex algebra is a vector super-space V carrying a countable family of multiplication

(n) : V × V → V, a⊗ b 7→ a(n)b, n ∈ Z,

and a derivation
T : V → V s.t. T (a(n)b) = (Ta)(n)b+ a(n)(Tb).

One way to state the axioms that these multiplications satisfy is to form fields

V ∋ a 7→ a(z) =
∑

n∈Z

a(n)z
−n−1

and explain in what sense

a(z)b(w) = b(w)a(z) =
∑

n≫−∞

(a(n)b)(w)

(z − w)−n−1
.

A conformal grading on V is a direct sum decomposition

V =

∞
⊕

n=0

V [n] s.t. V [n](i)V [m] ⊂ V [n+m− i− 1],

and a ∈ V [n] is said to have conformal weight n.

An element of EndC(V ) is called a derivation if it is a derivation of each of the products.
For example, for each a ∈ V , a(0) (regarded as a map v 7→ a(0)v is a derivation. The space of
all derivations, Der(V ), is a Lie (super)algebra.

An element δ ∈ Der(V ) is called a differential if its square is 0. If, in additiion, V is a graded
vector space (typically this grading is different from the conformal one) s.t. δ has degree 1,
then the pair (V, δ) is called a differential graded vertex algebra.

2.1.2. Let X be a smooth affine variety over C and denote by A = C[X] its coordinate ring.
A coordinate system, ~x, is is a collection of elements x1, ..., xN ∈ A, ∂x1

, ..., ∂xN
∈ Der(A) s.t.

∂xi
(xj) = δij and the set {∂1, ∂2, ...} is a basis (over A) of Der(A). One has: {dx1, ..., dxN} is

a basis of ΩA and [∂i, ∂j ] = 0.

If exists, a coordinate system defines a vertex algebra structure on C[J∞TX], the coordinate
ring of the space of jets in the cotangent bundle T ∗X. Namely, ~x gives an identification

C[J∞T ∗X]
∼
→ A[x

(n)
i , ∂

(m)
xj ; 1 ≤ i, j ≤ dimA,m, n ≥ 0]. The latter space is an algebra with

derivation ∇ s.t. ∇(a(n)) = a(n+1) for a either xi or ∂xj
, and it carries a vertex algebra

structure determined by the conditions

(∂xi
)(0)f = ∂xi

(f), (∂xi
)(m)f = 0 if m > 0,∀f ∈ A, (2.1.1)

(xi)(−n−1)P = x
(n)
i · P, (∂xj

)(−n−1)P = ∂(n)
xj
· P if n ≥ 0, ∀P ∈ C[J∞TX], (2.1.2)

T = ∇. (2.1.3)

Here and elsewhere a is identified with a(0) thus encoding the canonical embeddings C[X] →֒
C[T ∗X] →֒ C[J∞T ∗X].

This vertex algebra is denoted Dch
A,~x (or Dch

X,~x depending on the context) and called an

algebra of chiral differential operators over A (or X) for the reason that (2.1.1) resemble (and
extend) the familiar [∂xi

, f ] = ∂xi
(f).

This construction has superalgebra extensions (Dch
A is of course assumed purely even),

the most important of which occurs when A is replaced with the De Rham algebra Ω•
A; or,

equivalently, X is replaced with the (total space of the) supervector bundle ΠTX, where ΠTX
is TX with fibers of the projection TX → X declared odd. In the presence of coordinates the
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passage from X to ΠTX consists in adjoining Grassman variables φi, 1 ≤ i ≤ dimA, and the
jet-algebra becomes

C[J∞T ∗(ΠTX)]
∼
→ C[J∞TX]⊗ C[φ

(n)
i , ∂

(n)
φi

; 1 ≤ i ≤ dimA,n ≥ 0].

The vertex algebra structure on C[J∞T ∗(ΠTX)] is defined by an obvious extension of
(2.1.1,2.1.2,2.1.3), where we allow (1) f to be an element of C[ΠTX], and (2) to replace xi
(∂xi

resp.) with φi (∂φi
resp.) The result is denoted Dch

Ω•
A,~xand is an example of a superalgebra

of chiral differential operators.

Both Dch
A,~x and Dch

Ω•
A,~x are conformally graded s.t. Dch

A,~x[0] = A and Dch
Ω•

A,~x[0] = Ω•
A, and this

condition uniquely determines the grading.

2.1.3. The inquisitive reader must have noticed that not only Dch
Ω•

A,~x depends on a choice of a

coordinate system, it is not related to the tangent bundle (in ΠTX) in any serious way, since
a trivialization of any trivial vector bundle E → X will produce in the same way the same
vertex algebra. However, further pursuing the De Rham interpretation is fruitful.

To begin with, just as Ω•
A is a differential graded algebra with differential dDR =

∑

i φi∂xi
,

Dch
Ω•

A
is a differential graded vertex algebra with differential dchDR =

∑

i((φi)(−1)∂xi
)(0). (The

grading on the former is defined by assigning φ 7→ 1, one on the latter by assigning φ 7→
1, ∂φ 7→ −1, which gives dDR and dchDR degree 1.)

The crux of the matter is that the assignment A 7→ (Dch
Ω•

A,~x, d
ch
DR) is functorial w.r.t. isomor-

phisms; let us explain this. Any isomorphism f : A → B defines an isomorphism df : Ω•
A →

Ω•
B, hence an isomorphism of the corresponding jet-spaces J∞T ∗(ΠTXB) → J∞T ∗(ΠTXA),

hence an isomorphism df∞ : C[J∞T ∗(ΠTXA)]→ C[J∞T ∗(ΠTXB)]. In the presence of coordi-
nates, this tautological isomorphism is defined by some explicit and classical formulas; e.g., the
induced map of vector fields df∞ : Der(ΩA)→ Der(ΩB) is defined by df∞(ξ)(b) = df(ξdf−1(b))

and in terms of ~x ⊂ A, ~̃x ⊂ B becomes

df∞(∂xi
) = f(∂xi

f−1(x̃α))∂x̃α + f(∂xi
∂xj

(f−1x̃α))∂x̃β
(fxj)φ̃β∂φ̃α

. (2.1.4)

Although Dch
Ω•

A,~x is identified with C[J∞T ∗(ΠTXA)], the induced map df∞ : Dch
Ω•

A,~x
→ Dch

Ω•
B,~̃x

is

not a vertex algebra morphism. It can, however, be corrected to become one. One has [MSV]

2.1.4. Lemma. Let f : A → B be an algebra isomorphism. There is a unique differential
graded vertex algebra isomorphism df ch

~x,~̃x
: Dch

Ω•
A,~x
→ Dch

Ω•
B,~̃x

s.t. (cf. (2.1.4) )

A ∋ a 7→ f(a)

φi 7→ ∂x̃α(fxi)φα

∂φi
7→ f(∂xα(f

−1x̃α))∂φ̃α

∂xi
7→ f(∂xi

f−1(x̃α))∂x̃α + f(∂xi
∂xj

(f−1x̃α))∂x̃β
(fxj)φ̃β∂φ̃α

.

These isomorphisms satisfy the associativity condition: for any isomorphisms f : A → B,
g : B → C and bases ~x ⊂ A, ~y ⊂ B, ~z ⊂ C

d(g ◦ f)ch~x,~z = dgch~y,~z ◦ df
ch
~x,~y.

Furthermore, each df ch
~x,~̃x

preserves the conformal grading mentioned at the end of sect. 2.1.2.
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Attached to A is a collection of vertex algebras {Dch
Ω•

A,~x, ~x ⊂ A}, each pair among which

is connected by an isomorphism d(Id)ch~x,~y : Dch
Ω•

A,~x → Dch
Ω•

A,~y. These isomorphisms satisfy

d(Id)ch~x,~z = d(Id)ch~y,~z ◦ d(Id)
ch
~x,~y. This means that there is a well-defined vertex algebra, Dch

Ω•
A
,

attached to A. Furthermore, the same associativity property implies that a collection of
isomorphisms df ch

~x,~y : Dch
Ω•

A,~x → Dch
Ω•

B ,~y gives a well-defined isomorphism df ch : Dch
Ω•

A
→ Dch

Ω•
B
.

This proves

2.1.5. Corollary. The assignments A 7→ Dch
Ω•

A
, f 7→ df ch define a functor from the category

of C-algebras that admit a coordinate system and isomorphisms to the category of dg vertex
algebras.

In particular, there is a natural group homomorphism

Aut(A)→ Aut(Dch
Ω•

A
), f 7→ df ch.

This result has a simpler infinitesimal analogue (recorded e.g. in [MS]):

2.1.6. Lemma. The assignment

fi∂xi
7→ ((∂xi

)(−1)fi − (∂φi
)(−1)φα∂xα(fi))(0)

defines a natural dg Lie algebra morphism

Der(A)→ Der(Dch
Ω•

A
).

2.1.7. Let A be an algebra that admits a coordinate system and S ⊂ A be multiplicative.
Since all the maps involved have been defined using various differential operators, one obtains
a vertex dg algebra structure on the localization (Dch

Ω•
A
)S , which we prefer to denote by Dch

Ω•
AS

,

along with a vertex dg algebra morphism Dch
Ω•

A
→ Dch

Ω•
AS

. Corollary 2.1.5 now implies, by

glueing, that over each smooth algebraic variety X there is a sheaf of vertex differential
graded algebras Dch

X , and this sheaf is natural in that for any isomorphism f : X → Y there is

a natural isomorphism Dch
X → f−1Dch

Y . This particular algebra of chiral differential operators

will be denoted by Ωch
X or Ωch

A if X = Spec(A).

2.2. A derived version.

2.2.1. Let R be a C-algebra. A dg R-algebra will mean one with grading bounded from the
right and differential ∂ of degree +1.

Given a dg algebra morphism f : A → B, define Derf (A,B) to be the space of R-linear

maps φ : A→ B that satisfy the Leibniz condition: φ(xy) = φ(x)f(y) + (−1)φ̃x̃f(x)φ(y).

Two dg algebra homomorphisms f, g : A→ B are homotopic if there is a polynomial family
of dg algebra morphisms

ht : A→ B s.t. ht=0 = f, ht=1 = g,

and a polynomial family of degree -1 R-morphisms

αt : A→ B s.t. αt=t0 ∈ Derht=t0
(A,B), [∂, αt=t0 ] =

d

dt
|t=t0ht ∀t0 ∈ C.
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This concept is what is known in the closed model category theory as the right homotopy
with B⊗RΩC chosen as a path object. As defined, homotopy is not necessarily an equivalence
relation, but it is if the algebras A and B are semi-free 1 (or, more generally, cofibrant.)

2.2.2. Let R be a coordinate ring of a smooth affine variety over C, J ⊂ R a regular ideal, and
A = R/J . A choice of a regular generating system {f1, ..., fr} ⊂ J defines a Koszul resolution,
i.e., a dg algebra (R[ξ1, ..., ξr ], ∂), where R is declared even of degree 0, ξ’s odd of degree -1,
∂ = fi∂ξi and a quasiisomorphism R[ξ1, ..., ξr ] → A defined to be the quotienting out by the

ideal generated by J and {ξ1, ..., ξr}. Denote this dg algebra by K(R, ~f).

Another choice of generators, {g1, ..., gr}, defines another Koszul resolution, K(R,~g). There
are r× r matrices F and G with coefficients in R s.t. fi = Giαgα, gi = Fiαfα. This gives 2 dg
R-algebra isomorphisms

G̃ : K(R, ~f)→ K(R,~g), ξi 7→ Giαηα; F̃ : K(R,~g)→ K(R, ~f), ηi 7→ Fiαξα. (2.2.1)

The matrices F and G are not unique (but they are modulo J , since J/J2 is a free A-module),

and so the compositions F̃ ◦G̃, G̃◦F̃ do not have to be an identity, but they are up to homotopy.

This follows from the closed model category theory on the grounds that both K(R, ~f) → A
and K(R,~g) → A are cofibrant resolutions in the category of dg R-algebras. Therefore, the

assignment A 7→ K(R, ~f) is a functor from the category of R-algebras and isomorphisms to
the homotopy category of dg R-algebras.

2.2.3. We would like to “chiralize” the considerations of sect. 2.2.2 in order to attach a
dg vertex algebra to the algebra A. Consider a Koszul resolution K(R, ~f) → A. All the
considerations that led in sect. 2.1.7 to the chiral De Rham complex Ωch

R go through unchanged
in the case of a regular supercommutative C-algebra, such as R[ξ1, ..., ξr]. This amounts to
adjoining to Ωch

R 4 groups of variables: ξi, ∂ξi , all odd, and ξ∗i , ∂ξ∗i , all even, ξ
∗
i having the

meaning of dDRξi, and stipulating the obvious versions of the relations from sect. 2.1.2. For
the reasons that will become apparent later, it is convenient to complete this vertex algebra
by allowing power series in ξ∗i , 1 ≤ i ≤ r: it was one of observations made in [MSV] that the
vertex algebra multiplications extend to such completions by continuity.

The result is a not simply a dg but a bi-differential bi-graded vertex algebra Ωch
K(R,~f)

, since

in addition to dchDR we now have ∂ch defined to be

∂ch = (fi∂ξi − (dDRfi)∂ξ∗i )(0), where dDRf = φi∂xi
(f),

which is a natural extension of the Koszul differential ∂ = f∂ξi , and one readily verifies that

[dchDR, ∂
ch] = 0. The corresponding bi-grading where the degrees of ∂ch and dchDR are (−1, 0)

and (0, 1) resp. is defined by assigning degree (−1, 0) to ξi’s, (0, 1) to φi’s, (−1, 1) to ξ∗i ’s,
(0, 0) to elements of R, and finally, minus that to the corresponding vector fields ∂ξi , etc.

Lemma 2.1.4 carries over to the present situation and implies that isomorphisms (2.2.1) lift
to isomorphisms if bi-differential bi-graded vertex algebras

Gch : Ωch
K(R,~f)

−→
←− Ωch

K(R,~g) : F
ch. (2.2.2)

Neither F ch ◦ Gch nor Gch ◦ F ch have to be the identity, but they are homotopic to identity.
Let us explain this.

1Recall that a dga algebra is called semi-free if it is a polynomial ring and its set of variables carries an
exhaustive filtration X0 = ∅ ⊂ X1 ⊂ X2 ⊂ · · · s.t. ∂(In+1) ⊂ C[In].
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2.2.4. The discussion in sect. 2.2.1 is easily adjusted to the vertex algebra case. Given a
dg vertex algebra morphism f : A → B, define Derf (A,B) to be the space of C-linear maps
φ : A → B that satisfy the Leibniz condition for each of the multiplications: φ(x(n)y) =

φ(x)(n)f(y) + (−1)φ̃x̃f(x)(n)φ(y), n ∈ Z.

Two dg vertex algebra homomorphisms f, g : A→ B are homotopic if there is a polynomial
family of dg vertex algebra morphisms

ht : A→ B s.t. ht=0 = f, ht=1 = g,

and a polynomial family of degree -1 morphisms

αt : A→ B s.t. αt=t0 ∈ Derht=t0
(A,B), [∂, αt=t0 ] =

d

dt
|t=t0ht ∀t0 ∈ C.

Creating a version of closed model category theory for vertex algebras is problematic because
of the lack of free vertex algebras, and the proposed definition may be of limited use, but in
the specific situation of sect. 2.2.3 there is a canonical lift of a homotopy for polynomial rings
to that for the corresponding vertex algebra as follows.

The set-up is apparently this: a dg algebra K(R, ~f), a dg vertex algebra Ωch
K(R,~f)

with

differential ∂ch, an isomorphism g : K(R, ~f)→ K(R, ~f) and a homotopy (ht, αt) of g and Id.
We have a lift of g to gch ∈ Aut(Ωch

K(R,~f)
), and we want to find a homotopy of gch and Id.

Since, by definition, αt=t0 ∈ Derht=t0
(K(R, ~f)), the composition h−1

t=t0◦αt=t0 ∈ Der(K(R, ~f)).

Lemma 2.1.6 has an obvious extension in the case where A is a supercommutative ring (some
signs must be changed) and implies that there are lifts of ht=t0 to hcht=t0 ∈ Aut(Ωch

K(R,~f)
) and

of h−1
t=t0 ◦ αt=t0 ∈ Der(K(R, ~f)) to (h−1

t=t0 ◦ αt=t0)
ch ∈ Der(Ωch

K(R,~f)
). Lemma 2.1.6 applied one

more time gives: the pair (hcht , αch
t ) with αch

t=t0 defined to be hcht=t0 ◦ (h
−1
t=t0 ◦ αt=t0)

ch defines a

homotopy of gch, Id ∈ Aut(Ωch
K(R,~f)

).

Notice that (1) by construction these homotopies of “classical origin” indeed define an
equivalence relation, and (2) the constructed isomorphisms preserve the 2 differentials (∂ch

and dchDR) and the 2 gradings.

To summarize:

2.2.5. Lemma. Under the assumptions of sect. 2.2.2, the bi-differential bi-graded vertex algebra
Ωch
K(R,~f)

is determined uniquely up to homotopy.

We shall denote this vertex algebra by LΩch
R7→A and call it the derived chiral De Rham

complex over A relative to the projection R→ A.

2.2.6. Lemma 2.2.5 implies, by gluing, that if X is a smooth algebraic variety and Y →֒ X is
a locally complete intersection, then Y carries a sheaf with values in the homotopy category of
bi-differential bi-graded vertex algebras to be denoted LΩch

Y →֒X and called the derived chiral De
Rham complex of Y relative to Y →֒ X. Indeed, each point in Y has an affine neighborhood U
that is a complete intersection. For each affine V ⊂ X s.t. V ∩Y = U consider LΩch

OX(V )→OY (U).

It follows from sect. 2.1.7 that the family {LΩch
OX(V )→OY (U); V s.t. V ∩Y = U} is an inductive

system. The sheaf LΩch
Y →֒X is a unique sheaf s.t. for each such U

LΩch
Y →֒X(U) = lim

V :
−→
V ∩Y=U

LΩch
OX(V )→OY (U).
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In addition to being bi-graded (as in “bi-graded bi-differential”), LΩch
Y →֒X is conformally

graded:

LΩch
Y →֒X =

+∞
⊕

n=0

LΩch
Y →֒X [n],

as all the manipulations have preserved the conformal grading, cf. Lemma 2.1.4. Notice that
each differential has conformal weight 0, and so each component LΩch

Y →֒X [n] is a bicomplex.

Now consider LΩch
Y →֒X as a total complex. There is an obvious projection

LΩch
Y →֒X → LΩch

Y →֒X [0],

and one observes that LΩch
Y →֒X [0] is essentially LΩ•

Y , the derived De Rham complex of Illusie

[Ill2]2. At least there is a morphism

LΩ•
Y → LΩch

Y →֒X [0],

which is easily seen to be a quasiisomorphism. A passage to hypercohomology gives a mor-
phism

H(Y,LΩch
Y →֒X)→ H(Y,LΩ•

Y ).

On the other hand, Illusie [Ill2] in the case of a locally complete intersection and Bhatt [Bh]
in general has proved an isomorphism

H(Y,LΩ•
Y )

∼
−→ H(Y,C),

thus generalzing Grothendieck’s algebraic description of singular cohomology.

2.2.7. Theorem. The composite map

H(Y,LΩch
Y →֒X)→ H(Y,LΩ•

Y )
∼
−→ H(Y,C)

is an isomorphism.

Proof. It suffices to show that LΩch
Y →֒X → LΩch

Y →֒X [0] is a quasiisomorphism. The question

is local, and we will use local coordinates to show that the restriction of d = dchDR + ∂ch to
each nonzero conformal weight component is homotopic to 0. We introduce, as in [MSV], the
N = 2 superconformal conformal algebra generators

L = Txi∂xi
+ Tφi∂φi

+ Tξi∂ξi + Tξ∗i ∂ξ∗i

and

G = Txi∂φi
+ Tξi∂ξ∗i

and compute (using the Wick theorem) to the effect that

[G(1), d
ch
DR] = L(1),

[G(1), ∂
ch] = 0,

and so
[G(1), d] = L(1).

The first of these is familiar and was used in [MSV] (without ξi and ξ∗i ) to prove a similar
statement in the smooth case (i.e. without ξi, ξ

∗
i , and ∂ch). As to the 2nd, one has

[G(1), ∂
ch] = ((fi∂ξi − (dDRfi)∂ξ∗i )(0)(Txi∂φi

+ Tξi∂ξ∗i ))(1) = (Tfi∂ξ∗i − Tfi∂ξ∗i )(1) = 0.

2 It is true that Illusie works with simplicial rather than dg commutative algebras, but these categories are
related by a Quillen equivalence (N,N∗), see [Q], Remark at the bottom of p.223 (also [SchSh] p.289). In
characteristic 0 this gives an equivalence of both the approaches. We leave the details out.
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Finally, observing that L(1) is the operator that defines conformal grading, we deduce from

the last equation that G(1)/n is a homotopy of d and 0 when restricted to LΩch
Y →֒X [n], n 6= 0.

3. derived algebras of chiral and ordinary differential operators: morita

equivalence

3.1. Derived algebras of differential operators. Let A be a finitely generated commu-
tative C-algebra, which we will regard as a differential graded algebra with differential 0 and
placed in (cohomological) degree 0. Assume further that there exists a dga resolution P → A
s.t. P is a finitely generated polynomial dga with generators placed in nonpositive degrees and
differential ∂ ⊂ Der(P ). Now form the dg algebra of differential operators DP with differential
[∂, .] and grading defined by deg∂x = −degx for each generator x.

3.1.1. Lemma. The cohomology of DP satisfy:

H i
∂(DP ) =

{

0 if i < 0,
DA if i = 0.

Let x1, x2, ... be generators of degree 0 and ξ1, ξ2, ... generators of negative degree s.t. P =
C[x]⊗C[ξ]. It is easy to see that (DP , [∂, .]) has a structure of a bicomplex s.t. ξi 7→ (0,−1),
∂ξi 7→ (1, 0). The vertical differential creates a bunch of Koszul complexes, one for each
monomial ∂ξi1∂ξi2 · · · . Therefore the spectral sequence degenerates at the term that has the
form:

0→ A⊗C[x]DC[x] → A⊗C[x]DC[x][∂ξ1 , ∂ξ2 , . . .]
(1) → A⊗C[x]DC[x][∂ξ1 , ∂ξ2 , . . .]

(2) → · · · (3.1.1)

with differential [∂, .]; here A⊗C[x]DC[x][∂ξ1 , ∂ξ2 , . . .]
(n) means the space of polynomials in ∂ξ’s

of (cohomological) degree n with coefficients in A ⊗C[x] DC[x]. We leave it for the reader to
convince himself that the 0th cohomology of this complex is DA essentially by definition. �

It is natural therefore to think of DP as a resolution and thus a reasonable replacement of
a potentially pathological DA. Of course, DP is determined not so much by A as by P , but
one has:

3.1.2. Lemma. The assignment A 7→ DP defines an endofunctor on the homotopy category
of commutative algebras and isomorphisms.

Proof. V.Hinich ([Hin] 8.5.3) proves that A 7→ Der(P ) is a functor from the homotopy
category of commutative algebras and isomorphisms to one of Lie algebras and isomorphisms;
hence for any other resolution Q → A there is a natural isomorphism (in the homotopy
category) Der(P )→ Der(Q). The algebras of differential operators carry a canonical filtration
s.t. the graded object is a symmetric algebra generated by derivations. It suffices to prove
that the arising morphism

S•
PDer(P )→ S•

QDer(Q)

is an isomorphism. Since Der(P ) and Der(Q) are semi-free, their respective tensor powers
(over P and Q resp.) are isomorphic, [Hin] 3.3.2. In characteristic 0 this implies the desired
isomorphism of symmetric powers. �

3.2. A chiral version. UnlikeDA, which is defined for any commutative ringA (Grothendieck),
its vertex algebra counterpart, Dch

A,~x, introduced in sect. 2.1.2 in the presence of a coordinate

system, has no obvious definition unless Spec(A) is smooth. An obvious suggestion then is to
“chiralize” the cohomological approach of sect. 3.1. Given P → A as above, we consider Dch

P ,
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which is allowed as P is a polynomial ring, and we drop the superscript ~x from the notation,
as the coordinate system will be fixed once and for all.

The differential ∂ =
∑

i fi∂xi
has an obvious analogue: ∂ch =

∑

i(fi(−1)∂xi
)(0). Note that

although the product (−1) is not commutative, the order does not matter. Indeed,

f(i(−1)∂xi
= ∂xi(−1)fi − T (∂xi

(fi)).

Since degfi = 1, deg∂xi
(fi) is also 1. But by assumption P is nonpositively graded, hence

deg∂xi
(fi) ≤ 0. Therefore the correction term T (∂xi

(fi)) must be 0.

The element ∂ch ∈ DerDch
P , see sect. 2.1.1. It is also a differential, as the following standard

computation shows:

2(∂ch)2 = [∂ch, ∂ch] = [∂, ∂](0) +
∑

ij

±T (∂xj
(fi))∂xi

(fj).

Here [∂, ∂] vanishes by assumption and the correction terms T (∂xj
(fi))∂xi

(fj) vanish because,

again, its degree must be 2 on the one hand and ≤ 0 on the other. Hence (∂ch)2 = 0.

We would like to think of the graded vertex algebra (Dch
P , ∂ch) as attached to A. Unfortu-

nately, a satisfactory analogue of Lemma 3.1.2 is unknown to us; what we do know will be
explained later. Now we will change our point of view and talk about representation theory.

3.3. Two categories of modules.

3.3.1. Let V be a vertex algebra. A V -module is a vector space M that carries a family of
maps

(j) : V ⊗M→M, v ⊗m 7→ v(j)m; j ∈ Z

s.t. a number of axioms are satisfied; see e.g. [FBZ] for details.

In the case where V is conformally graded, V = ⊕n≥0V [n], a V -module M is called con-
formally graded if there is a direct sum decomposition M = ⊕m∈ZM[m] s.t. V [n](j)M[m] ⊂
M[n+m− j − 1], cf. sect. 2.1.1.

Finally, if V is a differential graded vertex algebra with differential ∂ch, then a differ-
ential graded V -module is a graded V -module M with degree 1 differential ∂M : M → M

s.t. ∂M(v(j)m) = ∂ch(v)(j)m + (−1)degvv(j)∂M(m) for all j. The grading thus built into the
definition is sometimes referred to as cohomological grading. If, in addition, V and M are
conformally graded, then ∂M is required to have conformal weight 0.

3.3.2. Representation theory is where DP and Dch
P actually meet. One easily verifies the

relations (among elements of EndDch
P ):

[∂xi(m), xj(n−1)] = δi,jδm,−nId. (3.3.1)

This implies that for any Dch
P -module M, the elements ∂xi(m), xj(n−1), regarded as operators

acting on M, satisfy the same relations. Since [∂xi(0), xj(−1)] = δi,jId, which is a familiar

bracket of coordinate vector fields and functions, every Dch
P -module becomes a DP -module.

Since xi ∈ Dch
P [0], ∂xi

∈ Dch
P [1], cf. the last sentence of sect. 2.1.2, the corresponding operators

xj(−1) and ∂xi(0) have conformal weight 0; therefore each homogeneous component M[m] is a
DP -submodule of M.

Consider the space of singular vectors

SingM = {m ∈M s.t. ∂xi(n)m = xj(n)m = 0 ∀n > 0.}.



CHIRAL DE RHAM COMPLEX OVER LOCALLY COMPLETE INTERSECTIONS 11

Since the linear span of {xi(n), ∂xj(n), n > 0} is preserved under the bracket with {xi(−1), ∂xj(0), },
SingM ⊂M is a DP -submodule. Furthermore, if in addition M is a dg-module, the restriction
of ∂ch

M
to SingM endows the latter with a structure of a dg-module over (DP , ∂). To summa-

rize, the rule M 7→ SingM defines a functor from the category of dg-modules over Dch
P to the

category of dg-modules over DP .

There is no reason to believe that SingM is in general nonzero. To ensure that it is, let
us make the following definition: call M bounded if for each m ∈ M there is N > 0 s.t.
xNi(n)m = ∂N

xi(n)
m = 0 for all i and n > 0.

Note that for each m, xi(n)m = ∂xi(n)m = 0 for all sufficiently large n – this is part of the
definition of a vertex algebra module.. Therefore boundedness simply means that the elements
xi(n), ∂xi(n), n > 0, act locally nilpotently.

Of course, if M is graded and M[n] = {0} if n≫ 0, then M is bounded; in particular, Dch
P

is bounded if considered as a module over itself. However, the definition does not require any
grading.

3.3.3. Lemma. The assignment M 7→ SingM defines an equivalence of the category of bounded
dg-Dch

P -modules and the category of dg-DP -modules.

Proof. To begin with, let us forget about the dg-structure; in this case we have: M 7→ SingM
defines an equivalence of the category of bounded Dch

P -modules and the category of DP -modules.

This result was proved by D.Chebotarov [Ch], but since he worked in a much more general
and complicated situation, we will give an independent proof. Denote by Mod(DP ) and
Mod(Dch

P ) the categories in question and let Φ : Mod(Dch
P ) → Mod(DP ) be the functor we

have defined. We need a functor in the opposite direction: Ψ : Mod(DP ) → Mod(Dch
P ),

and we will show that Ψ can be identified with the induction functor for a certain infinite
dimensional Lie algebra.

Let â denote the Lie algebra with basis {ain, b
i
n, C; n ∈ Z, 1 ≤ i ≤ dimP} and relations

[ain, b
j
m] = δi,jδn,−mC, [C, ain] = [C, ajm] = 0.

A glance at 3.3.1 will show that the assignment ain 7→ ∂xi(n), b
i
n 7→ xi(n−1), C 7→ Id makes any

Dch
P -module into an â-module. Furthermore, one defines what a bounded â-module is in an

obvious manner (and requires that C act as Id) and thus obtains a functor on the categories
of bounded modules: Mod(Dch

P ) → Mod(â). It is a standard result that this functor is an
equivalence of categories; see e.g. [FBZ], 5.1.8. From now on we will not distinguish between
these 2 categories.

Notice that â is graded: â = ⊕nâ[n], where â[n], n 6= 0, is spanned by ai−n and bj−n, and

â[0] is spanned by ai0, bj0, and C. It is obvious that U(â[0])/〈C − 1〉 = DP . Denote by
â> = ⊕n>0â[n], â≥ = ⊕n≥0â[n]. There arises a Lie algebra homomorphism U(â≥) → DP s.t.
ĝ> 7→ 0. Therefore any DP -module, by pull-back, becomes a â≥-module. Now define

Ψ
def
= Indâ

â≥
: Mod(DP )→Mod(Dch

P ).

By definition, Φ ◦ Ψ : Mod(DP ) → Mod(DP ) is the identity. To complete the proof we need
show that Ψ ◦ Φ is isomorphic to the identity functor. At least there is a functor morphism
Ψ ◦ Φ→ Id as for each M ∈Mod(Dch

P ) there is a canonical morphism

Indâ
â≥
SingM→M
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which is determined (thanks to the universal property of the induction) by the tautological
inclusion SingM →֒M. We need to show that this map is injective and surjective. Both these
assertions follow easily from the properties of the grading operator

L0
def
=

dim
∑

i=1

+∞
∑

n=1

−n(bina
i
−n − ainb

i
−n).

Note that the eigenvalues of [L0, .] define the above grading of â: [L0, a
i
n] = −na

i
n, [L0, b

i
n] =

−nbin. It follows that Ind
â

â≥
SingM is also graded by the eigenvalues of L0:

Indâ
â≥
SingM = ⊕n≥0Ind

â

â≥
SingM[n].

Furthermore Indâ
â≥
SingM[0] = SingM, and the rest of the eigenvalues are strictly positive.

Injectivity. The kernel of the morphism Indâ
â≥
SingM → M is a â-submodule. Therefore

the kernel must contain a singular vector, i.e., a vector v that satisfies ainv = binv = 0 for all
n > 0. This forces L0v = 0, hence v ∈ SingM, therefore v = 0.

Surjectivity. Denote by M′ the â-submodule of M generated by SingM. By definition, the
image of the map Indâ

â≥
SingM→M is precisely M′. Let M be M/M′. We need to show that

M = {0}.

It is clear from the definition of a bounded module that M is bounded and, therefore,
contains a singular vector v̄. As above, L0v̄ = 0. Let v ∈ M be a preimage of v̄. It is clear
that v = v1 + v2, where v1 ∈ M′ and v2 is a generalized eigenvector of eigenvalue 0, i.e.,
LN
0 v2 = 0 for some N . Hence ainv2, b

i
nv2 are generalized eigenvectors of eigenvalue −n. Since

v̄ is singular these vectors belong to M′ for n > 0 where, as we have seen, all eigenvalues of
L0 are nonnegative. This means that ainv2 = binv2 = 0 if n > 0. Therefore v2 ∈ SingM and
v̄ = 0, as desired.

Finally, we have to decide what Ψ does to the differential graded structure. As we have seen,
any Dch

P -module M is induced from its space of singular vectors SingM. This implies at once

that a dg-DP -module structure on the latter has at most one extension to a dg-Dch
P -module

structure on M. It suffice to prove the existence.

If, as in our situation, the differential on the algebra is defined by an algebra element ([∂, .],
∂ ∈ DP in the case of DP , and ∂ch

(0), ∂
ch ∈ Dch

P in the case of Dch
P ), the differential on a

dg-module is uniquely written in the form: the corresponding element of the algebra plus a
square 0 endomorphism of the module of cohomological degree 1. For example, the differential
on SingM equals ∂ + f , where f ∈ EndDP

(SingM). The corresponding differential on M is

then ∂ch
(0) +Ψ(f).

This construction extends Ψ to a functor between categories of dg-modules, Φ was previously
defined on dg-modules, and it is quite clear that the established above isomorphisms of functors
Φ ◦Ψ = Id and Ψ ◦ Φ

∼
−→ Id respect the dg-module structure. �

3.3.4. Corollary. For any two finite polynomial resolutions P → A← Q the categories of dg
modules over Dch

P and Dch
Q are equivalent.

3.3.5. Corollary. Any bounded Dch
P -module M can be conformally graded so that M[0] =

SingM and M[n] = 0 if n < 0.

3.3.6. Example. Let A = C[x]/(xn). As P take the Koszul resolution w.r.t. the regular
sequence consisting of one element xn; this is what in sect. 2.2.2 was denoted by K(C[x], xn).
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This is a polynomial ring on 2 variables, x, which is even, ξ odd (of degree -1), best thought

of as the struture ring of the superspace C
1|1. The corresponding dg algebra of differential

operators is (D
C1|1 , [xn∂ξ, .]).

3.3.7. Lemma. The dg algebra (D
C1|1 , [xn∂ξ, .]) is quasiisomorphic to gln(C).

Proof. In this case the complex (3.1.1) becomes

0→ DC/x
n
DC

[xn∂ξ ,.]
−→ ∂ξDC/x

n
DC → 0.

We will show that the differential is surjective, and its kernel has dimension n2. Since by
virtue of Lemma 3.1.1 H0

∂(DC1|1) = DC[x]/(xn) →֒ gl(C[x]/(xn)), which is n2-dimensional, the
lemma will follow.

Proving these 2 assertions requires doing a bit of linear algebra. The space DC is graded
by x 7→ 1, ∂x 7→ −1. If we denote by DC,j the homogeneous component of degree j, then
DC,j = {0} if j ≥ n, dimDC,j = n− j if 0 ≤ j ≤ n− 1; thus dimDC,0 = n at which point the
dimension stabilizes s.t. dimDC,j = n if j < 0.

The differential is apparently of degree n. Therefore the components DC,j with j = n −
1, n− 2, ..., 0 belong to the kernel in their entirety by dimensional argument. This contributes
1 + 2 + 3 + · · ·n to the dimension of the kernel.

For the next n− 1 components, the differential gives us maps

DC,j → DC,n+j, j = −1,−2, ...,−n + 1.

We will show that all these maps are surjections. Since the j-th such map has n-dimensional
domain and (−j)-dimensional codomain, its kernel is (n + j)-dimensional. This contributes
(n − 1) + (n− 2) + · · · + 1 to the dimension.

The remaining maps
DC,j → DC,n+j, j = −n,−n− 1, ....

are also surjective, but have domain and codomain of the same dimension n, hence are iso-
morphisms.

Overall the dimension of the kernel is 1 + 2 + · · ·+ (n− 1) + n+ (n− 1) + · · ·+ 2+ 1 = n2

as desired.

To see that the maps DC,j → DC,n+j, j < −1 are surjective, one needs to write down their
matrices. One has

[xn, ∂j
x] =

min{n,j}
∑

i=1

αix
n−i∂j−i

x ,

where none of the α’s vanishes. From this the untiring reader will deduce that when written
in the basis of the form {∂k

x , x∂
k+1
x , . . . xn−1∂k+n−1

x } the images of the last k (or all n if k > n)
vectors form a triangular matrix with nonzero diagonal entries. This completes the proof.
�

3.3.8. Corollary. The derived category of dg-modules over the dg vertex algebra (Dch
C1|1) is

equivalent to the derived category of finite dimensional vector spaces.

Proof. Quasiisomorphic dg algebras have equivalent derived dg module categories; this is
[Hin] Theorem 3.3.1. Now Corollary 3.3.8 follows at once from Lemma 3.3.3 and the classic
result that the module category of a matrix algebra is semi-simple on one generator (one
can consider this particular case of the Morita equivalence as an ”odd Stone - von Neumann
theorem”). �
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This corollary has a pleasing interpretation.

3.3.9. The Landau-Ginzburg model starts with a function (potential) defined on C
n and is

ultimately related to the N = superconformal algebra [Witt]. If the potential Φ ∈ C[x1, ..., xn],
one can consider the above defined Dch

P with P = K(C[x1, ..., xn], {Φ
′
x1
, ...,Φ′

xn
}), the Koszul

resolution of A = C[x1, ..., xn]/(Φ
′
x1
, ...,Φ′

xn
). The cohomology of this algebra was computed

by Feigin and Semikhatov [FS] in the case where n = 1, Φ = xN+1, and their answer is a thing
of beauty: the cohomology is a direct sum of N vector spaces, one vector space for each of
the classical Koszul classes represented by 1, x, ..., xN−1; the space attached to 1 is the unitary
vacuum representation of the N = 2 superconformal algebra, and the rest of the spaces are
irreducible unitary representations of this algebra.

Of course this result immediately carries over to the case of a “diagonal” potential, such
as Φ =

∑

i x
n
i , by using the Künneth formula. For this reason, we will denote by FSΦ the dg

vertex algebra Dch
P with P = K(C[x1, ..., xn], {Φ

′
x1
, ...,Φ′

xn
}) .

A vertex algebra is called conformal if it contains a conformal vector L, i.e., one that
“generates ” the Virasoro algebra with some central charge, see [FBZ] 2.5.8. The vertex
algebra Dch

P is conformal with conformal vector L = Txi(−1)∂xi
, cf.[MSV].

We will call a dg vertex algebra dg conformal if it is conformal and the conformal vector is
annihilated by the differential. It is easy to verify that ∂ch(Txi(−1)∂xi

) = 0, and so (Dch
P , ∂ch)

is dg conformal.

A vertex algebra is called rational, see [FBZ] 5.5.1 and references therein, if it is conformal
and its module category is semi-simple. It is then natural to call a dg vertex algebra derived
rational if the derived category of its dg module category is equivalent to the derived category
of a semi-simple category.

Corollary 3.3.8 gives:

3.3.10. Theorem. If Φ is diagonal, then the Feigin-Semikhatov vertex algebra FSΦ is derived
rational.

3.3.11. As was explained to us by D.Gaitsgory, it follows from [GR] that the derived category
of dg DP -modules is equivalent to the derived category of D-modules on Spec(A). In conjunc-
tion with Lemma 3.3.3 this implies that the derived category of dg-Dch

P -modules is equivalent
to the latter category. This is a generalization of Corollary 3.3.8, because the category of
D-modules on a fat point, which is by definition the category of DC-modules supported on the
corresponding closed point, is isomorphic to the category of finite dimensional vector spaces.
More generally, the Gaitsgory’s result implies that Dch

P is derived rational provided P is a
resolution of the structure ring of a finite collection of fat points; this, of course, includes the
case of FSΦ if Φ is a polynomial with isolated singularities, not necessarily diagonal.

3.4. The graded ring case. We will now explain what we know about the naturality of the
assignment A 7→ Dch

P .

3.4.1. We wish to add a 3rd type of grading to the two, conformal and cohomological, that
have prominently figured so far. By an inner grading on an algebra A we will mean a vector
space decomposition A = A0 ⊕A1 ⊕A2 ⊕ · · · s.t. AiAj ⊂ Ai+j and A0 = C1. M is a graded
A-module if similarly M = M0 ⊕M1 ⊕ · · · with AiMj ⊂Mi+j.

In this section the phrase “A is a graded algebra” will mean an algebra A carrying an inner
grading.
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A grading of a polynomial ring C[x1, ..., xn] is the same as an assignment of a positive
integer deg xi to each xi.

Call a graded algebra A a complete intersection if it is a quotient of a graded polynomial ring
C[x1, ..., xn] by a homogeneous ideal J that is generated by a homogeneous regular sequence.

Having fixed one such sequence ~f = {f1, ..., fm} we obtain a Koszul complex K(C[~x, ~ξ], ~f) and

a dga quasiisomorphism K(C[~x, ~ξ], ~f)→ A. As algebra, K(C[~x, ~ξ], ~f) = C[x1, ..., xn, ξ1, ...ξm],
ξi having cohomological degree -1 and inner degree degfi, i = 1, 2, ...; the differential is ∂ =
∑

fi∂ξi .

This gives us a differential graded vertex algebra Dch(K(C[~x, ~ξ], ~f)), sect. 3.2.

Call two differential graded vertex algebras V and W quasiisomorphic if there is a sequence
of differential graded vertex algebra quasiisomorphisms

V ← V0 → V1 ← · · · →W.

3.4.2. Theorem. For any two quasiisomorphisms K(C[x1, ..., xn], ~f)→ A← K(C[y1, ..., yl], ~g)

the chiral Koszul complexes Dch(K(C[~x, ~ξ], ~f)) and Dch(K(C[~y, ~η], ~g) are quasiisomorphic.

The proof will occupy a few subsections to follow.

3.4.3. Let M be a finitely graded module over a graded algebra A. Let A> = ⊕n≥1An. A
minimal generating space of M is the image of a homogeneous splitting of the projection

M −→M/A>M.

A minimal generating set of M is a choice of a homogeneous basis of a minimal generating
space.

Any 2 minimal generating sets, E and F , are related by a transformation matrix aE→F

with coefficients in A. M being not necessarily free, aE→F is not unique, but it can always
be chosen so as to be a block upper triangular, diagonal blocks being constant matrices. This
implies that such aE→F is automatically invertible.

3.4.4. Fix a Koszul complex K(C[~x, ~ξ], ~f). As a free C[~x]-module, it carries, according to
3.4.3, an action of the group of coordinate transformations. Since we would like to have the
cohomological degree preserved, any such coordinate transformation will be a composition of
the transformations of the following 2 types:

xi 7→ fi(x) or ξi 7→ aij(x)ξj .

We claim that these coordinate changes can be lifted (non-canonically) to automorphisms of

the corresponding chiral Koszul complex Dch(K(C[~x, ~ξ], ~f)). Indeed, the coordinate change
of type 1 classically gives rise to

∂xi
7→

∑

s

∂gs(x)

∂xi
∂xs , ξ 7→ ξi, ∂ξi 7→ ∂ξi , g = f−1.

Define a vertex algebra lift to be simply

∂xi
7→

∑

s

(∂xs)(−1)(
∂gs(x)

∂xi
), ξ 7→ ξi, ∂ξi 7→ ∂ξi .

It defines an automorphism, because by the Wick theorem (cf. sect. 2.1.1)

(∂xs)(−1)(
∂gs(x)

∂xi
)(z) · (∂xs)(−1)(

∂gs(x)

∂xj
)(w) =

−1

(z − w)2
∂2gt(x)

∂xs∂xj
(z)

∂2gs(x)

∂xt∂xi
(w) + · · · ,
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which is 0, as it should, by virtue of the following obvious dimensional argument: the degree

of the expression ∂2gt(x)
∂xs∂xj

(z)∂
2gs(x)
∂xs∂xi

(w) is −degxi − degxj , hence strictly negative, while the

expression itself is a product of fields coming from elements of C[~x], ∂2gt(x)
∂xs∂xj

and ∂2gs(x)
∂xs∂xi

, hence

has nonnegative degree.

Now consider the type 2 transformation ξi 7→ aij(x)ξj . An obvious vertex algebra lift is
defined by

∂xi
7→ ∂̃xi

= ∂xi
+ (∂xi

bsj)ajtξt∂ξs , ∂ξi 7→ bji∂ξj ,

where (bij) is the inverse of (aij) – which exists by 3.4.3. Another application of the Wick
theorem gives

∂̃xi
(z)∂̃xj

(w) = Tr(∂xi
b)a(z)(∂xj

b)a(w) + · · · .

We know from 3.4.3 that in an appropriate basis (aij) is block upper-triangular with constant
diagonal blocks. Therefore Tr(∂xi

b)a(z)(∂xj
b)a(w) = 0, as desired.

3.4.5. Consider A> ⊂ A as a graded A-module and pick a minimal generating set X̄ =
{x̄1, ..., x̄n} ⊂ A. This gives an algebra surjection C[x1, ..., xn] → A with kernel J . Pick a
minimal generating set {f1, ..., fm} ⊂ J , where J is regarded as a C[x1, ..., xn]-module. This

defines a Koszul complex K(C[~x, ~ξ], ~f) and its chiral version Dch(K(C[~x, ~ξ], ~f)). We will refer
to these as a minimal (chiral) Koszul complex.

We assert that all minimal, chiral or usual, Koszul complexes are isomorphic. Indeed, for
any other minimal generating set Ȳ = {ȳ1, ȳ2, ...}, there is a transformation matrix aX→Y ,
which can be lifted to C[~y]. Any such lift defines an algebra isomorphism C[~x] → C[~y] that
respects both projections C[~x]→ A← C[~y].

Next, consider the Koszul complex K(C[~y, ~η], ~g) corresponding to Ȳ . Under the con-
structed isomorphism C[~x]→ C[~y], each fi is mapped to aijgj for some transformation matrix

(aij). Composing with ξi 7→ aijηj gives us an isomorphism of complexes K(C[~x, ~ξ], ~f) →
K(C[~y, ~η], ~g).

It follows from 3.4.4 that both these transformations lift to the chiral Koszul complex and
their composition defines the desired isomorphism

Dch(K(C[~x, ~ξ], ~f))→ Dch(K(C[~y, ~η], ~g)).

3.4.6. We will now show that for any Koszul resolution K(C[~x, ~ξ], ~f)→ A there is a minimal

Koszul resolution Kmin → A and a quasiisomorphism Dch(K(C[~x, ~ξ], ~f))→ Dch(Kmin).

The elements of the regular sequence ~f = {f1, f2, ..., fm} break down into 2 groups: those
that do not belong to C[~x]2> and those that do. The former group is not necessarily linearly
independent modulo C[~x]2>, but it is clear that replacing {f1, f2, ..., fm} with their appropriate
linear combinations we ensure that it is.

If so, upon an appropriate coordinate transformation this part of ~f becomes part of a

coordinate system. We can therefore assume that ~f = {x1, x2, ..., xk, fk+1, ..., fn}. Let J =

(x1, ..., xk , ξ1, ..., ξk) ⊂ C[~x, ~ξ] and define Kmin = C[~x, ~ξ]/J . J is a differential graded ideal,

hence C[~x, ~ξ]/J is a differential graded algebra; in fact it is a Koszul complex with differential
∂ =

∑

i>k f̄i∂ξ̄i . Furthermore, J is acyclic (ξi 7→ xi, xi 7→ 0) and so is Kmin. This implies that
Kmin is a minimal Koszul resolution of A, and we have a quasiisomorphism

K(C[~x, ~ξ], ~f)→ Kmin.
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All of this “chiralizes.” We start with Dch(K(C[~x, ~ξ], ~f)). Then we lift to Dch(K(C[~x, ~ξ], ~f)),

one-by-one, the 2 coordinate transformations that include part of ~f into a coordinate system;
this is based on 3.4.4. Finally, we quotient out a vertex ideal ideal, Jvert, generated by
x1, ..., xk; ∂x1

, ..., ∂xk
; ξ1, ..., ξk; ∂ξ1 , ..., ∂ξk . The result is an exact sequence

0→ Jvert → Dch(K(C[~x, ~ξ], ~f))→ Dch(Kmin)→ 0.

Jvert is acyclic ( ξi 7→ xi, ∂xi
7→ −∂ξi .) Therefore, the projection

Dch(K(C[~x, ~ξ], ~f))→ Dch(Kmin)

is a quasiisomorphism.

Since all minimal chiral Koszul resolutions are isomorphic, 3.4.5, for any 2 Koszul resolutions

K(C[~x, ~ξ], ~f)→ A← K(C[~y, ~η], ~g)

we obtain a diagram consisting of quasiisomorphisms

Dch(K(C[~x, ~ξ], ~f))→ Dch(Kmin)← Dch(K(C[~y, ~η], ~g)).

This concludes the proof of Theorem3.4.2.

3.4.7. A similar argument gives an analogous result for complete intersections in analytic
setting without the grading assumption. This is an evidence for there existing a gerbe of dg
vertex algebras over any locally complete intersection at least in analytic setting.
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