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Abstract. We conjecture that derived categories of coherent sheaves on fake projective n-spaces
have a semi-orthogonal decomposition into a collection of n+ 1 exceptional objects and a category
with vanishing Hochschild homology. We prove this for fake projective planes with non-abelian
automorphism group (such as Keum’s surface). Then by passing to equivariant categories we
construct new examples of phantom categories with both Hochschild homology and Grothendieck
group vanishing.
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1. Introduction and statement of results

A fake projective plane is by definition a smooth projective surface with minimal cohomology
(i.e. is the same cohomology as that of CP2) which is not isomorphic to CP2. Such surface
is necessarily of general type. The first example of a fake projective plane was constructed by
Mumford [43] using p-adic uniformization [20], [44]. Prasad–Yeung [47] and Cartwright–Steger
[17] have recently finished classification of fake projective planes into 100 isomorphism classes.

Due to an absense of a geometric construction for fake projective planes there are many open
questions about them. Most notably the Bloch conjecture on zero-cycles [8] for fake projective
planes is not yet established.

In higher dimension we may call a smooth projective n-dimensional variety X of general type
a fake projective space if it has minimal cohomology and in addition has the same “Hilbert poly-
nomial” as Pn: χ(X,ω⊗lX ) = χ(Pn, ω⊗lPn) for all l ∈ Z. This definition is consistent with that of fake
projective plane since Hodge numbers of a surface determine its Hilbert polynomial.

In fact very little is known about fake projective spaces in higher dimension. Fake projective
fourspaces were introduced and studied by Prasad and Yeung in [48].

In this paper we take a perspective that started with a seminal discovery of full exceptional col-
lections by Beilinson on projective spaces [7] and Bondal [12], Bondal-Kapranov [13], and Bondal-
Orlov [14] in general.

Let X be a smooth projective variety. It has been questioned whether an exceptional collection
in the derived category of coherent sheaves Db(X) which spans the Grothendieck group K0(X) or
the Hochschild homology HH∗(X) is full, that is generates Db(X). More generally one may ask
whether the only admissible [13] subcategory A ⊂ Db(X) which has vanishing Grothendieck group
or Hochschild homology is A = 0.

Recently there has been a series of examples [10, 1, 24, 25, 11, 41] showing that this is in fact
not the case. In this paper we call a non-zero admissible subcategory A of the derived category of
coherent sheaves Db(X) an H-phantom if HH•(A) = 0 and a K-phantom if K0(A) = 0.

Date: February 20, 2015.
1



We propose the following conjecture which we see of great importance towards understanding
the nature of fake projective spaces.

Conjecture 1.1. Assume that X is an n-dimensional fake projective space with canonical class
divisible by (n+ 1). Then for some choice of O(1) such that ωX = O(n+ 1), the sequence

O,O(−1), . . . ,O(−n)

is an exceptional collection on X.

Corollary 1.2. Fake projective spaces as in Conjecture 1.1 admit an H-phantom admissible sub-
categories in their derived categories Db(X).

See Section 3 for the proof of this Corollary.
We prove Conjecture 1.1 for fake projective planes admitting an action of the non-abelian group

G21 of order 21. According to the Table given in the Appendix there are 6 such surfaces: there
are three relevant groups in the table and there are two complex conjugate surfaces for each group
[35].

Theorem 1.3. Let S be one of the six fake projective planes with automorphism group of order
21. Then KS = O(3) for a unique line bundle O(1) on S. Furthermore O, O(−1), O(−2) is an
exceptional collection on S.

Most of Section 4 deals with the proof of this Theorem, which relies on the holomorphic Lefschetz
fixed point formula applied to the three fixed points of an element of order 7 as in Keum’s paper
[34].

Soon after the previous version of this paper appeared as a preprint, Najmuddin Fakhruddin
gave a proof of Conjecture 1.1 for those fake projective planes that admit 2-adic uniformization
[22], in particular for Mumford’s fake projective plane. These cases are disjoint from the ones that
satisfy the assumptions of our Theorem 1.3.

For S as in Theorem 1.3 we consider equivariant derived categories Db
G(S) for various sub-

groups G ⊂ G21. A good reference for equivariant derived categories and their semi-orthogonal
decompositions is A.Elagin’s paper [21].

We denote the descent of the H-phantom AS to Db
G(S) by AG

S (see Section 5 or [21] for details).
In Section 5 we prove the following statements:

Proposition 1.4. Let S be a fake projective plane with automorphism group G21. For any G ⊂
G21, AG

S is an H-phantom.

Proposition 1.5. Let Z be the minimal resolution of S/G where G = Z/3 ⊂ G21. Then Z is a
fake del Pezzo surface of degree three, that is Z is a surface of general type with pg(Z) = q(Z) = 0,
K2 = 3. Furthermore, Z admits an H-phantom in its derived category.

Finally, in the four cases when G ⊃ Z/7 and surface S/G is simply-connected, we show that the
H-phantom AG

S is also a K-phantom:

Proposition 1.6. Let S be a fake projective plane with automorphism group G21. In the notation
of [47, 17] and the Appendix assume that the class of S is either (Q(

√
−7), p = 2, T1 = {7}) or

C20. Let G = Z/7 ⊂ G21 or G = G21. Then AG
S is a K-phantoms subcategory of Db

G(S).

The paper is organized as follows. In Section 2 we give some basic results on fake projective
planes. In Section 3 we recall the necessary definitions, make some remarks on Conjecture 1.1 and
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deduce Corollary 1.2 from Conjecture 1.1. In Section 4 we prove Theorem 1.3 and in Section 5 we
prove Propositions 1.4 - 1.6.

In the Appendix we give a table of arithmetic subgroups Π ⊂ PSU(2, 1) giving rise to fake
projective planes and the corresponding automorphism and first homology groups. These results
are taken from the computations of Cartwright and Steger[18].

There has been considerate interest in relating the derived category and algebraic cycles or more
generally, motives [45], [42], [25]. Thus in particular one may ask whether studying the derived
category of a fake projective plane S may be helpful to proving the Bloch conjecture for S.

On the other hand, such a connection would be helpful in giving geometric meaning to the
phantom categories.

We thank Igor Dolgachev, Dima Panov and Duco van Straten for helpful discussions on geometry
of fake projective planes. We thank Donald Cartwright, Philippe Eyssidieux and Bruno Klingler,
Gopal Prasad, Sai Kee Yeung, for answering our questions about classification and construction
of fake projective planes and fourspaces.

This paper is related to the other paper of the present authors [23], in which we study n-
dimensional varieties admitting a full exceptional collection of length n+ 1.

2. Generalities on fake projective planes

From the point of view of complex geometry fake projective planes were studied by Aubin [4]
and Yau [50], who proved that any such surface S is uniformized by a complex 2-ball B ⊂ C2:

S ' B/Π, Π ⊂ PU(2, 1).

Hence by Mostow’s rigidity theorem S is determined by its fundamental group Π = π1(S)
uniquely up to complex conjugation; Kharlamov–Kulikov [35] showed that the conjugate surfaces
are not isomorphic. Further Klingler [36] and Yeung [51] proved that π1(S) is a torsion-free co-
compact arithmetic subgroup of PU(2, 1). Finally such groups have been classified by Cartwright–
Steger [17] and Prasad–Yeung [47]: there are 50 explicit subgroups and so all fake projective planes
fit into 100 isomorphism classes. We give the classification table of fake projective planes in the
Appendix.

Even though all known constructions of the fake projective planes are analytic, some geometric
properties can be extracted from the fundamental group Π = π1(S). Firstly, we obviously have

H1(S,Z) = Π/[Π,Π].

Furthermore, we have

Aut(S) = N(Π)/Π

where N(Π) is the normalizer of Π in PU(2, 1).

Lemma 2.1. Let S be a fake projective plane with no 3-torsion in H1(S,Z). Then there exists a
unique (ample) line bundle O(1) such that KS

∼= O(3).

Proof. First note that the torsion in Pic(S) = H2(S,Z) is isomorphic to H1(S,Z) by the Universal
Coefficient Theorem, hence Pic(S) has no 3-torsion by assumption.

By Poincare duality Pic(S)/tors ∼= H2(S,Z)/tors is a unimodular lattice, therefore there exists
an ample line bundle L with c1(L)2 = 1. Now KS − 3c1(L) ∈ Pic(S) is torsion which can be
uniquely divided by 3. �
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Lemma 2.2. Let S be a fake projective plane with an automorphism group G21 of order 21.
Then there is a G21-equivariant line bundle O(1) and an isomorphism of equivariant line bundles
KS
∼= O(3).

Proof. As follows from the classification of the fake projective planes by Prasad-Yeung and
Cartwright–Steger [47, 17, 18], the order of the first homology group of the six fake projective
planes with automorphism group G21 is coprime to 3 (see the Table in the Appendix). Therefore
by Lemma 2.1 we have

KS = O(3).

for a line bundle O(1).
It is easy to see that OS(1) is Aut(S)-linearizable if the embedding N(Π) ⊂ PU(2, 1) lifts to

SU(2, 1). Computations of Cartwright and Steger [19] show that this holds for all S unless Γ lies
in classes C2 or C18. �

Remark 2.3. For any G ⊂ Aut(S) we may consider the quotient surface S/G. The fundamental
group of S/G is computed as follows. Write S/G as the quotient of B:

S/G = B/ΠG, ΠG ⊂ PU(2, 1).

Now the fundamental group π1(S/G) is equal to ΠG/E where E ⊂ ΠG is the subgroup generated
by elliptic elements, that is elements with fixed points [2].

All those groups for all S and G ⊂ Aut(S) were also computed by Cartwright and Steger [19]:
the surface S/G is simply-connected in twelve cases, including the four cases of Proposition 1.6.

3. Remarks for Conjecture 1.1

Recall that an exceptional collection of length r on a smooth projective variety X/C is a se-
quence of objects E1, . . . Er in the bounded derived category of coherent sheaves Db(X) such that
Hom(Ej, Ei[k]) = 0 for all j > i and k ∈ Z, and moreover each object Ei is exceptional, that is
spaces Hom(Ei, Ei[k]) vanish for all k except for one-dimensional spaces Hom(Ei, Ei). An excep-
tional collection is called full if the smallest triangulated subcategory which contains it, coincides
with Db(X).

The sequence O,O(1), . . . ,O(n) is a full exceptional collection on CPn [7].

Remark 3.1. It is easy to show (see the proof of Corollary 1.2 below) that the collection
O,O(−1), . . . ,O(−n) in Conjecture 1.1 can not be full. It is also clear that for all fake pro-
jective planes and all arithmetic fake projective fourspaces there is no full exceptional collection
of objects in derived category. Indeed the first homology group H1(S,Z) is known to be non-zero
torsion for fake projective planes and arithmetic fake projective spaces ([47], Theorem 10.1 and
[48], Theorem 4), this implies that there is non-trivial torsion in Pic(X) = H2(X,Z), which is an
obstruction to existence of a full exceptional collection (cf [23], Proposition 2.1).

Proof of Corollary 1.2. Assume that O,O(−1), . . . ,O(−n) is an exceptional collection, and con-
sider its right orthogonal A. By results of Bondal and Kapranov [12, 13] the category A is
admissible, and thus we have a semi-orthogonal decomposition:

Db(X) = 〈O,O(−1), . . . ,O(−n),A〉 .
Hochschild homology is additive for semi-orthogonal decompositions [33] [39], so dimHH•(A) = 0
that is A has vanishing Hochschild homology.

To show thatA itself is non-vanishing, that is that the collectionO,O(−1), . . . ,O(−n) is not full,
we can use one of the following arguments. If the collection was full collection then by [15](Theorem
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3.4) or [46] (see proof of main theorem) the variety X would be Fano, which contradicts to the
general type assumption.

Alternatively we can use Kuznetsov’s concept of height and pseudoheight of an exceptional
collection ([40], Section 4) to show that HH0(A) 6= 0. By [40], Corollary 4.6 it suffices to show
that for the pseudoheight we have ph(O,O(−1), . . . ,O(−n)) > 1. By Kodaira vanishing for i < j
spaces Extk(O(−i),O(−j)) vanish unless k = n, so the relative height e(O(−i),O(−j)) of any
two such objects equals n. Thus the minimum in the definition of the pseudoheight is attained at
p = 0 and the pseudoheight is equal to n− 1. �

Remark 3.2. 1. Fake projective planes with properties as in Conjecture 1.1 are constructed in
[47], 10.4. Choose O(1) such that O(3) = ωX . Then by the Riemann-Roch theorem the Hilbert
polynomial is given by

χ(O(k)) =
(k − 1)(k − 2)

2
.

Therefore the collection E• = (O,O(−1),O(−2)) is at least numerically exceptional, that is

χ(Ej, Ei) = 0, j > i.

2. More generally our definition of an n-dimensional fake projective space includes that its
Hilbert polynomial is the same as that of a Pn. It follows that if we assume ωX = O(n+ 1), then
we have

χ(O(k)) = (−1)n
(k − 1)(k − 2) . . . (k − n)

n!
,

so that k = 1, . . . , n are the roots of χ, and the collection

O,O(−1), . . . ,O(−n)

is numerically exceptional.

3. G.Prasad and S.-K. Yeung informed us that the assumption ωX = O(5) is known to be true
for the four arithmetic fake projective fourspaces constructed in [48].

4. Proof of Theorem 1.3

We start with some general observations.

Lemma 4.1 (see [38](Lemma 15.6.2)). Let X be a normal and proper variety, L,L′ effective line
bundles on X. Let

φ : H0(X,L)⊗H0(X,L′)→ H0(X,L⊗ L′)
denote the natural map induced by multiplication. Then

dim Im(φ) > h0(X,L) + h0(X,L′)− 1.

Lemma 4.2. Let S be a fake projective plane satisfying ωS = O(3) for some (ample) line bundle
O(1). Then h0(S,O(2)) 6 2 and if H0(S,O(2)) = 0, then

O,O(−1),O(−2)

is an exceptional collection on S.
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Proof. We have h0(S,O(3)) = h0(S, ωS) = h0,2(S) = 0, which implies that H0(S,O(1)) also
vanishes. By Kodaira vanishing and Riemann-Roch theorem we have h0(S,O(4)) = 3, and the
inequality h0(S,O(2)) 6 2 follows from Lemma 4.1.

Finally it follows from the Serre duality and Remark 3.2 (1) that a necessary and sufficient
condition for O,O(−1),O(−2) to be exceptional is vanishing of the space of the global sections
H0(S,O(2)). �

We will consider vector spaces H∗(S,O(k)) as G21-representations. We start by describing the
group G21 and its representation theory. By Sylow’s theorems G21 admits a unique subgroup of
order 7 and this subgroup is normal. We let σ denote a generator of this subgroup. Let τ denote
an element of G21 of order 3. Conjugating by τ gives rise to an automorphism of Z/7 = 〈σ〉 and
we can choose τ so that

τ−1στ = σ2.

Thus G21 is a semi-direct product of Z/7 and Z/3 and has a presentation

G21 =
〈
σ, τ | σ7 = 1, τ 3 = 1, στ = τσ2

〉
.

Using this presentation it is easy to check that there are five conjugacy classes of elements in
G21:

{1}
[σ] = {σ, σ2, σ4}

[σ3] = {σ3, σ5, σ6}
[τ ] = {τσk, k = 0, . . . , 6}

[τ 2] = {τ 2σk, k = 0, . . . , 6}
and by basic representation theory there exist five irreducible representations of G21. Let d1, . . . , d5

be the dimensions of these representations. Basic representation theory also tells us that each di
divides 21 and that

d2
1 + d2

2 + d2
3 + d2

4 + d2
5 = 21.

Considering different possibilities one finds the only combination (d1, d2, d3, d4, d5) = (1, 1, 1, 3, 3)
satisfying the conditions above.

It is not hard to check that the character table of G21 is the following one:

1 [σ] [σ3] [τ ] [τ 2]
C 1 1 1 1 1
V1 1 1 1 ω ω

V1 1 1 1 ω ω

V3 3 b b 0 0

V3 3 b b 0 0

In the character table above C is the trivial one-dimensional representation of G21, and Vi, Vi
are conjugate pairs of non-trivial irreducible representations of dimension i.

We use the notation:
ω = e

2πi
3

ξ = e
2πi
7

and

b = ξ + ξ2 + ξ4 =
−1 +

√
−7

2
.
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Explicitly V1 and V1 are one-dimensional representations restricted from G21/ 〈σ〉 = Z/3. V3

and V3 are three-dimensional representations induced from Z/7: ρ : G21 → GL(V3) is given by
matrices

ρ(σ) =

 ξ
ξ2

ξ4

 ρ(τ) =

 0 0 1
1 0 0
0 1 0


and V3 is its complex conjugate.

Lemma 4.3. H0(S,O(4)) is a 3-dimensional irreducible representation of G21 (and thus is iso-
morphic to V3 or V3).

Proof. We show that the trace of an element σ ∈ G21 of order 7 acting on H0(S,O(4)) is equal
to b or b. This is sufficient since if H0(S,O(4)) were reducible it would have to be a sum of three
one-dimensional representations and the character table of G21 shows that in this case the trace
of σ on H0(S,O(4)) would be equal to 3.

By [34], Proposition 2.4(4) σ has three fixed points P1, P2, P3. Let τ be an element of order
3. τ does not stabilize any of the Pi’s, since a tangent space of a fixed point of G21 would give
a faithful 2-dimensional representation of G21 which does not exist as is seen from its character
table.

Thus Pi’s are cyclically permuted by τ . We reorder Pi’s in such a way that

(4.1) τ(Pi) = Pi+1 mod 3.

We apply the so-called Holomorphic Lefschetz Fixed Point Formula (Theorem 2 in [3]) to σ and
line bundles O(k):

(4.2)
2∑

p=0

(−1)p Tr
(
σ
∣∣
Hp(S,O(k))

)
=

3∑
i=1

Tr(σ|O(k)Pi
)

(1− α1(Pi))(1− α2(Pi))

where α1(Pi), α2(Pi) are inverse eigenvalues of σ on TPi :

det(1− tσ∗|TPi ) = (1− tα1(Pi))(1− tα2(Pi)).

αj(Pi) are 7-th roots of unity. We let αj := αj(P1), j = 1, 2. Using (4.1) and commutation
relations in G21 we find that

αj(Pi+1) = αj(Pi)
2

so that
αj(P1) = αj

αj(P2) = α2
j

αj(P3) = α4
j .

To find the values of αj we apply (4.2) with k = 0:

(4.3) 1 =
1

(1− α1)(1− α2)
+

1

(1− α2
1)(1− α2

2)
+

1

(1− α4
1)(1− α4

2)
.

All αj(Pi) are 7-th roots of unity and it turns out that up to renumbering the only possible values
of αj(Pi) which satisfy (4.3) are

(α1(P1), α2(P1)) = (ξ, ξ3)

(α1(P2), α2(P2)) = (ξ2, ξ6)

(α1(P3), α2(P3)) = (ξ4, ξ5)
7



or their complex conjugate in which case we would get b instead of b for the trace below.
It follows that Tr(σ|KS,Pi

) = Tr(σ|O(3)Pi
) is equal to ξ4, ξ, ξ2 for i = 1, 2, 3 respectively. Dividing

by 3 modulo 7 we see that Tr(σ|O(k)Pi
) is equal to ξ6k, ξ5k, ξ3k for i = 1, 2, 3 respectively.

We use (4.2) for k = 4 (note that Hp(S,O(4)) = 0 for p > 0 by Kodaira vanishing):

Tr
(
σ
∣∣
H0(S,O(4))

)
=

ξ3

(1− ξ)(1− ξ3)
+

ξ6

(1− ξ2)(1− ξ6)
+

ξ5

(1− ξ4)(1− ξ5)
= b

�

Proof of Theorem 1.3. According to Lemma 4.2, it suffices to show that H0(S,O(2)) = 0.
Let δ = h0(S,O(2)). We know that h0(S,O(4)) = 3, hence it follows from Lemma 4.1 applied

to L = L′ = O(2) that δ 6 2. Therefore as a representation of G21 the space H0(S,O(2)) is a
sum of 1-dimensional representations and the same is true for H0(S,O(2))⊗2. Since H0(S,O(4))
is three-dimensional irreducible, this implies that the natural morphism

H0(S,O(2))⊗2 → H0(S,O(4))

has to be zero by Schur’s Lemma. Now again by Lemma 4.1 H0(S,O(2)) = 0. This finishes the
proof. �

5. Proofs of Propositions 1.4 – 1.6

Let G ⊂ G21 be a subgroup. It follows from Theorem 1.3 that

(5.1) {O(−j)⊗ V }j=0,1,2; V ∈IrrRep(G)

forms an exceptional collection in the equivariant derived category Db
G(S). Indeed we have

ExtpG(O(−j)⊗ V,O(−k)⊗W ) = Extp(O(−j)⊗ V,O(−k)⊗W )G

and this group is zero unless j = k, p = 0 and V = W in which case it is one-dimensional.
We denote by AG

S the right orthogonal to the collection (5.1). We now show that AG
S 6= 0. For

that note that for any nonzero object A in AS the object⊕
g∈G

g∗A

will have a natural G-linearization so will be a non-zero object in AG
S , thus AG

S 6= 0. Alternatively
we could show non-vanishing of AG

S using Kuznetsov’s criterion (cf the second proof of Corollary
1.2) showing that H0(AG

S ) 6= 0 since the height of our exceptional collection equals 2.

Proof of Proposition 1.4. We denote by ZG the minimal resolution of S/G. The geometry of ZG

has been carefully studied by Keum [34]: if |G| = 7 or |G| = 21 then ZG is an elliptic surface of
Kodaira dimension κ(ZG) = 1 (Dolgachev surface), if |G| = 3 then ZG is a surface of general type
κ(ZG) = 2. In each case we compare the equivariant derived category Db

G(S) to Db(ZG).
The stabilizers of the fixed points of G action are cyclic and we use [27] or [32] to obtain the

semi-orthogonal decomposition

Db
G(S) '

〈
Db(ZG), E1, . . . , ErG

〉
where rG is the number of non-special characters of the stabilizers [27].

Note that pg(ZG) = q(ZG) = 0, therefore

dimHH∗(Db(ZG)) = dimH∗(ZG,C) = χ(ZG).
8



We list χ(ZG) as well as other relevant invariants in the table:

G #IrrRep(G) Sing(S/G) rG χ(ZG) κ(ZG)
1 1 ∅ 0 3 2

Z/3 3 3× 1
3
(1, 2) 0 9 2

Z/7 7 3× 1
7
(1, 3) 9 12 1

G21 5 3× 1
3
(1, 2) + 1

7
(1, 3) 3 12 1

In the second column of the table we list the number or irreducible representations of each
group G. In the third column we describe the singularities of the quotient surface S/G, using the
notation 1

n
(1, a) for each quotient singularity with local model C2/Zn with the action given by

(ε, εa), where ε is the nth root of unity.
As already mentioned above rG is the sum of non-special characters of the stabilizers at fixed

points: 1
3
(1, 2) fixed points don’t contribute to rG whereas each 1

7
(1, 3) fixed point has 3 non-special

characters.

It follows from the table that in each case we have

3 ·#IrrRep(G) = χ(ZG) + rG

This implies that the number of exceptional objects in (5.1) matches dimHH∗(Db
G), and therefore

in each case AG
S is an H-phantom. �

Remark 5.1. One can give an alternative proof of Proposition 1.4 using orbifold cohomology.
Baranovsky [5] proved an analogue of Hochschild–Kostant–Rosenberg isomorphism for orbifolds.
His result implies that (total) Hochschild homology HH∗(Db

G(S)) is isomorphic as a non-graded
vector space to the (total) orbifold cohomology

H∗orb(S/G,C) =
(⊕
g∈G

H∗(Sg,C)
)
G

=
⊕

[g]∈G/G

H∗(Sg,C)Z(g).

Here Sg is the fixed locus of g ∈ G, Z(g) is the centralizer, [g] is the conjugacy class of g, and (·)G
denotes coinvariants.

For the so-called main sector [g] = {id} we have

H∗(S,C)G = H∗(S,C) = C3.

For each g 6= id the fixed locus Sg consists of three points, so H∗(Sg) = C3 and the action of
Z(g) = 〈g〉 on it is trivial, thus each twisted sector is also 3-dimensional.

Taking the sum over all conjugacy classes [g] we obtain

dimHH∗(Db
G(S)) = dimH∗orb(S/G,C) = 3×#IrrRep(G),

which shows that HH∗(AG
S ) = 0.

Proof of Proposition 1.5. In the notation of the previous proof Z = ZG, G = Z/3, and rG = 0
means that

Db
G(S) ' Db(Z)

in agreement with the derived McKay correspondence [29, 16] which is applicable since S/G has
A2 du Val singularities. It has been already proved above that Z is a surface of general type with
pg(Z) = q(Z) = 0 and χ(Z) = 9, and the Noether formula implies that K2

S = 3. The image of the
exceptional collection (5.1) of 9 objects in Db(Z) has an H-phantom orthogonal. �
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Proof of Proposition 1.6. In the cases under consideration S/G is simply-connected (see Remark
2.3). By a standard argument (e.g. using Van Kampen’s theorem as in [6](0.5) or [49](Section
4.1), or more generally see [37](Theorem 7.8.1)) the resolutions ZG are also simply-connected, in
particular H1(ZG,Z) = 0.

Then Pic(ZG) = H2(ZG,Z) is a finitely generated free abelian group. Keum showed in [34] that
Kodaira dimension κ(ZG) = 1 (see also Ishida [26]). The Bloch conjecture for ZG is true[9], so
that CH0(ZG) = Z. Now by Lemma 2.7 of [24] it follows that K0(ZG) is a finitely generated free
abelian group, and the same holds for KG

0 (S) = K0(Db
G(S)).

The computation of Euler numbers shows that

(number of objects in (5.1)) = dimHH∗(Db
G(S)) = rkK0(Db

G(S)).

Finally, the additivity of the Grothendieck group implies that AG
S is a K-phantom. �

6. Appendix: Classification table of fake projective planes

We enhance the classification table of the fake projective planes given in [17] which is based on
GAP and Magma computer code and its output [18] with the automorphism group Aut(S) and
the first homology group H1(S,Z), which we also take from [18]. There are no original results in
this section.

The classification is given by specifying an arithmetic subgroup Γ ⊂ PU(2, 1), and then each
such Γ may contain several subgroups Π. The group Γ is described using the following data: l is
a totally complex quadractic extension of a totally real field, p is a prime 2, 3 or 5, T1 is a set of
prime numbers (possibly empty). See [17] for details.
N is the index [Γ : Π] and suf. is the suffix (a, b, c, d, e or f) of each group in [18]. G21 is the

non-abelian group of order 21. In the last column symbol [n1, . . . , nk] denotes the abelian group
(Z/n1Z)× · · · × (Z/nkZ).
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l or C p T1 N #Π suf. Aut(S) H1(S,Z)

Q(
√
−1) 5 ∅ 3 2 a Z/3Z [2, 4, 31]

∅/{2I} b/b {1} [2, 3, 4, 4]

{2} 3 1 a Z/3Z [4, 31]

Q(
√
−2) 3 ∅ 3 2 a Z/3Z [2, 2, 13]

∅/{2I} b/b {1} [2, 2, 2, 2, 3]
{2} 3 1 a Z/3Z [2, 2, 13]

Q(
√
−7) 2 ∅ 21 3 a Z/3Z [2, 7]

b G21 [2, 2, 2, 2]

c {1} [2, 2, 3, 7]
{3} 3 2 a Z/3Z [2, 4, 7]

b {1} [2, 2, 3, 4]

{3, 7} 3 2 a Z/3Z [4, 7]
b {1} [2, 3, 4]

{7} 21 4 a G21 [2, 2, 2]
b Z/3Z [2, 7]

c Z/3Z [2, 2, 7]

d {1} [2, 2, 2, 3]
{5} 1 1 − {1} [2, 2, 9]

{5, 7} 1 1 − {1} [2, 9]

Q(
√
−15) 2 ∅ 3 2 a Z/3Z [2, 2, 7]

b {1} [2, 2, 2, 9]
{3} 3 3 a Z/3Z [2, 3, 7]

b Z/3Z [2, 2, 2, 3]
c Z/3Z [2, 3]

{3, 5} 3 3 a Z/3Z [3, 7]

b Z/3Z [2, 2, 3]
c Z/3Z [3]

{5} 3 2 a Z/3Z [2, 7]

b {1} [2, 2, 9]

Q(
√
−23) 2 ∅ 1 1 − {1} [2, 3, 7]

{23} 1 1 − {1} [3, 7]

C2 2 ∅ 9 6 a (Z/3Z)2 [2, 7]
b Z/3Z [2, 7, 9]
c Z/3Z [2, 9]

d Z/3Z [2, 9]
f 1 [2, 3, 3]
g 1 [2, 3, 3]

{3} 9 1 − (Z/3Z)2 [7]

C10 2 ∅ 3 1 − Z/3Z [2, 7]
{17−} 3 1 − Z/3Z [7]

C18 3 ∅ 9 1 a (Z/3Z)2 [2, 2, 13]
∅/{2I} 1 1 b/d 1 [2, 3, 3]
{2} 3 3 a Z/3Z [2, 3, 13]

b Z/3Z [2, 3]
c Z/3Z [2, 3]

C20 2 ∅ 21 1 − G21 [2, 2, 2, 2, 2, 2]

{3−} 3 2 a Z/3Z [4, 7]

b {1} [2, 3, 4]
{3+} 3 2 a Z/3Z [4, 7]

b {1} [2, 3, 4]
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[10] Christian Böhning, Hans-Christian Graf von Bothmer, Pawel Sosna: On the derived category of the classical

Godeaux surface, arXiv:1206.1830, Advances in Mathematics 243 (2013): 203–231.
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