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Irreducible projective characters of wreath

products

Xiaoli Hu and Naihuan Jing*

Abstract. The irreducible character values of the spin wreath products

Γ̃n = Γ ≀ S̃n of the symmetric group and a finite group Γ are completely
determined for arbitrary Γ.

1. Introduction

The symmetric group has been one of the core materials in mathematics
and theoretical physics since Frobenius developed representation theory of
finite groups. Using the duality between Sn and GLm Schur found the
complete set of invariants for the general linear group and revolutionized the
theory of symmetric functions using the Schur functions in his dissertation.
In the thirties Specht [13] generalized Schur and Frobenius’ theory to the
wreath products of the symmetric group and any finite group. More recently
Macdonald reformulated Specht’s theory in the classic monograph [6].

The double covering groups S̃n of the symmetric group have many similar
and interesting properties as shown by Schur in [11]. In that seminal paper
Schur generalized Frobenius’s theory and introduced the famous Schur Q-

functions. Schur’s character theory of S̃n consists of two parts. The first part
of the character values on conjugacy classes associated to partitions with
odd integer parts are exactly given by an analogous Frobenius formula in
terms of the Schur Q-functions; the second part of character values on strict
partitions was solved with the help of twisted tensor products of Clifford
algebras. In the same direction, Morris [7] formulated an iterative rule for
computing the spin character values of the symmetric group, and Nazarov
[9] constructed all irreducible representations of the spin group. Józefiak [5]
also computed the projective character values for a related double covering
group of the hyperoctahedral group using similar techniques.
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In [1] the second author and collaborators determined all irreducible

character values on even conjugacy classes of the spin wreath products Γ̃n

by vertex operator calculus in the context of the spin McKay correspondence.

The character values generalize the first part of Schur’s theory on S̃n. The
key was to show that the character values at conjugacy classes of even colored
partitions (with odd integer parts) are given by matrix coefficients of certain
products of twisted vertex operators. However, the other character values on
odd strict partition-valued functions could not be explained in the context
of the McKay correspondence. To the authors’ knowledge, other available
methods such as the Hopf algebraic approach [2] seem not helpful either.

The knowledge of the remaining character values for Γ̃n would be an
analog of the second part in Schur’s pioneering work [11]. In the case of
Γ being abelian, we solved the problem in [3] by using the Mackey-Wigner
method of little groups (cf. [12]) to construct all irreducible spin represen-
tations of the wreath products (see also [8] for some cases). However the
method of little groups does not work in the most general case for arbitrary
finite group Γ. It seems that a new method is needed for determination of
the irreducible characters.

The purpose of this paper is to complete the character theory of the spin

wreath products Γ̃n and compute the missing part of the characters table of

Γ̃n for any finite group Γ. We will construct all irreducible characters and
in particular provide explicit formulas for character values on the conjugacy
classes of the second type. It turns out that spin character values in this part
can be non-zero for more than two conjugacy classes in contrast of Schur’s
case, nevertheless they are still sparsely zero. We note that the exhaustion
method is used to pick up all non-zero character values, which bears some
similarity to Schur’s original method.

2. Projective representations of Γ̃n

2.1. Spin wreath products. According to Schur, there are two non-
isomorphic double covering groups of the symmetric group Sn when n ≥ 4
and n 6= 6. But their representations are in complete one-to-one correspon-

dence. We fix one of them, and let the spin symmetric group S̃n be the finite
group generated by z and ti, (i = 1, · · · , n− 1) with the relations:

z2 = 1, t2i = (titi+1)
3 = z, zti = tiz, titj = ztjti, (|i− j| > 1).(2.1)

Let θn be the homomorphism from S̃n to Sn sending ti to the transpo-

sition (i, i+1) and z to 1. This says that S̃n is a central extension of Sn by
the cyclic group Z2.

The spin group S̃n has a cycle presentation à la Conway [14]. For i < j,
the transposition [ij] is deinfed as [ij] = tj−1 · · · ti+1titi+1 · · · tj−1. Here if
j = i + 1, we take ti = [i, i + 1]. Then for i1 < i2 < · · · < ik ≤ n, we
define [i1i2 · · · ik] = [i1i2][i2i3] · · · [ik−1ik]. Finally for a permutation σ ∈ Sk
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we define

(2.2) [iσ(1)iσ(2) · · · iσ(k)] = zl(σ)[i1i2 · · · ik].
Given a permutation w ∈ Sn. We can fix its cycle product as follows.

First each cycle is written as a word lexicographically by rotating its content,
then we rearrange the order of the cycles lexicographically to obtain a unique

presentation w =
∏l

i=1(ai1 · · · aiλi
), where λi are the lengths of the cycles.

We then define the element tw =
∏l

i=1[ai1 · · · aiλi
] ∈ S̃n. Note that θ

−1
n (w) =

zptw. One also has that tw1twt
−1
w1

= zptw1ww−1
1

for w,w1 ∈ Sn, where p =

0 or 1. Similarly for a partition ρ we denote tρ = tw(ρ), where w(ρ) =
(1 · · · ρ1) · · · (n− ρl + 1 · · · n).

For a positive integer n and a finite group Γ, let Γn = Γ× · · ·×Γ be the

n-fold direct product of Γ, and let Γ0 = 1. The spin group S̃n acts on Γn by
permuting the components:

tw(g1, · · · , gn) = (gw−1(1), · · · , gw−1(n)), z(g1, · · · , gn) = (g1, · · · , gn).(2.3)

The spin wreath product Γ̃n = Γ ≀ S̃n is the semi-direct product

Γ̃n = Γn
⋊ S̃n = {(g, t)|g = (g1, · · · , gn) ∈ Γn, t ∈ S̃n}

with the multiplication (g, t) ·(h, s) = (gt(h), ts). The quotient group Γ̃n/〈z〉
is isomorphic to the semidirect product Γn = Γn

⋊ Sn, and the canonical

homomorphism θn from Γ̃n to Γn sends (g, ti) 7→ (g, (i, i + 1)) and (g, z) 7→
(g, 1). For simplicity we have used the same symbol for the homomorphism
θn for the wreath product.

We can define a parity p for Γ̃n by (here g ∈ Γn, ti ∈ S̃n)

p(g, ti) = 1 (1 ≤ i ≤ n− 1), p(g, z) = 0.

This agrees with the usual parity for S̃n when Γ is the trivial group. There-

fore the group algebra C[Γ̃n] has a superalgebra structure, and C[Γ ≀ Ãn] is
the even subspace.

2.2. Conjugacy classes. Let Γ∗ = {ci|i = 0, 1, . . . , r} be the set of
conjugacy classes of Γ and denote by Γ∗ = {γi|i = 0, 1, · · · , r} the set of
irreducible characters of Γ. Let ζc be the order of the centralizer of an
element in the conjugacy class c ∈ Γ∗, then the order of the conjugacy class
c is |Γ|/ζc. Here for a finite set X we denote by |X| its cardinality. In the
following we follow Macdonald’s notations [6].

A partition-valued function ρ = (ρ(c))c∈Γ∗ defined on Γ∗ consists of |Γ∗|
partitions indexed by conjugacy classes c ∈ Γ∗. The weight of ρ is defined
by ||ρ|| = ∑

c∈Γ∗
|ρ(c)|, and the length is given by l(ρ) =

∑
c∈Γ∗

l(ρ(c)). It
helps to visualize ρ as a colored partition in which each sub-partition ρ(c)
is colored by c. Let P(Γ∗) be the set of partition-valued functions indexed
by Γ∗. It is well-known that the conjugacy classes of Γn are parameterized
by P(Γ∗). For an element (g, σ) ∈ Γn, the permutation σ gives rise to a
cycle partition λ = (λ1, λ2, . . .). For each part λi = k, which corresponds
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to the cycle (i1i2 · · · ik), we associate the cycle-product gikgik−1
· · · gi1 ∈ Γ.

If the cycle-product belongs to the conjugacy class c, then we color this
part λi by c which turns λ into a colored partition. In this way we get the
parametrization of conjugacy classes of Γn by P(Γ∗). For ρ = (ρ(c))c∈Γ∗ ∈
Pn(Γ∗), let Cρ be the corresponding conjugacy class in Γn.

We denote by SP(Γ∗) the set of partition-valued functions (ρ(c))c∈Γ∗ in
P(Γ∗) such that each partition ρ(c) is strict, i.e. ρ(c) has distinct parts. Let
OP(Γ∗) be the set of partition-valued functions (ρ(c))c∈Γ∗ on Γ∗ such that
all parts of the partitions ρ(c) are odd integers.

For each partition λ we define the parity d(λ) = |λ|−l(λ). Similarly, for a
partition-valued function ρ = (ρ(c))c∈Γ∗ , we define d(ρ) = ‖ρ‖−l(ρ). Then ρ
is even (resp. odd) if d(ρ) is even (resp. odd). We set P0

n(Γ∗) (resp. P1
n(Γ∗))

to be the collections of even (resp. odd) partition-valued functions ρ on Γ∗

such that ||ρ|| = n. As a convention we denote SPi
n(Γ∗) = Pi

n(Γ∗)∩SP(Γ∗)
and OPn(Γ∗) = Pn(Γ∗) ∩ OP(Γ∗) for i ∈ {0, 1}. When Γ∗ just consists
of a single element, P(Γ∗) will be simply written as P. Similarly we have
notations such as OPn, SPn, and SPi

n.

2.3. Split conjugacy classes. An element x̃ ∈ Γ̃n is called non-split
if x̃ is conjugate to zx̃. Otherwise x̃ is said to be split. An element x ∈ Γn

is called split if θ−1
n (x) is split. A conjugacy class of Γ̃n is called split if its

elements are split. It is known that the conjugacy class Cρ of Γn splits if
and only if the preimage θ−1

n (Cρ) =: Dρ splits into two conjugacy classes in

Γ̃n.
For a partition λ = (1m12m23m3 · · · ) of n, we denote by zλ =

∏
i≥1 i

mimi!
the order of the centralizer of the permutation with cycle type λ in Sn. For
each partition-valued function ρ = (ρ(c))c∈Γ∗ , we define

Zρ =
∏

c∈Γ∗

zρ(c)ζ
l(ρ(c))
c ,

which is the order of the centralizer of an element of conjugacy type ρ =
(ρ(c))c∈Γ∗ in Γn. The order of the centralizer of an element of conjugacy

type ρ in Γ̃n is given by

Z̃ρ =

{
2Zρ, Cρ is split,

Zρ, Cρ is non-split.

For each split conjugacy class Cρ in Γn, we define the conjugacy class D+
ρ

in Γ̃n to be the conjugacy class containing the element (g, tρ) and define
D−

ρ = zD+
ρ , then Dρ = D+

ρ ∪D−
ρ .

As usual a representation π of Γ̃n is called spin if π(z) = −id, then its
character is a projective character of Γn. It is clear that the character of

a spin representation of Γ̃n are determined by its values on split conjugacy

classes. By a standard result [10, 1] the conjugacy class of Γ̃n is split in Γ̃n

if and only if either ρ ∈ OPn(Γ∗) or ρ ∈ SP1
n(Γ∗). In particular the split
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conjugacy classes of S̃n (i.e. when Γ is the trivial group) are parameterized
either by partitions with odd integers or by odd strict partitions. By Euler’s
theorem the number of strict partitions is equal to the number of odd par-

titions, therefore the total number of such conjugacy classes of Γ̃n are given
by |SP0

n(Γ∗)|+ 2|SP1
n(Γ∗)|.

3. The irreducible spin character table of Γ̃n

3.1. Schur’s theory of S̃n. Like the symmetric group Sn, nontrivial

projective (spin) characters of S̃n are parameterized by strict partitions λ
of n. One can classify spin characters into the so-called double spin and
associate spin characters. The associated character χ′ of a spin character is
defined to be χ′ = sgn · χ, where sgn is the sign character. If χ′ = χ, then
we say χ is a double spin character (or self-associated). For ν ∈ SPn and
d(ν) = n − l(ν) even, there corresponds a unique irreducible (double) spin
character ∆ν ; for d(ν) odd, there corresponds a pair of irreducible (associate)

spin characters ∆±
ν for S̃n. Schur [11] showed that there was an analogous

Frobenius formula for the spin character values at the even conjugacy classes
indexed by partitions with odd integers. For ν ∈ SP the Schur Q-function
Qν is defined by

Qν(x1, · · · , xn) = 2l
∑

w∈Sn/Sn−l

xν1w(1) · · · x
νn
w(n)

∏

i<j

xw(i) + xw(j)

xw(i) − xw(j)
,

where n ≥ l = l(ν) and Sn−l acts on xl+1, · · · , xn. It is known that Qν is
a polynomial in power sum symmetric functions p1, p3, p5, · · · . As usual we
will denote pα = pα1pα2 · · · for a partition α.

Schur showed that nontrivial values of the spin character ∆ν at even
conjugacy classes are given by

(3.1) Qν =
∑

α∈OPn

2[
l(ν)+l(α)+d̄(ν)

2
]z−1
α ∆ν(α)pα,

where [a] denotes the largest integer ≤ a and d̄(ν) is equal to 0 (resp. 1) if
d(ν) is even (resp. odd). Schur further proved the following results.

Theorem 3.1. [11] (i) For n − l(ν) even, the character ∆ν of S̃n is
determined by {∆ν(α)|α ∈ OPn} (given by Eq.(3.1)) and ∆ν(µ) = 0 for
µ /∈ OPn.

(ii) For n−l(ν) odd, the character ∆ν of S̃n is determined by {∆ν(α)|α ∈
OPn} (given by Eq.(3.1)) and ∆ν(ν) = (

√
−1)(n−l(ν)+1)/2

√
ν1 · · · νk/2 for

ν = (ν1, · · · , νk); ∆ν(µ) = 0 for µ 6= ν and µ ∈ SP1
n. Moreover, (∆ν)

′
(α) =

∆ν(α) for n− l(α) even and (∆ν)
′
(α) = −∆ν(α) for n− l(α) odd.

For Γ̃n, the values of nontrivial spin characters at the conjugacy classes
associated to ρ for ρ ∈ OPn(Γ∗) are given by Frenkel-Jing-Wang [1].
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Lemma 3.2. For an irreducible spin Γ̃n-character χλ with type λ ∈
SP1

n(Γ
∗) and a subset G of (Γ̃n)∗, set 〈χ, χ〉G =

∑
Dρ∈G

1
|Z̃ρ|

|χ(Dρ)|2, then
〈χ, χ〉OPn(Γ∗) = 〈χ, χ〉SP1

n(Γ∗) =
1
2 (see [1]).

Proof. Since χ
′

λ(x) = (−1)deg(x)χλ(x) for x ∈ Γ̃n, we have that

2 =〈χλ + χ
′

λ, χλ + χ
′

λ〉Γ̃n

=(
∑

ρ∈OPn(Γ∗)

+
∑

ρ∈SP1
n(Γ∗)

)
1

Z̃ρ

|(χλ + χ
′

λ)(Dρ)|2

=
∑

ρ∈OPn(Γ∗)

1

Z̃ρ

· 4|χλ(Dρ)|2
(3.2)

Therefore,
∑

ρ∈OPn(Γ∗)
1
Z̃ρ

|χλ(Dρ)|2 =
∑

ρ∈SP1
n(Γ∗)

1
Z̃ρ

|χλ(Dρ)|2 = 1
2 . �

Table 1 shows the status of character values. Part D indicates what we
will compute in this paper: χ(D±

ρ ) for ρ ∈ SP1
n(Γ∗).

Table 1. The spin character table for Γ̃n

Character \ Class : ρ ∈ OPn(Γ∗) ρ ∈ SP1
n(Γ∗)

λ ∈ SP0
n(Γ∗), χλ: A: known C: 0

〈χλ, χλ〉: 1 0

λ ∈ SP1
n(Γ∗), χλ: B: known D: this paper

〈χλ, χλ〉: 1/2 1/2

3.2. Decomposition of colored partitions. When Γ is a finite abelian
group, we used the Mackey-Wigner method of little groups to decompose
the action of Sn on the characters of Γn. It turns out that the invari-
ant subgroup of each Sn-orbit is a Young subgroup of Sn and vice versa.
Then we can construct all spin irreducible representations indexed by strict
partition-valued functions by induction, and show that the character values
are sparsely zero and the non-zero values are given according to how the par-
titions are supported on various conjugacy classes (see [3]). This method is
no longer available when Γ is an arbitrary finite group. Next we use a differ-
ent method to compute spin character values on odd strict partition-valued
functions for a general finite group Γ.

We discuss the conjugacy classes generated by Young subgroups. For
ν = (νγ)γ∈Γ∗ ∈ SP(Γ∗), we first erase the coloring of νγi and reassign
colors arbitrarily from Γ∗. Suppose νγi = (νi1, ν

i
2, · · · , νis) as an ordinary

strict partition. Then for any composition c(i) = (ci1 , · · · , cis) from Γ∗ =
{c0, · · · , cr}, we assign the colors ci1 , · · · , cis consecutively to the parts of νγi
to get a colored partition νi(c) of the shape νi. The resulted multi-colored

partition will be denoted by νI , where I ∈ {0, · · · , r}l(ν). We let [ν] be the
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collection of all these multi-colored partitions, which are parameterized by
mappings I : {1, 2, · · · , l(ν)} → {0, · · · , r}. Therefore the cardinality of [ν]

is (r + 1)l(ν). See the following example.




,

ν(γ0) ν(γ1)


 




,

ν1(c) ν2(c
′
)




,




,

ν1(c) ν2(c
′
)




, · · ·

3.3. Spin supermodules vs. spin modules. A spin Γ̃n-module V
becomes a spin supermodule when chV (x) = 0 for all odd elements x. Ac-
cording to [5] there are two basic types of simple supermodules: type M or
Q, corresponding to our double spin and a pair of associated spin modules
when forgetting the Z2-gradation. Moreover all double spin and associate
spin modules are realized in this way.

For a strict partition-valued function λ = (λγ)γ∈Γ∗ ∈ SPn(Γ
∗), let Jλ =

{γ ∈ Γ∗|λγ is odd strict} and J
′

λ = Γ∗ − Jλ = {γ ∈ Γ∗|λγ is even strict}.
Let Uγ be the irreducible Γ-module associated with the irreducible character

γ ∈ Γ∗. Suppose Vλγ
is the irreducible spin S̃|λγ |-supermodule determined

by the strict partition λγ , then U
⊗|λγ |
γ ⊗Vλγ

is a spin Γ̃|λγ |-supermodule. Let

Γ̃λ be the non-trivial double cover of the Young subgroup Γn
⋊S(|λγ0 |,··· ,|λγr |)

.

Then by [1], the super tensor product

⊗̂
γ∈Γ∗

(U
⊗|λγ |
γ ⊗ Vλγ

)

decomposes completely into 2[
|Jλ|

2
] copies of an irreducible spin Γ̃λ-super-

module. Denote this irreducible supermodule by Wλ.

Proposition 3.3. The underlying Γ̃n-module of the induced supermod-

ule IndΓ̃n

Γ̃λ

Wλ is an irreducible double spin Γ̃n-module or a direct sum of two

associated irreducible Γ̃n-modules according to the supermodule is of type
M or Q respectively. In terms of partitions this corresponds to whether
d(λ) = n− l(λ) is even or odd.

Proof. This is true in a more general context. Each irreducible Γ̃n-
supermodule of type M (resp. Q) is an irreducible double spin (resp. a pair

of associated spin) Γ̃n-module(s). Suppose that the underlying Γ̃n-module

of our irreducible Γ̃n-supermodule V = IndΓ̃n

Γ̃λ

Wλ decomposes into a direct

sum of irreducible Γ̃n-modules:

V =

m∑

i=1

Vi ⊕
q∑

j=1

(Wj ⊕W ′
j),
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where Vi are irreducible double spin modules, and Wj and W ′
j are irreducible

associate spin modules. It follows from general theory [4] of double spin and

associate spin modules that, as an Γ ≀ Ãn-module, Res(Vi) decomposes into
V ′
i ⊕V ′′

i , while Res(Wj) or Res(W ′
j) remains irreducible. Thus we will have

〈V, V 〉Γ≀Ãn
= 2m+ 2q.

On the other hand we know that 〈V, V 〉Γ̃n
= 1 or 2 according to the spin

supermodule V being of type M or Q by vertex operator calculus [1]. This
means that 〈V, V 〉Γ≀Ãn

= 2, so we must have that either m = 1 or q = 1. �

3.4. Construction of irreducible spin characters. Let ∆̃λγ
be the

character of the supermodule Vλγ
, then

⊗̂
γ∈Γ∗(γ⊗|λγ | ⊗ ∆̃λγ

)) is the char-

acter of super tensor product
⊗̂

γ∈Γ∗(U
⊗|λγ |
γ ⊗ Vλγ

). In order to consider

the ordinary spin characters of Γ̃λ, Schur defined the starred tensor product
⊛γ∈Γ∗(γ⊗|λγ |⊗∆λγ

) to be an underlying ordinary irreducible component of⊗̂
γ∈Γ∗(γ⊗|λγ | ⊗ ∆̃λγ

) (see [11]). Let χ̃λ (resp. ∆̃λγ
) be the character of

irreducible supermodule Wλ (resp. Vλγ
). It is known that χ̃λ (resp. ∆̃λγ

) is also an irreducible ordinary character when d(λ) (resp. d(λγ)) is even.
We denote it by χλ (resp. ∆λ) when it is regarded as an ordinary character.

While χ̃λ (resp. ∆̃λγ
) decomposes into two ordinary irreducible characters

χλ and χ
′

λ (resp. ∆λγ
and ∆

′

λγ
) when d(λ) (resp. d(λγ)) is odd.

Remark 3.4. Let ρ = ρ0∪· · ·∪ρr be a union of partition-valued functions
on Γ∗ whose parts are union of those of partition-valued functions ρ0, · · · , ρr
on Γ∗. Then Dρ splits into two conjugacy classes of Γ̃(|ρ0|,··· ,|ρr|) if and only
if
(1) ρ = ρ0 ∪ · · · ∪ ρr ∈ OP |ρ0|+···+|ρr|(Γ∗) or

(2) ρi ∈ SP |ρi|(Γ∗) for 0 ≤ i ≤ r and ||ρ|| − l(ρ) is odd.

For brevity, we have used the numbers 0, 1, · · · , r by γ ∈ Γ∗ to index
each sub-partition-valued function in ρ. More precisely, we denote ργj := ρj.

For (g, tρ) ∈ Γ̃λ with ρ = ρ0 ∪ · · · ∪ ρr, one has [3]

χλ(g, tρ) = ⊛γ∈Γ∗(γ⊗|λγ | ⊗∆λγ
)(g, tρ)

=2[
|Jλ|

2
](
√
−1)

[
|Jλ|

2
]·
∏

γ∈Jλ
d(tργ ) ·

∏

γ∈Γ∗

γ⊗|λγ | ⊗∆λγ
(g, tργ ).

(3.3)

Let χ̃λ ↑ be the induced character of χ̃λ from Γ̃λ to Γ̃n. We have χ̃λ ↑= χλ ↑
when d(λ) is even and χ̃λ ↑= (χλ + χ

′

λ) ↑= χλ ↑ +χ
′

λ ↑ when d(λ) is odd. If
χλ is irreducible, then χλ ↑ is irreducible by Prop. 3.3. Hence by Mackey’s
decomposition theorem and Frobenius reciprocity we obtain (cf. [3]):

(3.4) 〈χλ ↑, χλ ↑〉
Γ̃n

= 〈χλ, χλ〉Γ̃λ
.
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3.5. Spin character values. Let λ = (λγ0 , · · · , λγr ) be a strict par-
tition valued function on Γ∗. Set ρ = ρ0 ∪ · · · ∪ ρr be the partition-valued
function defined in Remark 3.4 such that |ρj| = |λγj | for j = 0, · · · , r. From
Schur’s results in Theorem 3.1, one sees that if ∆λγj

(tρj ) has a nonzero value

then ρj must be in [λγj ] for γj ∈ Jλ, and ρj must lie in OSP |λγj
|(Γ∗) :=

OP |λγj
|(Γ∗) ∩ SP |λγj

|(Γ∗) for γj ∈ J
′

λ. then we have the following result.

Proposition 3.5. Let λ = (λγ)γ∈Γ∗ ∈ SP1
n(Γ

∗). If ρ = ∪r
j=0ργj ∈

SP1
n(Γ∗) such that ργj lies in [λγj ] for γj ∈ Jλ, and ργj is in OSP |λγj

|(Γ∗)

for γj ∈ J
′

λ, then

(3.5)
∏

γ∈J
′
λ

( ∑

ργ∈OSP|ργ |(Γ∗)

1

Zργ

|
∏

c∈Γ∗

γ(c)l(ργ (c))∆λγ
(tργ )|2

)
= 1.

Proof. Write m = |Jλ| then we have (Note: here m is odd)

〈χλ ↑, χλ ↑〉
Γ̃n−Γ≀Ãn

=2−[m
2
]·2

∑

ρ=∪γ∈Γ∗ργ∈SP1
n(Γ∗)

ργ∈SP|λγ |(Γ∗)

1

Z̃ρ

|
(
⊛γ∈Γ∗ γ⊗|λγ | ⊗∆λγ

)
(Dρ)|2

=2−m+1 ·
∑

ρ=∪γi∈Γ∗ργi∈SP
1
n(Γ∗)

ργi∈SP|λγi |
(Γ∗)

2m−2
∏

γ∈Γ∗

( 1

Zργ

|γ⊗|λγ | ⊗∆λγ
(Dργ )|2

)

=
1

2

∏

γ∈Γ∗

( ∑

d̄(ργ)=d̄(λγ),ργ∈SP|λγ |(Γ∗)

1

Zργ

|γ⊗|λγ | ⊗∆λγ
(Dργ )|2

)

(3.6)

As Zρ =
∏

γ∈Γ∗ Zργ and Z̃ργ = 2Zργ for γ ∈ Jλ, so Eq. (3.6) becomes

=
1

2

∏

γ∈Jλ

( ∑

ργ∈SP1
|λγ |(Γ∗)

2

Z̃ργ

|γ⊗|λγ | ⊗∆λγ
(Dργ )|2

)
·

∏

γ∈J
′
λ

( ∑

ργ∈SP0
|λγ |(Γ∗)

1

Zργ

|γ⊗|λγ | ⊗∆λγ
(Dργ )|2

)

=2m−1
∏

γ∈Jλ

〈γ⊗|λγ | ⊗∆λγ
, γ⊗|λγ | ⊗∆λγ

〉SP1
|λγ |(Γ∗)

·

∏

γ∈J
′
λ

( ∑

ργ∈OSP|λγ |(Γ∗)

1

Zργ

|γ⊗|λγ | ⊗∆λγ
(Dργ )|2

)

=
1

2

∏

γ∈J
′
λ

( ∑

ργ∈OSP|λγ |(Γ∗)

1

Zργ

|γ⊗|λγ | ⊗∆λγ
(Dργ )|2

)
.

(3.7)
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Thus it follows from [1] and Lemma 3.2 that

〈χλ ↑, χλ ↑〉OPn(Γ∗) = 〈χλ ↑, χλ ↑〉SP1
n(Γ∗) =

1

2
.

Eqs. (3.6) and (3.7) imply that

∏

γ∈J
′
λ

( ∑

ργ∈OSP|ργ |(Γ∗)

1

Zργ

|
∏

c∈Γ∗

γ(c)l(ργ (c))∆λγ
(zptργ )|2

)
= 1.(3.8)

�

The following theorem gives the remaining part of the spin character

table for Γ̃n.

Theorem 3.6. Let λ = (λγ)γ∈Γ∗ ∈ SP1
n(Γ

∗) and ρ ∈ SP1
n(Γ∗). (i) If

ρ = ∪γ∈Γ∗ργ such that ργ ∈ [λγ ] for γ ∈ Jλ and ργ ∈ OSP |ργ |(Γ∗) for

γ ∈ J
′

λ, then

χλ ↑ (D±
ρ ) =±Kρ

∏

γ∈Γ∗

∏

c∈Γ∗

γ(c)l(ργ (c)) ·
∏

γ∈J
′
λ

∆λγ
(tργ )·

(
√
−1)Σγ∈Jλ

|λγ |−l(λγ )+1

2

√∏
γ∈Jλ

zλγ

2
,

where the value of
∏

γ∈J
′
λ

∆λγ
(tργ ) is given by Schur Q-functions (see [1]).

(ii) χλ ↑ (D±
ρ ) = 0, otherwise.

Proof. (i) Let T be a left coset of Γ̃λ in Γ̃n and Kρ is the number of

left cosets T of Γ̃λ in Γ̃n such that (g, tρ)T = T . Then t−1(g, tρ)t ∈ Γ̃λ for
any left coset representative t ∈ T . It follows from the formula of induced
character that

χλ ↑ (D±
ρ ) =± 1

|Γ̃λ|
∑

T∈Γ̃n/Γ̃λ

(∑

t∈T

⊛γ∈Γ∗(γ⊗|λγ | ⊗∆λγ
)(t−1(g, tρ)t)

)

=±Kρ ·⊛γ∈Γ∗(γ⊗|λγ | ⊗∆λγ
)(g, tρ)

=±Kρ · 2
|Jλ|−1

2

∏

γ∈Γ∗

(γ⊗|λγ | ⊗∆λγ
)(D+

ργ ).

(3.9)

In the above we have used χλ ↑ (D−
ρ ) = −χλ ↑ (D+

ρ ), and the second line

vanishes if tρ /∈ S̃λ. Moreover, by [1],

γ⊗|λγ | ⊗∆λγ
(D+

ργ ) =
∏

c∈Γ∗

γ(c)l(ργ (c)) ·∆λγ
(tργ ).
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So Eq. (3.9) is equal to

=±Kρ · 2
|Jλ|−1

2

∏

γ∈Γ∗

∏

c∈Γ∗

γ(c)l(ργ (c)) ·
∏

γ∈Γ∗

∆λγ
(tργ )

=±Kρ · 2
|Jλ|−1

2

∏

γ∈Γ∗

∏

c∈Γ∗

γ(c)l(ργ (c)) ·
∏

γ∈J
′
λ

∆λγ
(tργ )·

∏

γ∈Jλ

(
√
−1)

|ργ |−l(ργ )+1

2

√∏
c∈Γ∗

zργ(c)

2

=±Kρ

∏

γ∈Γ∗

∏

c∈Γ∗

γ(c)l(ργ (c)) ·
∏

γ∈J
′
λ

∆λγ
(tργ )·

(
√
−1)Σγ∈Jλ

|λγ |−l(λγ)+1

2

√∏
γ∈Jλ

zλγ

2
.

(3.10)

(ii) Note that we can assume that ρ = ∪γ∈Γ∗ργ , where ργ ∈ SP |λγ |(Γ∗).
Otherwise it is easy to see that χλ ↑ (ρ) = 0.

(1) If ργ ∈ OSP |ργ |(Γ∗) for γ ∈ J
′

λ, we show that ργ ∈ [λγ ] for γ ∈ Jλ.
We denote m = |Jλ|. It follows from Proposition 3.5 that

〈χλ ↑, χλ ↑〉SP1
n(Γ∗)

=2m−1
∏

γ∈Jλ

( ∑

ργ∈SP1
|λγ |

(Γ∗)

1

Z̃ργ

|
∏

c∈Γ∗

γ(c)l(ργ (c))∆λγ
(zptργ )|2

)

≥2m−1
∏

γ∈Jλ

( ∑

ργ∈[λγ ]

1

Zργ

|
∏

c∈Γ∗

γ(c)l(ργ (c))∆λγ
(tργ )|2

)

=2m−1
∏

γ∈Jλ

( ∑

ργ∈[λγ ]

( ∏

c∈Γ∗

|γ(c)|2l(ργ (c))

zργ(c)ζ
l(ργ(c))
c

)
∣∣∣∣∣∣

√∏
c∈Γ∗

zργ(c)

2

∣∣∣∣∣∣

2

)

=2m−1
∏

γ∈Jλ

( ∑

ργ∈[λγ ]

1

2

∏
c∈Γ∗

|γ(c)|2l(ργ (c))
∏

c∈Γ∗
ζ
l(ργ(c))
c

)

(3.11)

Since ργ ∈ [λγ ], l(ργ) = l(λγ) and

γ(c)l(ργ (c)) = γ⊗l(ργ (c)) · (c, · · · , c︸ ︷︷ ︸
l(ργ(c))

),
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hence we have that
∏

c∈Γ∗

γ(c)l(ργ (c)) = γ⊗l(ργ) · (c0, · · · , c0︸ ︷︷ ︸
l(ργ(c0))

, · · · , cr, · · · , cr︸ ︷︷ ︸
l(ργ (cr))

)

=γ⊗l(ργ (c0)) ⊗ · · · ⊗ γ⊗l(ργ(cr)) · (c0, · · · , c0︸ ︷︷ ︸
l(ργ(c0))

, · · · , cr, · · · , cr︸ ︷︷ ︸
l(ργ(cr))

)

=γ⊗l(ργ ) · (ci1 , ci2 , · · · , cil(ργ ))

(3.12)

which satisfies that the number of cj(j = 0, · · · , r) in {ci1 , ci2 , · · · , cil(ργ )} is

equal to l(ργ(c
j)). Clearly Cργ = (ci1 , ci2 , · · · , cil(ργ )) is a conjugacy class

of Γl(λγ). Let ζCργ
be the order of the centralizer of an element in the

conjugacy class Cργ of Γl(λγ), then ζCργ
=

∏
c∈Γ∗

ζ
l(ργ(c))
c . As ργ ∈ [λγ ],

so Cργ can run through all conjugacy classes in Γl(λγ). For example, if we

assume [λγ ] = {ργ ∈ SP1
11(Γ∗)|λγ = (5, 4, 2)}, then ργ = (5�1 , 4�2 , 2�3)

and each �j can run from c0 to cr. So Cργ = (�1,�2,�3) runs through all

conjugacy classes of Γ3. Subsequently Eq. (3.11) becomes

=2m−1
∏

γ∈Jλ

(
∑

Cργ∈(Γ
l(λγ ))∗

1

2ζCργ

·

|γ⊗l(ργ (c0)) ⊗ · · · ⊗ γ⊗l(ργ(cr)) · (c0, · · · , c0︸ ︷︷ ︸
l(ργ(c0))

, · · · , cr, · · · , cr︸ ︷︷ ︸
l(ργ(cr))

)|2)

=2m−1
∏

γ∈Jλ

( ∑

Cργ∈(Γ
l(λγ ))∗

1

2ζCργ

· |γ⊗l(ργ )(ci1 , ci2 , · · · , cil(ργ ))|2
)

=2m−1
∏

γ∈Jλ

(
1

2

∑

Cργ∈(Γ
l(λγ ))∗

1

ζCργ

|γ⊗l(λγ )(Cργ )|2)

=2m−1
∏

γ∈Jλ

1

2
〈γ⊗l(λγ ), γ⊗l(λγ )〉Γl(λγ ) =

1

2
,

(3.13)

which forces χλ ↑ (D±
ρ ) = 0 if ργ /∈ [λγ ] for γ ∈ Jλ.

(2) If ργ /∈ OSP |λγ |(Γ∗) for γ ∈ J
′

λ, then there is at least one ργ not

in OP |λγ |(Γ∗) for γ ∈ J
′

λ. Meanwhile, ∆λγ
is a double spin character when

γ ∈ J
′

λ, so we have ∆λγ
(tργ ) = 0, thus χλ ↑ (D±

ρ ) = 0. This completes the
proof. �
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