INCOMPRESSIBILITY OF PRODUCTS OF WEIL TRANSFERS
OF GENERALIZED SEVERI-BRAUER VARIETIES

NIKITA A. KARPENKO

ABSTRACT. We generalize the result of [11] on incompressibility of Galois Weil transfer
of generalized Severi-Brauer varieties, to direct products of varieties of such type; as
shown in [11], this is needed to compute essential dimension of representations of finite
groups. We also provide a generalization to non-Galois (separable) Weil transfer.
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1. INTRODUCTION

Let F be a field and let L/F be a finite Galois field extension. A central division L-
algebra D is balanced, if for every g € Gal(L/F'), the conjugate L-algebra g(D), obtained
from D by the base change g : L — L, is Brauer-equivalent to a tensor power of D.

For a balanced D as above, we refer as RSB-variety to the Weil transfer Ry /r of a
generalized Severi-Brauer variety SB(7, D) of D (j = 1,...,deg D). Let p be a prime
integer. An RSB-variety is a pRSB-variety, if the integers [L : F], deg D, and j are
p-powers.

The following problem has been raised in [11] for needs of computing essential p-
dimension of a representation of a finite group: compute canonical p-dimension of an
arbitrary finite direct product of RSB-varieties. This problem has been solved in [11] in
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the case of a single RSB-variety. The core result producing the solution was the following
statement on p-incompressibility of pRSB-varieties (we refer to [11] for an introduction
and further references on p-incompressibility, canonical p-dimension, Weil transfer, etc.):

Theorem 1.1 ([11, Theorem 11.2]). Any pRB-variety is p-incompressible.

In the present paper, we generalize Theorem 1.1 in two directions. First, we replace
Galois field extensions in the definition of pRSB-varieties, by separable ones. Although
this generalization is not motivated anymore by study of representations, it is a natural
step to do. The statement remains the same (see Theorem 2.3), as does the main outline
of the proof. The main change is in the definition of a balanced algebra over a separable
extension. All this is done in §2.

As asecond (and principal) generalization, we establish a criterion of p-incompressibility
of a product of pRSB-varieties, see Corollary 3.6. The basic result here is a p-incompres-
sibility criterion for a product of a pRSB-variety by an arbitrary projective homogeneous
(under an action of a semisimple affine algebraic group) variety given in Theorem 3.1.

As a particular case of Corollary 3.6, we recover in §4a (with a new proof and a simplified
statement) an old result [10, Theorem 2.1] on p-incompressibility of products of Severi-
Brauer varieties. But now we can also determine canonical p-dimension of any p-primary
Weil transfer of a product of this type, see §4b. In particular, we show that a p-primary
Weil transfer of a p-incompressible product of this type is also p-incompressible. Moreover,
the latter statement also holds for generalized Severi-Brauer varieties in place of the usual
ones, see §4c.

In the last section (§5), we drop the balance assumption to do a complete analysis
of a quadratic field extension. Note however, that the balanced case, motivated by the
representations, also looks interesting (not only for a quadratic L/F') from the following
viewpoint: for a pRSB-variety Y, the integer ¢d,(Y) = dim Y turns out to be much bigger
than cd,(Yz) = (dimY)/[L : F] so that the role of the field extension and the Weil transfer
shows up as crucial. In the imbalanced case however, the variety Y; may, for instance,
happen to be p-incompressible (c.f. Example 5.3), trivially implying p-incompressibility
of YV itself.

Most of our terminology and notation being introduced “on the move”, we only mention
here that smooth projective varieties X and Y over F' are called equivalent if there exist
rational maps X --» Y and Y --» X. Equivalent varieties have the same canonical
(p-)dimension, [11, Lemma 3.3(a)].

ACKNOWLEDGEMENTS. [ am grateful to Alexander Merkurjev and Zinovy Reichstein for
useful comments on early versions of the preprint. Its current version has been prepared
during my stay at the Universitét Duisburg-Essen (research group of Marc Levine), under
ideal work conditions.

2. NON-GALOIS EXTENSIONS

In this section we generalize Theorem 1.1 to the case of an arbitrary finite separable
(not necessarily Galois) field extension L/F of degree a power of p.

Here is the “Galois to separable” generalization of [11, Lemma 11.1] (with practically
the same proof). Here and everywhere else in the paper, the motive we are talking about
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are Chow motives with coefficients in F, (the finite field of p elements), see e.g. [2, §64].
Weil transfer of motives has been introduced in [5]. Corestriction of motives is from [7,

§3].
Lemma 2.1. Let L/F be an arbitrary finite separable field extension and let E/F be a

finite Galois field extension containing L. For and any m > 1, let My, ..., M,, be m
motives over L. Then the motive RL/F(MI @ - ® M,,) decomposes into a direct sum

Rep(Mi® - @ My,) 2 RpypMi @ - @ RpypMy @ N,

where N is a direct sum of corestrictions to F' of motives over fields K with FF C K C

E. U

Let L/F be a finite separable field extension. We generalize the notion of a balanced
central simple L-algebra D (which we already have in the Galois case, see §1). A central
simple L-algebra D is balanced, if for a Galois field extension F/F containing L and for
any F-imbedding of L into E with an image Lg, the LLgy-algebra obtained from D by
the base change L. — Ly C LLg is Brauer-equivalent to a tensor power of Dy,. This
definition does not depend on the choice of F; E can be taken to be a Galois closure of
L/F.

From now on, we extend the notion of a pRSB-variety, introduced in §1, by allowing
separable (not necessarily Galois) Weil transfer:

Definition 2.2. Let p be a prime number. An F-variety Y is a pRSB-variety, if there
exist a finite p-primary separable field extension L/F and a balanced division L-algebra
D of degree p" such that X ~ Ry ,r B(p’, D) for some i =0,...,n.

Theorem 2.3. For any prime number p, any pRB-variety is p-incompressible.

Proof. Let p be a prime number, L/F a finite separable field extension of degree a power
of p, D a balanced central division L-algebra of degree p™ for some n > 0, and X the
generalized Severi-Brauer variety SB(p’, D) of D with some i = 0,1,...,n. Let us prove
that the variety Rp,/rX, given by the Weil transfer of X, is p-incompressible.

Let E be a finite Galois field extension of F' containing L (for instance, F can be a
Galois closure of L/F'). The question on canonical p-dimension of Ry/pX easily reduces
to the case where [E : F] is also a power of p. Indeed, let G be the Galois group of
E/F and let H be its subgroup corresponding to L. Let G’ be a Sylow p-subgroup of GG
containing a Sylow p-subgroup H' of H. We get the following diagram of subgroups and
the corresponding diagram of subfields, where the sign p’ marks p-primary while the sign
pJmarks p-coprime indexes/degrees:

{1} E
| p” | p?
H' L,
? Y
PR N
H G’ L F
p?\G/pY p’ F/p)/

Since the degree [F' : F] is not divisible by p, canonical p-dimension of Ry ,pX does
not change under the base change F'/F. Moreover, (Rp/pX)r ~ Ry (X)) because
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L' ~ L ®p F'. Finally, observe that the index of a p-primary central simple L-algebra
is not changed under the base change L'/L. In particular, Dy, is still a division algebra.
Moreover, this central division L'-algebra is still balanced (now with respect to the subfield
FrcklL).

For the rest of the proof we will assume that the degree [E : F] is a p-power. We follow
the proof of Theorem 1.1, given in [11, Theorem 11.2], and only indicate the changes.

The first place where a change is needed is the place where we compute the index of D
over the field L' = I’ ®p L, where I is the function field of the variety Ry ,r SB(p" ', D).
In the case of Galois L/F', the Weil transfer disappears because Ry/r B(p" !, D)y, is the
product of the generalized Severi-Brauer varieties given by the conjugate algebras. This
happens because of the isomoprhism

L@rL~Lx---xL

of L-algebras, where L acts on L ® L on the left. Note that this isomorphism is also
L-linear for the right action of L on the tensor product if one lets L act on the factors of
L x ---x L by means of the F-automorphisms of L.

Under the assumptions of Theorem 2.3 however, L ® L is identified with L; X - -+ X L,.,
where each L; is LLg for an appropriate (depending on 4) choice of Ly as in the definition
of balanced algebra. Since [L; : L] > 1 for at least one value of i, we cannot avoid
the Weil transfer here and may want to use the index reduction formulas for the Weil
transfer of generalized Severi-Brauer varieties from [15] (see also [14]). But this is not
really necessary. Indeed, since D is balanced, for any ¢, the L;-algebra in question is
Brauer-equivalent to a tensor power of Dy, its index will divide p"~! if we extend L to
the function field of SB(p"~!, D). The Weil transfer becomes rational over this extension
of L so that the index of D won’t be affected by passing to the function field of the Weil
transfer.

We have explained why the index of D;, is indeed p™~!. The final adjustment we need
to make, in order to adopt the proof of Theorem 1.1 to the setting of Theorem 2.3, is in
the choice of the degree p Galois field subextension L/F of L/F. Recall that the Galois
group G of E/F is a p-group. Let H be its subgroup corresponding to the field L. By [3,
Theorem 4.2.1], H is contained in a normal subgroup H of G such that [G : H] = p. We
take for L the field corresponding to H and we have to compute canonical p-dimension
of the variety Rz /p(X);.

The variety Rp/p(X); is isomorphic to the product [], 5 §(R;,;X), where G=G/H
is the Galois group of L /F. Since D is balanced, this product is equivalent to its factor
Rp,iX given by g = 1. In particular, the canonical p-dimension of Rp/r(X)j is given by
the dimension of R, ; X. After this is established, the remainder of the proof of Theorem
1.1 goes through unchanged. U

3. INCOMPRESSIBILITY OF PRODUCTS
Here is our basic result on p-incompressibility of products:

Theorem 3.1. Let Y be a pRB-variety (for a given prime number p) and let Z be a
projective homogeneous F'-variety. The product Y x Z is p-incompressible provided that
the varieties Yp(z) and Zpy) are so.
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Proof. Let Y := Ry r B(p', D), where L/F is a finite separable field extension of degree
p" with » > 0, D is a balanced central division L-algebra of degree p" with n > 0,
and 1 = 0,...,n. Let Z be a projective homogeneous F-variety such that the varieties
Yr(z) and Zp(y) are p-incompressible. We are going to prove that the product Y x 7 is
p-incompressible.

By Theorem 2.3, the assumption requiring that Yr(z) is p-incompressible is equivalent
to the assumption that Dy is a division algebra.

Since canonical p-dimension is not changed under base field extensions of degree prime
to p (see [12, Proposition 1.5(2)]), we may assume that there exists a finite p-primary Ga-
lois field extension E/F containing L and such that Zg is of inner type. This assumption
allows us to apply results of [7] and [8, §6].

For any j =0,...,n, we set X/ := B(p/, D) and Y7 := Ry, X7. We also set X := X"
so that Y = Rp,pX.

We induct on n. For n = 0 the statement is trivial. From now on, we assume that
n > 0.

For ¢ = n the statement is trivial. From now on, we assume that ¢ < n.

Let I be the function field of the variety Y™ 1. Let L' := F'®p L. Since D is balanced,
the index of the central simple L'-algebra Dy == D®; L' = D®p F’ is p"~! so that there
exists a central division L’-algebra D’ such that the algebra of (p x p)-matrices over D’ is
isomorphic to Dy, We set X" := SB(p?, D), Y7 := Rpym X7, X' := X", and V' := V"'
By [4] (see also [1, Theorem 7.5]) and [9, Theorem 3.8], the motive of the variety X,
decomposes into a direct sum

M(Xy) ~ M(X') & M(X)(p™ e
MX)2p ) @@ MX)((p—Dp ) @ N,
where N is a direct sum of some shifts of the upper motives U(X "7} of some varieties
X" with j < i. Therefore, by Lemma 2.1 and [5, Theorem 5.4] (which we use just to

determine the shifts), the motive of the variety Y@ = Ry /F,(X 1) decomposes into a
direct sum

M(Yp) =~ MY') & MY")(pr e
MYt e e MY ((p—p T @ Ne N,

where now N is a direct sum of shifts of U(Y"”) with j < i, and N’ is a direct sum of
corestrictions of motives over fields K with F' C K C E. It follows that

MY X Z)pr =~ MY' x Zp)) ® MY x Zp)(p" ™" e
MY' x Zp)2p " N g @ MY x Zp)((p—1Dp" """ H e N N,
with N’ of the same shape as before and with N being a direct sum of shifts of
U)o M(Z), j<i.

We claim that the variety Y’ x Zp is p-incompressible by the induction hypothesis. To
check the claim, we check that the varieties Zp/(y+) and Yg,(z) are p-incompressible. To

check that Zp/(y+ is p-incompressible, we check that Z over a lager field F'(Y’ x Yp) is
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so. The field F'(Y' x Yp) = F'(Y)(Y’) is purely transcendental over F'(Y) and Zp(y)
is p-incompressible (this is the place in the proof of Theorem 3.1, where the assumption
on Zp(yy is used). Therefore Z over F'(Y' x Yps) is p-incompressible. (To see that
canonical p-dimension of projective homogeneous varieties does not change under a purely
transcendental base field extension, one may use the characterization [8, Corollary 6.2] of
the canonical p-dimension in terms of algebraic cycles together with the fact that a purely
transcendental base field extension does not affect the Chow groups.)

To check that Y},(Z) is p-incompressible, we check that D’L/(Z) is a division algebra.
Since L' = L(Y"™ 1), we have L'(Z) = L(Y" ! x Z) = L(Z)(Y"!). Since Dy is a
balanced (over F(Z)) division algebra, Dy z)yn-1) has index p"~!. Therefore Diyiz) s a
division algebra.

The claim being proved, it follows that

(32) M(Y X Z)p =~ U(Y' X Zp)) ®UY' X Zp)(p" T 1)
UY' x Zp)2p T Y@ UY' x Zp)((p—1)p" 7" @ N,

with N having the property that no summand of its complete decomposition is isomorphic
to a shift of U(Y' x Zp).

We want to show that the variety Y x Z is p-incompressible. Let [ be the number
of those summands in the complete decomposition of the motive U(Y x Z)p/, which are
isomorphic to a shift of U(Y’ x Zg/). We have 1 < | < p and it suffices to show that
[ = p. Indeed, | = p implies that the complete decomposition of U(Y x Z)p contains the
summand U(Y’ x Zp) of (3.2) with the maximal shift (p — 1)p"™*™"~1. Therefore

cdy(Y x Z2) =dimU(Y x Z) =dimU(Y x Z)p >
dimU(Y' x Zp) + (p — Dp™7 1 = dim(Y x Z).

(We refer to [6, Theorem 5.1] for the relation between canonical p-dimension and dimen-
sion of the upper motive of a projective homogeneous variety, used here.)

Our next claim is: [ divides p (therefore [ = 1 or [ = p, and we will only need to
show that [ # 1). To prove the claim, we consider the complete motivic decomposition
of Y x Z. It contains several shifts of U(Y x Z) (it contains one non-shifted U(Y x Z)
and - as we hope - no other shifts of this motive, but we do not know whether the hope
comes true by now). Let N be any of the remaining (indecomposable) summands. We
affirm that no summand of the complete decomposition of Nz is isomorphic to a shift of
U(Y' x Zg:). Clearly, this affirmation implies the claim that  divides p.

To prove the affirmation, let us note that N can be of two alternative types. The first
type is given by corestriction to F' of a motive over a field K with FF C K C E. For
such N, any indecomposable summand of Nz is a corestriction to F” of a motive over
K':= K®p F’ (see [7, Proposition 3.1]) which is never isomorphic to a shift of the upper
motive of a projective homogeneous F’-variety.

The second type of N is a shift of U(T'), where T is a projective homogeneous variety
with deg Cho(Tr(yxz)) = 0 (and with degCho(Y x Z)pry = F,). Over F' we still have
deg Cho(Tr(yxz)) = 0 (and deg Cho(Y x Z)p/(ry = IF,) because the field extension

F'(Y x Z)JF(Y x Z)
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is purely transcendental. Any indecomposable summand of Nz, which is not corestriction
from some F' C K C F, is a shift of U(S), where S is a projective homogeneous F'-variety
with deg Cho(Trr(s)) = Fp. It follows that deg Cho(Sp/(yxz)) = 0 (otherwise we would
be in contradiction with deg Cho(Tp/(yxz)) = 0) implying that no shift of U(S) (and
consequently no shift of U(S)) is isomorphic to U(Y’ x Zp), see [9, Corollary 2.15] for
the criterion of isomorphism for upper motives.

We proved the affirmation and the claim. This means that we only need to show that
[ # 1 to finish the proof of Theorem 3.1. So, we assume that [ = 1 and we look for a
contradiction. By [8, Proposition 2.4], the complete decomposition of U(Y X Z) g contains
as a summand the motive U(Y’ x Zp ) shifted by the difference

dimU(Y x Z) — dimU(Y' x Zp).
Therefore, [ = 1 implies that the above difference is 0, and we come to
cd,(Y x Z) =dimU(Y x Z) =dimU(Y' x Zp) = d,
where d := dim(Y’ X Zp) = dim Y’ + dim Z.

By [8, Proposition 6.1], there exist a € Ch(Y x Z)pyxz) and B € Chy(Y x Z) with
deg(a - B) # 0 € F,. In the last formula, we consider both cycles over a common field
extension of their fields of definition, before we multiply them. We use this convention
below (in similar formulas on degree of products) as well.

Since cd,(Yp) = dimY’ =: d', we can find o/ € Chd,(YF/(y)) and ' € Chy(Yp) with
deg(a’ - B') # 0. Using these o and 3’ and a rational point pt € Zp(z), we get the cycles

o x [pt] € ChY(Y X Z)pryxzy and B x [Z] € Chy(Y x Z)p,

having the same property as « and :
deg (o x [pt]) - (8 x 2))) #0.

It follows by [8, Lemma 6.5] that one can "mix up” the old cycles with the new ones and
get the relation

deg ((0/ x [pt]) - 6) # 0.
Since o/ x [pt] = (o/ x [Z]) - ([Y] x [pt]), the last degree relation can be rewritten as
deg(a’-B") # 0, where 5" € Chy (Yp(z)) is the push-forward of the product ([Y] x [pt]) -/
along the projection (Y x Z)p(z) = Yp(z). Since the field extension F'(Y)/F(Y) is purely
transcendental, there exists o € Chd/(YF(y)) mapped to o/ under the change of field
homomorphism. Changing notation, we write o for the image of o in Chd/(YF( 2)(v))-

The cycles o € Chd,(YF( z)vy) and " € Chy (Yp(z)) thus constructed have the property
deg(a” - ") # 0. It follows by [8, Corollary 6.2] that cd,(Yrz)) < d'. Since

(3.3) d' =dimY' =p'(p"~! —p') <p'(p" — p') = dimY,
the relation cd,(Yr(z)) < d' obtained contradicts the assumption on p-incompressibility
of the variety Yp(z). O

The necessary condition for p-incompressibility of a product of projective homogeneous
varieties, showing up in the following lemma, turns out to be sufficient in the case of the
special varieties we are interested in (see Corollary 3.5):
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Lemma 3.4. For any projective homogeneous F'-varieties X and Y,
Cdp<X X Y) < Cdp<X) + Cdp<YF(X))

In particular, a necessary condition for p-incompressibility of X XY is p-incompressibility
of Xpyy and Yp(x).

Proof. Again, we are using the characterization of canonical p-dimension of projective
homogeneous varieties given in [8, Corollary 6.2]. Since canonical p-dimension is not
changed under base field extensions of degree prime to p (see [12, Proposition 1.5(2)]),
we may assume that the condition of [8, Corollary 6.2] on the projective homogeneous
variety is satisfied for X and Y: both of them become of inner type over a finite p-primary
extension of F. We set x := cd,(X) and y := cd,(Yp(x)). We find ax € Ch*(Xp(x))
and Bx € Ch,(X) with deg(ax - fx) # 0. Similarly, we find ay € ChY(Yp(x)y)) and
By € Chy(Ypx)) with deg(ay - By) # 0. Let 3 € Chgimx4y(X x Y) be an element
mapped to Sy under the surjection

ChdimX+y(X X Y) — Chy(YF(X))

given by the pull-back along the morphism Yp(x) — X X Y induced by the generic point
of X. We set

a:=oax Xay € Chm+y(X X Y)F(XXY) and 6 = (ﬁX X [Y]) . 6;/ € Chng,»y(X X Y)
We have the relation deg(a - 3) # 0 showing that c¢d,(X xY) <z +y. O

Corollary 3.5. For two products X and Y of pRSB-varieties over F', their product X xY
is p-incompressible if and only if the varieties Xpyy and Yr(x) are p-incompressible.

Proof. The “only if” part being served by Lemma 3.4, we only prove the “if” part. We
write X as product X; x --- x X, of pRSB-varieties and induct on r. The case of r = 1
follows from Theorem 3.1. For r > 1, set X’ := X3 x -+ x X,.. To show that X xY =
X1 x (X' xY) is p-incompressible, by Theorem 3.1, it suffices to check that (Xi)rx/xy)
and (X' x Y)p(x,) are p-incompressible. The assumption on p-incompressibility of Xpy
implies (by Lemma 3.4) p-incompressibility of (X1)px/xy). And the variety (X' xY')pcx,)
is p-incompressible by induction hypothesis. O

Here is the most convenient statement to check p-incompressibility of a general product
of pRB-varieties. Basically, it reduces the problem to application of index reduction
formulas.

Corollary 3.6. Product X; X --- x X, of pRSB-varieties over F is p-incompressible if
and only if (X;) p(x,x-x X1 x Xop1 x--xX,) Jor every i = 1,...,r, is p-incompressible. O

4. PARTICULAR PRODUCTS

4a. Products of Severi-Brauer varieties. Applying Corollary 3.6 to a product of
Severi-Brauer varieties (Weil transfer do not show up here), we get a version of [10,
Theorem 2.1]. Note that the proof is different from the original one: it does not involve
K-theory.
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Corollary 4.1. Let Dy, ..., D, be p-primary central division F-algebras. The product of
their Severi-Brauer varieties is p-incompressible if and only if each D; remains division
algebra over the function field of the product of the Severi-Brauer varieties of the remaining
algebras. O

Remark 4.2. By the index reduction formula for Severi-Brauer varieties, the condition
on D; means that the index of every product of D; by tensor powers of the remaining
algebras is > ind D;. With this, one may see that Dy,..., D, satisfy the condition of
Corollary 4.1 if and only if their nonzero Brauer classes (put in some/any order increasing
the degrees) form a minimal basis in the sense of [10, Remark 2.9].

Remark 4.3. In general, the property of being p-incompressible for a projective homoge-
neous variety X is weaker than the property of having indecomposable motive. However,
for a generically split X (i.e., for X such that the motive of Xp(y) is split, i.e., is a direct
sum of shifts of the motive of a point), the above two properties are equivalent. Indeed,
M(X) for a generically split X is a direct sum of shifts of U(X) so that M(X) = U(X)
is and only if dim U(X) = dim X.

A product of Severi-Brauer varieties is a generically split projective homogeneous va-
riety. Therefore the motive of a p-incompressible product of Severi-Brauer varieties is
indecomposable.

There are numerous simplification in the proof of Theorem 3.1 when we adopt it to
products of Severi-Brauer varieties. It might be therefore helpful for the reader to look
at the simplified proof below before going through the actual proof of Theorem 3.1.

Proposition 4.4. Let X be the product of Severi- Brauer varieties X1, ..., X, over F' such
that for every i = 1,...,7, the variety (X;)p(x,x-xX;_1xXis1x-xX,) 15 D-incompressible.
Then the motive of X s p-incompressible.

Proof. Using induction on r, we are reduced to prove the following statement (which looks
more like the statement of Theorem 3.1): the product Y X Z of a Severi-Brauer variety Y
by a product of Severi-Brauer varieties Z is p-incompressible provided that the varieties
Yr(z) and Zpyy are so.

Actually, instead of being a product of Severi-Brauer varieties, Z can be any generically
split projective homogeneous variety: we will only use this property of Z in the proof.

Now we go along the lines of the proof of Theorem 3.1, removing everything superfluous.

The variety Y is the Severi-Brauer variety of a p-primary central division algebra D,
say, deg D = p™. Note that D remains division over F(Z).

We induct on n. For n = 0 the statement we are proving is trivial. We assume that
n > 1 below.

Let F” be the function field of the variety SB(p"~!, D). The index of the central simple
F'-algebra D is p"~! so that there exists a central division F’-algebra D’ such that the
algebra of (p x p)-matrices over D’ is isomorphic to Dp.. We set Y/ := SB(D’). The
motive of the variety Yz decomposes into the direct sum of p summands

M(Yp) ~ MY') & MY)p"") & MY")(2p" ) & - & MY")((p — "),
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It follows that

(4.5) MY X Z)pr = M(Y' x Zp)) @ M(Y' x Zp)(p" H)®
M(Y/ X ZF/)<2pn71) DD M(Y/ X ZF/)<<p — 1)pn71>

We claim: the decomposition (4.5) is complete, i.e., the motive of the variety Y’ x Zp: is
indecomposable (see Remark 4.3), and that — by the induction hypothesis. To check the
claim, we check that the varieties Zp/(y+) and Yl’m( 7) are p-incompressible. This is done
precisely as in the proof of Theorem 3.1.

Now we know that (4.5) is the complete decomposition and we want to show that the
motive of Y x Z is indecomposable. In other words, we want to show that

UY xZ)=MY x Z),

or — equivalently — that U(Y x Z)p contains all the p indecomposable summands of the
decomposition (4.5).

Let [ be the number of summand in the complete decomposition of the motive U(Y x
Z) g (all of them are automatically isomorphic to a shift of M(Zg/)). We have 1 <1 <p
and all we want to show is [ = p.

It is now very easy to see that [ divides p. Indeed, since the variety Y x Z is generically
split, every summand of its complete motivic decomposition is a shift of U(Y x Z).
Therefore [ divides p, as claimed, and we only need to show that [ # 1.

So, we assume that [ = 1 and we look for a contradiction. Clearly, [ = 1 implies that

cd,(Y x Z) =dimU(Y x Z) = dim M(Y' x Zp/) = d,

where d := dimY’ +dimZ = p"! — 1 +dimZ. By [8, Proposition 6.1], there exist
a € Ch'(Y x Z)pyxz) and B € Chy(Y x Z) with deg(a - 8) # 0 € F,. Starting from this
point, the proof of Proposition 4.4 ends precisely as the proof of Theorem 3.1. Note that
in (3.3) we will have i = 0 here. O

4b. Weil transfer of products of Severi-Brauer varieties.

Corollary 4.6. Let L/F be a p-primary separable field extension and let X be a product
over L of Severi-Brauer varieties of some balanced p-primary division L-algebras. Then
cdp(RiypX) = [L : F]-cdp(X). In particular, RypX is p-incompressible provided that
X 15 so.

Proof. Taking a minimal basis of the subgroup in Br(L) generated by the algebras (note
that any L-algebra representing an element of this subgroup is balanced), consider the
product X' of their Severi-Brauer varieties. The variety X’ is p-incompressible and equiv-
alent to X. Moreover, its Weil transfer Ry, pX ' is equivalent to Rp/rX. Therefore we
reduced the proof of the first statement of Corollary 4.6 to the proof of the second one.
The second statement follows directly from Corollary 3.6. U

4c. Weil transfer of products of generalized Severi-Brauer varieties. The second
conclusion of Corollary 4.6 also holds for generalized Severi-Brauer varieties. Again, the
result is an immediate consequence of Corollary 3.6:
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Corollary 4.7. Let L/F be a p-primary separable field extension and let X be a product
over L of some generalized Severi-Brauer varieties of some balanced p-primary division
L-algebras. Then Ry pX is p-incompressible if (and only if) X is so. U

5. QUADRATIC EXTENSIONS

Let L/F be a separable quadratic field extension and let D be a central division L-
algebra of a 2-primary index. In this section, we determine canonical 2-dimension of
the variety Rp,r B(D) without imposing any restrictions on the conjugate algebra g(D),
where ¢ is the non-trivial element of G := Gal(L/F). We will provide two different recipes;
which of them has to be applied depends on a property of the group A generated by the
Brauer classes of D and g(D). Since the case of cyclic A has been already treated, we
assume that A is not cyclic. Therefore A/2A ~ 7 /27.@®7 /27 with g acting by exchanging
the summands.

Let @ € A\ 2A be an element of the smallest index. Let D, be a central division
L-algebra representing «. If the image of o in A/2A is not invariant under the action
of G, then the images of @ and g(«) form a minimal basis of A/2A in the sense of [10,
Remark 2.9]. It follows that the variety (Rp/r B(Da))r ~ SB(Da) x SB(g(Da)) is 2-
incompressible. Therefore the variety Ry ,r B(D,) is 2-incompressible as well. Since
a and g(a) generate A, the varieties Ry p B(D) and Ry r B(D,) are equivalent. So,
cda Rp/r B(D) = cda Ryr B(D,,) and we get that

(51) Cd2 RL/F SB(D) = d1mRL/F SB(DQ) = 2(11’1d0[ — 1)

Now we assume that the image of o in A/2A is invariant under G. This means that
this image is equal to the element (1,1) € Z/27Z & Z/2Z. Let 5 € A be an element of
the smallest index with the property that its image in A/2A is outside of the subgroup
generated by the image of a. We claim that in this case

Since the image of 5 in A/2A is (1,0) or (0,1), it is not invariant under G. Moreover,
A is generated by 8 and g(3). It follows that the variety Ry,» SB(D) is equivalent to
R/ B(Dg), where Dg is a central division L-algebra representing . To prove the claim,
it suffices to prove that the variety Rp,» B(Dps) is 2-incompressible. It is so because the
F(Rpr rSB(D,))-variety

Ri/rB(Dg) PRy, r B(Da)) = RLR L » BD)/F(RL r B(Da)) B(D) LRy, # B(Da)))

is 2-incompressible. Indeed, g(Dg)r(r, /» $B(D,)) 1s Brauer-equivalent to a tensor power of
(Dg)L(Ry,» B(Da)) SO that Theorem 1.1 applies. On the other hand, (Dg)r(r,,, (Da)) 18
still a division algebra by the Schofield—van den Bergh index reduction formula [16] (see
also [13]), because
ind(Dﬁ X Dgz) Z ind Dﬁ
for any ¢ by the minimality of ind 5 = ind Dg.
We finish this section by examples where the above recipes apply.

Example 5.3. Let [ be a field of characteristic # 2, let L be the rational function field
over [ in variables x, y, 2/, 9/, let g be the [-automorphism of L exchanging x with 2’ and y
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with 3/, and let F' be the subfield of L consisting of the elements fixed by g. The variety
RpirSB(D), where D is the quaternion L-algebra (x,y), is 2-incompressible by formula
(5.1) with D, = D. Note that in this example the algebras D and g(D) are, informally
speaking, “completely independent”.

In the next example, D and g(D) will be “partially dependent”. To get it, we replace
F and L by the rational function fields

F<817S27t17t2> and L(817S27t17t2)

in some variables sy, s9,t1,t3. For D := C' ® (x,y) with C' := (s1,t1) ® (82, t2), the variety
Rr/r B(D) is 2-incompressible by formula (5.2) with D, = (z,y) ® (¢/,%') and Dg = D.
Note that the non-zero elements of the group A in this situation are the Brauer classes
of the index 8 conjugate algebras C' ® (z,y) and C' ® (2/,3’) and the index 4 invariant
algebra (z,y) ® (2/,y'); besides, 24 = 0.
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