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ASYMPTOTICS OF THE YANG-MILLS FLOW FOR HOLOMORPHIC VECTOR

BUNDLES OVER KÄHLER MANIFOLDS: THE CANONICAL STRUCTURE OF THE

LIMIT

BENJAMIN SIBLEY

Abstract. In the following article we study the limiting properties of the Yang-Mills flow associated to
a holomorphic vector bundle E over an arbitrary compact Kähler manifold (X, ω). In particular we show

that the flow is determined at infinity by the holomorphic structure of E. Namely, if we fix an integrable
unitary reference connection A0 defining the holomorphic structure, then the Yang-Mills flow with initial
condition A0, converges (away from an appropriately defined singular set) in the sense of the Uhlenbeck
compactness theorem to a holomorphic vector bundle E∞, which is isomorphic to the associated graded
object of the Harder-Narasimhan-Seshadri filtration of (E,A0). Moreover, E∞ extends as a reflexive sheaf
over the singular set as the double dual of the associated graded object. This is an extension of previous
work in the cases of 1 and 2 complex dimensions and proves the general case of a conjecture of Bando and
Siu.
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1. Introduction

This paper is a study of the Yang-Mills flow, the L2-gradient flow of the Yang-Mills functional; and in
particular its convergence properties at infinity. The flow is (after imposing the Coulomb gauge condition)
a parabolic equation for a connection on a holomorphic vector bundle. Very soon after the introduction of
the flow equations, Donaldson and Simpson proved that in the case of a stable bundle the gradient flow
converges smoothly at infinity (see [DO1],[DO2],[SI]). In the unstable case the behaviour of the flow is more
ambiguous. Nevertheless, even in the general case there is an appropriate notion of convergence (a version
of Uhlenbeck’s compactness theorem) that is always satisfied. The goal of this article is to prove that this
notion depends only on the holomorphic structure of the original bundle.
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We follow up on work whose origin lies in two principal directions, both related to stability properties of
holomorphic vector bundles over compact Kähler manifolds. The first strain is the seminal work of Atiyah
and Bott [AB], in which the authors study the moduli space of stable holomorphic bundles over Riemann
surfaces. In particular, they computed the GC-equivariant Betti numbers of this space in certain cases, where
GC is the complex gauge group of a holomorphic vector bundle E (over a Riemann surface X) acting on the
space Ahol of holomorphic structures of E. Their approach was to stratify Ahol by Harder-Narasimhan type.
The type is a tuple of rational numbers µ = (µ1, · · · , µR) associated to a holomorphic structure (E, ∂̄E),
defined using a filtration of E by analytic subsheaves whose successive quotients are semi-stable, called
the Harder-Narasimhan filtration. One of the resulting strata of Ahol consists of the semi-stable bundles.
Furthermore the action of GC preserves the stratification, and the main result that yields the computation of
the equivariant Betti numbers is that the stratification by Harder-Narasimhan type is equivariantly perfect
under this action.

Atiyah and Bott also noticed that the problemmight be amenable to a more analytic approach. Specifically
they considered the Yang-Mills functional YM on the spaceAh of integrable, unitary connections with respect
to a fixed hermitan metric on E. The space Ah may be identified with Ahol by sending a connection ∇A to
its (0, 1) part ∂̄A. The Yang-Mills functional is defined by taking the L2 norm of the curvature of ∇A, and is
a Morse function on Ah/G, where G is the unitary gauge group. Therefore this functional induces the usual
stable-unstable manifold stratification on Ah (or equivalently Ahol) familiar from Morse theory. It is natural
to conjecture that this analytic stratification is in fact the same as the algebraic stratification given by the
Harder-Narasimhan type. The authors of [AB] stopped short of proving this statement, instead leaving it at
the conjectural level, and working directly with the algebraic stratification. They noted however that a key
technical point in proving the equivalence was to show the convergence of the gradient flow of the Yang-Mills
functional at infinity. This was proven in [D] by Daskalopoulos (see also [R]). Specifically, in the case of
Riemann surfaces, Daskalopoulos showed the asymptotic convergence of the Yang-Mills Flow, that there is
indeed a well-defined stratification in the sense of Morse theory in this case, and that it coincides with the
algebraic stratification (which makes sense in all dimensions).

When (X,ω) is a higher dimensional Kähler manifold, the Yang-Mills flow fails to converge in the usual
sense. This brings us to the second strain of ideas of which the present paper is a continuation: the so-called
“Kobayashi-Hitchin correspondences”. These are statements (in various levels of generality) relating the
existence of Hermitian-Einstein metrics on a holomorphic bundle E, to the stability of E. Namely, E admits
an Hermitian-Einstein metric if and only if E is polystable. This was first proven in the case of a Riemann
surface by Narasimhan and Seshadri. Their proof did not use differential geometry, and the condition that the
bundle admits an Hermitian-Einstein connection was originally formulated purely in terms of representations
of the fundamental group of the Riemann surface. It was Donaldson who gave the first proof using gauge
theory, reformulating the statement in terms of a metric of constant central curvature. He initially did
this in the case of a Riemann surface in [DO3] by considering sequences of connections in a complex gauge
orbit that are minimising for a certain functional, which is analogous to our HYMα functionals defined in
Section 3.2. Shortly after this, Donaldson extended the result to the case of algebraic surfaces in [DO1],
and later to the case of projective complex manifolds in [DO2]. In both [DO1] and [DO2] the idea of the
proof was to reformulate the flow as an equivalent parabolic PDE, show long-time existence of the equation,
and then prove that for a stable bundle, this modified flow indeed converges, the solution being the desired
Hermitian-Einstein metric. This was generalised by Uhlenbeck and Yau in [UY] in the case of a compact
Kähler manifold using different methods. Finally, in [BS], Bando and Siu extended the correspondence
to coherent analytic sheaves on Kähler manifolds by considering what they called “admissible” hermitian
metrics, which are metrics on the locally free part of the sheaf having controlled curvature. They also
conjectured that there should also be a correspondence (albeit far less detailed) between the Yang-Mills flow
and the Harder-Narasimhan filtration in higher dimensions despite the absence of a Morse theory for the
Yang-Mills functional.

There are two main features that distinguish the higher dimensional case from the case of Riemann
surfaces. As previously mentioned, the flow does not converge in general. However, the only obstruction to
convergence is bubbling phenomena. Specifically, one of Uhlenbeck’s compactness results (see [UY] Theorem
5.2) applies to the flow, which means that there are always subsequences that converge (in a certain Sobolev
norm) away from a singular set of Hausdorff codimension at least 4 inside X (which we will denote by Zan),
to a connection on a possibly different vector bundle E∞. A priori, this pair of a limiting connection and
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bundle depends on the subsequence. In the case of two complex dimensions, the singular set is a locally finite
set of points (finite in the compact case) and by Uhlenbeck’s removable singularities theorem E∞ extends
over the singular set as a vector bundle with a Yang-Mills connection. In higher dimensions, again due to
a result of Bando and Siu, E∞ extends over the singular set, but only as a reflexive sheaf. Although we
will not use their result, Hong and Tian have proven in [HT] that in fact the convergence is in C∞ on the
complement of Zan and that Zan is a holomorphic subvariety.

A separate, but intimately related issue is the Harder-Narasimhan filtration. In the case of a Riemann
surface the filtration is given by subbundles. In higher dimensions, it is only a filtration by subsheaves. Again
however, away from a singular set Zalg, which is a complex analytic subset of X of complex codimension at
least 2, the filtration is indeed given by subbundles. Once more, in the case of a Kähler surface this is a
locally finite set of points (finite in the compact case).

The main result of this paper (the conjecture of Bando and Siu), describes the relationship between the
analytic and algebraic sides of the above picture. To state it, we recall that there is a refinement of the Harder-
Narasimhan filtration called the Harder-Narasimhan-Seshadri filtration, which is a double filtration whose
successive quotients are stable rather than merely semi-stable. Then if (E, ∂̄E) is a holomorphic vector bundle
where the operator ∂̄E denotes the holomorphic structure, write GrHNSω (E, ∂̄E) for the associated graded
object (the direct sum of the stable quotients) of the Harder-Narasimhan-Seshadri filtration. Notice that by
the Kobayashi-Hitchin correspondence, GrHNSω (E, ∂̄E) also carries a natural Yang-Mills connection on its
locally free part, given by the direct sum of the Hermitian-Einstein connections on each of the stable factors,
and this connection is unique up to gauge. The main theorem says in particular that the limiting bundle
along the flow is in fact independent of the subsequence chosen in order to employ Uhlenbeck compactness,
and is determined entirely by the holomorphic structure ∂̄E of E. Furthermore, the limiting connection is
precisely the connection on GrHNSω (E, ∂̄E).

Theorem 1.1. Let (X,ω) be a compact Kähler manifold, and E → X be an hermitian vector bundle. Let
A0 denote an integrable, unitary connection endowing E with a holomorphic structure ∂̄E = ∂̄A0 . Let A∞

denote the Yang-Mills connection on GrHNSω (E, ∂̄E) restricted to X − Zalg induced from the Kobayashi-
Hitchin correspondence. Let At be the time t solution of the flow with initial condition A0. Then as t→∞,
At → A∞ in the sense of Uhlenbeck, and on X − Zalg ∪ Zan, the vector bundles GrHNSω (E, ∂̄E) and the
limiting bundle E∞ are holomorphically isomorphic. Moreover, E∞ extends over Zan as a reflexive sheaf to(
GrHNSω (E, ∂̄E)

)∗∗
.

This theorem was proven in [DW1] by Daskalopoulos and Wentworth in the case when dimX = 2. In this
case, the filtration consists of vector bundles, whose successive quotients may have point singularities. As
stated earlier, this means E∞ extends as a vector bundle and [DW1] proves that this bundle is isomorphic

to the vector bundle
(
GrHNSω (E, ∂̄E)

)∗∗
.

We now give an overview of our proof, pointing out what goes through directly from [DW1] and where we
require new arguments. Section 2 consists of the basic definitions we need from sheaf theory, including the
Harder-Narasimhan and Harder-Narasimhan-Seshadri filtrations and their associated graded objects, as well
as the corresponding types. We also discuss the Yang-Mills functional, the Hermitian-Yang-Mills functional
and the version of the Uhlenbeck compactness result that we will need. Although we will primarily be
concerned with the flow, the proof of Theorem 1.1 is set up to work for slightly more general sequences of
connections, so we state the compactness theorem in this generality first, and specialise to the flow when
appropriate. Lastly, we recall the notion of a weakly holomorphic projection operator associated to a subsheaf
first introduced in [UY], the Chern-Weil formula, and a lemma on the boundedness of second fundamental
forms from [DW1].

In Section 3 we introduce the Yang-Mills flow and its basic properties. We recast Uhlenbeck compactness
in the context of the flow, which satisfies the boundedness conditions required to apply the general theorem.
We recall one of the main results of [DW1], that the Harder-Narasimhan type of an Uhlenbeck limit is
bounded from below by the type of the initial bundle with respect to the partial ordering on types. Finally,
Section 3 ends with a discussion of Yang-Mills type functionals associated to Ad-invariant convex functions
on the Lie algebra of the unitary group.

Section 4 details the main results we will need about resolution of singularities. This is the first place
in which our presentation differs fundamentally from that of [DW1]. The main strategy of the proof is to
eliminate the singular set of the Harder-Narasimhan-Seshadri filtration by blowing up, and doing all the
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necessary analysis on the blowup. In the two-dimensional case, since the singularities consist only of points,
this can be done directly by hand as in [DW1] see also [BU1]. In the general case we must appeal to the
resolution of singularities theorem of Hironaka see [H1] and [H2]. We consider the filtration as a rational
section of a flag bundle, and apply the resolution of indeterminacy theorem for rational maps. If we write
π : X̃ → X for the composition of the blowups involved in resolution, the result is that the pullback bundle
π∗E → X̃ has a filtration by subbundles, which away from the exceptional divisor E is precisely the filtration
on X .

We will need to consider a natural family of Kähler metrics ωε on X̃ , which are perturbations of the
pullback form π∗ω by the irreducible components of the exceptional divisor, and which are introduced in
order to compensate for the fact that π∗ω fails to be a metric on E. The filtration of π∗E by subbundles is
not quite the Harder-Narasimhan-Seshadri filtration with respect to ωε but is closely related. In particular,
the main result of this section is that the Harder-Narasimhan type of π∗E with respect to ωε converges to the
type of E with respect to ω. This was proven in the surface case in [DW1] using an argument of Buchdahl
from [BU1]. The proof contained in [DW1] seems to be insufficient in the higher dimensional case, so we
give a rather different proof of this result. The main ingredient is a bound on the ωε degree of a subsheaf
of π∗E with torsion-free quotient in terms of its pushforward sheaf that is uniform as ε→ 0. To prove this
we use standard algebro-geometric facts together with a modification of an argument of Kobayashi [KOB]
first used to prove the uniform boundedness of the degree of subsheaves of a vector bundle with respect to
a fixed Kähler metric. In particular we prove the following theorem:

Theorem 1.2. Let (X,ω) be a compact Kähler manifold and S̃ be a subsheaf (with torsion free quotient Q̃)

of a holomorphic vector bundle Ẽ on X̃, where π : X̃ → X is given by a sequence of blowups along complex
submanifolds of codim ≥ 2. Then then there is a uniform constant M such that the degrees of S̃ and Q̃ with
respect to ωε satisfy: deg(S̃, ωε) ≤ deg(π∗S̃) + εM , and deg(Q̃, ωε) ≥ deg(π∗Q̃)− εM .

Similar statements are proven in the case of a surface by Buchdahl [BU1] and for projective manifolds by
Daskalopoulos and Wentworth see [DW3].

Section 5 is the technical heart of the proof. An essential fact needed to complete the proof of Theorem
1.1 is that the Harder-Narasimhan type of the limiting sheaf is in fact equal to the type of the initial
bundle. This fact seems to be closely related to the existence of what is called an Lp-approximate critical
hermitian structure. In rough terms this is an hermitian metric on a holomorphic vector bundle whose
Hermitian-Einstein tensor is Lp-close to that of a Yang-Mills connection (a critical value) determined by the
Harder-Narasimhan type of the bundle (see Definition 5.1). Since any connection on E has Hermitian-Yang-
Mills energy bounded below by the type of E, and we have a monotonicity property along the flow, the result
of Section 3 implies that the existence of an approximate structure then ensures that the flow starting from
this initial condition realises the correct type in the limit. Then one shows that any initial condition flows
to the correct type, essentially by proving that the set of such metrics is open and closed (and non-empty by
the existence of an approximate structure) in the space of smooth metrics, and applying the connectivity of
the latter space. This last argument appears in detail in [DW1] and we do not repeat it. The main theorem
of Section 5 is the following:

Theorem 1.3. Let E → X be a holomorphic vector bundle over a Kähler manifold with Kähler form ω.
Then given δ > 0 and any 1 ≤ p <∞, E has an Lp δ-approximate critical hermitian structure.

The method does not extend to p = ∞. This is straightforward in the case when the filtration is given
by subbundles (even for p =∞). Given an exact sequence of holomorphic vector bundles:

0 −→ S −→ E −→ Q −→ 0

and hermitian metrics on S andQ, one can scale the second fundamental form β 7→ tβ to obtain an isomorphic
bundle whose Hermitian-Einstein tensor is close to the direct sum of those of S and Q. In general it seems
difficult to do this directly. The problem here is that the filtration is not in general given by subbundles, and
so the vast majority Section 5 is an argument needed to address this point. This is precisely where we need
the resolution of the filtration obtained in Section 4. We first take the direct sum of the Hermitian-Einstein
metrics on the stable quotients in the resolution by subbundles, which sits inside the pullback π∗E under
the blowup map π : X̃ → X . Then the argument above shows that after modifying this metric by a gauge
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transformation, its Hermitian-Einstein tensor becomes close to the type in the Lp norm. We complete the
proof by pushing this metric down to E → X using a cutoff argument.

In broad outline our discussion in Section 5 follows the ideas in [DW1]. The principal difference is that
the authors of [DW1] were able to rely on the fact that the singular set was given by points when applying
the cutoff argument, in particular they knew that there were uniform bounds on the derivatives of the cutoff
function. We must allow for the fact that the singular set is higher dimensional, and therefore need to
replace their arguments involving coverings of the singular set by disjoint balls of arbitrarily small radius by
calculations in a tubular neighbourhood. We first assume Zalg is smooth and that blowing up once along
Zalg resolves the singularities. The essential point is that the Hausdorff codimension of Zalg is large enough
to allow the arguments of [DW1] to go through in this case. We then reduce the general theorem to this
case by applying an inductive argument on the number of blowups required to resolve the filtration. It is
here that we crucially use the convergence of the Harder-Narasimhan type proven in section 4.

In Section 6, following Bando and Siu, we introduce a degenerate Yang-Mills flow on the composition of
blowups X̃ with respect to the degenerate metric π∗ω. We review some basic properties of this flow that are
necessary for the proof of Theorem 1.1. In particular we show that a solution of this degenerate flow is in
fact an hermitian metric, and solves the ordinary flow equations with respect to the metric π∗ω away from
the exceptional divisor E.

Section 7 completes the proof of the main theorem by showing the isomorphism of the limit E∞ with(
GrHNSω (E, ∂̄E)

)∗∗
. The basic idea follows that of [DW1] which in turn is a generalisation of the argument

of Donaldson in [DO1]. His idea is to construct a non-zero holomorphic map to the limiting bundle as the
limit of the sequence of gauge transformations defined by the flow. In the case that the initial bundle is
stable and has stable image, one may apply the basic fact that such a map is always an isomorphism. In
general, the idea in [DW1] is simply to apply this argument to the first factor of the associated graded object
(which is stable) and then perform an induction. The image of the first factor will be stable because of the
result in Section 5 about the type of the limiting sheaf. The difficulty with this method is in proving that
the limiting map is in fact non-zero. This follows directly from Donaldson’s proof in the case of a single
subsheaf, but it is more complicated to construct such a map on the entire filtration. The authors of [DW1]
avoid applying Donaldson’s method directly by appealing to a complex analytic argument involving analytic
extension see also [BU2]. Arguing in this fashion makes the induction rather easier. However, this requires
the complement of the singular set to have strictly pseudo-concave boundary, which is true in the case of
surfaces, but is not guaranteed in higher dimensions.

Therefore we give a proof of a slightly more differential geometric character. Namely, in the case that
the filtration is given by subbundles, we follow the argument of Donaldson, which goes through with modest
corrections in higher dimensions, and does indeed suffice to complete the induction alluded to. In the general
case, we must again appeal to a resolution of singularities of the filtration and apply the previous strategy
to the pullback bundle over the composition of blowups X̃. The problem one encounters with this approach
is that the induction breaks down due to the appearance of second fundamental forms of each piece of the
filtration, which are not bounded in L∞ with respect to the degenerate metric π∗ω. To rectify this, we
apply the degenerate flow of Section 6 for some fixed non-zero time t to each element of the sequence of
connections, and this new sequence does have the desired bound. This is due to the key observation of
Bando and Siu that the Sobolev constant of X̃ with respect to the metrics ωε is bounded away from zero.
A theorem of Cheng and Li then implies uniform control over subsolutions to the heat equation, which is
sufficient to understand the degenerate flow. One then has to show that the limit obtained from this new
sequence of connections is independent of t and is the correct one. This section is an expanded and slightly
modified account of an argument contained in the unpublished preprint [DW3].

We conclude the introduction with some general comments. First of all, as pointed out in [DW1], the proof
of Theorem 1.1 is essentially independent of the flow, and one obtains a similar theorem by restricting to
sequences of connections which are minimising with respect to certain Hermitian-Yang-Mills type functionals.
Indeed, the statement appears explicitly as Theorem 7.1. Secondly, one expects that there should be a
relationship between the two singular sets Zalg and Zan. Namely, in the best case Zalg should be exactly the
set of points where bubbling occurs. One always has containment Zalg ⊂ Zan, and in the separate article
[DW2] Daskalopoulos and Wentworth have shown that in the surface case equality does in fact hold. We
hope to be able to clarify this issue in higher dimensions in a future paper.
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Finally, the author is aware of a recent series of preprints [J1],[J2],[J3] by Adam Jacob which collectively
give a proof of Theorem 1.1 using different methods.
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2. Preliminary Remarks

2.1. Subsheaves of Holomorphic Bundles and the HNS Filtration. We now recall some basic sheaf
theory. All of this material may be found in [KOB]. As stated in the introduction, the main obstacle we will
face is that we must consider arbitrary subsheaves of a holomorphic vector bundle. Throughout, X will be
a compact Kähler manifold (unless otherwise stated) with Kähler form ω, E a holomorphic vector bundle,
and S ⊂ E a subsheaf.

Recall that an analytic sheaf E on X is called torsion free if the natural map E → E∗∗ is injective. We call
E reflexive if this map is an isomorphism. Of vital importance is the fact that a torsion free sheaf is “almost a
vector bundle” in the following sense. For E a sheaf on X recall that its singular set is Sing(E) = {x ∈ X | Ex
is not free}. Here Ex is the stalk of E over x. In other words Sing(E) is the set of points where E fails
to be locally free, i.e., a vector bundle. The set Sing(E) is a closed complex analytic subvariety of X of
codimension at least 2.

Recall that the saturation of a subsheaf S ⊂ E is defined by SatE(S) = ker(E → Q/Tor(Q)) and that S
is a subsheaf of SatE(S) with torsion quotient, and the quotient E/ SatE(S) is torsion free. We also have
the following lemma whose proof we omit.

Lemma 2.1. Let E be a holomorphic vector bundle. Suppose S1 ⊂ S2 ⊂ E are subsheaves with S2/S1

torsion. Then SatE(S1) = SatE(S2).

The ω-slope of a torsion free sheaf E on X is defined by:

µω(E) =
degω(E)
rk(E) =

1

rk(E)

∫

X

c1(E) ∧ ωn−1
.

Note that the right hand side is well defined independently of the representative for c1(E) since ω is closed.
Throughout we will assume that the volume of X with respect to ω is normalised to be 2π

(n−1)! , where

n = dimCX .

Definition 2.2. We say that a torsion free sheaf E is ω-stable (ω-semistable) if for all proper subsheaves
S ⊂ E, µω(S) < µω(E) (µω(S) ≤ µω(E)). Equivalently µω(Q) > µω(E) (µω(Q) ≥ µω(E)) for every torsion
free quotient Q.

We have the following important proposition.

Proposition 2.3. There is an upper bound on the set of slopes µω(S) of subsheaves of a torsion free sheaf
E, and moreover this upper bound is realised by some subsheaf E1 ⊂ E. Furthermore, we can choose E1 so
that for any S ⊂ E, if µω(S) = µω(E1) then rk(S) ≤ rk(E1). Moreover such a subsheaf is unique.

For the proof see Kobayashi [KOB]. The sheaf E1 is called the maximal destabilising subsheaf of E .
This sheaf is also clearly semistable.

Remark 2.4. If S ⊂ E is a subsheaf with torsion free quotient Q = E/S, then Q∗ →֒ E∗ is a subsheaf and
deg(Q∗) = − deg(Q). By the above proposition µω(Q

∗) is bounded from above, so µω(Q) is bounded from
below.

Remark 2.5. Note also that the saturation of a sheaf has slope at least as large as the slope of the original
sheaf. Therefore the maximal destabilising subsheaf is saturated by definition.

Definition 2.6. We will write µmax(E) for the maximal slope of a subsheaf, and µmin(E) for the minimal
slope of a torsion free quotient. Clearly we have the equality µmin(E) = −µmax(E∗).



ASYMPTOTICS OF THE YANG-MILLS FLOW 7

We now specialise to the case of a holomorphic vector bundle E, although the following all holds also for
an arbitrary torsion-free sheaf.

Proposition 2.7. There is a filtration:

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E

such that the quotients Qi = Ei/Ei−1 are torsion free and semistable, and µω(Qi+1) < µω(Qi). Furthermore,
the associated graded object: GrHNω (E) = ⊕iQi, is uniquely determined by the isomorphism class of E and
is called the Harder-Narasimhan filtration. The Harder-Narasimhan filtration is unique.

In the sequel we will usually abbreviate this as the HN filtration, and we will write F
HN
i (E) for the

ith piece of the filtration. The previous proposition follows from Proposition 2. The maximal destabilising
subsheaf is FHN1 (E). Then consider the quotient E/FHN1 (E) and its maximal destabilising subshseaf. Define
FHN2 (E) to be the pre-image of this subsheaf under the natural projection. Iterating this process gives the
stated filtration, and one easily checks that it has the desired properties.

Another invariant of the isomorphism class of E is the collection of all slopes of the quotients Qi.

Definition 2.8. Let E have rank K. Then we form a K-tuple

µ(E) = (µ(Q1), · · · , µ(Q1), · · · , µ(Qi), · · · , µ(Qi), · · ·µ(Ql), · · ·µ(Ql))
where µ(Qi) is repeated rk(Qi) times. Then µ(E) is called the Harder-Narasimhan (or HN) type of E.

We will also need a result describing the HN filtration of E in terms of the HN filtration of a subsheaf
S and its quotient Q. The following lemma and its corollary are elementary and we omit the proofs.

Proposition 2.9. Let 0 → S → E → Q → 0 be an exact sequence of torsion free sheaves with E a
holomorphic vector bundle such that µmin(S) > µmax(Q). Then the HN filtration of E is given by:

0 ⊂ F
HN
1 (S) ⊂ · · · ⊂ F

HN
k (S) = S ⊂ F

HN
k+1(E) ⊂ · · · ⊂ F

HN
l (E) = E,

where FHNk+i (E) = ker(E → Q/FHNi (Q)), for i = 0, 1, · · · , l − k. In particular, this means that Qi =

FHNk+i (E)/FHNk+i−1(E) = FHNi (Q) and therefore GrHN (E) = GrHN (S)⊕GrHN (Q).

Corollary 2.10. Suppose that 0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E is a filtration of E by subbundles, and
suppose that for each i, µmin(Ei) > µmax(E/Ei). Then the Harder-Narasimhan filtration of E is given by:

0 ⊂ F
HN
1 (E1) ⊂ · · · ⊂ F

HN
k1 (E1) = E1 ⊂ · · · ⊂ F

HN
k1+···+kl−1

(El−1) = El−1

⊂ F
HN
k1+···+kl−1+1(E) ⊂ · · · ⊂ F

HN
k1+···+kl(E) = E.

Now we will define the double filtration that appears in the statement of the Main Theorem. Its existence
follows from the existence of the HN filtration and the following proposition.

Proposition 2.11. Let Q be a semi-stable torsion free sheaf on X. Then there is a filtration:

0 ⊂ F1 ⊂ · · · ⊂ Fl = Q

such that Fi/Fi−1 is stable and torsion-free. Also, for each i we have µ (Fi/Fi−1) = µ(Q). The associated
graded object:

GrSω(Q) = ⊕iFi/Fi−1

is uniquely determined by the isomorphism class of Q, though the filtration itself is not. Such a filtration is
called a Seshadri filtration of Q.

Proposition 2.12. Let E be a holomorphic vector bundle on X. Then there is a double filtration {Ei,j}
with the following properties. If the HN filtration is given by:

0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E,

then Ei−1 = Ei,0 ⊂ Ei,1 ⊂ · · · ⊂ Ei,li = Ei, where the successive quotients Qi,j = Ei,j/Ei,j−1 are stable and
torsion-free. Furthermore: µω(Qi,j) = µω(Qi,j+1) for j > 0, and µω(Qi,j) > µω(Qi+1,j). The associated
graded object GrHNSω (E) = ⊕i⊕jQi,j is uniquely determined by the isomorphism class of E. This double
filtration is called the Harder-Narasimhan-Seshadri filtration (or HNS filtration) of E.
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Similarly, we can define an K-tuple:

µ = (µ(Q1,1), · · · , µ(Qi,j), · · · , µ(Ql,kl))
where each µ(Qi,j) is repeated according to rk(Qi,j). Note that this vector is exactly the same as the Harder-
Narasimhan type of E (the slopes of a Seshadri filtration are all equal). Since each of the quotients Qi,j is
torsion-free, Sing(Qij) lies in codimension at least 2. We will write:

Zalg = ∪i,j Sing(Ei,j) ∪ Sing(Qi,j).

This is a complex analytic subset of codimension at least two, and corresponds exactly to the set of points
at which the HNS filtration fails to be given by subbundles. We will refer to it as the algebraic singular set
of the filtration.

2.2. The Yang-Mills Functional and Uhlenbeck Compactness. Recall that for E → X a complex
vector bundle, the set of holomorphic structures on E may be identified with the set of operators ∂̄E satisfying
the Leibniz rule and the integrability condition ∂̄E◦∂̄E = 0. When we wish to make the holomorphic structure
explicit we will sometimes write (E, ∂̄E).

In general we will represent a connection either abstractly by its covariant derivative ∇A or in local
coordinates by its connection 1-form A. We will be careless about this distinction and use whichever notation
is more convenient. We will write ∂̄A and ∂A for the (0, 1) and (1, 0) parts of ∇A respectively. If (E, ∂̄E) is
equipped with a smooth hermitian metric h, then there is a unique h-unitary connection ∇A on E called the
Chern connection that satisfies ∂̄A = ∂̄E . More specifically the local form of this connection in terms of h
is: A = h̄−1∂h̄, with curvature FA = ∂̄

(
h̄−1∂h̄

)
. Sometimes we will denote this connection by ∇A = (∂̄E , h).

Conversely, if we have in hand a unitary connection ∇A whose curvature FA = ∇A ◦ ∇A is of type (1, 1)

(i.e. F 0,2
A = 0), then ∂̄A defines a holomorphic structure on E by the Newlander-Nirenberg theorem, and

∇A = (∂̄A, h).

Let Ah denote the space of h-unitary connections ∇A on E, and write A1,1
h for the subset consisting of

those with F 0,2
A = 0. The above discussion translates to the statement that there is a bijection between A1,1

h

and the space Ahol of integrable ∂̄E operators. We will write G for the set of unitary gauge transformations
of E. The set G is a bundle of groups whose fibres are copies of U(n), and G acts on Ah by the usual
conjugation g · ∇A = g−1 ◦ ∇A ◦ g. Moreover this induces an action on FA, which is also by conjugation, so
the subspace A1,1

h is preserved. We will write:

Bh = Ah/G , B1,1
h = A1,1

h /G
for the quotients.

Finally there is also an action of the full complex gauge group GC (the set of all complex gauge transfor-
mations of E) on Ahol again by conjugation, i.e. g · ∂̄E = g−1 ◦ ∂̄E ◦ g. The set of isomorphism classes of

holomorphic structures on E is precisely the quotient Ahol/GC, and via the bijection Ahol ≃ A1,1
h we see that

GC also acts on A1,1
h , extending the action of G. Moreover, GC also acts on the space of hermitian metrics

via h 7→ g · h where g · h(s1, s2) = h(g(s1), g(s2)). In matrix form this reads g · h = ḡThg.
Now, starting from a holomorphic bundle E with hermitian metric h and Chern connection (∂̄E , h), we

may use a complex gauge transformation to perturb this connection in two different ways. We may either let
g act on ∂̄E or on h. If we write g∗ for the adjoint of g with respect to h, then g · h(s1, s2) = h(g∗g(s1), s2).
If we set k = g∗g, then the connection corresponding to h and g · h are related by:

∂̄h = ∂̄g·h and ∂g·h = k ◦ ∂h ◦ k−1.

Now note that the action of a complex gauge transformation g on a connection ∇A is

g · ∇A = g∗ ◦ ∂A ◦ (g∗)−1 + g−1 ◦ ∂̄A ◦ g,
so g ◦ ∇g·A ◦ g−1 = k ◦ ∂A ◦ k−1 + ∂̄A = (∂̄E , g · h) or

∇g·A = (g · ∂̄E , h) = g−1 ◦ (∂̄E , g · h) ◦ g.
Taking the square of this formula also gives the relation between the respective curvatures:

F(g·∂̄E ,h) = g−1 ◦ F(∂̄E ,g·h) ◦ g.
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If we denote by u((E, h)) ⊂ End(E) the subbundle of skew-hermitian endomorphisms, then for a section
σ of u(E), we will write |σ| for its pointwise norm. This is defined as usual by

|σ| =
(

K∑

i=1

|λi|2
) 1

2

where the λi are the eigenvalues of σ at a given point and K is the rank of E. Now we may define the
Yang-Mills functional (YM functional) by:

YM(∇A) =
∫

X

|FA|2 dvol.

If we assume that X is Kähler, we have:

YM(∇A) =
∫

X

|FA|2
ωn

n!
.

This functional is gauge invariant and so defines a map YM : Bh→ R. Its critical points are the so called
Yang-Mills connections and satisfy the Euler-Lagrange equations for YM : d∗AFA = 0, where dA is the

covariant derivative induced on End(E) valued 2-forms by ∇A. If ∇A ∈ A1,1
h then we may also define the

Hermitian-Yang-Mills functional:

HYM(∇A) =
∫

X

|ΛωFA|2
ωn

n!
,

where Λω is, as usual the adjoint of the Lefschetz operator, (which is given by wedging with the Kähler
form). For a (1, 1) form G =

∑
Gi,jdzi ∧ dz̄j this can be written explicitly in coordinates as

ΛωG = −2
√
−1
(
gijGij

)

where gij denotes the inverse of the metric. The quantity ΛωFA is called the Hermitian-Einstein tensor
of A. Again HYM is gauge invariant and so defines a functional HYM : B1,1

h → R. Critical points of the
functional satisfy the Euler-Lagrange equations: dAΛωFA = 0. On the other hand, just as in the preceding
discussion, we may regard the holomorphic stucture as being fixed and consider the space of (1, 1) connections
as being the set of pairs (∂̄E , h) where h varies over all hermitian metrics. We may therefore think of HYM
as a functional HYM(h) = HYM(∂̄E , h) on the space of hermitian metrics on E. A critical metric of HYM
is referred to a critical hermitian structure on (E, ∂̄).

An important fact that we will use is that when X is compact, there is a relation between the two
functionals YM and HYM . Explicitly:

YM(∇A) = HYM(∇A) +
4π2

(n− 2)!

∫

X

(
2c2(E)− c21(E)

)
∧ ωn−2

for any A ∈ A1,1
h . The second term depends only on the topology of E and the form ω, so YM and HYM

have the same critical points on A1,1
h . Furthermore, ∇A is a critical point of YM and HYM , if and only if

h is a critical hermitian structure for the holomorphic stucture on E given by A.
For a Yang-Mills connection we have the following proposition.

Proposition 2.13. Let ∇A ∈ A1,1
h be a Yang-Mills connection on an hermitian vector bundle (E, h) over

a Kähler manifold X. Then ∇A = ⊕li=1∇Ai where E = ⊕li=1Qi is an orthogonal splitting of E, and where√
−1ΛωFAi = λiIdQi , where λi are constant. If X is compact, then λi = µ(Qi).

The proof is simply the observation (stated above) that the Hermitian-Einstein tensor of a Yang-Mills con-
nection is covariantly constant, and so has constant eigenvalues and eigenspaces of constant rank. Therefore
E breaks up into a direct sum of the eigenspaces of this operator.

Definition 2.14. Let E → (X,ω) be a holomorphic bundle. Then a connection ∇A such that there exists a
constant λ with: √

−1ΛωFA = λIdE

is called an Hermitian-Einstein connection. If A is the Chern connection of (∂̄E , h) for some hermitian
metric h, then h is called an Hermitian-Einstein metric.
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The existence of such a metric is related to stability properties of E. This is the Kobayashi-Hitchin
correspondence (or Donaldson-Uhlenbeck-Yau theorem).

Theorem 2.15. A holomorphic vector bundle E on a compact Kähler manifold (X,ω), admits an Hermitian-
Einstein metric if and only if E is polystable, i.e. E splits holomorphically into a direct sum of ω-stable
bundles of the same ω-slope µω(E). Such a metric is unique up to a positive constant.

For the proof in the case of projective surfaces and projective complex manifolds see [DO1] and [DO2]
respectively. For the proof in the general case see [UY]. From the HYM equations it is clear that an
Hermitian-Einstein connection is Hermitian-Yang-Mills (and so Yang-Mills).

Remark 2.16. Note that if E is holomorphic and ∇A = (∂̄E , h) for some hermitian metric h, then the same
argument shows that (E, h) = ⊕li=1(Qi, hi) where the hi are Hermitian-Einstein metrics and the splitting
is orthogonal with respect to h. Since the splitting is preserved by the Chern connection ∇A, it is also
holomorphic with respect to the holomorphic structure on E given by ∂̄E.

We now give the statement of the general Uhlenbeck compactness theorem. Although we will be primarily
concerned with the theorem as it applies to the Yang-Mills flow of the next section, the proof of the main
theorem in Section 7 will also rely on this more general statement.

Theorem 2.17. Let X be a Kähler manifold (not necessarily compact) and E → X a hermitian vector
bundle with metric h. Fix any p > n. Let ∇Aj be a sequence of integrable, unitary connections on E such

that
∥∥FAj

∥∥
L2(X)

and
∥∥ΛωFAj

∥∥
L∞(X)

are uniformly bounded. Then there is a subsequence (still denoted

Aj), a closed subset Zan ⊂ X with Hausdorff codimension at least 4, and a smooth hermitian vector bundle
(E∞, h∞) defined on the complement X − Zan with a finite action Yang-Mills connection ∇A∞

on E∞,
such that ∇Aj |X−Zan

is gauge equivalent to a sequence of connections that converges to ∇A∞
weakly in

Lp1,loc(X − Zan).

The statement of this version of Uhlenbeck compactness may be found for example in Uhlenbeck-Yau
([UY] Theorem 5.2). The proof is essentially contained in [U2] and the statement about the singular set
follows from the arguments in [NA]. We will call such a limit ∇A∞

an Uhlenbeck limit. Furthermore, we
have the following crucial extension of this theorem due essentially to Bando and Siu.

Corollary 2.18. If in addition to the assumptions in the previous theorem, we also require that:
∥∥dAjΛωFAj

∥∥
L2(X)

−→ 0,

then any Uhlenbeck limit ∇A∞
is Yang-Mills. On X − Zan we therefore have a holomorphic, orthogonal,

splitting:
(E∞, h∞,∇A∞

) = ⊕li=1(Q∞,i, h∞,i,∇A∞,i)

Moreover E∞ extends to a reflexive sheaf (still denoted E∞) on all of X.

Most of the content of this corollary resides in the last statement, which may be found in [BS] as Corollary
2. The proof presented there is based on results in the papers [B] and [SIU]. The statement about the splitting
follows directly from the fact that an Uhlenbeck limit is Yang-Mills and Proposition 2.13. Therefore it only
remains to prove that the stated condition implies the limit is Yang-Mills. For a proof of this see for example
[DW1].

We will need the following simple corollary of Uhlenbeck compactness, which we will use repeatedly.

Corollary 2.19. With the same assumptions as in Theorem 2.17, ΛωFAj → ΛωFA∞
in Lp(X−Zan) for all

1 ≤ p <∞.

For the proof see [DW1].
In general, if E is only a reflexive sheaf, Bando and Siu ([BS]) defined the notion of an admissible

hermitian metric. This is an hermitian metric h on the locally free part of F such that:
· ΛωFh ∈ L∞(X,ω)
· Fh ∈ L2(X,ω).
Corollary 2.18 says that the limiting metric is an admissible hermitian metric on the reflexive sheaf

E∞ that is a direct sum of admissible Hermitian-Einstein metrics. We also point out the version of the
Kobayashi-Hitchin correspondence for reflexive sheaves, due to Bando and Siu [BS].
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Theorem 2.20. (Bando-Siu) A reflexive sheaf E on a compact Kähler manifold (X,ω) admits an admissible
Hermitian-Einstein metric if and only if it is polystable. Such a metric is unique up to a positive constant.

Note that this theorem says the (GrHNSω (E))∗∗ carries an admissible Yang-Mills connection (where ad-
missible has the same meaning for connections), which is unique up to gauge.

2.3. Weakly Holomorphic Projections/Second Fundamental Forms. Let S ⊂ E be a subsheaf with
quotient Q. Then away from Sing(S)∪Sing(Q), S is a subbundle. If we fix an hermitian metric h on E, then
we may think of S as a direct summand away from the singular set, and there is a corresponding smooth
projection operator π : E → S depending on h. The condition of being a holomorphic subbundle almost
everywhere can be shown to be equivalent to the condition: (IdE − π) ∂̄Eπ = 0. Since π is a projection
operator we also have π2 = π = π∗. Furthermore it can be shown that π extends to an L2

1 section of EndE.
Conversely it turns out that an operator with these properties determines a subsheaf.

Definition 2.21. An element π ∈ L2
1(EndE) is called a weakly holomorphic projection operator if the

conditions
(IdE − π) ∂̄Eπ = 0 and π2

j = πj = π∗
j ∗

hold almost everywhere.

Theorem 2.22. (Uhlenbeck-Yau) A weakly holomorphic projection operator π of a holomorphic vector bundle
(E, h) with a smooth hermitian metric over a compact Kähler manifold (X,ω) determines a coherent subsheaf
of E. That is, there exists a coherent subsheaf S of E together with a singular set V ⊂ X with the following
properties:
·CodimV ≥ 2,
·π|X−V is C∞ and satisfies ∗,
·S|X−V = π|X−V (E|X−V ) →֒ E|X−V is a holomorphic subbundle.

The proof of this theorem is contained in [UY]. From here on out we will identify a subsheaf with its
weakly holomorphic holomorphic projection.

If S ⊂ E is a subsheaf, then away from Sing(S)∪ Sing(Q) there is an orthogonal splitting E = S ⊕Q. In
general we may write the Chern connection ∇(∂̄E ,h) connection on E as:

∇(∂̄E ,h) =

(
∇(∂̄S ,hS) β

−β∗ ∇(∂̄Q,hQ)

)

where ∇(∂̄S ,hS) and ∇(∂̄Q,hQ) are the induced Chern connections on S and Q respectively, and β is the

second fundamental form. Recall that β ∈ Ω0,1(Hom(Q,S)). More specifically, in terms of the projection
operator, we have ∂̄Eπ = β and ∂Eπ = β∗. Also β extends to an L2 section of Ω0,1(Hom(Q,S)) everywhere
as ∂̄Eπ since π is L2

1. We also have the following well-known formula for the degree of a subsheaf in terms
of its weakly holomorphic projection.

Theorem 2.23. (Chern-Weil Formula) Let S ⊂ E be a saturated subsheaf of a holomorphic vector bundle
with hermitian metric h, and π the associated weakly holomorphic projection. Let ∂̄E denote the holomorphic
structure on E. Then we have:

deg S =
1

2πn

∫

X

Tr
(√
−1ΛωF(∂̄E ,h)π

)
ωn − 1

2πn

∫

X

|β|2 ωn

The statement of this theorem as well as a sketch of the proof may be found in [SI]. This formula will
also follow as a special case of our discussion in Section 4.

Clearly any sequence πj of such projection operators is uniformly bounded in L∞(X). As an immediate
corollary of the Chern-Weil formula we have the following.

Corollary 2.24. A sequence πj of weakly holomorphic projection operators such that deg πj is bounded from
below is uniformly bounded in L2

1. In particular, if deg πj is constant then πj is bounded in L2
1.

Now suppose ∇A0 is a reference connection, gj ∈ GC is a sequence of complex gauge transformations,
and ∇Aj is the sequence of integrable unitary connections on an hermitian vector bundle (E, h) given by
∇Aj = gj · ∇A0 , and assume as before that ΛωFAj is uniformly bounded in L∞. Let S ⊂ E be a subbundle
with quotient Q. We have a sequence of projection operators πj given by orthogonal projection onto gj(S)
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(with respect to the metric h) from E to holomorphic subbundles Sj (whose holomorphic structures are
induced by the connections ∇Aj ) smoothly isomorphic to S. We will denote by Qj the corresponding
quotients. Each of these holomorphic subbundles has a second fundamental form which we will write as βj .

Assume that the βj are also uniformly bounded in L2 (this will later be a consequence of our hypotheses).
Then with all of the above understood, we have the following result.

Lemma 2.25. For any 1 ≤ p <∞, the βj are bounded in Lp1,loc(X−Zan), uniformly for all j. In particular
the βj are uniformly bounded on compact subsets of X − Zan.

The proof is the same as in [DW1] Section 2.2.

3. The Yang-Mills Flow and Basic Properties

3.1. The Flow Equations/Lower Bound for the HN Type of the Limit. As stated in the introduc-
tion, although many of our arguments are valid for minimising sequences of unitary connections, our primary
interest will be in sequences obtained from the Yang-Mills flow. This is a sequence of integrable unitary
connections At obtained as solutions of the L2-gradient flow equations for the YM functional. Explicitly:

∂At
∂t

= −d∗AtFAt , A0 ∈ A1,1
h .

It follows from [DO1] and [SI] that the above equations have a unique solution in A1,1
h × [0,∞). Moreover,

the flow preserves complex gauge orbits, that is, At lies in the orbit GC · A0. This may be seen as follows.
Instead of solving for the connection, fix A0 so that ∂̄A0 = ∂̄E , and consider instead the family of hermitian
metrics ht satisfying the Hermitian-Yang-Mills flow equations:

h−1
t

∂ht
∂t

= −2
(√
−1ΛωFht − µω(E)IdE

)
.

In the above, Fht is the curvature of (∂̄E , ht). The Yang-Mills and Hermitian-Yang-Mills flow equations are
equivalent up to gauge. If At = gt · A0 is a solution of the Yang-Mills flow, then ht = h0g

∗
t gt is a solution

of the Hermitian-Yang-Mills flow. Conversely, if ht = h0kt (where h0kt(s1, s2) = h0(kts1, s2)) for a positive

definite self-adjoint (with respect to h0) endomorphism kt, then At = (kt)
1
2 A0 is real gauge equivalent to a

solution of the Yang-Mills flow. To spell out the equivalence precisely, the map:

gt : (E, ∂̄E , h0kt) −→ (E, gt(∂̄E), h0)

is a biholomorphism and an isometry, where kt = g∗t gt. For a detailed discussion of this see [WIL] section
3.1 for details.

Lemma 3.1. Let At be a solution of the YM flow. Then:
(1)

∂FAt
∂t

= −△AtFAt
and therefore,

d

dt
‖FAt‖2L2 = −2

∥∥d∗AtFAt
∥∥2
L2 ≤ 0.

Hence, t 7→ YM(At), and t 7→ HYM(At) are non-increasing.

(2) |ΛωFAt |2 satisfies

∂ |ΛωFAt |2
∂t

+△|ΛωFAt |2 = −2
∣∣d∗AtFAt

∣∣2 ≤ 0,

so by the maximum principle sup |ΛωFAt |2 is decreasing in t.

For the proof see [DOKR] Chapter 6.
Now we may apply the Uhlenbeck compactness theorem to a sequence of connections given by the flow.

Proposition 3.2. Let X be a compact Kähler manifold. Let A0 be any fixed connection, and At denote
its evolution along the flow. Fix p > n. For any sequence tj → ∞ there is a subsequence (still denoted
tj), a closed subset Zan ⊂ X with Hausdorff codimension at least 4, and a smooth hermitian vector bundle
(E∞, h∞) defined on the complement X−Zan with a finite action Yang-Mills connection A∞ on E∞, such that
Atj |X−Zan

is gauge equivalent to a sequence of connections that converges to A∞ weakly in Lp1,loc(X − Zan).
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Away from Zan there is a smooth splitting: (E∞, A∞, h∞) = ⊕li=l (Q∞,i, A∞,i, h∞,i), where A∞,i is the
induced connection on Qi, and h∞,,i is an Hermitian-Einstein metric. Furthermore, E∞ extends over Zan

as a reflexive sheaf (still denoted E∞), so that the metrics h∞,i are admissible Hermitian-Einstein metrics
on the extension.

Proof. The functions ‖FAt‖L2 and ‖ΛωFAt‖L∞ are uniformly bounded by parts (1) and (2) of Lemma 3.1
respectively. By [DOKR] Proposition 6.2.14, limt→∞ ‖∇AtΛωFAt‖L2 = 0. The remaining statements follow
from Corollary 2.18. �

Just as before we call A∞ an Uhlenbeck limit of the flow.

Lemma 3.3. If A∞ is an Uhlenbeck limit of Atj , then ΛωFAj → ΛωFA∞
in Lp(X−Zan) for all 1 ≤ p <∞.

Moreover, limt→∞HYM(At) = HYM(A∞).

Proof. The first part is immediate from Corollary 2.19. The second statement is immediate from the facts
that t→ HYM(At) is non-increasing, and HYM(Atj ) 7→ HYM(A∞). �

The set of all HN types of holomorphic bundles on X has a partial ordering due to Shatz [SH]. For a
pair of K-tuples µ and λ with µ1 ≥ µ2 ≥ · · · ≥ µK and λ1 ≥ λ2 ≥ · · · ≥ λK and

∑
i µi =

∑
i λi, we write

µ ≤ λ⇐⇒
∑

j≤k

µj ≤
∑

j≤k

λj for all k = 1, · · · ,K.

This partial ordering was originally used by Shatz to stratify the space of holomorphic structures on a
complex vector bundle.

The first crucial step in [DW1] is to prove that the HN type of an Uhlenbeck limit is bounded below by
the HN type µ0 of E. For the proofs of this and its corollaries, we refer to [DW1] as the proof is unchanged
in the general case.

Proposition 3.4. Let Aj be a sequence of connections along the YM flow on a holomorphic vector bundle
of rank K, with Uhlenbeck limit A∞. Let µ0 be the HN type of E with holomorphic structure ∂̄A0 . Let λ∞
be the HN type of ∂̄A∞

. Then µ0 ≤ λ∞.

Corollary 3.5. Let µ = (µ1, · · · , µK) be the HN type of a rank K holomorphic vector bundle (E, ∂̄E) on
X. Then

K∑

i=1

µ2
i ≤

1

2πn

∫

X

|ΛωFA|2 ωn

and (
K∑

i=1

µ2
i

) 1
2

≤ 1

2πn

∫

X

|ΛωFA|ωn

for all unitary connections ∇A in the GC orbit of (E, ∂̄E).

3.2. Hermitian-Yang-Mills Type Functionals. The YM and HYM functionals are not sufficient to
distinguish different HN types in general. In other words there may be multiple connections with the same
YM number, but which induce holomorphic structures with different HN types. In this subsection we
introduce generalisations of the HYM functional that can be used to distinguish different types. This is
only a technical device, but will be used essentially in Section 5.

Write u(K) for the Lie algebra of the unitary group U(K). Fix a real number α ≥ 1. Then for v ∈ u(K),

a skew hermitian matrix with eigenvalues
√
−1λ1, · · · ,

√
−1λK , let ϕα(v) =

∑K
i=1 |λi|

α
. It can be seen that

there is a family ϕα,ρ, 0 < ρ ≤ 1, of smooth convex Ad-invariant functions such that ϕα,ρ → ϕα uniformly on
compact subsets of u(K). By Atiyah-Bott ([AB]), Proposition 12.16, ϕα is a convex function on u(K). Now if
E is a vector bundle of rank K equipped with an hermitian metric, we may consider a section σ ∈ Γ(X, u(E))
as collection of local sections {σβ} such that σβ = Ad(gβγ)σγ where gβρ are the transition functions for E.
By the Ad-invariance of ϕα, ϕα(σβ) = ϕα(σγ), so ϕα induces a well-defined function Φα on u(E). Then for
a fixed real number N , define:

HYMα,N (A) =

∫

X

Φα(ΛωFA +
√
−1NIdE)dvolω
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and HYMα(A) = HYMα,0(A). Note that HYM = HYM2 is the usual HYM functional. In the sequel we
will write:

HYMα,N(µ) = HYMα(µ+N) =
2π

(n− 1)!
Φα(
√
−1 (µ+N)),

where µ+N = (µ1 +N, · · · , µK +N)

is identified with the matrix diag (µ1 +N, · · · , µK +N). Therefore:

HYM(µ) =
2π

(n− 1)!

K∑

i=1

µ2
i .

We have the following elementary lemma whose proof we omit.

Lemma 3.6. The functional v→
(∫
X Φα(v)

) 1
α is equivalent to the Lα(u(E)) norm.

The following three propositions will be crucial in Section 5. For the proofs see [DW1].

Proposition 3.7. (1) If µ ≤ λ, then Φα(
√
−1µ) ≤ Φα(

√
−1λ) for all α ≥ 1.

(2) Assume µK ≥ 0 and λK ≥ 0. If Φα(
√
−1µ) = Φα(

√
−1λ) for all α in some set

A ⊂ [1,∞) possessing a limit point, then µ = λ.

Proposition 3.8. Let At be a solution of the YM flow. Then for any α ≥ 1 and any N , t 7→ HYMα,N (At)
is non-increasing.

Proposition 3.9. Let A∞ be a subsequential Uhlenbeck limit of At where At is a solution of the YM flow.
Then for all α ≥ 1, limt→∞HYMα,N (At) = HYMα,N (A∞).

4. Properties of Blowups and Resolution of the HNS Filtration

In this section we discuss the properties of blowups of complex manifolds along complex submanifolds
that will be used in the subsequent discussion. Essentially all of this material is standard, but we review it
carefully now because we will need to employ these facts often in the proofs of the main results.

4.1. Resolution of Singularities Type Theorems. The HNS filtration is in general only given by
subsheaves, making it difficult to do analysis. We will therefore need some way of obtaining a filtration by
subbundles, that is, a way of resolving the singularities. In two dimensions, when the singular set consists
of point singularities this can be done by hand (see [BU1]), but in higher dimensions the only available tool
seems to be the general resolution of singularities theorem of Hironaka. Specifically:

Theorem 4.1. (Resolution of Singularities) Let X be a compact, complex space (or C-scheme). Then there
exists a finite sequence of blowups with smooth centres:

X̃ = Xm
πm−→ Xm−1 −→ · · · −→ X1

π1−→ X0 = X

such that X̃ is compact and non-singular (a complex manifold) and the centre Yj−1 of each blowup πj is
contained in the singular locus of Xj−1.

For the proof see [H1] and [H2]. What we will actually use is the following corollary:

Corollary 4.2. (Resolution of the Locus of Indeterminacy) Let X and Y be compact, complex spaces and

let ϕ : X 99K Y be a rational (meromorphic) map. Then there exists a compact, complex space X̃
π→ X

obtained from X by a sequence of blowups with smooth centres and a holomorphic map ψ : X̃ → Y such that
the following diagram commutes:

X̃
↓ ց
X 99K

ϕ
Y
.

In our case both X and Y (and hence also X̃) will be complex manifolds. Note that in this case a blowup
with “smooth centre” is the same as the blowup along a complex submanifold. We will apply the Corollary
in the following way.
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The HNS filtration of a bundle E, which in the sequel we will abbreviate for simplicity as:

0 = E0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E

(i.e. we ignore the notation indicating that it is a double filtration), as stated previously, is in general a
filtration only by subsheaves of E. We may think of a subbundle S ⊂ E of rank k as a holomorphic section
of the Grassmann bundle Gr(k,E), the bundle whose fibre at each point is the set of k-dimensional complex
subspaces of the fibre of E. Similarly a filtration by subbundles corresponds to a holomorphic section of
the partial flag bundle FL(d1, · · · , dl, E), the bundle whose fibre at each point is the set of l flags of type
(d1, · · · , dl) where di = rk(Ei). On the other hand a filtration by subsheaves corresponds to a rational

section X
σ

99K FL(d1, · · · , dl, E). The corollary says that by blowing up finitely many times along complex

submanifolds, we obtain an honest section X̃ → FL(d1, · · · , dl, π∗E). More explicitly, we have a diagram:

X̃
σ̃

−→←− FL(π∗E)
↓ ց ↓
X

σ
99K←−
p

FL(E)

where σ̃ will be constructed below. The outer square is just the pullback diagram for the map X̃
π→ X . First

we claim that the triangle:

X̃
↓ ց
X ←− FL(E)

commutes. If we write ψ for the desingularised map X̃ −→ FL(E), then note that for a point x̃ ∈ X̃−E, we
have ψ(x̃) = ψ(π−1(x)) for x ∈ Zalg. Then we have: p(ψ(x̃)) = p(σ(π(x̃))) = x = π(x̃) since σ is well-defined
and a section away from Zalg and we know the diagram:

X̃
↓ ց
X

σ
99K FL(E)

commutes. In other words on X̃ − E we have p ◦ ψ = π. But since both of these are holomorphic maps
X̃ −→ X , p ◦ ψ = π on X̃ by the uniqueness principle for holomorphic maps, since they agree on a non-
empty open subset. Now FL(π∗E) = π∗FL(E) = {(x̃, ν) ∈ X̃ × FL(E) | π(x̃) = p(ν)}. Now define

σ̃ : X̃ −→ FL(π∗E) by σ̃(x̃) = (x̃, ψ(x̃)). Since p ◦ ψ = π this is indeed a map into FL(π∗E), and it is
manifestly a section.

In other words there is a filtration of π∗E:

0 = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽl−1 ⊂ Ẽl = π∗E

where the Ẽi are subbundles.
Now note that we have the following diagram:

Q̃i
↑

π∗E
ր ↑

π∗Ei 99K Ẽi

where the dashed line is the rational map corresponding to the equality of π∗Ei and Ẽi away from E (both

are equal to Ei), and Q̃i is the quotient of π∗E by Ẽi. Then Q̃i is a vector bundle and in particular torsion

free. On the other hand the image of π∗Ei under the composition π∗Ei → π∗E → Q̃i is torsion since it is
supported on the divisor E, and hence must be zero. If we write Imπ∗Ei for the image of π∗Ei −→ π∗E, this
means there is an actual inclusion of sheaves Imπ∗Ei →֒ Ẽi. The quotient sheaf Ẽi/ Imπ∗Ei is supported

on E, hence torsion and so it follows from Lemma 2.1 that Ẽi = Satπ∗E(Im π∗Ei).

Since π∗Ẽi is equal to Ei away from SingEi there is a birational map Ei 99K π∗Ẽi. Now consider the
short exact sequence:

0 −→ Ẽi −→ π∗E → Q̃i −→ 0.
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Pushing this sequence forward, and noting that π∗Q̃i is torsion free and hence injects into its double dual,
we have an exact sequence:

0 −→ π∗Ẽi −→ E →
(
π∗Q̃i

)∗∗
.

Recall that a sheaf S is normal if for any analytic subset Z of codimension at least two, the map S(U) −→
S(U − Z) on local sections is an isomorphism for any open set U . In other words, the local sections of a
normal sheaf extend over codimension two subvarieties. Furthermore, recall that a sheaf is reflexive if and
only if it is both torsion free and normal. Then (π∗Q̃i)

∗∗ and E are in particular both normal since they
are reflexive. A simple diagram chase reveals that normality of these sheaves together with the exactness of
this last sequence implies that π∗Ẽi is also normal (and in fact reflexive, since it is also torsion free).

Because Ei is saturated by construction, it is also reflexive and therefore normal. It is easy to see from
the definitions that a map between normal sheaves that is defined away from a codimension two subvariety
extends to a map on all of X . Since SingEi has singular set of codimension at least three, the map
Ei 99K π∗Ẽi extends to an isomorphism Ei ∼= π∗Ẽi.

Similarly, if Q̃i = Ẽi/Ẽi−1, then π∗Q̃i is equal to Qi away from SingQi so again we have a birational

map (Qi)
∗∗

99K (π∗Q̃i)
∗∗. Since the double dual is always reflexive, these sheaves are normal, so the map

extends to an isomorphism. To summarise:

Proposition 4.3. Let

0 = E0 ⊂ E1 ⊂ · · · ⊂ El−1 ⊂ El = E

be a filtration of a holomorphic vector bundle E → X by saturated subsheaves and let Qi = Ei/Ei−1. Then

there is a finite sequence of blowups along complex submanifolds whose composition π : X̃ → X enjoys the
following properties. There is a filtration

0 = Ẽ0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽl−1 ⊂ Ẽl = Ẽ = π∗E

by subbundles. If we write Imπ∗Ei for the image of π∗Ei →֒ π∗Ei, then Ẽi = Satπ∗E (Imπ∗Ei). If Q̃i =

Ẽi/Ẽi−1 then we have π∗Ẽi = Ei and Q
∗∗
i = (π∗Q̃i)

∗∗.

We will also have occasion to consider ideal sheaves I ⊂ OX whose vanishing set is a closed complex
subspace Y ⊂ X . If Y is smooth for example then we may blowup along Y to obtain a smooth manifold
π : X̃ −→ X . Denote by π∗I is the ideal sheaf generated by pulling back local sections of I, in other words
the ideal sheaf in OX̃ generated by the image of π−1I under the map π−1OX −→ OX̃ where π−1I and
π−1OX are the inverse image sheaves. Note that this is not necessarily equal to the usual sheaf theoretic
pullback of I which is given by π−1I⊗π−1OXOX̃ and may for example have torsion. The sheaf π∗I is
sometimes called the “inverse image ideal sheaf”. If the order of vanishing of I along Y is m, then π∗I ⊂
OX̃(−mE), that is, every element of π∗I vanishes to order at least m along the smooth divisor E. In this
situation we will use this notation without further comment. In general Y is not smooth, so we appeal to
the following resolution of singularities theorem, which is sometimes referred to as “principalisation of I” or
more specifically “monomialisation of I” , and results of this type are usually used to prove resolution of
singularities.

Theorem 4.4. Let X be a complex manifold and Y a closed complex subspace. Then there is a finite sequence
of blowups along smooth centres whose composition yields a map π : X̃ → X such that π : X̃−E→ X−W is
biholomorphic, E = π−1(W ) is a normal crossings divisor, and π∗I = OX̃(−∑imiEi) where the Ei are the
irreducible components of E. Moreover, π∗I is locally principal (monomial) in the following sense: for any
x ∈ X there is a local coordinate neighbourhood U ⊂ X containing x and a local section f0 of OX̃(−∑imiEi)

over π−1(U), such that if fj is any local section of I over U , then π∗fj = f0f
′

j where f
′

j is a non-vanishing

holomorphic function on π−1(U). Furthermore, if ξk are local normal crossings coordinates for E, then there
is a factorisation:

f0 =
∏
k

ξmkk

so that we may write:

π∗fj =
∏
k

ξmkk · f ′

j .

For the proof, see for example Kollár [KO].
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4.2. Metrics on Blowups and Uniform Bounds on the Degree. Now we consider the case that the
original manifold is Kähler. The following proposition says that this property is preserved under blowing up
and is standard in Kähler geometry.

Proposition 4.5. Let (X,ω) be a Kähler manifold, and Y a compact, complex submanifold. Then the

blowup X̃ = BlYX along Y is also Kähler. Moreover X̃ possesses a one-parameter family of Kähler metrics
given by ωε = π∗ω + εη where ε > 0, π : X̃ → X is the blowup map and η is itself a Kähler form on X̃.

For the proof see for example [VO].
We will need a bound on the ωε degree of an arbitrary subsheaf of a holomorphic vector bundle E that

depends on ε in such a way that as ε → 0 the degree converges to the degree of a subsheaf on the base
(namely the pushforward). This will be a consequence of the following lemma.

Lemma 4.6. Let X be a compact complex manifold of dimension n and let τ and η be closed (1, 1)-forms
with τ semi-positve and η a Kähler form. Let E → X a holomorphic vector bundle. Then there is a constant
M such that for any subsheaf S ⊂ E with torsion free quotient and any 0 < k ≤ n− 1:

degk(S, τ , η) ≡
∫

X

c1(S) ∧ τn−k−1 ∧ ηk ≤M.

Proof. Note that when k = n−1, degk(S, τ , η) is the ordinary η degree of S. We follow Kobayashi’s proof that
the degree of an arbitrary subsheaf is bounded above. Fix an hermitian metric h on E. The general case will
follow from the case when S is a line subbundle L. In this case we can use the formula: FL = πFEπ+β∧β∗,
where π is the orthogonal projection to L and β is the second fundamental form. Since c1(L) =

i
2πFL we

have that:

degk(L, τ, η) =
i

2π

∫

X

πFEπ ∧ τn−k−1 ∧ ηk + i

2π

∫

X

β ∧ β∗ ∧ τn−k−1 ∧ ηk.

Since ‖π‖L∞(X) ≤ 1, the first term is clearly bounded from above. Therefore we only need to check that the

second term is non-positive. This is the case since β is a (0, 1) form, and therefore iβ ∧ β∗ ≤ 0. Therefore
degk(L, τ, η) ≤ M , for a constant independent of L. To extend the result to all subbundles F ⊂ E, simply
find such an M as above for each exterior power ΛpE for p = 1, · · · , rkE, and take the maximum. Then
apply the above argument to the line bundle L = detF →֒ ΛpE.

In general S
ı→֒ E is not a subbundle but there is an inclusion of sheaves detS →֒ ΛpE where p is

the rank of S. If V is the singular set of S, then S is a subbundle away from V , and so the inclusion

detS
ı→֒ ΛpE is a line subbundle away from V . Let σ be any local holomorphic frame for detS. Now

consider the set: W = {x ∈ X | ı(σ)(x) = 0}. Since detS is a line bundle this is clearly independent of σ.
Furthermore because ı is an injective bundle map away from V , any x ∈ W must be in V ; that is, W ⊂ V .
Now write H = ı∗ (Λph). This is an hermitian metric on detS over X −W . On the other hand there is
some hermitian metric G on detS over all of X . We would like to show that:

degk(S, τ , η) =

∫

X

c1(detS,G) ∧ τn−k−1 ∧ ηk =

∫

X−W

c1(detS,H) ∧ τn−k−1 ∧ ηk

Then applying the above reasoning, the last integral is bounded since just as before
∫

X−W

c1(detS,H) ∧ τn−k−1 ∧ ηk =

∫

X−V

c1(S, hS) ∧ τn−k−1 ∧ ηk ≤ i

2π

∫

X−V

πFEπ ∧ τn−k−1 ∧ ηk

where hS is the metric on S|X−V induced by h. Again this is bounded independently of π.
We will construct a C∞ function f on X such that H = fG on X −W . Then the usual formula for the

curvature of the associated Chern connections implies:

c1(detS,H) =
i

2π
∂̄∂ logH =

i

2π
∂̄∂ log f + c1(detS,G)

=⇒ c1(detS,G) = c1(detS,H)− i

2π
∂̄∂ log f on X −W.

Finally we will show: ∫

X−W

i

2π
∂̄∂ log f ∧ τn−k−1 ∧ ηk = 0.
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To construct f , let σ be any local holomorphic frame for detS. If (e1, · · · , er) is a local holomorphic frame
for E, then define: ı(σ) =

∑
I σ

IeI , where eI = ei1 ∧ · · · ∧ eip , with i1 < · · · < ip. Then let

f = H(σ, σ)/G(σ, σ) =
∑

I,J

HIJσ
I σ̄J

where HIJ = Λph(eI , eJ)/G(σ, σ). Then one may check that f is well-defined independently of σ. It is a
smooth non-negative function vanishing exactly onW . Since the matrix (HIJ) is positive definite, f vanishes
exactly where all the σI vanish. It is also clear that we have the equality H = fG.

To complete the argument we will show that i
2π ∂̄∂ log f integrates to zero. Let I be the sheaf of ideals

in OX generated by {σI}. By Theorem 4.4 there is a sequence of smooth blowups π : X̃ → X such
that π∗I, the inverse image ideal sheaf of I, is the ideal sheaf of a divisor E =

∑
imiEi where the Ei

are the irreducible components of the support of the exceptional divisor suppE = ∪i Ei. In other words
π∗I = OX̃(−

∑
imiEi) for some natural numbers mi. Furthermore, we have: π∗σI = ρI · ξmi1i1

· · · ξmisis
,

where {ξij} are normal crossings coordinates for E on an open set where π∗σI is defined, and ρI is a non-

vanishing holomorphic function. Therefore we may locally write: π∗f = χ ·
∣∣ξi1
∣∣2mi1 · · ·

∣∣ξis
∣∣2mis , where χ is

a strictly positive C∞ function defined on X̃ . If we write Φ = i
2π∂ logχ, and TdΦ for the current defined by

dΦ = i
2π ∂̄∂ logχ, then since by definition:

TdΦ
(
π∗(τn−k−1 ∧ ηk)

)
= −dTΦ(π∗(τn−k−1 ∧ ηk))

TΦ(d(π
∗(τn−k−1 ∧ ηk)) = 0

since π∗(τn−k−1 ∧ ηk) is closed. Away from the exceptional set we may write locally:

i

2π
∂ log π∗f =

i

2π

(
∂ logχ+ 2mi1∂ log

∣∣ξi1
∣∣+ · · ·+ 2mis∂ log

∣∣ξis
∣∣)

= Φ+
i

2π

(
mi1dξi1
ξi1

+ · · ·+ misdξis
ξis

)
.

The second term is integrable on its domain of definition and so i
2π ∂̄∂ log π

∗f is a (1, 1) form with L1
loc(X̃)

coefficients, and so defines a current. On the other hand by the Poincaré-Lelong formula, ∂̄ applied to the

second term is equal to
∑

ij

mijTEij , in the sense of currents, where TEij is the current defined by the smooth

hypersurface Eij . Finally then:
∫

X−W

i

2π
∂̄∂ log f ∧ π∗τn−k−1 ∧ π∗ηk =

∫

X̃−E

i

2π
∂̄∂ log π∗f ∧ π∗τn−k−1 ∧ π∗ηk

= T i
2π ∂̄∂ log π∗f (π

∗τn−k−1 ∧ π∗ηk) =

(
∑

i

miTEi

)
(π∗τn−k−1 ∧ π∗ηk) =

∑

i

mi

∫

Ei

π∗τn−k−1 ∧ π∗ηk = 0

since the image of Ei under π has codimension at least two. This completes the proof. �

Remark 4.7. If 0 → S → E → Q → 0 is an exact sequence, where E is a vector bundle and Q is torsion
free, then the dualised sequence 0 → Q∗ → E∗ → S∗ is exact, and so as in the above lemma there is a
constant M associated to E independent of Q so that

−
∫

X

c1(Q) ∧ τn−k−1 ∧ ηk =

∫

X

c1(Q
∗) ∧ τn−k−1 ∧ ηk ≤M.

In other words there is a uniform constant M so that: −M ≤
∫
X c1(Q) ∧ τn−k−1 ∧ ηk, where Q is any

torsion-free quotient of E.

Remark 4.8. In the case that k = n − 1, degk(S, τ , η) = deg(S, η) and the above constitutes a proof of
Simpson’s degree formula.

We note that if X̃ → X is a composition of finitely many blowups then we also have a family of Kähler
metrics on X̃ by iteratively applying Proposition 4.5. We would now like to compute the degree of an
arbitrary torsion-free sheaf S̃ on X̃ with respect to each metric ωε on X̃.
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Theorem 4.9. Let S̃ be a subsheaf (with torsion free quotient Q̃) of a holomorphic vector bundle Ẽ on

X̃, where π : X̃ → X is given by a sequence of blowups along complex submanifolds of codim ≥ 2. Then
there is a uniform constant M independent of S̃ such that the degrees of S̃ and Q̃ with respect to ωε satisfy:
deg(S̃, ωε) ≤ deg(π∗S̃) + εM , and deg(Q̃, ωε) ≥ deg(π∗Q̃)− εM .

Proof. The general case will follow from the case when S̃ is a line bundle L̃ (perhaps not a line subbundle).

Recall that the Picard group of the blowup Pic(X̃) = Pic(X)⊕ ZO(E1)⊕ · · · ⊕ ZO(Em) where the Ei are
the irreducible components of the exceptional divisor. That is, we may write an arbitrary line bundle as
L̃ = π∗L⊗OX̃(

∑
imiEi) where L is a line bundle on X . Then by definition:

deg(L̃, ωε) =

∫

X̃

c1(L̃) ∧ ωn−1
ε =

∫

X̃

c1(L̃) ∧ (π∗ω + εη)
n−1

.

Then we have an expansion:

(π∗ω + εη)
n−1

= π∗ωn−1 + ε(n− 1)π∗ωn−2 ∧ η + · · ·+ εn−2(n− 1)π∗ω ∧ ηn−2 + εn−1ηn−1.

Note that

∫

X̃

c1(OX̃(Ei))∧π∗ωn−1 =

∫

Ei

(π∗ω)
n−1

= 0, since the image in X of each Ei lives in codimension

at least 2. Therefore we are left with

deg(L̃, ωε) =

∫

X̃

c1(L̃) ∧ π∗ωn−1 +
∑

k

εk
(
n− 1

k

)(∫

X̃

c1(L̃) ∧ π∗ωn−k−1 ∧ ηk
)

=

∫

X̃

π∗c1(L) ∧ π∗ωn−1 +
∑

i

mi

∫

X̃

c1(OX̃(Ei)) ∧ π∗ωn−1

+
∑

k

εk
(
n− 1

k

)∫

X̃

c1(L̃) ∧ π∗ωn−k−1 ∧ ηk

= deg(L, ω) +
∑

k

εk
(
n− 1

k

)∫

X̃

c1(L̃) ∧ π∗ωn−k−1 ∧ ηk

By the previous lemma the terms

∫

X̃

c1(L̃) ∧ π∗ωn−k−1 ∧ ηk, are all bounded uniformly independently of ε

since π∗ω is semi-positive and η is a Kähler form. Therefore we have: deg(L̃, ωε) ≤ deg(L, ω) + εM .

Now note that if X̃ = BlYX then π∗O(mE) = OX if m ≥ 0 and π∗O(mE) = I⊗mY if m < 0, where IY is
the ideal sheaf of holomorphic functions on X vanishing on Y . The determinant of an ideal sheaf is trivial
if Y has codimension at least 2, so we have det(π∗L̃) = det(L) so finally: deg(L̃, ωε) ≤ deg(π∗L̃) + εM .

Now for an arbitrary subsheaf S̃ ⊂ Ẽ, by definition deg(S̃, ωε) = deg(det(S̃), ωε). When π∗S̃ is a vector

bundle, that is, away from its algebraic singular set, we have an isomorphism det(π∗S̃) = π∗ det S̃. Their
determinants are therefore isomorphic away from this set, and so by Hartogs’ theorem there is an isomorphism
of line bundles: det(π∗S̃) = det(π∗ det S̃) on X . Therefore by the previous argument:

deg(S̃, ωε) = deg(det(S̃), ωε) ≤ deg(π∗ det S̃) + εM = deg(π∗S̃) + εM .

The exact same argument together with the previous remark proves the second inequality as well. �

4.3. Stability on Blowups and Convergence of the HN Type.

Proposition 4.10. Let Ẽ → X̃ a holomorphic vector bundle where X̃ → X is a sequence of blowups. If
π∗Ẽ is ω-stable, then there is an ε2 such that Ẽ is ωε-stable for all 0 < ε ≤ ε2.
Proof. Suppose there is a destabilising subsheaf S̃ε ⊂ Ẽ, i.e. µωε(S̃ε) ≥ µωε(Ẽ) for each ε. Now among all

proper subsheaves of π∗Ẽ, the maximal slope is realised by some subsheaf F , in other words:

µω(F) = sup{µω(S) | S ⊂ π∗Ẽ}.
Then by the previous theorem we have:

µω(π∗Ẽ)− εM ≤ µωε(Ẽ) ≤ µω(π∗S̃ε) + εM ≤ µω(F) + εM.

In other words:

µω(π∗Ẽ) ≤ µω(F) + 2εM
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Since π∗Ẽ is ω-stable, µω(F) < µω(π∗Ẽ). Since the constant M is independent of ε, when ε is sufficiently

small (more specifically, when ε < (µω(π∗Ẽ)− µω(F))/2M), we have

µω(π∗Ẽ) ≤ µω(F) + 2εM < µω(π∗Ẽ),

which is a contradiction. �

Remark 4.11. This shows in particular that for any resolution of a HNS filtration, the quotients Q̃i =
Ẽi/Ẽi−1 are stable with respect to ωε for ε sufficiently small, since the double dual of the pushforward is the
double dual of Qi which is stable by construction. This fact will be important in Section 5.

For each of the metrics ωε there is also an HNS filtration of the pullback π∗E. We will need information
about what happens to the corresponding HN types as ε→ 0. Namely we have:

Proposition 4.12. Let E → X be a holomorphic vector bundle and π : X̃ → X be a finite sequence of
blowups resolving the HNS filtration. Then the HN type (µε1, · · · , µεK) of π∗E with respect to ωε converges
to the HN type (µ1, · · · , µK) of E with respect to ω as ε −→ 0.

Proof. Let
0 = Ẽ0 ⊂ Ẽ1 ⊂ Ẽ2 ⊂ · · · ⊂ Ẽl−1 ⊂ Ẽl = π∗E

be a resolution of the HNS filtration. Since all the information about the HN type is contained in the HN
filtration

0 = F
HN
0 ⊂ F

HN
1 (E) ⊂ F

HN
2 (E) ⊂ · · · ⊂ F

HN
l (E) = E,

we will just regard this as a resolution of singularities of the HN filtration and forget about Seshadri
filtrations for the rest of this proof.

We would like to relate the resolution of the HN filtration of (E,ω), to the HN filtration of (π∗E,ωε) for

small ε. We claim that for all ε in a sufficient range we may arrange that µmin
ωε (Ẽi) > µmax

ωε (π∗E/Ẽi). Let

F1 ⊂ Ẽi ⊂ F2 ⊂ π∗E be any subsheaves such that Ẽi/F1 is torsion free. Note that for x̃ ∈ X̃ with π(x̃) = x,
we always have maps on the stalks (π∗Fi)x → (Fi)x̃. Since π is in particular a biholomorphism away from

E, when x̃ ∈ X̃ −E these maps are isomorphisms. In other words the sequences:

0 −→ π∗F1 −→ Ei −→ π∗

(
Ẽi/F1

)
−→ 0

and

0 −→ Ei −→ π∗F2 −→ π∗

(
F2/Ẽi

)
−→ 0

are exact away from the singular set Zalg. In particular this means Ei/π∗F1 →֒ π∗(Ẽi/F1) and π∗F2/Ei →֒
π∗(F2/Ẽi) with torsion quotients, which implies (Ei/π∗F1)

∗∗ = (π∗(Ẽi/F1))
∗∗ and (π∗F2/Ei)

∗∗ = (π∗(F2/Ẽi))
∗∗.

Then finally we have µω(Ei/π∗F1) = µω(π∗(Ẽi/F1)) and µω(π∗F2/Ei) = µω(π∗(F2/Ẽi)).

The above argument together with Theorem 4.9 now implies that µωε(Ẽi/F1) ≥ µω(Ei/π∗F1)− εM and

µωε(F2/Ẽi) ≤ µω(π∗F2/Ei)+εM . On the other hand: µω(Ei/π∗F1) ≥ µω(Qi) > µω(Qi+1) ≥ µω(π∗F2/Ei),

where we have used the facts that µω(Qi) = µmin
ω (Ei) and µω(Qi+1) = µmax

ω (E/Ei). Therefore we have:

µωε(Ẽi/F1)− µωε(F2/Ẽi) ≥ (µω(Ei/π∗F1)− µω(π∗F2/Ei))− 2εM.

As we have shown, the first term on the right hand side is strictly positive, so when ε is sufficiently small
the entire right hand side is strictly positive. Since F1 and F2 were arbitrary, for ε small µmin

ωε (Ẽi) must be

strictly bigger than µmax
ωε (π∗E/Ẽi).

Now it follows from Proposition 2.9 that the HN filtration of (π∗E,ωε) is:

0 ⊂ F
HN,ε
1 (Ẽ1) ⊂ · · · ⊂ F

HN,ε
k1

(Ẽ1) = Ẽ1 ⊂ · · · ⊂ F
HN,ε
k1+···+kl−1

(Ẽl−1) = Ẽl−1

⊂ F
HN,ε
k1+···+kl−1+1(Ẽl) ⊂ · · · ⊂ F

HN,ε
k1+···+kl

(Ẽl) = π∗E.

That is, the resolution appears within the HN filtration with respect to ωε, and two successive subbundles
in the resolution are separated by the HN filtration of the larger bundle. Then for any i we consider the
following part of the above filtration:

Ẽi−1 = F
HN,ε
k1+···+ki−1

(Ẽi−1) ⊂ F
HN,ε
k1+···+ki−1+1(Ẽi) ⊂

· · · ⊂ F
HN,ε
k1+···+ki−1(Ẽi) ⊂ F

HN,ε
k1+···+ki

(Ẽi) = Ẽi.
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We claim that:

µωε

(
F
HN,ε
k1+···+ki−1+j

(Ẽi)/F
HN,ε
k1+···+ki−1+j−1(Ẽi)

)
−→ µω(Ei/Ei−1) = µω(Qi)

for each 1 ≤ j ≤ ki. Then the proposition will follow immediately. The slopes of the quotients in the HN
filtration are strictly decreasing so we have:

µωε

(
Ẽi/F

HN,ε
k1+···+ki−1(Ẽi)

)
< µωε

(
F
HN,ε
k1+···+ki−1+j

(Ẽi)/F
HN,ε
k1+···+ki−1+j−1(Ẽi)

)

< µωε

(
F
HN,ε
k1+···+ki−1+1(Ẽi−1)/Ẽi−1

)
.

Therefore it suffices to prove convergence of

µωε

(
Ẽi/F

HN,ε
k1+···+ki−1(Ẽi)

)
and µωε

(
F
HN,ε
k1+···+ki−1+1(Ẽi−1)/Ẽi−1

)

to µω(Qi) as ε→ 0. Note that just as before we may argue that

µω

(
π∗

(
Ẽi/F

HN,ε
k1+···+ki−1(Ẽi)

))
= µω

(
Ei/π∗F

HN,ε
k1+···+ki−1(Ẽi)

)

and

µω

(
π∗

(
F
HN,ε
k1+···+ki−1+1(Ẽi−1)/Ẽi−1

))
= µω

(
π∗F

HN,ε
k1+···+ki−1+1(Ẽi−1)/Ei−1

)
.

By Theorem 4.9 we have:

µω(Qi)− εM = µω(π∗Q̃i)− εM ≤ µωε(Q̃i) ≤ µωε
(
F
HN,ε
k1+···+ki−1+1(Ẽi−1)/Ẽi−1

)

≤ µω

(
π∗F

HN,ε
k1+···+ki−1+1(Ẽi−1)/Ei−1

)
+ εM ≤ µω (Ei/Ei−1) + εM

= µω(Qi) + εM

where we have used that FHN,εk1+···+ki−1+1(Ẽi−1) is maximally destabilising in π∗E/Ẽi−1 and Ei/Ei−1 is max-

imally destabilising in E/Ei−1. So

µωε

(
F
HN,ε
k1+···+ki−1+1(Ẽi−1)/Ẽi−1

)
−→ µω(Qi).

Similiarly we have:

µω (Qi)− εM = µω (Ei/Ei−1)− εM ≤ µω
(
Ei/π∗F

HN,ε
k1+···+ki−1(Ẽi)

)
− εM

≤ µωε

(
Ẽi/F

HN,ε
k1+···+ki−1(Ẽi)

)
≤ µωε(Q̃i) ≤ µω

(
π∗Q̃i

)
+ εM

= µω (Qi) + εM

where we have used that µω (Ei/Ei−1) = µmin
ω (Ei) and µωε

(
Ẽi/F

HN,ε
k1+···+ki−1(Ẽi)

)
= µmin

ωε (Ẽi). Then taking

limits implies µωε

(
Ẽi/F

HN,ε
k1+···+ki−1(Ẽi)

)
→ µω(Qi). This completes the proof. �

Remark 4.13. Note that the argument of the above proof also shows that we have convergence:
(
µωε(Q̃1), · · · , µωε(Q̃l)

)
−→ (µω(Q1), · · · , µω(Ql)) ,

where as usual µωε(Q̃i) is repeated rk(Q̃i) times. We will use this fact in the following section.

5. Approximate Critical Hermitian Structures/HN Type of the Limit

In this section we accomplish two important aims. One is the construction of a certain canonical type of
metric on a holomorphic vector bundle over a Kähler manifold called an Lp-approximate critical hermitian
structure. The other is identifying the Harder-Narasimhan type of the limiting vector bundle E∞ along the
flow, namely we prove that this is the same as the type of the original bundle E. This latter fact will be a
crucial element in the proof of the main theorem, whereas the former will play no role in the remainder of
the proof. However we remark that these two theorems are, due to certain technical considerations to be
discussed below, very much intertwined.

If we fix a holomorphic structure on E, then a critical point of the HYM functional, thought of as a
function h 7→ HYM(∂̄E , h) on the space of metrics, is called (see Kobayashi [KOB]) a critical hermitian



22 BENJAMIN SIBLEY

structure. The Kähler identities imply that this happens exactly when the corresponding connection (∂̄E , h)
is Yang-Mills, and hence in this case the Hermitian-Einstein tensor splits:

√
−1ΛωF(∂̄E ,h) = µ1IdQ1 ⊕ · · · ⊕

µlIdQl . Here the holomorphic structure ∂̄E splits into the direct sum ⊕iQi and the metric induced on each
summand is Hermitian-Einstein with constant factor µi.

In general, the holomorphic structure on E is not split, and of course the Qi may not be subbundles as
at all, so it is not the case that we always have a critical hermitian structure. We therefore need to define
a correct approximate notion of a critical point. In the subsequent discussion we follow Daskalopoulos-
Wentworth [DW1].

Let h be a smooth metric on E and F = {Fi}li=0 a filtration of E by saturated subsheaves. For every Fi we
have the corresponding weakly holomorphic projection πhi . These are bounded, L

2
1 hermitian endomorphisms

of E. Here F0 = 0, and so πh0 = 0. Given real numbers µ1, · · · , µl, define the following L2
1 hermitian

endomorphism of E :

Ψ(F , (µ1, · · · , µl), h) =
l∑

i=1

µi
(
πhi − πhi−1

)
.

Notice that away from the singular set of the filtration (points where it is given by sub-bundles), the
bundle E splits smoothly as ⊕Qi = ⊕iEi/Ei−1, and with respect to the splitting, the endomorphism
Ψ(F , (µ1, · · · , µl), h) is just the diagonal map µ1IdQ1 ⊕ · · · ⊕ µlIdQl .

In the special case where E is a holomorphic vector bundle over a Kähler manifold (X,ω), we will write
ΨHNSω (∂̄E , h) when the filtration of E is the HNS filtration Fi = FHNSi (E) and µ1, · · · , µl are the distinct
slopes appearing the HN type.

Definition 5.1. Fix δ > 0 and 1 ≤ p ≤ ∞. An Lp δ-approximate critical hermitian structure on a
holomorphic bundle E is a smooth metric h such that:

∥∥∥
√
−1ΛωF(∂̄E ,h) −ΨHNSω (∂̄E , h)

∥∥∥
Lp(ω)

≤ δ.

The following theorem first appeared in [DW1].

Theorem 5.2. If the HNS filtration of E is given by subbundles, then for any δ > 0, E has an L∞

δ-approximate critical hermitian structure.

We begin by giving a (very simple) proof of this theorem in the case that the HNS filtration has length
two (the general case follows from an inductive argument). Namely we assume that there is an exact sequence
of the form:

0 −→ S −→ E −→ Q −→ 0

where S and Q are stable vector bundles. Then fix Hermitian-Einstein metrics hS and hQ on S and Q. There
is a smooth splitting E ≃ S ⊕Q and so we may fix the metric hE = hS ⊕ hQ on E. Of course in general we
there is no holomorphic splitting. The failure of the sequence to split holomorphically is determined by the
second fundamental form β ∈ Ω0,1(Hom(Q,S)), and the holomorphic structure of E may be written as:

∂̄E =

(
∂̄S β
0 ∂̄Q

)

and similarly

∂E =

(
∂S 0
−β∗ ∂Q

)
.

Now the curvature of the connection (∂̄E , hE) is F(∂̄E ,hE) = (∂̄E , hE)◦(∂̄E , hE) = ∂̄E ◦∂E+∂E ◦∂̄E. Therefore
we have:

F(∂̄E ,hE) =

(
F(∂̄S ,hS) − β ∧ β

∗ ∂Eβ

−∂̄Eβ∗ F(∂̄Q,hQ) − β∗ ∧ β

)
.

Now applying
√
−1Λω and using the Kähler identities we have:

√
−1ΛωF(∂̄E ,hE) =

(√
−1ΛωF(∂̄S ,hS) −

√
−1Λω (β ∧ β∗) −

(
∂̄E
)∗
β

−
((
∂̄E
)∗
β
)∗ √

−1ΛωF(∂̄Q,hQ) −
√
−1Λω (β∗ ∧ β)

)
.
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Therefore we have:∥∥∥
√
−1ΛωF(∂̄E ,hE) − µω(S)IdS ⊕ µω(Q)IdQ

∥∥∥
L∞(X,ω)

≤
∥∥∥
√
−1ΛωF(∂̄S ,hS) − µω(S)IdS

∥∥∥
L∞(X,ω)

+
∥∥∥
√
−1ΛωF(∂̄Q,hQ) − µω(Q)IdQ

∥∥∥
L∞(X,ω)

+2C sup

(
|β|2 +

∣∣∣
(
∂̄E
)∗
β
∣∣∣
2
)

= 2C sup

(
|β|2 +

∣∣∣
(
∂̄E
)∗
β
∣∣∣
2
)
,

where we have used that hS and hQ are Hermitian-Einstein as well as the fact that Tr−
√
−1Λω (β ∧ β∗) =

|β|2. Now change the holomorphic structure on E by applying the complex gauge transformation gt =
t−1IdS ⊕ tIdQ, so that:

gt(∂̄E) =

(
∂̄S t2β
0 ∂̄Q

)
.

Then we have:
∥∥∥
√
−1ΛωF(gt(∂̄E),hE) − µω(S)IdS ⊕ µω(Q)IdQ

∥∥∥
L∞(X,ω)

≤ 2Ct4 sup

(
|β|2 +

∣∣∣
(
∂̄E
)∗
β
∣∣∣
2
)

which goes to 0 as t goes to 0.
In general, we will not obtain an L∞ approximate structure. In the remainder of this section we show

that for an arbitrary holomorphic bundle we have such a metric for 1 ≤ p <∞. We must modify the above
approach in the general case, since the filtration is not given by subbundles. A simple example of where this
can happen is as follows.

Example 5.3. It can be shown (see [OSS] page 103) that for k < 3 there is a locally free representative of
rank 2 in Ext1

CP2(Ip,OCP2(−k)), where Ip is the ideal sheaf of a point. In other words there is a short exact
sequence:

0 −→ O −→ E −→ Ip ⊗OCP2(k) −→ 0

where O is the trivial line bundle. Moreover, one can compute that c1(E) = k. Therefore, if we take k < 0,
then µ(E) < 0. Since µ(O) = 0, the section given by O −→ E vanishing at p, is a destabilising subsheaf of
E, so E is unstable in this case. Since O and Ip⊗OCP2(k) are rank one and hence are stable, and the slopes
are strictly decreasing (0 = µ(O) > µ(Ip ⊗OCP2(k)) = k) this sequence is precisely the Harder-Narasimhan
filtration for E. On the other hand the quotient Ip ⊗OCP2(k) fails to be locally free at the point p, since the
ideal sheaf of a point on a complex surface is not locally free. Generalisations of this example are given by
replacing the point p in CP

2 by a locally complete intersection in CP
n with n > 2, or replacing CP

2 by a a
Kähler surface X with dimH2(X,OX) = 0 for instance.

Example 5.4. In the above example, the only singular point of the filtration is the point p. If we blowup

the point p, and consider Blp CP
2 = C̃P

2 π−→ CP
2, then the exceptional divisor E in this case is just a copy

of CP1. By construction π∗E is trivial over this CP
1 and is equal to E away from it. Therefore, since E

contains the trivial line bundle O as a subsheaf, π∗E contains as a subbundle a copy of the line bundle O(E).
Since O(E) = O away from E and π∗O = O, there is an inclusion of sheaves O →֒ O(E). Indeed, since the
quotient is supported on E and therefore torsion, by Lemma 2.1, Satπ∗E O = O(E). In other words, a single
blowup of the point p, gives a resolution of singularities in this case, and the filtration by subbundles of π∗E

is given by O(E) ⊂ π∗E. Therefore on C̃P
2
we have an exact sequence:

0 −→ O(E) −→ π∗E −→ O(−E)⊗ π∗OCP2(k) −→ 0.

Therefore, in the general case we will need a more sophisticated argument to deal with the fact that the
subsheaf S (and the quotient Q) can have singularities. We outline our argument as follows. First we pass to

a resolution of singularities π : X̃ −→ X for the HNS filtration. The blowup X̃ is equipped with a family of
Kähler metrics ωε as described in the previous section. Therefore, if we fix some value ε1, then with respect
to the metric ωε1 on the blowup X̃, we will be in the same situation as above, when the filtration is given

by subbundles. Just as in that case, by scaling the extension classes we can produce a metric h̃ with the
desired property on the pullback bundle π∗E −→ X̄ .
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Of course this is not what we want, but we may use this metric to produce a metric on E via a cut-off
argument. Namely, we first assume that the singular set is a complex submanifold, and that the resolution
of singularities is achieved by performing one blowup operation. Then we choose a cut-off function ψ in
a tubular neighbourhood of the singular set, and fix any smooth background metric H on this tubular
neighbourhood. We define the metric on E −→ X by h = ψH + (1− ψ)h̃.

Now we can break the estimate up into three estimates on three different regions. We define ψ so that on
a smaller neighbourhood of the singular set h is equal to H . The desired estimate will follow on this region
by taking the radius of the neighbourhood to be arbitrarily small. Outside of the tubular neighbourhood,
h is equal to h̃ and we can estimate as in the case of subbundles. Finally we must also estimate in the
annulus defined by these two open sets. This can be achieved by defining ψ to have bounds on its first
and second derivatives that depend on the reciprocal of the radius of the tubular neighbourhood and its
square respectively. The Hermitian-Einstein tensor will depend on two derivatives of ψ on the annulus, so
a pointwise estimate on this quantity will depend on this radius, but a simple argument using the fact that
the Hausdorff codimension of the singular set is a least 4, shows we can also obtain the appropriate estimate
in this region.

Strictly speaking, we need to estimate the difference of the Hermitian-Einstein tensor ΛωFh of this metric
with the endomorphism ΨHNS(µ1, · · · , µl) constructed from the slopes obtained from the HNS filtration

on E −→ X . On the other hand, h has been constructed from h̃, which has been defined so that the
difference between its Hermitian-Einstein tensor Λωε1Fh̃ and the corresponding endomorphism coming from

the filtration (by subbundles) of π∗E −→ X̄ can be estimated on X̃. Because ωε1 is a perfectly defined
Kähler metric on X away from the singular set (which is where this estimate must be performed), one could
try to do the estimate on this region directly, as described in the preceding paragraph, by first estimating
ΛωFh̃ in terms of Λωε1Fh̃ uniformly in ε1 and the size of the neighbourhood, but attempts to do this were
unsuccessful.

Therefore, in order to perform the estimate properly, we will need to work on the blowup. Namely, we
estimate the Hermitian-Einstein tensor for π∗h with respect to the family of Kähler metrics ωε. Since this
metric is a pullback, it suffices to show that we obtain estimates on the blowup that are uniform in ε. Then
taking the limit as ε → 0 will yield an estimate with respect to the metric ω on X . However, note again
that the metric h̃ must be chosen at some point, and this requires fixing a value ε1. Therefore, to imitate
our argument above, we need to estimate the Lp norm of ΛωεFh̃ uniformly in ε in terms of Λωε1Fh̃. Here we
crucially use the fact that we are working on the blowup. Namely, all that is required is an estimate close
to the exceptional divisor (since it is trivial on the complement of such a neighbourhood). The fact that the
exceptional divisor has only normal crossings singularities is the key to proving that such an estimate holds.

Something very similar was done in [DW1]. The author has noticed an error in [DW1] on this point. In
particular, Lemma 3.14 is slightly incorrect. Instead, the right hand side should have an additional term
involving the L2 norm of the full curvature. This does not essentially disrupt the proof, because the Yang-
Mills and Hermitian-Yang-Mills functionals differ only by a topological term, but it has the effect of changing
the logic of the argument somewhat, as well as increasing the technical complexity.

This is the reason behind most of the work done in this section. The precise proof, given below, is a
delicate balancing act between the scaling parameter t, the parameter ε1 used to define h̃, the radius R
of the tubular neighbourhood, and the parameter 0 < ε ≤ ε1 defining the family of Kähler metrics on X̃.
Furthermore, the scheme explained above will only give the correct estimate in Lp for p sufficiently close to
1. On the other hand, such a metric is all that is required to prove that the Harder-Narasimhan type of the
limiting sheaf E∞ is the same as that of E. With this knowledge, it is in fact very easy to prove in turn that
E has an Lp δ-approximate structure for all 1 ≤ p <∞. This new metric depends on the value of p, and is
in fact given by running the Yang-Mills flow for some finite time.

We begin with a preliminary technical lemma, which will be used repeatedly throughout this section. It
will be used in conjunction with Hölder’s inequality to show that certain quantities depending a priori on
ε can in fact be estimated independently of ε in certain Lp spaces with p very close to 1. It is the use of
this lemma that limits this particular method of constructing a δ-approximate structure to these particular
values of p. We use this to prove the Lp bound on ΛωεF in terms of Λωε1F for any (1, 1)-form F . The
construction of the metric together with the estimate in Lp for p close to 1 is the substance of Proposition
5.7. We use this and the material in Section 3.2 to prove the statement concerning the HN type of the
limit. Then we quote a result about convergence of the HN filtration along the flow from [DW1], and use
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this to prove the existence of an Lp structure for each 1 ≤ p < ∞. Finally, at the end of this section we
do an inductive argument on the number of blowups required to resolve singularities in order to remove the
restriction we put on the singular set. This argument actually uses the existence of an Lp structure for p = 2
(in the special case in which it has been proven).

Lemma 5.5. Let X be a compact Kähler manifold of dimension n, and let π : X̃ → X be a blowup along a
complex submanifold Y of complex codimension k where k ≥ 2. Consider the natural family ωε = π∗ω + εη
where 0 < ε ≤ ε1 and η is a Kähler form on X̃. Then given any α and α̃ such that 1 < α < 1 + 1

2(k−1) ,and
α

1−2(k−1)(α−1) < α̃ < ∞, and if we let s = α̃
α̃−α then if we write gε for the Kähler metric associated to

ωε, and g̟ for the hermitian metric associated to a fixed Kähler form ̟ on X̃, we have: det
(
g−1
ε g̟

)
∈

L2(α−1)s(X̃,̟), and the value of the L2(α−1)s norm is uniformly bounded in ε.

Proof. Since gε converges to the Kähler metric π∗ω away from the exceptional divisor E, on the complement

of a neighbourhood of E there is always such a uniform bound (and on this set (det gε/ det g̟)
2(1−α)s

is
clearly integrable). It therefore suffices to prove the result in a neighbourhood of the exceptional divisor.
Let y ∈ Y and U be a local coordinate chart containing y consisting of coordinates (z1, · · · , zn). Now Y
has codimension k so that locally Y is given by the slice coordinates {z1 = z2 = · · · = zk = 0}. Recall

that on the blow-up X̃ we have explicit coordinate charts Ũm ⊂ Ũ = π−1(U) where Ũm = {z ∈ U − Y |
zm 6= 0} ∪ {(z, [ν]) ∈ P(ζ)|Y ∩U | νm 6= 0}, where P(ζ) is the projectivisation of the normal bundle of Y . Let

(ξ1, · · · , ξn) denote local coordinates on Ũm. In these coordinates the map π : X̃ → X is given by:

(ξ1, · · · , ξn) −→ (ξ1ξm, · · · , ξs−1ξm, ξm, ξm+1ξm, · · · , ξkξm, ξk+1, · · · , ξn).

Now locally, we may write the Kähler form on X in terms of the associated metric g, as ω = i
2gijdz

i ∧ dz̄j .
Then the top power has the form: ωn = n!(i/2)n det gij dz1 ∧dz̄1 ∧ · · · ∧dzn ∧dz̄n, and using this coordinate

description we may compute: π∗ωn = n!(i/2)n (π∗ det gij) |ξm|2k−2
dξ1 ∧ dξ̄1 ∧ · · · ∧ dξn ∧ dξ̄n.

Note that π∗ det gij is non-vanishing since det gij is non-vanishing, and so degeneracy of the pullback
occurs only along the hypersurface defined by ξm = 0. In other words, (ξ1, · · · , ξn) are normal crossings
coordinates on the blow-up for the exceptional divisor E, and locally E takes the form {ξm = 0}.

The top power of the Kähler form ωε is:

ωnε = π∗ωn + εnπ∗ωn−1 ∧ η + ..+ εl
(
n

l

)
π∗ωn−l ∧ ηl + · · ·+ εn−1nπ∗ω ∧ ηn−1 + εnηn.

In the local coordinates (ξ1, · · · , ξn) we have: ωnε = n!(i/2)n det gεijdξ1 ∧ dξ̄1 ∧ · · · ∧ dξn ∧ dξ̄n. We may
therefore obtain a lower bound (not depending on ε) on det gεij as follows. Note that η > 0. On the other

hand, the only degeneracy of π∗ω is only on vectors tangent to the exceptional divisor (in other words, the
restriction of π∗ω vanishes on E), so π∗ω ≥ 0. Therefore π∗ωl ∧ ηn−l is non-negative for every l.

Then comparing the two expressions for ωnε , this implies that we have the lower bound: det gεij ≥
C |ξm|2k−2, where C = inf π∗ det gij on Ũm for each 0 < ε ≤ ε1. Taking the 2(1 − α)s power of both
sides we see that

∫

Ũm

(det gε/ det g̟)
2(1−α)s̟n ≤ C

∫

Ũm

(det gεij)
2(1−α)s ≤ C

∫

Ũm

|ξm|4(1−α)(k−1)s
,

where the last two integrals are with respect to the standard Euclidean measure. Using the condition on α̃

one computes that 4(1 − α)(k − 1)s > −2 and so the functions |ξm|4(1−α)s(k−1)
, are integrable (as can be

seen by computing the integral in polar coordinates), and the result follows. �

Lemma 5.6. Let π : X̃ → X, the codimension k, and the family of metrics ωε be the same as in the previous
lemma. Let B̃ be a holomorphic vector bundle on X̃ and F a (1, 1)- form with values in the auxiliary vector

bundle End(B̃). Let 1 < α < 1 + 1
4k(k−1)and

α
1−2(k−1)(α−1) < α̃ < 1 + 1

2(k−1) . Then there is a number κ0
such that for any 0 < κ ≤ κ0, there exists a constant C independent of ε, ε1, and κ, and a constant C(κ)
such that:

‖ΛωεF‖Lα(X̃,ωε) ≤ C
(∥∥Λωε1F

∥∥
Lα̃(X̃,ωε1 )

+ κ ‖F‖L2(X̃,ωε1)

)
+ ε1C(κ) ‖F‖L2(X̃,ωε1 )
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Proof. In the following argument, out of convenience, we will engage in the slight (and quite orthodox) abuse
of notation of dividing a top degree form by the volume form. Since the determinant line bundle of T ∗X is
trivial, any such form may be written as the product of some smooth function (or in this case endomorphism)
with the volume form, and so dividing by the volume form simply returns this function (endomorphism).

Recall that (ΛωεF )ω
n
ε = F ∧ ωn−1

ε and
(
Λωε1F

)
ωnε1 = F ∧ ωn−1

ε1 so that:

ΛωεF =
F ∧ ωn−1

ε

ωnε
,Λωε1F =

F ∧ ωn−1
ε1

ωnε1
.

Note also that

ωnε =
det gε

det gε1
ωnε1

Now we write:

ΛωεF =
F ∧ ωn−1

ε

ωnε
=
F ∧ (ωn−1

ε1 + ωn−1
ε − ωn−1

ε1 )

ωnε

=

(
F ∧ ωn−1

ε1 +
∑n−1

l=1 (ε
l − εl1)

(
n−1
l

)
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε

)
.

=
det gε1
det gε

(
Λωε1F +

∑n−1
l=1 (ε

l − εl1)
(
n−1
l

)
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

)
.

Therefore:

|ΛωεF |
α ≤ C

∣∣∣∣
det gε1
det gε

∣∣∣∣
α
(
∣∣Λωε1F

∣∣α +

n−1∑

l=1

∣∣εl − εl1
∣∣α
∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
α
)

(by convexity of the function |·|α when α > 1). Again, we set s = α̃
α̃−α (note again that s is a conjugate

variable to α̃
α ). By the above expression and Hölder’s inequality with respect to the metric ωε1 :

‖ΛωεF‖Lα(X̃,ωε) =

(∫

X̃

|ΛωεF |α ωnε
) 1
α

≤

C

(∫

X̃

(
det gε
det gε1

)(1−α)s

ωnε1

) 1
αs



(∫

X̃

∣∣Λωε1F
∣∣α̃ ωnε1

) 1
α̃

+

(∫

X̃

n−1∑

l=1

(
εl1
)α̃
∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
α̃

ωnε1

) 1
α̃


 .

By the previous lemma the factor (∫

X̃

(
det gε
det gε1

)(1−α)s

ωnε1

) 1
αs

is uniformly bounded in ε.
Now we need to control the second term of the second factor above. We divide X̃ into two pieces: an ar-

bitrarily small neighbourhood Vκ with Vol(Vκ, ωε1) = κ
2

2−α̃ of the exceptional divisor E and its complement.
We will perform two separate estimates, one for each piece. Write the components of F in a local basis as
F γ
ρij̄
. At any point we may choose an orthonormal basis for the tangent space so that η is standard and π∗ω

is diagonal. Then if we call this basis {ei}, we have

∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
2α̃

=

∣∣∣∣

(∑
i,j Fij̄ei ∧ ēj

)
∧
(∑

i π
∗giie

i ∧ ēi
)(n−1)−l ∧

(∑
i e
i ∧ ēi

)l

ωnε1

∣∣∣∣
2α̃

≤ C
∣∣ωnε1

∣∣2α̃


 ∑

i.j,γ,ρ

∣∣∣F γρij̄
∣∣∣
2



α̃

= C
|F |2α̃η∣∣ωnε1
∣∣2α̃ .

Now note that on X̃ − Vκ the pullback π∗ω determines a metric, in other words (π∗ω)n is non-vanishing, so

since ωnε1 −→ (π∗ω)n, the quantity
∣∣ωnε1

∣∣2α̃ is uniformly bounded away from 0. Therefore
∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
α̃

≤ C |F |α̃η .
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On the other hand, if we again choose a basis for which η is standard and such that ωε1 is diagonal, we have:

|F |2α̃η =

∣∣∣∣∣∣


 ∑

i.j,γ,ρ

∣∣F γρij
∣∣2


∣∣∣∣∣∣

α̃

≤ C

∣∣∣∣∣∣


 ∑

i.j,γ,ρ

1

gε1ii g
ε1
jj

∣∣F γρij
∣∣2


∣∣∣∣∣∣

α̃

= C |F |2α̃ωε1

since the product of the eigenvalues gε1ii g
ε1
jj is again uniformly bounded (gε1ii g

ε1
jj → π∗giiπ

∗gjj as ε1 → 0).

Thus, on X̃ − Vκ we have the further pointwise bound: |F |α̃η ≤ C |F |α̃ωε1 . Therefore the integral on X̃ − Vκ
is:

(∫

X̃−Vκ

(
εl1
)α̃
∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
α̃

ωnε1

) 1
α̃

≤ Cε1

(∫

X̃−Vκ

|F |α̃ωε1 ω
n
ε1

) 1
α̃

≤ Cε1 ‖F‖Lα̃(ωε1) ≤ C(κ)ε1 ‖F‖L2(ωε1 )

since by assumption α̃ < 2.
Now we estimate this term on Vκ. Choose an orthonormal basis for the tangent space at a point in Vκ

such that ωε1 is standard and η is diagonal. Then we have gε1ij = π∗gij + ε1ηij , so if i 6= j, π∗gij = 0, and if

i = j, ηii =
1−g̃ii
ε1

. Note also that 0 ≤ g̃ii < 1 since 0 < ηii. If we write Ω for the standard Euclidean volume
form then:

n−1∑

l=1

(
εl1
)α̃
∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
α̃

=

n−1∑

l=1

∣∣∣∣∣∣

(∑
i,j Fij̄ei ∧ ēj

)
∧
(∑

i π
∗giie

i ∧ ēi
)(n−1)−l ∧

(∑
i (1− π∗gii) e

i ∧ ēi
)l

Ω

∣∣∣∣∣∣

α̃

≤ C


 ∑

i.j,γ,ρ

∣∣∣F γρij̄
∣∣∣



α̃

≤ C |F |α̃ωε1 .

Therefore:
(∫

Vκ

n−1∑

l=1

(
εl1
)α̃
∣∣∣∣
F ∧ π∗ω(n−1)−l ∧ ηl

ωnε1

∣∣∣∣
α̃

ωnε1

) 1
α̃

≤ C

(∫

Vκ

|F |α̃ωε1 ω
n
ε1

) 1
α̃

≤ C Vol(Vκ, ωε1)
1− α̃

2 ‖F‖L2(Vκ,ωε1 )
≤ Cκ ‖F‖L2(X̃,ωε1 )

(Hölder).

Now we obtain the desired estimate:

‖ΛωεF‖Lα(X̃,ωε) ≤ C
(∥∥Λωε1F

∥∥
Lα̃(X̃,ωε1)

+ κ ‖F‖L2(X̃,ωε1 )

)
+ ε1C(κ) ‖F‖L2(X̃,ωε1)

.

�

Proposition 5.7. Let E → X be a holomorphic vector bundle of rank K over a compact Kähler manifold
with Kähler form ω. Assume that E has Harder-Narasimhan type µ = (µ1, · · · , µK) that the singular set
Zalg of the HNS filtration is smooth, and furthermore that blowing up along the singular set resolves the
singularities of the HNS filtration. There is an α0 > 1 such that the following holds: given any δ > 0 and any
N , there is an hermitian metric h on E such that HYMω

α,N (∂̄E , h) ≤ HYMα,N (µ) + δ, for all 1 ≤ α < α0.

Proof. As before, let π : X̃ → X be a blow-up along a smooth, complex submanifold Y , and we assume
that this resolves the singularities of the HNS filtration. In other words there is a filtration of Ẽ = π∗E on
X̃ that is given by sub-bundles and is equal to the HNS filtration of E away from the divisor E. Let ωε
denote the aforementioned family of Kähler metrics on X̃ given by ωε = π∗ω + εη where 0 < ε ≤ 1 and η is
a fixed Kähler metric on X̃. We will construct the metric h on E from an hermitian metric h̃ on π∗E to be
specified later.
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Since Zalg is a complex submanifold, we consider its normal bundle ζ, or more particularly the open
subset: ζR = {(x, ν) ∈ ζ | |ν| < R}. By the tubular neighbourhood theorem, for R sufficiently small this set
is diffeomorphic to an open neighbourhood UR of Zalg. We choose a background metric H on this open set.

Let ψ be a smooth cut-off function supported in U1 and and identically 1 on U1/2 and such that 0 ≤ ψ ≤ 1
everywhere. Then if we define ψR(x, ν) = ψ(x, νR ), ψR is identically 1 on UR/2 and supported in UR with
0 ≤ ψR ≤ 1 and furthermore there are bounds on the derivatives:

∣∣∣∣
∂ψR
∂zi

∣∣∣∣ ≤
C

R
,

∣∣∣∣
∂

∂z̄i

∂ψR
∂zi

∣∣∣∣ ≤
C

R2

where the constant C does not depend on R. Suppose for the moment that we have constructed an hermitian
metric h̃ on π∗E. If we continue to denote byH and ψR their pullbacks to X̃, then we may define the following
metric on π∗E :

hψR := ψRH + (1 − ψR)h̃
Observe that on X − UR we have hψR = h̃ and on UR/2, hψR = H .

Now we need to estimate the difference:∣∣∣HYMωε
α,N(∂̄Ẽ , hψR)−HYMα,N (µ)

∣∣∣

=

∣∣∣∣
∫

X̃

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα

(√
−1(µ1 +N), · · · ,

√
−1(µK +N)

)∣∣∣∣

where Φα is the convex functional on u(Ẽ) given as in Section 3.2 by Φα(a) =
∑k
j=1 |λj |

α, where the
√
−1λj

are the eigenvalues of a. From here on out we will write
√
−1(µ+N) in place of (

√
−1(µ1+N), · · · ,

√
−1(µK+

N)). Therefore we have:
∣∣HYMωε

α,N (∂̄Ẽ , hψR)−HYMα,N (µ)
∣∣

≤
∣∣∣∣
∫

X̃−π−1(UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣

+

∣∣∣∣
∫

π−1(UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣

=

∣∣∣∣∣

∫

X̃−π−1(UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣∣

+

∣∣∣∣∣

∫

π−1(UR/2)

Φα(ΛωεFH +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣∣

where the last equality comes from the fact that hψR is equal to H on UR/2. Dividing the first integral
further we have: ∣∣∣HYMωε

α,N(∂̄E , hψR)−HYMα,N (µ)
∣∣∣

≤
∣∣∣∣∣

∫

π−1(UR−UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(ΛωεFh̃ +

√
−1NIẼ)

∣∣∣∣∣

+

∣∣∣∣∣

∫

X̃−π−1(UR/2)

Φα(ΛωεFh̃ +
√
−1NIẼ)− Φα(

√
−1(µωε1 +N))

∣∣∣∣∣

+

∣∣∣∣∣

∫

X̃−π−1(UR/2)

Φα(
√
−1(µωε1 +N))− Φα(

√
−1(µ+N))

∣∣∣∣∣

+

∣∣∣∣∣

∫

π−1(UR/2)

Φα(ΛωεFH +
√
−1NIẼ)− Φα(

√
−1(µ+N))

∣∣∣∣∣

where in the first integral on the right hand side we have used the fact that outside of UR the metrics hψR
and h̃ agree. Here, µωε1 denotes the usual K-tuple of rational numbers made from the ωε1 slopes of the

quotients of the resolution.



ASYMPTOTICS OF THE YANG-MILLS FLOW 29

Recall that the norm on Lα(u(Ẽ)), a 7→
(∫
M Φα(a)

)1/α
is equivalent to the Lα norm and so there is a

universal constant C independent of R and ε such that:
∣∣∣∣∣

∫

π−1(UR−UR/2)

Φα(ΛωεFhψR +
√
−1NIẼ)− Φα(ΛωεFh̃ +

√
−1NIE)

∣∣∣∣∣

+

∣∣∣∣∣

∫

X̃−π−1(UR/2)

Φα(ΛωεFh̃ +
√
−1NIE)− Φα(

√
−1(µωε1 +N))

∣∣∣∣∣

≤ C

(∥∥∥ΛωεFhψR − ΛωεFh̃

∥∥∥
α

Lα(π−1(UR−UR/2),ωε)
+
∥∥∥ΛωεFh̃ −

√
−1µωε1

∥∥∥
α

Lα(X̃−π−1(UR/2),ωε)

)
.

First we dispose of
∣∣∣∣∣

∫

X̃−π−1(UR/2)

Φα(
√
−1(µωε1 +N))− Φα(

√
−1(µ+N))

∣∣∣∣∣

by choosing ε1 close to zero and using Remark 4.13. That is, we may choose ε1 small enough so that
∣∣∣∣∣

∫

X̃−π−1(UR/2)

Φα(
√
−1(µωε1 +N))− Φα(

√
−1(µ+N))

∣∣∣∣∣ <
δ

2

Next will will bound: ∥∥∥ΛωεFh̃ −
√
−1µωε1 IdẼ

∥∥∥
α

Lα(X̃−π−1(UR/2),ωε)
.

Note that at this point we have not specified the metric h̃ on π∗E. We will do so now. Each of the ω-stable
quotients Qi of the Harder-Narasimhan-Seshadri filtration remains stable on the blowup with respect to the
metrics ωε with ε sufficiently small (see Remark 4.11), so that the quotients Q̃i are also ωε1 -stable and admit

a unique Hermitian-Einstein metric G̃ε1i . The prototype for our metric h̃ will be the metric G̃ε1 = ⊕iG̃ε1i .

Just as in the beginning of this section, we need to modify G̃ε1 by a gauge transformation in order to obtain

the appropriate bound. More precisely, since holomorphic structures on the bundle Ẽ are equivalent to
integrable unitary connections, this is the same as showing that if we fix the metric G̃ε1 , there is a complex

gauge transformation g̃ of Ẽ such that
∥∥ΛωεF(g̃(∂̄Ẽ),G̃ε1 )

−
√
−1µωε1 IdẼ

∥∥
Lα(X̃−π−1(UR/2),ωε)

is small. When

we take the direct sum, the second fundamental form enters into the curvature and so we ask that there is
a gauge transformation making this contribution small.

We will do this iteratively. If we write S̃ = Ẽ1 = Q̃1 ⊂ π∗E for the first sub-bundle in the filtration of
π∗E on X̃, then the discussion at the beginning of this section applies in exactly the same way to the exact
sequence:

0 −→ S̃ −→ π∗E −→ Q̃ −→ 0

where Q̃ = ⊕li=2Q̃i. Therefore if we apply the gauge transformation gt = t−1IdS̃ ⊕ tIdQ̃ to the operator ∂̄Ẽ
as before, the curvature may be written as:

F(gt(∂̄Ẽ),G̃ε1)
=

(
F(∂̄S̃ ,G̃

ε1
1 ) − t4β ∧ β∗

S̃
t2∂EβS̃

−t2∂̄Eβ∗
S̃

F(∂̄Q,⊕li=2G̃
ε1
i ) − t4β

∗
S̃
∧ βS̃

)
.

Taking Λωε , we obtain terms involving:

t4Λωεβ ∧ β∗
S̃

= t4
β ∧ β∗

S̃
∧ ωn−1

ε

ωnε
, t2Λωε∂EβS̃ = t2

∂EβS̃ ∧ ωn−1
ε

ωnε
,

t2Λωε ∂̄Eβ
∗
S̃

= t2
∂̄Eβ

∗
S̃
∧ ωn−1

ε

ωnε
, t4Λωεβ

∗
S̃
∧ βS̃ = t4

β∗
S̃
∧ βS̃ ∧ ωn−1

ε

ωnε
.

Recalling also that

ωnε =

∣∣∣∣
det gε
det gη

∣∣∣∣ η
n,
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and applying Hölder’s inequality we see that
∥∥ΛωεF(g̃t(∂̄Ẽ),G̃ε1)

−
√
−1µωε1 IdẼ

∥∥
Lα(X̃−π−1(UR/2),ωε)

≤
∥∥ΛωεFG̃ε1

1

−
√
−1µωε1 (S̃)IdQ̃1

∥∥
Lα(X̃−π−1(UR/2),ωε)

+
∥∥ΛωεF⊕l

i=2
G̃
ε1
i

−
√
−1⊕li=2 µωε1 (Q̃i)IdQ̃i

∥∥
Lα(X̃−π−1(UR/2),ωε)

+

(∫

X̃−π−1(UR/2)

∣∣∣∣
det gε
det gη

∣∣∣∣
(1−α)s

ηn

) 1
αs
(∫

X̃−π−1(UR/2)

(∣∣∣∣t
4β ∧ β

∗
S̃
∧ ωn−1

ε

ηn

∣∣∣∣
α̃

+

∣∣∣∣t
2 ∂EβS̃ ∧ ωn−1

ε

ηn

∣∣∣∣
α̃
)
ηn

) 1
α̃

+

(∫

X̃−π−1(UR/2)

∣∣∣∣
det gε
det gη

∣∣∣∣
(1−α)s

ηn

) 1
αs



∫

X̃−π−1(UR/2)



∣∣∣∣∣t
2 ∂̄Eβ

∗
S̃
∧ ωn−1

ε

ηn

∣∣∣∣∣

α̃

+

∣∣∣∣t
4β

∗
S̃
∧ βS̃ ∧ ωn−1

ε

ηn

∣∣∣∣
α̃

 ηn




1
α̃

where α̃ and s are as in Lemma 5.5 (recall that s and α̃
α are a conjugate pair). By the lemma, the last two

terms above are bounded uniformly in ε. Therefore, the contribution of these terms can be made small by
making t sufficiently small.

Similarly, we can apply the same argument to the extensions:

0 −→ Ẽi/Ẽi−1 = Q̃i −→ π∗E/Ẽi−1 −→ π∗E/Ẽi = ⊕lj=i+1Q̃j −→ 0

using the gauge transformation gt = IdQ̃1
⊕ · · · ⊕ IdQ̃l−1

⊕ t−1IdQ̃i ⊕
l
j=i+1 tIdQ̃j . Such an extension will

give a further second fundamental form βQ̃i , and its contribution can be estimated in exactly the same way
as above.

Continuing in this way, we see that there is a complex gauge transformation g of π∗E such that:
∥∥ΛωεF(g̃(∂̄Ẽ),G̃ε1 )

−
√
−1µωε1 IdẼ

∥∥
Lα(X̃−π−1(UR/2),ωε)

≤
∥∥ΛωεFG̃ε1

1

−
√
−1µωε1 (Q̃1)IdQ̃1

∥∥
Lα(X̃−π−1(UR/2),ωε)

+ · · ·+
∥∥ΛωεFG̃ε1

l

−
√
−1µωε1 (Q̃l)IdQ̃l

∥∥
Lα(X̃−π−1(UR/2),ωε)

+Θ(t, βQ̃1
, · · · , βQ̃l)

where Θ(t, βQ̃1
, · · · , βQ̃l)→ 0 as t → 0. Therefore we have reduced this estimate to an estimate on each of

the terms: ∥∥∥ΛωεFG̃ε1
i

−
√
−1µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα(X̃−π−1(UR/2),ωε)

.

On the other hand we have:
∥∥∥ΛωεFG̃ε1i −

√
−1µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα(X̃−π−1(UR/2),ωε)

≤
∥∥∥∥Λωε

(
FG̃ε1i

−
√
−1
n

ωε1µωε1 (Q̃i)IdQ̃i

)∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

+

∥∥∥∥
√
−1
n

Λωε(ωε1 − ωε)µωε1 (Q̃i)IdQ̃i
∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

where we have used the fact that Λωεωε = n. Now by Lemma 5.6 we have:

∥∥∥∥Λωε
(
F
G̃
ε1
i

−
√
−1
n

ωε1µωε1 (Q̃i)IdQ̃i
)∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

≤ C
(∥∥∥Λωε1FG̃ε1i −

√
−1µωε1 (Q̃)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1 )

)

+ κC

(∥∥∥FG̃ε1i
∥∥∥
L2(X̃,ωε1 )

+
1

n

∥∥∥ωε1µωε1 (Q̃i)IdQ̃i
∥∥∥
L2(X̃,ωε1)

)

+ ε1C(κ)

(∥∥∥FG̃ε1i
∥∥∥
L2(X̃,ωε1)

+
1

n

∥∥∥ωε1µωε1 (Q̃i)IdQ̃i
∥∥∥
L2(X̃,ωε1 )

)
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and
∥∥∥∥
√
−1
n

Λωε(ωε1 − ωε)µωε1 (Q̃i)IdQ̃i
∥∥∥∥
Lα(X̃−π−1(UR/2),ωε)

≤ ε1
n
C

(∥∥∥
(
Λωε1 η

)
µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1)

+ κ
∥∥∥ηµωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1)

)

+
ε21
n
C(κ)

∥∥∥ηµωε1 (Q̃i)IdQ̃i
∥∥∥
L2(X̃,ωε1)

again using Lemma 5.6. Here we have used the fact that ωε1 − ωε = (ε1 − ε)η in the second inequality. Of

course,
∥∥Λωε1FG̃ε1i −

√
−1µωε1 (Q̃i)idQ̃i

∥∥
Lα̃(X̃,ωε1)

= 0, by the construction of Gε1i . On the other hand:

∥∥∥FG̃ε1i
∥∥∥
L2(X̃,ωε1 )

=
∥∥∥Λωε1FG̃ε1i

∥∥∥
L2(X̃,ωε1 )

+ π2n(n− 1)

∫

X̃

(
2c2(Q̃i)− c21(Q̃i)

)
∧ ωn−2

ε1

=
∥∥∥µωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1 )

+ π2n(n− 1)

∫

X̃

(
2c2(Q̃i)− c21(Q̃i)

)
∧ ωn−2

ε1

which is bounded. Likewise the terms
∥∥∥ωε1µωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1)

and
∥∥∥ηµωε1 (Q̃i)IdQ̃i

∥∥∥
L2(X̃,ωε1)

are bounded.

The only remaining issue is:
∥∥∥
(
Λωε1 η

)
µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1)

. But writing

∣∣Λωε1η
∣∣α̃ =

∣∣∣∣
η ∧ ωn−1

ε1

ωnε1

∣∣∣∣

α̃

=

∣∣∣∣
η ∧ ωn−1

ε1

ηn

∣∣∣∣

α̃ ∣∣∣∣
det gη
det gε1

∣∣∣∣
α̃

and

ωnε1 =

∣∣∣∣
det gε1
det gη

∣∣∣∣ η
n

∥∥∥
(
Λωε1 η

)
µωε1 (Q̃i)IdQ̃i

∥∥∥
Lα̃(X̃,ωε1)

≤ C

(∫

X̃

∣∣∣∣
det gε1
det gη

∣∣∣∣
(1−α̃)s̃

ηn

) 1
α̃s̃



∫

X̃

∣∣∣∣
η ∧ ωn−1

ε1

ηn

∣∣∣∣

β ∣∣∣µωε1 (Q̃i)IdQ̃i
∣∣∣
β

ηn




1
β

by Hölder’s inequality with respect to the metric η. Here again α̃ is as in Lemma 5.6 and s̃ = β
β−α̃ where

α̃
1−2(k−1)(α̃−1) < β <∞. By Lemma 5.5 this is uniformly bounded in ε1 since we also have ωn−1

ε1 −→ π∗ωn−1.

Therefore we may choose t, κ, and ε1 so that
∥∥∥ΛωεFG̃ε1 −

√
−1µωε1 (Q̃i)IdG̃ε1

∥∥∥
Lα(X̃−π−1(UR/2),ωε)

<
δ

4

for all ε and all α sufficiently close to 1. We will now fix these values of t,κ, and ε1.
The term ∣∣∣∣∣

∫

π−1(UR/2)

Φα(ΛωεFH +
√
−1NIE)− Φα(

√
−1(µ+N))

∣∣∣∣∣
is bounded by:

C
∥∥ΛωεFH −

√
−1µ

∥∥
Lα(π−1(UR/2),ωε)

.

Now write

|ΛωεFH |α =

∣∣∣∣
FH ∧ ωn−1

ε

ωn−1
ε

∣∣∣∣

α

=

∣∣∣∣
FH ∧ ωn−1

ε

ηn

∣∣∣∣

α̃ ∣∣∣∣
det gη
det gε

∣∣∣∣
α̃

and

ωnε =

∣∣∣∣
det gε
det gη

∣∣∣∣ η
n,
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we have
∥∥(ΛωεFH −

√
−1µ

∥∥
Lα(π−1(UR/2),ωε)

≤ C1 ‖ΛωεFH‖Lα(π−1(UR/2),ωε)
+ C2 Vol(UR/2, ω) ≤

C1

(∫

π−1(UR/2)

∣∣∣∣
det gε
det gη

∣∣∣∣
(1−α)s

ηn

) 1
sα̃
(∫

π−1(UR/2)

∣∣∣∣
FH ∧ ωn−1

ε

ηn

∣∣∣∣

α̃

ηn

) 1
α̃

+ C2 Vol(UR/2, ω),

where α and s are as in Lemma 5.5. By that lemma, the factor
(∫

π−1(UR/2)

∣∣∣∣
det gε
det gη

∣∣∣∣
(1−α)s

ηn

)

is uniformly bounded, and so the result is that there is an R such that
∣∣∣∣∣

∫

π−1(UR/2)

Φα(ΛωεFH +
√
−1NIE)− Φα(

√
−1(µ+N))

∣∣∣∣∣ <
δ

8
.

Therefore the only remaining estimates required are on:
∥∥ΛωεFh̃ψR − ΛωεFh̃

∥∥
Lα(π−1(UR−UR/2),ωε)

. If we let

kψR be an endomorphism such that h̃ = kψRhψR . Then

FhψR − Fh̃ = ∂̄Ẽ(k
−1
ψR
∂h̃kψR)

where ∂h̃ is the (1, 0) part of the Chern connection for h̃. The expression on the right hand side involves
only two derivatives of ψR, and so, using the bound on the derivatives of ψR, there is a bound of the form:

∣∣∣FhψR − Fh̃
∣∣∣ ≤ C1 +

C2

R2
.

where C1 and C2 are independent of both ε and R. Now as usual we have:

∣∣∣Λωε
(
Fh̃ψR

− Fh̃
)∣∣∣
α

=

∣∣∣∣∣∣

(
Fh̃ψR

− Fh̃
)
∧ ωn−1

ε

ωnε

∣∣∣∣∣∣

α

=

∣∣∣∣∣∣

(
Fh̃ψR

− Fh̃
)
∧ ωn−1

ε

ηn

∣∣∣∣∣∣

α ∣∣∣∣
det gη
det gε

∣∣∣∣
α

and ωnε =
det gε
det gη

ηn.

Then we compute:
∥∥∥ΛωεFhψR − ΛωεFh̃

∥∥∥
Lα(π−1(UR−UR/2),ωε)

=



∫

π−1(UR−UR/2)

∣∣∣∣∣∣

(
Fh̃ψR

− Fh̃
)
∧ ωn−1

ε

ηn

∣∣∣∣∣∣

α ∣∣∣∣
det gη
det gε

∣∣∣∣
α
det gε
det gη

ηn




1
α

≤
(∫

π−1(UR−UR/2)

(
det gε
det gη

)(1−α)s

ηn

) 1
αs
(∫

π−1(UR−UR/2)

(
C1 +

C2

R2α̃

)
ηn

) 1
α̃

.

Here s and α̃ are as in Lemma 5.5 and we have applied Hölder’s inequality to the conjugate pair s and α̃
α .

By that lemma, the first factor is uniformly bounded in ε. We must therefore show that as R→ 0, the first
factor can be made arbitrarily small. To do this we note that the open set UR may be covered by a union
of balls ∪jBjr . Therefore:∫

π−1(UR−UR/2)

C1 + C2R
−2α̃ ≤

∑

j

(C1 + C2R
−2α̃)vol(Bjr)

and up to a constant vol(Bjr) = r2n where n is the complex dimension of X .
The key observation is now that the singular set Zalg is a complex submanifold of X and has complex

codimension at least 2, in other words it is of real dimension at most 2n − 4. This implies that Zalg has
Hausdorff dimension at most 2n−4, i.e. it has zero d-dimensional Hausdorff measure for d < 2n−4. In other
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words, for each 0 ≤ d < 4, and a given δ > 0, there is a cover of Zalg and an r > 0 such that
∑

j r
2n−d < δ.

Now assume that we have chosen R = r. Then then the cover described above is also a cover for UR so∫

π−1(UR−UR/2)

C1 + C2R
−2α̃ ≤

∑

j

(C1r
2n + C2r

2n−2α̃).

Note that by assumption α̃ < 2. In other words, we may select R so that:
∥∥∥ΛωεFh̃ψR − ΛωεFh̃

∥∥∥
Lα(π−1(UR−UR/2),ωε)

<
δ

16
.

Thus choosing ε1 and R in the manner specified above gives us for each ε a bound on the difference of the

HYM functionals:
∣∣∣HYMωε

α,N (∂̄E , h̃ψR)−HYMα,N (µ)
∣∣∣ ≤ δ. Now sending ε → 0 we finally see that there

exists a metric h with
∣∣HYMω

α,N (∂̄E , h)−HYMα,N (µ)
∣∣ < δ, for all N and all α sufficiently close to 1. �

Lemma 5.8. Let E → X and α0 be the same as in the proposition. Let h be any smooth hermitian
metric on E and At a solution of the Yang-Mills flow whose initial condition is (∂̄E , h). Let µ0 denote the
Harder-Narasimhan type of E. Then limt→∞HYMα,N(At) = HYMα,N (µ0), for all 1 ≤ α ≤ α0 and all N .

As a consequence, if A∞ is an Uhlenbeck limit along the flow: HYMα,N (A∞) = HYMα,N (µ0), since
HYMα,N (A∞) = limt→∞HYMα,N (At). The proof of Lemma 5.8 is exactly the same as in [DW1]. It uses
Proposition 5.7. One easily shows that for any initial metric such that the conclusion of Proposition 5.7
holds, the property limt→∞HYMα,N (At) = HYMα,N (µ0) holds. The fact that this is true for any metric
then follows from a distance decreasing argument.

We can now identify the Harder-Narasimhan type of the limit.

Proposition 5.9. Let E → X have the same properties as before. Let At be a solution to the YM flow
with initial condition A0 whose limit along the flow is A∞. Let E∞ be the corresponding holomorphic vector
bundle defined away from Zan. Then the HN type of (E∞, A∞) is the same as that of (E0, A0).

Proof. Let µ0 = (µ1, · · · , µK) and µ∞ = (µ∞
1 , · · · , µ∞

K ) be the HN types of (E0, A0) and (E∞, A∞). A
restatement of the above lemma is that Φα(µ0 +N) = Φα(µ∞ +N) for all 1 ≤ α ≤ α0 and all N . Choose N
to be large enough so that µK +N ≥ 0. Then we also have µ∞

K +N ≥ 0 by Proposition 3.4, and therefore
µK +N = µ∞

K +N by Proposition 3.7, so µK = µ∞
K . �

Let (E, ∂̄A0) be a holomorphic bundle, and A0 an initial connection, and Atj its evolution along the flow
for a sequence of times tj . Then we have the following.

Lemma 5.10. (1) Let
{
π
(i)
j

}
be the HN filtration of (E,∂̄Atj ) and

{
π
(i)
∞

}
the HN filtration of (E∞,∂A∞

).

Then after passing to a subsequence, π
(i)
j → π

(i)
∞ strongly Lp ∩ L2

1,loc for all 1 ≤ p <∞ and all i.

(2) Assume the original bundle (E, ∂̄A0) is semi-stable and
{
π
(i)
ss,j

}
are Seshadri filtrations of (E, ∂̄Atj j ).

Without loss of generality assume the ranks of the subsheaves π
(i)
ss,j are constant in j. Then there is a filtration{

π
(i)
ss,∞

}
of (E,∂̄A∞

) such that after passing to a subsequence
{
π
(i)
ss,j

}
→
{
π
(i)
ss,∞

}
strongly in Lp ∩ L2

1,loc for

all 1 ≤ p <∞ and all i. The rank and degree of π
(i)
ss,∞ is equal to the rank and degree of π

(i)
ss,j for all i and j.

For the proof see [DW1] Lemma 4.5. It uses Proposition 5.9.

Proposition 5.11. Assume as before that E → X is a holomorphic vector bundle such that Zan is smooth
and that blowing up once resolves the singularities of the HNS filtration. Then given δ > 0 and any
1 ≤ p <∞, E has an Lp δ-approximate critical hermitian structure.

Proof. Let At be a solution to the YM flow with initial condition A0 = (∂̄E , h), and let A∞ be the limit along

the flow for some sequence Atj . Then we may apply the previous lemma to conclude that ΨHNSω (∂̄Atj , h)
Lp→

ΨHNSω (∂̄A∞
, h∞) after passing to another subsequence if necessary. Since A∞ is a Yang-Mills connection,√

−1ΛωFA∞
= ΨHNω (∂̄A∞

, h∞). Therefore:
∥∥∥
√
−1ΛωFAtj −ΨHNSω (∂̄Atj , h)

∥∥∥
Lp(ω)

≤
∥∥∥ΛωFAtj − ΛωFA∞

∥∥∥
Lp(ω)

+
∥∥∥ΨHNSω (∂̄Atj , h)−ΨHNSω (∂̄A∞

, h∞)
∥∥∥
Lp(ω)

−→ 0
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where we have also used Lemma 3.3. �

Now we would like to eliminate the assumptions that Zan is smooth and that blowing up once resolves
the singularities of the HNS filtration.

Theorem 5.12. Let E → X be a holomorphic vector bundle over a Kähler manifold with Kähler form ω.
Then given δ > 0 and any 1 ≤ p <∞, E has an Lp δ-approximate critical hermitian structure.

Proof. By 4.3, we know that we can resolve the singularities of the HNS filtration by blowing up finitely
many times. Moreover, the ith blowup is obtained by blowing up along a complex submanifold contained in
the singular set associated to the pullback bundle over the manifold produced at the (i − 1)st stage of the
process. In other words there is a tower of blow-ups:

X̃ = Xm
πm−→ Xm−1

πm−1−→ · · · π2−→ X1
π1−→ X0 = X

such that if E = E0 is the original bundle, and Ei = π∗
i (Ei−1), then there is a filtration of Ẽ = π∗

m(Em−1)
that is given by sub-bundles and isomorphic to the HNS filtration of E away from E. Note that on each
blowup Xi we have a family of Kähler metrics defined iteratively by ωε1,··· ,εi = π∗ωε1,··· ,εi−1 + εiηi, where

ηi is any Kähler form on Xi. Then consider ωε1,··· ,εm on X̃ to be a fixed metric for specified values of
ε1, · · · , εm < 1, and fix δ > 0. Fix δ0 to be a number that is very small with respect to δ. By the previous
proposition, for every p there is a δ0-approximate critical hermitian structure on En−1. In particular there
is such a metric for p = 2. In other words there is a metric hm−1 so that:

∥∥∥
√
−1Λωε1,···εm−1

F(∂̄Em−1
,hm−1) −ΨHNSωε1,···εm−1

(∂̄Em−1 , hm−1)
∥∥∥
L2(ωε1,···εm−1

)
< δ0.

By construction this metric depends on the values of ε1, · · · , εm, since it is constructed from a metric on the
blowup which itself is constructed using the notion of stability with respect to ωε1,··· ,εm .

We prove the result by induction on the number of blowups. Assume that we have an L2 δ0-approximate
critical hermitian structure for each of the bundles Ei → Xi for 1 ≤ i ≤ m − 2. Then in particular, with
respect to the metric ωε1 on X1, we have a metric h1 on E1 → X1 such that:

∥∥∥
√
−1Λωε1F(∂̄E1 ,h1) −ΨHNSωε1

(∂̄E1 , h1)
∥∥∥
L2(ωε1 )

< δ0.

Since X1 is obtained from X by blowing up along a smooth, complex submanifold, we may use the exact
same cut-off argument, choosing a cutoff function with respect to a neighbourhood UR as in Proposition 5.7
to construct a metric hR on the bundle E → X which depends on the value of ε1. In the following we will
continue to denote by hR its pullback to X1. As in the proof of Proposition 5.7 we have hR = h1 outside of
the set π−1

1 (UR). We divide the proof into two steps.
(Step 1) There is an Lp δ-approximate critical hermitian structure for p close to 1
First let us assume that p satisfies the hypotheses of Lemma 5.6. In other words, substitute p for α

in the statement. Similarly, substitute p̃ for α̃. We will show that a single metric, namely hR, gives an
Lp δ-approximate critical hermitian structure for all p within this range. We need to estimate the difference

∥∥∥
√
−1ΛωεF(∂̄E1 ,hR) −ΨHNSω (∂̄E , hR)

∥∥∥
Lp(ωε)

where h̃ = π∗
1h. Now:

∥∥∥
√
−1ΛωεF(∂̄E1 ,hR) −ΨHNSω (∂̄E , hR)

∥∥∥
Lp(ωε)

≤
∥∥∥ΛωεF(∂̄E1 ,hR) − ΛωεF(∂̄E1 ,h1)

∥∥∥
Lp(ωε)

+
∥∥∥ΨHNSωε1

(∂̄E , h1)−ΨHNSω (∂̄E , hR)
∥∥∥
Lp(ωε)

+
∥∥∥ΛωεF(∂̄E1 ,h1) −ΨHNSωε1

(∂̄E , h1)
∥∥∥
Lp(ωε)

.
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We can make the second term smaller than δ
3 by choosing ε1 small and using the convergence of the HN

types. The third term is bounded by two applications of Lemma 5.6 as follows:∥∥∥ΛωεF(∂̄E1 ,h1) −ΨHNSωε1
(∂̄E , h1)

∥∥∥
Lp(ωε)

≤
∥∥∥∥Λωε

(
F(∂̄E1 ,h1) −

1

n
ωε1Ψ

HNS
ωε1

(∂̄E , h1)

)∥∥∥∥
Lp(ωε)

+

∥∥∥∥
1

n
Λωε (ωε1 − ωε)ΨHNSωε1

(∂̄E , h1)

∥∥∥∥
Lp(ωε)

≤ C
∥∥∥Λωε1F(∂̄E1 ,h1) −ΨHNSωε1

(∂̄E , h1)
∥∥∥
Lp̃(ωε1 )

+κC

(∥∥∥F(∂̄E1 ,h1)

∥∥∥
L2(X̃,ωε1)

+
1

n

∥∥∥ωε1ΨHNSωε1
(∂̄E , h1)

∥∥∥
L2(X̃,ωε1)

)

+ε1C(κ)

(∥∥∥F(∂̄E1 ,h1)

∥∥∥
L2(X̃,ωε1 )

+
1

n

∥∥∥ωε1ΨHNSωε1
(∂̄E , h1)

∥∥∥
L2(X̃,ωε1 )

)

+
ε21
n
C(κ)

∥∥∥ηΨHNSωε1
(∂̄E , h1)

∥∥∥
L2(X̃,ωε1)

+
ε1
n
C

(∥∥∥Λωε1 ηΨ
HNS
ωε1

(∂̄E , h1)
∥∥∥
Lp̃(X̃,ωε1 )

+ κ
∥∥∥ηΨHNSωε1

(∂̄E , h1)
∥∥∥
L2(X̃,ωε1 )

)
.

Recall from the statement of Lemma 5.6 that none of the above constants depends on ε1. All terms with a
κ in front and no C(κ) can be made small by choosing κ small, so these terms can be ignored. Clearly the
terms ∥∥∥ωε1ΨHNSωε1

(∂̄E , h1)
∥∥∥
L2(X̃,ωε1 )

,
∥∥∥ηΨHNSωε1

(∂̄E , h1)
∥∥∥
L2(X̃,ωε1)

are bounded independently of ε1 since the HN type converges. Therefore we need only show that∥∥∥Λωε1F(∂̄E1 ,h1) −ΨHNSωε1
(∂̄E , h1)

∥∥∥
Lp̃(ωε1 )

,
∥∥∥F(∂̄E1 ,h1)

∥∥∥
L2(X̃,ωε1)

,
∥∥∥Λωε1ηΨ

HNS
ωε1

(∂̄E , h1)
∥∥∥
Lp̃(X̃,ωε1)

are uniformly bounded in ε1. Then we can choose κ first and then ε1 so that:
∥∥∥ΛωεF(∂̄E1 ,h1) −ΨHNSωε1

(∂̄E , h1)
∥∥∥
Lp(ωε)

<
δ

3
.

Firstly we have:∥∥∥Λωε1F(∂̄E1 ,h1) −ΨHNSωε1
(∂̄E , h1)

∥∥∥
Lp̃(ωε1 )

≤ C
∥∥Λωε1F(∂̄E1 ,h1) −ΨHNSωε1

(∂̄E , h1)
∥∥
L2(ωε1

)

< δ0

by Hölder’s inequality (since p̃ < 2), and the induction hypothesis. Note that the constant above is indepen-
dent of ε1 since the ωε1 volume is bounded. Also, the following bound:

∥∥∥F(∂̄E1 ,h1)

∥∥∥
L2(ωε1 )

=
∥∥∥Λωε1F(∂̄E1 ,h1)

∥∥∥
L2(ωε1 )

+ π2n(n− 1)

∫

X̃

(
2c2(E1)− c21(E1

)
) ∧ ωn−2

ε1

6

∥∥∥ΨHNSωε1
(∂̄E , h1)

∥∥∥
L2(ωε1)

+ δ0 + π2n(n− 1)

∫

X̃

(
2c2(E1)− c21(E1

)
) ∧ ωn−2

ε1

obtained from the usual relationship between the Hermitian-Einstein tensor and the full curvature in L2,
together with the induction hypothesis, shows that this term is bounded in ε1 as well. Finally, writing

Λωε1 η =
η ∧ ωn−1

ε1

ωnε1
=
η ∧ ωn−1

ε1

ηn
det gη
det gε1

ωnε1 =
det gε1
det gη

ηn

then by Hölder’s inequality we have:

∥∥∥Λωε1 ηΨ
HNS
ωε1

(∂̄E , h1)
∥∥∥
Lp̃(X̃,ωε1)

≤
(∫

X̃

∣∣∣∣
det gε1
det gη

∣∣∣∣
(1−p̃)(s̃)

ηn

) 1
p̃s̃
(∫

X̃

∣∣∣∣
η ∧ ωn−1

ε1

ηn

∣∣∣∣
w ∣∣∣ΨHNSωε1

(∂̄E , h1)
∣∣∣
w

ηn

) 1
w

where s̃ = w
w−p̃ and p̃

1−2(k−1)(p̃−1) < w <∞. By Lemma 5.5 this is bounded in ε1.
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We have already seen that ∥∥ΛωεF(∂̄E1 ,hR) − ΛωεF(∂̄E1 ,h1)

∥∥
Lp(ωε)

can be estimated, since it is 0 outside of UR and the same argument as in the proof of Proposition 5.7,
shows that by making R sufficiently small, we can make the contribution from this term over UR less than
δ
3 . Therefore the estimate on

∥∥√−1ΛωF(∂̄E ,h) − ΨHNSω (∂̄E , h)
∥∥
Lp(ω)

for these values of p follows by sending

ε→ 0.
Step 2 (Extending to all p)
Repeating the arguments of Lemma 5.8, Proposition 5.9, Lemma 5.10, and Proposition 5.11, now gives

the existence of an Lp δ-approximate critical hermitian structure on E for each p. This metric will depend
on p. �

Notice that during the course of the above proof we have also proven the following:

Theorem 5.13. Let E → X be a holomorphic vector bundle over a Kähler manifold. Let At be a solution
to the YM flow with initial condition A0 whose limit along the flow is A∞. Let E∞ be the corresponding
holomorphic vector bundle defined away from Zan. Then the HN type of (E∞, A∞) is the same as (E0, A0).

6. The Degenerate Yang-Mills Flow

In this section we introduce a version of the Yang-Mills flow with respect to the degenerate metric ω0 = π∗ω
on a sequence of blowups π : X̃ → X along complex submanifolds. This flow will solve the usual Hermitian-
Yang-Mills flow equations on X̃ − E with respect the metric ω. It will be useful in the proof of the main
theorem, because we will again need to desingularise the HNS filtration, and consider a sequence of blowups.
The discussion in this section is an extension of ideas in [BS].

Let π : X̃ → X be a sequence of smooth blowups, and let ωε be the usual family of Kähler metrics on X̃.
We will write Lpk(X̃, ωε) for the corresponding Sobolev spaces. The following lemma is clear.

Lemma 6.1. Fix a compact subset W ⊂⊂ X̃ − E. Let Ẽ be a vector bundle. Then there exists a family of
constants C(ε)→ 0 as ε→ 0, such that for any r-form F ∈ Ωr(X̃ −E, Ẽ)

(1− C(ε)) ‖F‖Lpk(W,ω0)
≤ ‖F‖Lpk(W,ωε) ≤ (1 + C(ε)) ‖F‖Lpk(W,ω0)

.

Throughout this section Ẽ → X̃ will be a holomorphic vector bundle of rank K, equipped with a smooth
hermitian metric h̃0. Although later we will mainly be interested in the case where Ẽ = π∗E , we do not
assume this here.

Note that
∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

is uniformly bounded in ε, since for any fixed Kähler form ̟ on X̃ we

have:
∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ =

∣∣∣∣∣
F(∂̄Ẽ ,h̃0)

∧ ωn−1
ε

ωnε

∣∣∣∣∣ =
∣∣∣∣∣
F(∂̄Ẽ ,h̃0)

∧ ωn−1
ε

̟n

∣∣∣∣∣

∣∣∣∣
det g̟
det gε

∣∣∣∣ ,

ωnε =
det gε
det g̟

̟n

so
∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

=

∫

X̃

∣∣∣∣∣
F(∂̄Ẽ ,h̃0)

∧ ωn−1
ε

̟n

∣∣∣∣∣̟
n

which is clearly bounded uniformly in ε. Write h̃ε,t for the evolution of h̃0 under the HYM flow with respect
to the metric ωε.

Lemma 6.2. (1) Let t0 > 0. Then
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ is uniformly bounded for all t ≥ t0 > 0 and all ε > 0. The

bound depends only on t0 and the uniform bound on
∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

.

(2)
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ is bounded uniformly on compact subsets of X̃ − E for all t ≥ 0 and all ε > 0. The

bound depends only on the local bound on
∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ and the uniform bound on
∥∥∥ΛωεF(∂̄Ẽ ,h̃0)

∥∥∥
L1(ωε)

.
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Proof. By Lemma 3.1 (2), the pointwise norm
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ is a subsolution of the heat equation on (X̃, ωε)

(see also [BS] equation 3.3). If Kε
t (x, y) is the heat kernel for the ωε Laplacian on X̃ then
∫

X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

is a solution of the heat equation and therefore:
∣∣∣ΛωεF(∂̄Ẽ ,h̃ε,t)

∣∣∣ (x)−
∫

X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

is also a subsolution. Because∫

X̃

Kε
0(x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y) =
∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (x),

the maximum principle for the heat equation now implies that
∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ (x) ≤
∫

X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y).

By [BS] Lemma 4, there is a bound: Kε
t (x, y) ≤ C (1 + 1/tn) for some constant C independent of ε. Part

(1) now follows.

For part (2), let Ω1 ⊂⊂ Ω ⊂⊂ X̃−E, and let ψ be a smooth cut-off function supported in Ω and identically
1 in a neighbourhood of Ω̄1. Then just as in part (1) we have:

∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ (x) ≤
∫

X̃

Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

=

∫

X̃

ψKε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y)

+

∫

X̃

(1− ψ)Kε
t (x, y)

∣∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣∣ (y)dvolωε(y).

By the maximum principle, the first term on the right hand side is bounded from above by:
sup
{∣∣ΛωεF(∂̄Ẽ ,h̃0)

∣∣(y) | y ∈ Ω
}
. Since Ω ⊂⊂ X̃ − E, the function 1/ det gεij is uniformly bounded in ε,

so this sup and hence the first integral above are uniformly bounded in ε. By [GR] Theorem 3.1, there are
positive constants δ, C1, C2, independent of t and ε, such that for x 6= y,

Kε
t (x, y) ≤ C1

(
1 +

1

δ2t2

)
exp

(
− (dωε(x, y))

2

C2t

)
.

where dωε is the distance function on X̃ with respect to the Riemannian metric induced by ωε. Of course
dωε(x, y) is bounded from below for x ∈ Ω1 and y ∈ supp(1 − ψ) uniformly in ε. Therefore, Kε

t (x, y) is
uniformly bounded in ε and t, for these values of x and y. Then the second term on the right is uniformly

bounded in terms of
∥∥∥ΛωF(∂̄Ẽ h̃0)

∥∥∥
L1(ωε)

, so
∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣ is uniformly bounded on Ω1. �

If we write h̃ε,t = k̃ε,th̃0, then it follows from the HYM flow equations and the second part of the previous

lemma that both k̃ε,t and k̃
−1
ε,t are uniformly bounded on compact subsets of X̃ −E for 0 ≤ t ≤ t0 (one sees

easily that their determinant and trace are bounded, which is enough). The statement that
∣∣∣ΛωεF(∂̄Ẽ h̃ε,t)

∣∣∣
is uniformly bounded on compact subsets of X̃ − E translates to the statement that there is a section
fε,t ∈ u(Ẽ), uniformly bounded on compact subsets of X̃ −E, such that:

√
−1Λωε ∂̄A0

(
k̃−1
ε,t ∂A0 k̃ε,t

)
= fε,t,

where A0 is the connection (∂̄E , h̃0). It therefore follows from [BS] Proposition 1, that k̃ε,t has a uniform

C1,α bound (for any 0 < α < 1) on compact subsets of
(
X̃ −E

)
× [0,∞). Furthermore, we may write:

√
−1Λωε ∂̄A0

(
k̃−1
ε,t ∂A0 k̃ε,t

)
= k̃−1

ε,t

√
−1Λωε

(
∂̄A0∂A0 k̃ε,t

)
+
√
−1Λωε

(
∂̄A0 k̃

−1
ε,t

)(
∂A0 k̃ε,t

)

= k̃−1
ε,t△(∂̄A0 ,ωε)

k̃ε,t − k̃−1
ε,t

√
−1Λωε

(
∂̄A0 k̃ε,t

)
k̃−1
ε,t

(
∂A0 k̃ε,t

)
,
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where in the last equality we have used the Kähler identities and the expression for ∂̄A0 k̃
−1
ε,t . Therefore we

have:

△(∂̄A0 ,ωε)
k̃ε,t −

√
−1Λωε

(
∂̄A0 k̃ε,t

)
k̃−1
ε,t

(
∂A0 k̃ε,t

)
= k̃ε,tfε,t.

By elliptic regularity, this yields a uniform Lp2 bound (for 1 < p < ∞) on k̃ε,t on compact subsets of(
X̃ −E

)
× [0,∞). It now follows from the HYM the flow equations, that

∂h̃ε,t
∂t has a uniform Lp bound

on compact subsets of
(
X̃ −E

)
× [0,∞), and so for any W ⊂⊂

(
X̃ −E

)
and T ≥ 0, there is a uniform

Lp2/1(W × [0, T )) bound on h̃ε,t, where the 2/1 in the previous notation refers to the fact that there is 1

derivative in the time variable and 2 derivatives in the space variables. By weak compactness, there is a
subsequence εj → 0, so that h̃εj ,t → h̃t weakly in Lp2/1 on compact subsets. By the Sobolev imbedding

theorem, h̃εj ,t → h̃t in C
1/0 on compact subsets. By a further diagonalisation as T →∞, h̃εj ,t → h̃t for all

t ≥ 0.

Definition 6.3. We will refer to the resulting limit h̃t corresponding to the initial metric h̃0 and the degen-
erate metric ω0 as the degenerate Hermitian-Yang-Mills flow.

Of course a priori h̃t may depend on the subsequence εj . It is possible to show that under the assumption

that ΛωεFh̃0
is uniformly bounded in L∞, h̃t is unique. This assumption will not be satisfied in our case. We

will show however that h̃t solves the HYM equations on X̃ − E with respect to the metric ω0 with initial
condition h̃0.

Lemma 6.4. Let h̃t be defined as above. Then h̃t is an hermitan metric on Ẽ → X̃ − E for all t ≥ 0, and
solves the HYM equations on X̃ −E :

h̃−1
t

∂h̃t
∂t

= −2
(
Λω0

Fh̃t − µω0
(E)IdE

)
.

Proof. Clearly h̃t is positive semi-definite since it is a limit of metrics. Therefore we only need to check that
det h̃t is positive. Taking the trace of both sides of the HYM equations for the metric ωε, we get:

∂

∂t

(
log det h̃ε,t

)
= −2Tr

(
ΛωεFh̃ε,t − µωε(E)IdE

)

integrating both sides:
∣∣∣∣∣log

(
det h̃ε,T

det h̃0

)∣∣∣∣∣ = 2

∣∣∣∣∣

∫ T

0

Tr
(
ΛωεFh̃ε,t − µωε(E)IdE

)∣∣∣∣∣ .

By the previous lemma, the right hand side is bounded uniformly in ε, so det h̃T = limεj→0
det h̃εj ,T must

be positive. Since h̃εj ,t → h̃t weakly in Lp2/1 and C1/0 it follows that h̃t solves the HYM equations on

X̃ −E. �

For the remainder of this section, we will write F (−) for the curvature of a metric in order to avoid a
preponderance of subscripts.

Lemma 6.5.
∥∥∥F (h̃t)

∥∥∥
L2(X̃,ω0)

and
∥∥∥Λω0

F (h̃t)
∥∥∥
L∞(X̃,ω0)

are uniformly bounded for all t ≥ t0 > 0. The

bound depends only on t0 and the uniform bound on
∥∥∥ΛωεF (h̃0)

∥∥∥
L1(ωε)

.

Proof. Let W ⊂⊂ X̃ − E be a compact subset. By construction F (h̃ε,t) → F (h̃t) weakly in L2(W,ω0).

Applying Lemma 6.1 and the relation between F (h̃ε,t) and ΛωεF (h̃ε,t) in L
2 we have:

∥∥∥F (h̃t)
∥∥∥
L2(W,ω0)

≤ lim inf
ε→0

∥∥∥F (h̃ε,t)
∥∥∥
L2(W,ω0)

≤ C1 lim inf
ε→0

∥∥∥F (h̃ε,t)
∥∥∥
L2(W,ωε)

≤ C1 lim inf
ε→0

∥∥∥F (h̃ε,t)
∥∥∥
L2(X̃,ωε)

≤ C1 lim inf
ε→0

∥∥∥ΛωεF (h̃ε,t)
∥∥∥
L2(X̃,ωε)

+ C2

≤ C3 lim inf
ε→0

∥∥∥ΛωεF (h̃ε,t)
∥∥∥
L∞(X̃)

+ C2,
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where C3 is independent of W , and C2 is the product of C1 with a topological constant. The bound in L2

now follows from Lemma 6.2 (1).

For the second part again fix W ⊂⊂ X̃−E. We claim that for fixed t and W , as ε→ 0 there is a uniform
bound ∥∥∥Λω0

F (h̃ε,t)
∥∥∥
Lp(W,ω0)

≤
∥∥∥ΛωεF (h̃ε,t)

∥∥∥
Lp(W,ω0)

+ 1.

Otherwise, there is a sequence εj such that:
∥∥∥Λω0

F (h̃εj ,t)
∥∥∥
Lp(W,ω0)

≥
∥∥∥ΛωεjF (h̃εj ,t)

∥∥∥
Lp(W,ω0)

+ 1.

Then ∣∣∣Λω0
− Λωεj

∣∣∣
∥∥∥F (h̃εj ,t)

∥∥∥
Lp(W,ω0)

≥
∥∥∥
(
Λω0
− Λωεj

)(
F (h̃εj ,t)

)∥∥∥
Lp(W,ω0)

≥ 1,

where
∣∣∣Λω0

− Λωεj

∣∣∣ denotes the operator norm. Now we have h̃εj ,t → h̃
t
weakly in Lp2(ω0,W ), so

∥∥∥F (h̃εj ,t)
∥∥∥
Lp(W,ω0)

is uniformly bounded. Since Λωεj → Λω0
on W , this is a contradiction, and so we have proved the claim.

Therefore:∥∥∥Λω0F (h̃t)
∥∥∥
Lp(W,ω0)

≤ lim inf
ε→0

∥∥∥Λω0F (h̃ε,t)
∥∥∥
Lp(W,ω0)

≤ lim inf
ε→0

∥∥∥ΛωεF (h̃ε,t)
∥∥∥
Lp(W,ω0)

+ 1

≤ C lim inf
ε→0

∥∥∥ΛωεF (h̃ε,t)
∥∥∥
L∞(X̃)

+ 1.

Taking p→∞, the lemma now follows from Lemma 6.2. �

Proposition 6.6. For almost all t ≥ t0 > 0, we have:
∥∥∥∇(∂̄Ẽ ,h̃t)Λω0

F (h̃t)
∥∥∥
L2(X̃,ω0)

≤ lim inf
ε→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
L2(X̃,ωε)

<∞.

As will be seen in the course of the proof, this implies that:

∫ ∞

t0

∥∥∥∇(∂̄Ẽ ,h̃t)Λω0F (h̃t)
∥∥∥
L2(ω0)

dt <∞.

Proof. By Lemma 3.1 (1) we have:

d

dt

∥∥∥F (h̃ε,t)
∥∥∥
2

L2(X̃,ωε)
= −2

∥∥∥d∗(∂̄Ẽ ,h̃t)F (h̃ε,t)
∥∥∥
2

L2(X̃,ωε)
= −2

∥∥∥∇(∂̄Ẽ ,h̃t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(ωε)
.

Then:

2

∫ ∞

t0

∥∥∥∇(∂̄Ẽ ,h̃t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(X̃,ωε)
dt ≤

∥∥∥F (h̃ε,t0)
∥∥∥
2

L2(X̃,ωε)
≤
∥∥∥ΛωεF (h̃ε,t0)

∥∥∥
2

L2(X̃,ωε)
+ C.

By Lemma 6.2 (1) the right hand side is uniformly bounded as ε→ 0. Then by Fatou’s lemma we have:

2

∫ ∞

t0

lim inf
ε→0

∥∥∥∇(∂̄Ẽ ,h̃t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(X̃,ωε)
dt ≤ 2 lim inf

ε→0

∫ ∞

t0

∥∥∥∇(∂̄Ẽ ,h̃t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(X̃,ωε)
dt

≤ lim inf
ε→0

∥∥∥ΛωεF (h̃ε,t0)
∥∥∥
2

L2(X̃,ωε)
+ C <∞.

Therefore, for almost all t ≥ t0, we have:

lim inf
ε→0

∥∥∥∇(∂̄Ẽ ,h̃t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(X̃,ωε)
<∞.

Now we prove the first inequality:
∥∥∥∇(∂̄Ẽ ,h̃t)Λω0

F (h̃t)
∥∥∥
L2(X̃,ω0)

≤ lim inf
ε→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
L2(X̃,ωε)

.

It is enough to show this for an arbitrary compact subset W ⊂⊂ X̃ − E. For almost all t ≥ t0, we may
choose a sequence εj → 0 such that

lim
j→∞

∥∥∥∇(∂̄Ẽ ,h̃εj,t)ΛωεjF (h̃εj ,t)
∥∥∥
2

L2(W,ωεj )
= lim inf

ε→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(W,ωε)
= b <∞.
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Since h̃εj,t → h̃t weakly in L
p
2(W̃ ), we have Λω0

Fh̃εj,t
→ Λω0

Fh̃t weakly in L
p(W̃ ), and∇(∂̄Ẽ ,h̃εj,t) → ∇(∂̄Ẽ ,h̃t)

in C0(W ). It follows by the triangle inequality and Lemma 6.1, that
∥∥∥∇(∂̄Ẽ ,h̃t)Λω0

F (h̃εj ,t)
∥∥∥
L2(W,ω0)

≤ (1 + Cj)
∥∥∥∇(∂̄Ẽ ,h̃εj,t)ΛωεjF (h̃εj ,t)

∥∥∥
L2(W,ωεj )

+ cj

where Cj and cj → 0. Then,
∥∥∥Λω0

F (h̃εj ,t)
∥∥∥
L2

1(W,ht,ω0)
is uniformly bounded as j →∞. Choose a subsequence

(still written j) such that Λω0F (h̃εj ,t) converges weakly in L2
1(W,ω0). By Rellich compactness we also have

strong convergence Λω0
F (h̃εj ,t)→ Λω0

F (h̃t) in L
2(W ). By the choice of εj and the previous inequality, we

have
∥∥∥∇(∂̄Ẽ ,h̃t)Λω0F (h̃εj ,t)

∥∥∥
2

L2(W,ω0)
→ b. Then finally:

∥∥∥Λω0F (h̃t)
∥∥∥
2

L2
1(W,ht,ω0)

≤ lim inf
j→∞

∥∥∥Λω0F (h̃εj ,t)
∥∥∥
2

L2
1(W,ht,ω0)

≤ lim inf
j→∞

(∥∥∥Λω0
F (h̃εj ,t)

∥∥∥
2

L2(W,ω0)
+
∥∥∥∇(∂̄Ẽ ,h̃t)Λω0

F (h̃εj ,t)
∥∥∥
2

L2(W,ω0)

)

≤
∥∥Λω0

Fh̃t

∥∥2
L2(W,ω0)

+ b.

Since
∥∥∥Λω0F (h̃t)

∥∥∥
2

L2
1(W,ht,ω0)

=
∥∥∥Λω0F (h̃t)

∥∥∥
2

L2(W,ω0)
+
∥∥∥∇(∂̄Ẽ ,h̃t)Λω0F (h̃t)

∥∥∥
2

L2(W,ω0)
, we have

∥∥∥∇(∂̄Ẽ ,h̃t)Λω0F (h̃t)
∥∥∥
2

L2(W,ω0)
≤ b = lim inf

ε→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(W,ωε)
.

The second statement in the proposition now follows since:
∫ ∞

t0

∥∥∥∇(∂̄Ẽ ,h̃t)Λω0
F (h̃t)

∥∥∥
2

L2(X̃,ω0)
dt ≤

∫ ∞

t0

lim inf
ε→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
L2(X̃,ωε)

dt

(Fatou′s lemma) ≤ lim inf
ε→0

∫ ∞

t0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
L2(X̃,ωε)

dt

≤ lim inf
ε→0

∥∥∥ΛωεF (h̃ε,t0)
∥∥∥
2

L2(X̃,ωε)
+ C <∞.

�

The following is an immediate consequence.

Corollary 6.7. There is a sequence tj →∞ such that
∥∥∇(∂̄Ẽ ,h̃tj )Λω0

F (h̃t)
∥∥
L2(X̃,ω0)

→ 0.

One result of all this discussion is the following corollary, which follows from the previous corollary, Lemma
6.5, and Corollary 2.18. Although we will not use it in the sequel, we feel it is worth stating explicitly.

Corollary 6.8. Let tj −→ ∞ as in the previous corollary. Consider the sequence Ãtj = (∂̄Ẽ , h̃tj ) of

connections defined over X̃ −E = X −Zalg. Then there is a further subsequence (still denoted tj) such that

Ãtj has an Uhlenbeck limit Ã∞ on a reflexive sheaf Ẽ∞, which is a vector bundle away from a set Z̃an of

Hausdorff codimension at least 4. The connection Ã∞ is Yang-Mills.

In the next section we will also need the following proposition.

Proposition 6.9. For almost all t > 0, there is a sequence εj(t) → 0 such that ΛωεjF (h̃εj ,t) → Λω0F (h̃t)

in Lp for all 1 ≤ p ≤ ∞. In particular: HYM
ωεj
α

(
∇(∂̄Ẽ ,h̃εj ,t)

)
→ HYMω0

α

(
∇(∂̄Ẽ ,h̃t)

)
for all α.

Proof. Fix δ > 0. Let Ũ be an open set containing E with vol(Ũ) < δ
3C where C is an upper bound on∣∣∣ΛωεFh̃ε,t

∣∣∣ which exists by Lemma 6.2. Now let t, εj be such that

lim
j→∞

∥∥∥∇(∂̄Ẽ ,h̃εj,t)ΛωεjF (h̃εj ,t)
∥∥∥
2

L2(W,ωεj )
= lim inf

ε→0

∥∥∥∇(∂̄Ẽ ,h̃ε,t)ΛωεF (h̃ε,t)
∥∥∥
2

L2(W,ωε)
<∞
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as in the proof of the previous proposition, where W = X̃ − Ũ . Therefore, by the same argument as in the
above proof we have strong convergence Λω0

F (h̃εj ,t)→ Λω0
F (h̃t) in L

2(W,ω0). Therefore the same is true

for ΛωεjF (h̃εj ,t). In particular there exists a J such that for j, k ≥ J , we have:

∥∥∥ΛωεjF (h̃εj ,t)− ΛωεkF (h̃εk,t)
∥∥∥
L2(W,ω0)

≤ δ

3
.

By the choice of Ũ , it follows that for j, k ≥ J :∥∥∥ΛωεjF (h̃εj ,t)− ΛωεkF (h̃εk,t)
∥∥∥
L2(X̃,ω0)

≤ δ.

Since ΛωεjFh̃εj,t
is a Cauchy sequence it converges strongly in L2(X̃, ω0). Since ΛωεjF (h̃εj ,t) → Λω0

F (h̃t)

weakly in L2
loc(X̃ − E, ω0), it follows that ΛωεjF (h̃εj ,t) → Λω0F (h̃t) strongly in L2(X̃ − E, ω0). Since

both ΛωεjF (h̃εj ,t) and Λω0
F (h̃t) are bounded in L∞ (see Lemma 6.2 and Lemma 6.5) it follows that

ΛωεjF (h̃εj ,t)→ Λω0
F (h̃t) strongly in Lp(X̃ −E, ω0) for all p. By Lemma 6.2 and Lemma 3.6 we have:

HYM
ωεj
α

(
∇(∂̄Ẽ ,h̃εj ,t)

)
−→ HYMω0

α

(
∇(∂̄Ẽ ,h̃t)

)
.

�

7. Proof of the Main Theorem

In this section we complete the proof of the main theorem. The result is a direct corollary of the following
theorem.

Theorem 7.1. Let A0 be an integrable, unitary connection on a holomorphic, hermitian vector bundle E ,
µ0 the Harder-Narasimhan type of (E, ∂̄A0), and A ⊂ [1,∞) be any set containing an accumulation point.
Let Aj be a sequence of integrable, unitary connections on E such that:
• (E, ∂̄Aj ) is holomorphically isomorphic to (E, ∂̄A0) for all i;
• HYMα,N (Aj) −→ HYMα,N (µ0) for all α ∈ A ∪ {2} and all N > 0.
Then there is a Yang-Mills connection A∞ on a bundle E∞ defined outside a
a closed subset of Hausdorff codimension at least 4 such that:
(1) (E∞, ∂̄A∞

) is isomorphic to GrHNS(E, ∂̄A0) as a holomorphic bundle on
X − Zan;

(2) After passing to a subsequence, Aj → A∞ in L2
loc(X − Zan);

(3) There is an extension of the bundle E∞ to a reflexive sheaf
(still denoted E∞) such that E∞ ≅ GrHNS(E, ∂̄A0)

∗∗.

The proof will be a modification of Donaldson’s argument from [DO1] that there is a non-zero holomorphic
map (E, ∂̄A0)→ (E∞, ∂̄A∞

) in the case that (E, ∂̄A0) is semi-stable. If the bundles in question are actually
stable, we may then apply the elementary fact that a non-zero holomorphic map between stable bundles with
the same slope is necessarily an isomorphism. Of course in our case (E, ∂̄A0) is not necessarily semi-stable
so the argument must be modified. We first construct such a map on the maximal destabilising subsheaf
S ⊂ E (which is semi-stable). If we assume that S is stable (in other words if we construct the map on the
first piece of the HNS filtration) this identifies S with a subsheaf of the limiting sheaf E∞. We then use an
inductive argument to identify each the successive quotients with a direct summand of E∞. This is relatively
straightforward in the case that the HNS filtration is given by subbundles, but in the general case technical
complications arise. Therefore, to clearly illustrate our technique, we will first present an exposition of the
simpler case where there are no singularities, and then explain the modifications necessary to complete the
argument.

7.1. The Subbundles Case. We begin with the following proposition.

Proposition 7.2. Let E be a holomorphic, hermitian vector bundle and Aj = gj(A0) be a sequence of
integrable, unitary connections on E. Let A ⊂ [1,∞) be any set containing an accumulation point. Assume
that HYMα,N (Aj)→ HYMα,N(µ0) for all N > 0 and all α ∈ A ∪ {2}. Let S ⊂ (E, ∂̄A0) be a holomorphic
subbundle. Then there is closed subset Zan of Hausdorff codimension at least 4, a reflexive sheaf E∞ which
is an hermitian vector bundle away from Zan and a Yang-Mills connection A∞ on E∞ such that:



42 BENJAMIN SIBLEY

(1) After passing to a subsequence Aj → A∞ in L2
loc(X − Zan);

(2) The Harder-Narasimhan type of (E∞, ∂̄A∞
) is the same as

that of (E, ∂̄A0);
(3) There is a non-zero holomorphic map gS∞ : S −→ (E∞, ∂̄A∞

).

Proof. We first reduce to the case where the Hermitian-Einstein tensors ΛωFAj are uniformly bounded.
Write Aj,t for the time t solution to the YM flow equations with initial condition Aj . By Lemma 3.1,∣∣ΛωFAj,t

∣∣2 is a sub-solution of the heat equation. Then for each t > 0 and each x ∈ X :

∣∣ΛωFAj,t
∣∣2 (x) ≤

∫

X

Kt(x, y)
∣∣ΛωFAj,t

∣∣2 (y)dvolω(y).

Here Kt(x, y) is the heat kernel on X . By a theorem of Cheng and Li (see [CHLI]) there is a bound:

0 < Kt(x, y) ≤ C
(
1 +

1

tn

)
,

and so for any fixed t0 > 0,
∥∥ΛωFAj,t0

∥∥
L∞(X,ω)

is uniformly bounded in terms of
∥∥ΛωFAj

∥∥
L2(X,ω)

. Since

we assume in particular that HYM(Aj)→ HYM(µ0) we know that
∥∥ΛωFAj

∥∥
L2(X,ω)

is uniformly bounded

independently of j, and therefore
∥∥ΛωFAj,t0

∥∥
L∞(X,ω)

is uniformly bounded.

For the remainder of the argument we would like to replace Aj with Aj,t0 , so that we may assume in the
sequel that we have the above bound. In order to do this we must know that the Uhlenbeck limit of the new
sequence Aj,t0 is the same as that of Aj . We argue as follows:

‖Aj,to −Aj‖L2

Minkowski
≤

∫ t0

0

∥∥∥∥
∂Aj,s
∂s

∥∥∥∥
L2

ds ≤
√
t0

(∫ t0

0

∥∥∥d∗Aj,sFAj,s
∥∥∥
2

L2
ds

) 1
2

=
√
t0

(∫ t0

0

−1

2

d

ds

∥∥FAj,s
∥∥2
L2 ds

) 1
2

=

√
t0
2
(YM(Aj)− YM(Aj,t0))

1
2 −→ 0

because Aj is minimising for the YM functional and YM is non-increasing along the flow. This shows that
the two limits are equal, and moreover the proof also shows that

∥∥d∗Aj,sFDj,s
∥∥
L2 → 0 for almost all s, so

this limit is a Yang-Mills connection. Since we have assumed additionally that HYMα,N(Aj) (and hence
HYMα,N (Aj,t0)) is minimising for α ∈ A, it follows from Propositions 3.7 (2) and 3.9 that the HN type of
(E∞, A∞) is the same as that of (E0, A0).

We may therefore assume from here on out that the Hermitian-Einstein tensors ΛωFAj are uniformly
bounded independently of j. Note that we have already proven both (1) and (2) above. It remains to
construct the non-zero holomorphic map.

Observe that for any holomorphic section σ of a holomorphic vector bundle V −→ (X,ω) equipped with
an hermitian metric 〈−,−〉, and whose Chern connection is A, we have that

√
−1∂̄∂ |σ|2 =

√
−1∂̄∂ 〈σ, σ〉 =

√
−1
(
〈∂Aσ, ∂Aσ〉+

〈
σ, ∂̄A∂Aσ

〉)

=
√
−1 (〈∂Aσ, ∂Aσ〉+ 〈σ, FAσ〉)

since σ is holomorphic. Applying Λω and using the Kähler identities, we have:

△∂ |σ|2 =
√
−1Λω∂̄∂ |σ|2 = − |∂Aσ|2 +

〈
σ,
√
−1 (ΛωFA)σ

〉
.

Now let gSj : S → (E, ∂̄Aj ) be given by the restriction of gj to S. By definition, this is a holomorphic

section of Hom(S,E), whose Chern connection is A∗
0 ⊗ Aj . Then applying the above formula to gSj and

writing kSj = (gSj )
∗(gj

S), and hS and hj for the metrics corresponding to A0|S and Aj , we have

△∂ Tr kSj +
∣∣∂A∗

0⊗Aj
gSj
∣∣2 =

〈
gSj ,
√
−1
(
ΛωFhjg

S
j − gSj ΛωFhS

)〉
,

and so

△∂(Tr kSj ) ≤ (Tr kSj )
(∣∣ΛωFhj

∣∣+ |ΛωFhS |
)
.
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Now we use the bound on
∣∣ΛωFhj

∣∣. Let C1 = supj
∥∥ΛωFhj

∥∥
L∞(X,ω)

and C2 = ‖ΛωFhS‖L∞(X). Multiplying

both sides of the above inequality by Tr kSj and integrating by parts shows:
∫

X

∣∣∇Tr kSj
∣∣2 dvolω ≤ (C1 + C2)

∫

X

∣∣Tr kSj
∣∣2 dvolω.

By the Sobolev imbedding L2
1 →֒ L

2n

n−1 the previous inequality gives a bound
∥∥Tr kSj

∥∥
L

2n
n−1 (X,ω)

≤ C
∥∥Tr kSj

∥∥
L2(X,ω)

where C depends only on C1,C2 and the Sobolev constant of (X,ω). A standard Moser iteration gives a
bound:

∥∥Tr kSj
∥∥
L∞(X,ω)

≤ C
∥∥Tr kSj

∥∥
L2(X,ω)

.

At this point we may repeat Donaldson’s argument (appropriately modified for higher dimensions). For

the reader’s convenience we reproduce it here. By definition Tr(kSj ) =
∣∣gSj
∣∣2. Since non-zero constants act

trivially on A1,1 we may normalise the gSj so that
∥∥gSj

∥∥
L4(X)

=
∥∥Tr(kSj )

∥∥
L2(X)

= 1. The above bound implies

that there is a subsequence of the gSj that converges to a limiting gauge transformation gS∞ weakly in every

Lp2 for example. Since Zan has Hausdorff codimension at least 4, we may of course find a covering of Zan by
balls {Bri }i of radius r such that: C (

∑
i V ol(B

r
i )) < 1/2. If we write Kr = X −∪iBri ∪ Sing(E∞), then our

L∞ bound implies that:
∥∥gSj

∥∥
L4(Kr)

≥ 1/2 for all j. This implies that gS∞ is non-zero. We now show gS∞ is

holomorphic.
If we denote by ∂̄A0⊗A∞

the (0, 1) part of the connection on E∗ ⊗ E∞ = Hom(E,E∞) induced by the
connections A0 and A∞. We will identify E and E∞ on Kr. Then by definition we have:

∂̄A∗
0⊗A∞

gSj =
(
gSj A0 −A∞g

S
j

)
= (gSj A0(g

S
j )

−1 −A∞)gSj = (Aj −A∞)gSj .

Since A0 → A∞ in L2(Kr) this implies ∂̄A0⊗A∞
gS∞ = 0, in other words gS∞ is holomorphic on Kr. Since this

argument works for any choice of r, and the Kr give an exhaustion of X−Zan∪Sing(E∞), gS∞ is holomorphic
on X − Zan ∪ Sing(E∞). By a version of Hartogs theorem (see [SHI] Lemma 3) there is an extension of
gS∞ to X − Sing(E∞). Finally, by normality of these sheaves (both are reflexive) there is an extension to a
non-zero map gS∞ : S → E∞. �

We are now ready to perform the induction, and therefore prove the main theorem in the case when
the HNS filtration is given by subbundles. We first assume the quotients Qi = Ei/Ei−1 in the Harder-
Narasimhan filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = (E, ∂̄A0) are stable (so the HN and HNS filtrations are

the same). From Proposition 2.13, E∞ has a holomorphic splitting E∞ = ⊕l
′

i=1Q∞,i. By Theorem 5.13 the

HN types of E and E∞ are the same, so l = l
′

and µ(E1) = µ(Q∞,1) > µ(Q∞,i) for i = 2, · · · , l. By the
above proposition there is a non-zero holomorphic map g∞ : E1 → E∞. Since we are assuming E1 is stable,
and the Q∞,i (i > 1) have slope strictly smaller than E1, the induced map onto these summands is 0 and
hence g∞ : E1 → Q∞,1. Again by stability of E1 and Q∞,1 and the fact that E1 and Q∞,1 have the same
rank and degree, this map is an isomorphism. This is the first step in the induction.

The inductive hypothesis will be that the connections Aj restricted to Ei−1 converge to connections on the
bundle Gr(Ei−1), in other words Gr(Ei−1) ⊂ E∞. Let E∞,i = ⊕j≤iQ∞,j and set: E∞ = Gr(Ei−1)⊕R, and
consider the short exact sequence of bundles: 0→ Ei−1 → Ei → Qi → 0. Since Gr(Ei) = Gr(Ei−1)⊕Qi, to
complete the induction we need only show that Qi is a direct summand of R. The sequence of connections
on E∗

i induced by Aj satisfy the hypotheses of the proposition, so we may apply this result to the dual exact
sequence: 0 → Q∗

i → E∗
i → E∗

i−1 → 0, and therefore obtain a holomorphic map Q∗
i → (E∞,i)

∗. Because
Q∗
i is the maximal destabilising subsheaf of (E∞,i)

∗ this implies that Q∗
i is isomorphic to a summand of R∗.

This completes the proof under the assumption that the quotients are stable.
To extend this to the general case, it suffices to consider the case that the original bundle (E,∂̄A0) is

semi-stable. In other words the filtration is a Seshadri filtration of E. Then as in the above argument we
may conclude that E1 is isomorphic to a factor of E∞ we also again obtain a non-zero holomorphic map
g∞ : Q∗

i → (E∞,i)
∗. However, the Seshadri quotients all have the same slope, so we do not know via slope

considerations that Q∗
i maps into R∗. On the other hand we know that the weakly holomorphic projections

converge. If π
(i−1)
j denotes the sequence of projections to gj(Ei−1) and π

(i−1)
∞ the projection onto E∞,i−1,

then π
(i−1)
j → π

(i−1)
∞ by the proof of Lemma 4.5 of [DW1]. If we denote by π̌

(i−1)
j the dual projection, then
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for each j, the image of Q∗
i is in the kernel of π̌

(i−1)
j . In other words the image g∞(Q∗

i ) lies in the kernel of

π̌
(i−1)
j . Therefore since we have convergence, the image of g∞(Q∗

i ) lies in the kernel of π̌
(i−1)
∞ which is in R∗.

Therefore Q∗
i is isomorphic to a factor of R∗ and this completes the proof.

7.2. The General Case. In general the HNS filtration is not given by subbundles. The argument we
have given in Proposition 7.2 for the construction of the holomorphic map S → E∞ remains valid if S is an
arbitrary torsion free subsheaf since the connections in question are all defined a priori on the ambient bundle
E, and since the second fundamental form β of S drops out of the estimates, there is no problem obtaining
a uniform bound on the Hermitian-Einstein tensors. On the other hand, when we try to run the inductive
argument, the restrictions of the connections Aj to the pieces Ei of the HNS filtration only make sense on
the locally free part of these subsheaves. This prevents us from applying the argument of Proposition 7.2
in the inductive step because to do so requires global L∞ bounds on the appropriate Hermitian-Einstein
tensors, which we do not have, since the restrictions of the Aj do not extend over the singular set Zalg.

The strategy for proving the main theorem in the general case mirrors our method in Section 4. Roughly
speaking we proceed as follows. Let Aj = gj(A0) be a sequence of connections. First we pass to an arbitrary

resolution π : X̃ → X of singularities of the HNS filtration. Then we construct an isomorphism from the
associated graded object of the filtration for the pullback bundle π∗E (away from the exceptional set E)

to the Uhlenbeck limit of the sequence π∗Aj on the Kähler manifold (X̃ − E, ω0) = (X − Zalg, ω) where
ω0 = π∗ω. Then we will use the fact that these bundles extend as reflexive sheaves over Zalg to the double
dual of the associated graded object of E and the Uhlenbeck limit of Aj respectively, and hence by normality
of these sheaves, the isomorphism extends as well.

The outline of the proof given above has to be modified somewhat for technical reasons which we will
now explain. Just as for the case of subbundles, by first running the YM flow for finite time we may assume

there is a uniform bound
∥∥ΛωFAj

∥∥
L∞(X)

or equivalently on
∥∥∥Λω0

FÃj

∥∥∥
L∞(X̃−E)

where Ãj = π∗Aj . As usual

we will denote by A∞ the Uhlenbeck limit of Aj on (X,ω) and we have Aj → A∞ in Lp1,loc(X − Zan) for

p > n. The proof of the proposition proves all but (3) of Theorem 7.1. Let Ei ⊂ E be a factor of the HNS

filtration and A
(i)
j = π

(i)
j Aj be the connections on gj(Ei) induced from Aj , and A

(i)
∞ = π

(i)
∞A∞. By Lemma

5.10 it follows that A
(i)
j → A

(i)
∞ weakly in Lp1,loc(X − Zan ∪ Zalg).

If π : X̃ → X is the aforementioned resolution of singularities then the filtration of π∗E = Ẽ is given by

subbundles Ẽi ⊂ Ẽ, isomorphic to Ei away from the exceptional divisor E. Write g̃j = gj ◦ π and let Ã
(i)
j

be the connection induced by Ãj = π∗Aj on g̃j(Ẽi). We will write π̃j for the projection to g̃j(Ẽi) and β̃j
for the second fundamental forms for the connections Ãj with respect to the subbundles Ẽi; in other words

these are sections of the bundle Ω0,1
(
X̃,Hom(Q̃i, Ẽi)

)
for an auxiliary bundle Q̃i. Then this sequence of

connections satisfies the following:

(1) There is a closed subset Z̃an ⊂ X̃ −E of Hausdorff codimension at least 4

and a Yang-Mills connection Ã
(i)
∞ defined on a reflexive sheaf Ẽ∞,i → X̃ − E (which is a bundle on

X̃ − (Z̃an ∪E)), such

that Ã
(i)
j → Ã

(i)
∞ weakly in Lp1,loc

(
X̃ − (Z̃an ∪E)

)
.

(2) We have the standard formula for the curvature:

√
−1Λω0

F
Ã

(i)
j

=
√
−1Λω0

(
π̃jFÃj π̃j

)
+
√
−1Λω0

(
β̃j ∧ β̃

∗

j

)
.

Also:
• The β̃j are locally bounded on X̃ − (Z̃an ∪E) uniformly in j (Lemma 2.25)

• The β̃j → 0 in L2(ω0). In particular, they are uniformly bounded in L2(ω0) (see the proof of [DW1]
Lemma 4.5).

Note that the term √
−1Λω0

(
π̃jFÃj π̃j

)
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is bounded in L∞(X̃, ω0) since Ãj = π∗Aj . The key point here is that term
√
−1Λω0

(
β̃j ∧ β̃

∗

j

)

is not bounded in L∞(X̃, ω0) since it may be written as

√
−1

(
β̃j ∧ β̃

∗

j

)
∧ ωn−1

0

ωn0

which blows up near E. This is a problem because in order to carry out the induction in the preceding
sub-section we had to consider exact sequences of the form:

0 −→ Q̃∗
i −→ Ẽ∗

i −→ Ẽ∗
i−1 −→ 0

(here Q̃i = Ẽi/Ẽi−1) and apply Proposition 7.2 to construct a non-zero holomorphic map Q̃∗
i → Ẽ∗

∞,i. This
involved knowing that there was a uniform L∞ bound on the Hermitian-Einstein tensors of the induced

connections (Ã
(i)
j )∗ and (Ã

(i)
j,Q)

∗ on Ẽ∗
i and Q̃∗

i . Since this is not the case we cannot apply this argument
directly. On the other hand we do know that for all positive times t > 0, the degenerate Yang-Mills flow

of Section 6 gives connections Ã
(i)
j,t such that Λω0

F
Ã

(i)
j,t

is uniformly bounded (see Lemma 6.5). For each t

the deformed sequence of connections has an Uhlenbeck limit Ã
(i)
∞,t on a reflexive sheaf Ẽt∞,i which a priori

depends on t.
There are now two points to address. In parallel to Proposition 7.2 we will show that after resolving the

singularities of the maximal destabilising subsheaf S to a bundle S̃ there is a non-zero holomorphic map
S̃ → Ẽt∞ (where Ẽt∞ is an Uhlenbeck limit of Ãj,t) away from E. This is not automatic from the proof of

Proposition 7.2 because the connections Ãj,t do not extend smoothly across E, so the integration by parts
involved in the proof is not valid. We will instead derive this map as a limit of the maps produced from
the corresponding argument for the family of Kähler manifolds (X̃, ωε). Secondly we need to know that

the Uhlenbeck limits (Ẽt∞, Ã∞,t) are independent of t and are all equal to (Ẽ∞, Ã∞). Again, this does not
follow from our previous argument since, as we have noted, the second fundamental forms of the restricted
connections are only bounded in L2 and therefore the curvatures are only bounded in L1. In particular we

do not have that Ã
(i)
j is minimising for the functional YM . Establishing these two facts will complete the

proof of the main theorem, since then we may use induction just as for the case when the HNS filtration is
given by subbundles.

We begin with the first point.

Proposition 7.3. Let Ẽ → X̃ be a vector bundle with an hermitian metric h̃. Let Ãj = g̃j(Ã0) be a

sequence of unitary connections on Ẽ, and assume Λω0FÃj is bounded uniformly in j in L1(X̃, ω0). Let

Ãj,t be the solution of the degenerate YM flow at time t with initial condition Ãj, and suppose that this

sequence has an Uhlenbeck limit (Ẽt∞, Ã∞,t). Finally let S̃ ⊂ Ẽ be a subbundle of (Ẽ, Ã0). Then there is a

non-zero holomorphic map g̃∞ : S̃ → Ẽt∞ on X̃−E. Furthermore, assume that (Ẽt∞, Ã∞,t) has an extension

(Et∞, A∞,t) as a reflexive sheaf over Zalg to X, assume S̃ also extends to a reflexive sheaf S on X. Then
g̃∞ induces a non-zero holomorphic map g∞ : S → Et∞.

Proof. Let ωε be the standard family of Kähler metrics on X̃ and fix t > 0. Let εi → 0 be a sequence as
in Section 6, i.e. if Ãεij,t is the time t Y M flow on (X̃, ωεi), then Ã

εi
j,t → Ãj,t in C

1/0 on compact subsets of

X̃ −E. Choose a family of metrics h̃S̃εi on S̃ converging uniformly on compact subsets of X̃ −E to a metric

h̃S̃0 defined away from E, and such that sup
∣∣∣ΛωεiFh̃S̃εi

∣∣∣ is uniformly bounded as εi → 0 (take for example the

time 1 HYM flow of h̃ with respect ωε). For each j and each εi > 0, we have a non-zero holomorphic map

g̃S̃εi,j : S̃ → (Ẽ, ∂̄Ãεij,t
). Just as in Section 7.1, we set kS̃εi,j =

(
g̃S̃εi,j

)∗
g̃S̃εi,j . As in Proposition 7.2 we have the

inequality:

∆(∂,ωε)(Tr k̃
S̃
εi,j) ≤ (Tr k̃S̃εi,j)

(∣∣∣ΛωεiFÃεij,t
∣∣∣+
∣∣∣ΛωεiFh̃S̃εi

∣∣∣
)
.

Both factors on the right are uniformly bounded as εi → 0 by assumption. It follows that we have the

inequality:
∥∥Tr k̃S̃εi,j

∥∥
L∞(X̃)

≤ C
∥∥Tr k̃S̃εi,j

∥∥
L2(X̃,ωε)

, where the constant C depends only on these uniform
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bounds and the Sobolev constant of (X̃, ωεi) is also uniformly bounded away from zero by [BS] Lemma 3.

As in the proof of Proposition 7.2 we rescale g̃S̃εi,j so that
∥∥g̃S̃εi,j

∥∥
L4(X̃,ωε)

= 1. A diagonalisation argument

for an exhaustion of X̃ − E together with the sup bound gives a sequence of non-zero holomorphic maps

g̃S̃j : S̃ → (Ẽ, ∂̃Ãj,t) defined on X̃ − E with g̃S̃εi,j → g̃S̃j uniformly on compact subsets as εi → 0 such

that:
∥∥g̃S̃j

∥∥
L∞ ≤ C, and

∥∥g̃S̃j
∥∥
L4(ω0)

= 1. Repeating the proof of Proposition 7.2 yields a nonzero limit

g̃S̃∞ : S̃ → (Ẽt∞, Ã∞,t). The last statement follows from the normality of the sheaves in question. �

Secondly we have:

Proposition 7.4. Let Ẽ → X̃ be a Hermitian vector bundle with a unitary integrable connection Ã0. We
assume that the holomorphic bundle (Ẽ, ∂̄A0) restricted to X̃−E = X−Zalg extends to a holomorphic bundle

(E, ∂̄E) on X with Harder-Narasimhan type µ = (µ1, · · · , µR). Let Ãj = g̃j(Ã0) be a sequence of unitary

connections on Ẽ, and assume there is a subset Z̃an ⊂ X̃ − E of Hausdorff codimension at least 4, and a
YM connection Ã∞ on a bundle Ẽ∞ → X̃ − (Z̃an ∪E) such that Ãj → Ã∞ weakly in Lp1,loc (where p > n)

on compact subsets of X̃ − (Z̃an ∪ E). We assume that the constant eigenvalues of
√
−1Λω0

FÃ∞
are given

by the vector µ. Finally assume Λω0
FÃj → Λω0

FÃ∞
in L1(ω0). Then there is a subsequence such that for

almost all t > 0, Ãj,t → Ã∞ in Lp1,loc away from Z̃an ∪E where Ãj,t is the time t degenerate YM flow with

initial condition Ãj.

This will follow from a sequence of lemmas.

Lemma 7.5. For any t > 0,
∥∥Λω0

FÃj,t

∥∥
L∞(X̃−E)

is uniformly bounded in j. Moreover, for almost all t > 0,

limj→∞HYMω0

(
Ãj,t

)
= HYM(µ).

Proof. The first statement follows from Lemma 6.5. By assumption, we have Λω0FÃj → Λω0FÃ∞
in L1, and

Λω0
FÃ∞

has constant eigenvalues µ1, · · · , µK . Set M2 =
∑K

i=1 µ
2
i =

HYM(µ)
2π . Also let µ1,ε, · · · , µK,ε be the

HN type of (E, ∂̄Ã0
) with respect to ωε, and set M̃2

ε =
∑K
i=1 µ

2
i,ε. By Corollary 3.5 we know:

M̃ε ≤
1

2π

∫

X̃

∣∣∣ΛωεFÃεj,t
∣∣∣ dvolωε .

By Proposition 6.9 , for almost all t, we can find a sequence εi = εi(t)→ 0 such that ΛωεiFÃ
εi
j,t
→ Λω0

FÃj,t
in any Lp(ω0). Let εi → 0 and using the convergence of the HN type:

M ≤ 1

2π

∫

X̃

∣∣∣Λω0
FÃj,t

∣∣∣ dvolω0

for all j and almost all t ≥ 0. We also have:
∣∣∣ΛωεFÃεj,t

∣∣∣ (x) ≤
∫

X̃

Kε
t (x, y)

∣∣∣ΛωεFÃj
∣∣∣ (y)dvolωε(y)

= M +

∫

X̃

Kε
t (x, y)

(∣∣∣ΛωεFÃj
∣∣∣−M

)
dvolωε

where Kε
t (x, y) is the heat kernel on (X̃, ωε) (since Kε

t (x, y) has integral equal to 1). Since we have the
bound: Kε

t (x, y) ≤ C(1 + 1/tn), there is a constant C(t) independent of ε such that:
∣∣∣ΛωεFÃεj,t

∣∣∣ (x) ≤M + C
∥∥∥
∣∣∣ΛωεFÃj

∣∣∣−M
∥∥∥
L1(X̃,ωε)

.

Then just as above we have:
∣∣∣Λω0

FÃj,t

∣∣∣ (x) ≤M + C
∥∥∥
∣∣∣Λω0

FÃj

∣∣∣ −M
∥∥∥
L1(X̃,ω0)

for almost all x ∈ X̃ −E and almost all t > 0. Since
∣∣∣Λω0

FÃj

∣∣∣→
∣∣Λω0

FÃ∞

∣∣ =M in L1, we have

lim
j→∞

sup
∣∣∣Λω0

FÃj,t

∣∣∣ (x) ≤M
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for almost all x ∈ X̃ −E and almost all t > 0. On the other hand since Λω0
FÃj,t is uniformly bounded in j,

we can use the lower bound for
1

2π

∫

X̃

∣∣∣Λω0
FÃj,t

∣∣∣ dvolω0

and Fatou’s Lemma to show:

M ≤
∫

X̃

lim
j→∞

sup
∣∣∣Λω0FÃj,t

∣∣∣ dvolω0 .

It follows that limj→∞ sup
∣∣Λω0FÃj,t

∣∣2 =M2 almost everywhere. By Fatou’s lemma we therefore have:

HYM(µ) ≤ lim
j→∞

infHYMω0(Ãj,t) ≤ lim
j→∞

supHYMω0(Ãj,t)

= lim
j→∞

sup

∫

X̃

∣∣∣Λω0
FÃj,t

∣∣∣ dvolω0
≤
∫

X̃

lim
j→∞

sup
∣∣∣Λω0

FÃj,t

∣∣∣ dvolω0

= 2πM2 = HYM(µ).

�

Lemma 7.6. For almost all t0 > 0,
∥∥∥Ãj,t − Ãj,t0

∥∥∥
L2(X̃,ω0)

→ 0, uniformly for almost all t ≥ t0.

Proof. As before let εi → 0 be a sequence such that Ãεij,t → Ãj,t and Ã
εi
j,t0
→ Ãj,t0 in C0

loc. Then we again
have:

∥∥∥Ãεij,t − Ãεij,t0
∥∥∥
L2

Minkowski
≤

∫ t

t0

∥∥∥∥∥
∂Ãεij,s
∂s

∥∥∥∥∥
L2

≤
√
t

(∫ t

t0

∥∥∥d∗Aj,sFÃεij,s
∥∥∥
2

L2

) 1
2

=
√
t

(∫ t

t0

−1

2

d

ds

∥∥∥FÃεij,s
∥∥∥
2

L2
ds

) 1
2

=

√
t

2

(
YM(Ãεij,t0)− YM(Ãεij,t)

) 1
2

=

√
t

2

(
HYM(Ãεij,t0)−HYM(Ãεij,t)

) 1
2

≤
√
t

2

(
HYM(Ãεij,t0)−HYM(µεi)

) 1
2

.

Using Proposition 6.9 and Proposition 4.12 this yields:
∥∥∥Ãj,t − Ãj,t0

∥∥∥
L2(X̃,ω0)

≤
√
t

2

(
HYM(Ãj,t0)−HYM(µ)

) 1
2

The result follows by applying the previous lemma. �

Lemma 7.7. There is a YM connection Ã∞,∗ on a reflexive sheaf Ẽ∞,∗ → X̃ − E with the following

property: for almost all t > 0 there is a subsequence and a closed subset Z̃tan ⊂ X̃ −E, possibly depending on

t and the choice of subsequence, such that Ãj,t → Ã∞,∗ in Lp1,loc (p > n) away from Sing(Ẽ∞,∗) ∪ Z̃tan ∪E.

Proof. As in Proposition 6.6 and using Proposition 6.9 we have:

HYM(Ãj,t1)−HYM(Ãj,t2) ≥ 2

∫ t2

t1

∥∥∥d∗Aj,sFÃj,s
∥∥∥
L2(ω0)

ds

for almost all t2 ≥ t1 > 0. It follows from Lemma 7.5 and Fatou’s lemma that:

lim inf
j→∞

∥∥∥d∗Aj,sFÃj,s
∥∥∥
2

L2(ω0)
= 0,

for almost all t. Choose a sequence tk of such t with tk → 0. For each k there is a subsequence jm(tk), a YM

connection Ã∞,tk , and a set of Hausdorff codimension at least 4 which we denote by Z̃tkan, depending on the

choice of subsequence such that Ãjm,tk → Ã∞,tk in Lp1,loc away from Z̃tkan. By a diagonalisation argument,

assume without loss of generality that the original sequence satisfies Ãj,tk → Ã∞,tk for all tk. On the other

hand, by Lemma 7.6, Ã∞,tk = Ã∞,∗ is independent of tk. For any t, there is a k with t ≥ tk, so Lemma

7.6 also implies Ãj,t → Ã∞,∗ in L2
loc for almost all t > 0. Hence, any Uhlenbeck limit of Ãj,t coincides with

Ã∞,∗. �
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The proof of Proposition 7.4 will be complete if we can show Ã∞ = Ã∞,∗. First we will need:

Lemma 7.8. ΛωεFÃj,t is bounded on compact subsets of X̃−E, uniformly for all j, all t ≥ 0, and all ε > 0.

Proof. By our assumptions it follows that ΛωεFÃj are uniformly bounded in L1 and that they are uniformly

locally bounded. The result now follows just as in the proof of Lemma 6.2(2). �

Corollary 7.9.
∣∣∣Ãj,t − Ã∞

∣∣∣ is bounded in any Lp1,loc away from Z̃an∪E, uniformly for all j and all 0 ≤ t ≤ t0.
In particular, the singular set Z̃tan is independent of t and is equal to Z̃an.

Proof. Since Ãj → Ã∞ in Lp1,loc, it suffices to prove that
∣∣∣Ãj,t − Ãj

∣∣∣ is bounded in C1
loc. Choose a sequence

εi such that Ãεij,t → Ãj,t in C
1
loc. It suffices to prove

∣∣∣Ãεij,t − Ãj
∣∣∣ is bounded in C1

loc uniformly in εi. Write

Ãεij,t = g̃εij,t(Ãj) and k̃εij,t = (g̃εij,t)
∗g̃εij,t. It suffices to show that (k̃εij,t)

−1 is bounded and k̃εij,t has bounded

derivatives, locally with respect to a trivialisation of Ẽ. The local boundedness of k̃εij,t and (k̃εij,t)
−1 follows

from the flow equations and the preceding lemma. Namely, it is easy to see that the determinant and
trace of these endomorphisms are bounded, and this easily implies the boundedness of the endomorphisms
themselves. The boundedness of the derivatives follows from [BS] Proposition 1 applied to the equation

△(∂̄A0 ,ωε)
k̃ε,t −

√
−1Λωε

(
∂̄A0 k̃ε,t

)
k̃−1
ε,t

(
∂A0 k̃ε,t

)
= k̃ε,tfε,t.

�

Now we can complete the proof of Proposition 7.4. Fix a smooth test form φ ∈ Ω1(X̃, u(E)), compactly

supported away from Z̃an ∪E. Choose 0 < δ ≤ 1. For ε > 0 we have:
∫

X̃

〈
φ, Ãεj,δ −Aj

〉
dvolωε =

∫ δ

0

dt

∫

X̃

〈
φ,
∂Ãεj,t
∂t

〉
dvolωε

(flow equations) = −
∫ δ

0

dt

∫

X̃

〈
φ,
(
dÃεj,t

)∗
FÃεj,t

〉
dvolωε

(Kähler identities) =
√
−1
∫ δ

0

dt

∫

X̃

〈
φ,
(
∂Ãεj,t

− ∂̄Ãεj,t
)
ΛωεFÃεj,t

〉
dvolωε

=
√
−1
∫ δ

0

dt

∫

X̃

〈(
∂Ãεj,t

− ∂̄Ãεj,t
)∗
φ,ΛωεFÃεj,t

〉
dvolωε .

By Lemma 7.8, ΛωεFÃεj,t
is bounded on the support of φ for all j, all ε > 0, and all 0 ≤ t ≤ δ, and the bound

may be taken to be independent of δ. Therefore:
∫

X̃

〈
φ, Ãεj,δ −Aj

〉
dvolωε ≤ C

∫ δ

0

dt
∥∥∥
(
∂Ãεj,t

− ∂̄Ãεj,t
)∗
φ
∥∥∥
L1(ω0)

.

Applying this inequality to a sequence, Ãεij,t → Ãj,t in C
1
loc,

∣∣∣∣
∫

X̃

〈
φ, Ãj,δ −Aj

〉
dvolω0

∣∣∣∣ ≤ C
∫ δ

0

dt
∥∥∥
(
∂Ãj,t − ∂̄Ãj,t

)∗
φ
∥∥∥
L1(ω0)

.

By the Corollary 7.9,
∣∣∣Ãj,t − Ã∞

∣∣∣ is locally bounded in any Lp independently of j. Then
∣∣∣∣
∫

X̃

〈
φ, Ãj,δ −Aj

〉
dvolω0

∣∣∣∣ ≤ Cδ

where C depends only on the L1 norm of ∂Ã∞
φ, ∂̄Ã∞

φ and the bounds on ΛωεFÃεj,t
and

∣∣∣Ãj,t − Ã∞

∣∣∣. In

particular C is independent of j. Taking limits as j →∞ we have:∣∣∣∣
∫

X̃

〈
φ, Ã∞,δ −A∞

〉
dvolω0

∣∣∣∣ ≤ Cδ

and since δ and was arbitrary and Ã∞,δ = Ã∞,∗ for almost all small δ, this implies Ã∞,∗ = A∞. This
concludes the proof of Proposition 7.4 and hence the proof of the main theorem.
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