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Abstract. For a matrix group G, consider a Galois representation

ϕ : Gal(Q/Q) −→ G(Ẑ)

which extends the cyclotomic character. For a broad class of matrix groups G, we prove a theorem charac-
terizing when such a representation has image which is “as large as possible” inside a fixed open subgroup

G ⊆ G(Ẑ). As applications, we obtain such a characterization for the Galois representation on the tor-

sion of a simple principally polarized k-dimensional abelian variety A defined over Q (where G = GSp2k)
and also for the Galois representation on the torsion of a product of k elliptic curves over Q (where

G = {(g1, . . . , gk) ∈ GLk
2 : det g1 = · · · = det gk}). Our results are motivated by open image theorems for

classes of abelian varieties initiated by Serre in the 1960s.

1. Introduction

Let K be a number field and let E be an elliptic curve defined over K. Consider the action of GK :=
Gal(K/K) on the n-torsion E[n] of E, which gives rise to a Galois representation

ϕEK ,n : GK −→ Aut(E[n]) ' GL2(Z/nZ).

Taking the inverse limit over all n ≥ 1 (ordered by divisibility), one may consider the action of GK on

Etors :=

∞⋃
n=1

E[n],

obtaining a continuous homomorphism

ϕEK
: GK −→ Aut(Etors) ' GL2(Ẑ),

where GL2(Ẑ) = lim
←

GL2(Z/nZ). As discussed in [14], it is of interest to understand the image of ϕEK
. For

example, if K = Q, the image ϕE(GQ)1 plays a crucial role in a conjecture of Lang and Trotter which counts
primes with fixed Frobenius trace. (This conjecture is still open, although average versions (see [5] and [4])
have been obtained.)

Serre [18] proved that, when E has no complex multiplication, the image of ϕEK
is open in GL2(Ẑ) (i.e.

has finite index in GL2(Ẑ)). He also noted that ϕEK
can never be surjective when K = Q, because of the

following “cyclotomic obstruction.”
Let us introduce the notation

K(E[n]) := K
kerϕEK,n

= K(the x and y-coordinates of all P ∈ E[n]),

K(Etors) := K
kerϕEK = K(the x and y-coordinates of all P ∈ Etors).

Serre noticed that if K = Q, then for some positive integer d = dE ≥ 1 we have

Q(
√

∆E) ⊆ Q(E[2]) ∩Q(µd)

⊆ Q(E[2]) ∩Q(E[d]),

where ∆E denotes the discriminant of any Weierstrass model of E and Q(µd) denotes the d-th cyclotomic

field. By Galois theory, this forces ϕE(GQ) ( GL2(Ẑ). More precisely, it implies that

(1) ϕE(GQ) ⊆ GL2(Ẑ)χ=ε :=
{
g ∈ GL2(Ẑ) : χ(g) = ε(g)

}
,

1When K = Q, we will denote the Galois representation on Etors (resp. on E[n]) simply by ϕE (resp. by ϕE,n).
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where the “signature”

(2) ε : GL2(Ẑ) −→ GL2(Z/2Z) −→ GL2(Z/2Z)/[GL2(Z/2Z),GL2(Z/2Z)] ' {±1}

is the unique non-trivial character of GL2(Z/2Z) pre-composed with reduction modulo 2 and

χ : GL2(Ẑ) −→ Ẑ× −→ {±1}

is defined by χ(g) =

(
∆E

det g

)
, with

(
∆E

·

)
the Kronecker symbol, i.e. the unique character which satisfies

Frobp(
√

∆E) =

(
∆E

Frobp

)√
∆E for each prime p not dividing d.

Serre also gave examples of elliptic curves E over Q for which “ϕE has image as large as possible modulo
this obstruction,” i.e. for which

(3) ϕE(GQ) = GL2(Ẑ)χ=ε.

Following Lang and Trotter, we call an elliptic curve E over Q a Serre curve if (3) holds. One has

(4) E is a Serre curve ⇐⇒ [GL2(Ẑ) : ϕE(GQ)] = 2.

It has been shown (see [10], [3]) that “almost all” elliptic curves E over Q are Serre curves (see also [15],
which, building on [6], gives an asymptotic formula for the number of Serre curves of bounded height).

In the present paper, we consider the following generalization of the above. Fix once and for all a level
m ≥ 1 and a subgroup G(m) ⊆ GL2(Z/mZ), and let

(5) G = π−1(G(m)) ⊆ GL2(Ẑ)

be the entire pre-image of G(m) under the canonical projection. Suppose that we have found an elliptic
curve E over Q for which the associated Galois representation maps into G:

(6) ϕE : GQ −→ G.

Our goal is to describe the analogue of (1) in this context, thus making precise the notion that “ϕE has image
as large as possible, given that it lands in G” and allowing us to define the relative concept of a G-Serre
curve; this is Definition 2.9 below. We will then prove a theorem (see Theorem 2.6) which characterizes
G-Serre curves in terms of explicit criteria at finite level.

There is a modular curve XG(m) whose non-cuspidal Q-rational points correspond to j-invariants of elliptic

curves E over Q for which (6) holds (up to GL2(Ẑ)-conjugation). When the genus of XG(m) is zero and
XG(m)(Q) 6= ∅, one may fix a morphism

f : A1 −→ XG(m),

and count the rational points t0 ∈ Q for which f(t0) corresponds to a G-Serre curve. One may use the
same techniques as in [3] to prove that “almost all elliptic curves in a one-parameter family on XG(m) are
G-Serre curves” (see Theorem 2.11). As another application, in [11] we use these results to prove that, when
ordered by height, almost all k-tuples of elliptic curves over Q have division fields with composita “as large
as possible.”

Finally, we remark that the techniques used in the current paper are exclusively group-theoretical. Conse-
quently, our results are applicable in a wider context than we have stated here; see Theorem 2.18 in Section
2.1. For instance, in Corollary 2.20, we apply Theorem 2.18 to the Galois representation on the torsion of a
simple principally polarized k-dimensional abelian variety.

2. Statement of results

To motivate our definitions, we begin by re-examining (1) in more detail. Let E be an elliptic curve
over Q without complex multiplication and let ∆E denote the discriminant of any Weierstrass model of E.
Recall that, thanks to the Weil pairing (see [20]), for any d ≥ 1 the d-th cyclotomic field Q(µd) is contained
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in Q(E[d]). Furthermore, choosing a Z/dZ-basis of E[d] (and thus an imbedding ι : Gal(Q(E[d])/Q) →
GL2(Z/dZ)), the following diagram is commutative:

(7)

Gal(Q(E[d])/Q)
res−−−−→ Gal(Q(µd)/Q)yι y

GL2(Z/dZ)
det−−−−→ (Z/dZ)×,

where the unlabeled vertical arrow is the usual (canonical) isomorphism. Since

[GL2(Z/2Z),GL2(Z/2Z)] = (ker ε (mod 2)) ( SL2(Z/2Z),

we see (assuming ϕE,2(GQ) = GL2(Z/2Z)) that

Q = Q(µ2) = Q(E[2])SL2(Z/2Z) ( Q(E[2])[GL2(Z/2Z),GL2(Z/2Z)] = Q(
√

∆E).

Since Q(
√

∆E) is an abelian extension of Q, it is contained in some Q(µd), by the Kronecker-Weber Theorem.
This containment, together with (7), implies (1).

This may be re-cast as follows. We will denote by

Qcyc :=
⋃
d≥1

Q(µd)

the cyclotomic closure of Q and by Qab the maximal abelian extension of Q. By the Kronecker-Weber
theorem, one has Qcyc = Qab. Let us denote the Galois representation ϕE simply by ϕ. The commutator
subgroup2 [ϕ(GQ), ϕ(GQ)] satisfies

(8) [ϕ(GQ), ϕ(GQ)] ⊆ ϕ(GQ) ∩ SL2(Ẑ).

Furthermore, by Galois theory (and since Qcyc ⊆ Q(Etors)) we have

Qcyc = Qab = Q(Etors)
[ϕ(GQ),ϕ(GQ)] ⊇ Q(Etors)

ϕ(GQ)∩SL2(Ẑ) = Qcyc,

which implies that we must have equality in (8):

[ϕ(GQ), ϕ(GQ)] = ϕ(GQ) ∩ SL2(Ẑ).

This motivates the following definitions.

Definition 2.1. A subgroup H ⊆ GL2(Ẑ) is called commutator-thick if

[H,H] = H ∩ SL2(Ẑ).

Definition 2.2. A subgroup H ⊆ GL2(Ẑ) is called determinant-surjective if det(H) = Ẑ×.

Remark 2.3. The above discussion shows that ϕE(GQ) ⊆ GL2(Ẑ) is always a commutator-thick, determinant-
surjective subgroup.

As in the previous section, assume now that G ⊆ GL2(Ẑ) is a fixed subgroup of finite index, and that
ϕE(GQ) ⊆ G. The following definition captures the notion that ϕE(GQ) is as large as possible, given that
it’s a subset of G.

Definition 2.4. We call a commutator-thick subgroup H ⊆ G a G-maximal commutator-thick sub-
group of G if [H,H] = [G,G].

Remark 2.5. Suppose that H ⊆ G is determinant-surjective and commutator-thick. Noting the exact
sequence

(9) 1 −→ H ∩ SL2(Ẑ) −→ H −→ Ẑ× −→ 1,

and that the kernel H ∩ SL2(Ẑ) = [H,H] ⊆ [G,G], it follows that, if H is a G-maximal commutator-thick
subgroup of G in the sense of Definition 2.4, then H is also maximal (with respect to subset inclusion)

2For a profinite group H, we are defining the commutator subgroup [H,H] to be the closure of the subgroup generated by
its set of commutators {xyx−1y−1 : x, y ∈ H}.
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among the determinant-surjective commutator-thick subgroups of G. Furthermore, it follows from (9) and
the corresponding sequence with G replacing H that

H ∩ SL2(Ẑ) = [G,G] ⇐⇒ [G : H] =
[
G ∩ SL2(Ẑ) : [G,G]

]
.

Thus, Definition 2.4 is equivalent to H having minimal index in G among the determinant-surjective
commutator-thick subgroups of G.

Our main result gives the following theorem, which explicitly characterizes G-maximal commutator-thick
subgroups of G. Recall the set-up: m ≥ 1 is any positive integer, G(m) ⊆ GL2(Z/mZ) is an arbitrary

subgroup, and G := π−1(G(m)) ⊆ GL2(Ẑ) is the full pre-image of G(m) under the natural projection.
Define the positive integer m0 by

(10) m0 := lcm

23 · 33 · 53,
∏

` prime
`|m

`2ord`(m)+1

 .

Theorem 2.6. With m ≥ 1 and G ⊆ GL2(Ẑ) as in (5), let m0 be defined by (10). Let H ⊆ G be any
subgroup. Then [H,H] = [G,G] if and only if

(11) [H (modn), H (modn)] = [G (modn), G (modn)] (∀n ∈ {m0} ∪ {` prime : ` - m0}) .
In particular, if H is commutator-thick, then H is a G-maximal commutator-thick subgroup if and only if
(11) holds.

We remark that, since for any prime ` ≥ 5, [SL2(Z/`Z),SL2(Z/`Z)] = SL2(Z/`Z) (this follows because
PSL2(Z/`Z) is simple for ` ≥ 5), Theorem 2.6 is equivalent to the following theorem.

Theorem 2.7. With m ≥ 1 and G ⊆ GL2(Ẑ) as in (5), let m0 be defined by (10). Let H ⊆ G be any
subgroup. Then [H,H] = [G,G] if and only if the following two conditions hold.

(1) For each prime ` not dividing m0, one has SL2(Z/`Z) ⊆ H (mod `).
(2) One has [H (modm0), H (modm0)] = [G (modm0), G (modm0)].

In particular, if H is commutator-thick, then H is a G-maximal commutator-thick subgroup if and only if
conditions (1) and (2) above hold.

In applications, it is often useful to have the level m0 given explicitly in terms of m, which is part of the
motivation for our theorem.

Remark 2.8. If each prime ` which divides m satisfies ` ≡/ ± 1 (mod 5), then Theorems 2.6 and 2.7 hold
with

(12) m0 = lcm

23 · 33,
∏

` prime
`|m

`2ord`(m)+1

 .

Returning to our original example of an elliptic curve, we make the following definition.

Definition 2.9. Let G ⊆ GL2(Ẑ) be an open subgroup. An elliptic curve E over Q which satisfies ϕE(GQ) ⊆
G is called a G-Serre curve if ϕE(GQ) is a G-maximal commutator-thick subgroup. If the group G is
understood, one may refer to a G-Serre curve simply as a relative Serre curve.

As an immediate corollary of Theorem 2.6, we will give a characterization of G-Serre curves. For any
positive integer n ≥ 1 denote by G(n) the reduction of G modulo n, viewed as a subgroup of GL2(Z/nZ),
and define the following set of subgroups of G(n):

MG(n) := {H ⊆ G(n) : [H,H] ( [G(n), G(n)]}.
Note that, for any prime ` not dividing m0,

MG(`) = {H ⊆ GL2(Z/`Z) : SL2(Z/`Z) * H}.
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Also, let X(n) denote the complete modular curve of level n, which parametrizes elliptic curves together
with chosen Z/nZ-bases of E[n]. Let H be a subgroup of GL2(Z/nZ) satisfying −I ∈ H and for which the
determinant map

det : H −→ (Z/nZ)×

is surjective, and consider the quotient curve XH := X(n)/H together with the j-invariant

j : XH −→ P1.

Any x ∈ P1(Q) is in the image of j if and only if there exists an elliptic curve E over Q with j-invariant x
for which ϕE,n(GQ) is contained in a subgroup conjugate to H in GL2(Z/nZ).

We define the following set of modular curves:

XG :=

 ⋃
` prime
`-m0

{XH : H ∈MG(`)}

 ∪ {XH : H ∈MG(m0)}.

Now suppose we choose the group

G = π−1(G(m)) ⊆ GL2(Ẑ)

as above so that the corresponding modular curve XG(m) has genus zero and satisfies XG(m)(Q) 6= ∅, and
suppose that

E : y2 = x3 +A(t)x+B(t) (A(t), B(t) ∈ Q(t))

is an elliptic curve over Q(t) satisfying

(13) ϕE,Q(t)(GQ(t)) = G.

(Note in particular that E then defines a morphism P1 −→ XG(m).) For a real parameter T ≥ 0, define the
sets

FE(T ) :={t0 ∈ Q : H(t0) ≤ T, Et0/Q is an elliptic curve},
EE,non-G-Serre(T ) :={t0 ∈ FE(T ) : Et0 is not a G-Serre curve},

EE,XH
(T ) :={t0 ∈ FE(T ) : jE(t0) ∈ Q is the image under j of a point in XH(Q)non-cusp.},

where Et0 denotes the specialization of E at t0, H(t0) denotes the height of t0 (i.e. if we write t0 = a/b in
lowest terms, H(a/b) := max{|a|, |b|}), and j : XH −→ P1 denotes the j-map associated to XH . We have
the following corollary of Theorem 2.6.

Corollary 2.10. Let m ≥ 1 and G ⊆ GL2(Ẑ) be as in (5), and let E/Q(t) be an elliptic curve satisfying
(13). Then, for any T ≥ 0,

EE,non-G-Serre(T ) =
⋃

XH∈XG

EE,XH
(T ).

Corollary 2.10 allows us to deduce the following generalization of [3, Main Theorem].

Theorem 2.11. Let ε > 0 be arbitrary. One has

|EE,non-G-Serre(T )| = OE,ε(T
1+ε).

Since |FE(T )| � T 2, Theorem 2.11 implies that “almost all specializations of E are G-Serre curves.” The

main theorem of [3] gives Theorem 2.11 when G = GL2(Ẑ), and also gives much better bounds in some cases.
The proof of Theorem 2.11 proceeds along the same lines (with Corollary 2.10 replacing [3, Corollary 19]),
and also gives better bounds in the appropriate cases. For the sake of brevity, Theorem 2.11 states only the
weakest form of what one can deduce from Corollary 2.10, and (since its proof is exactly the proof of [3,
Main Theorem], mutatis mutandis) we will not include it in the present paper.
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2.1. The general case. The definitions and theorems we have described apply more generally to the fol-
lowing situation. Let r ≥ 1 be a positive integer and let G ⊆ GLr be any matrix group, i.e. G is a subgroup
scheme of GLr. Assume further that there is a homomorphism δ : G −→ GL1 for which G(Ẑ) −→ GL1(Ẑ) is
surjective, and let S := ker δ denote its kernel, which is also a matrix group. We have an exact sequence

1 −−−−→ S(Ẑ) −−−−→ G(Ẑ)
δ−−−−→ Ẑ× −−−−→ 1.

Note that (since they are algebraic groups) the Chinese remainder theorem holds for G and for S:

(14) G(Ẑ) '
∏

` prime

G(Z`), S(Ẑ) '
∏

` prime

S(Z`).

We will be considering the reductions of G(Ẑ) and S(Ẑ) modulo positive integers, and so we make the
definitions

(15) G(m) := G(Ẑ)(modm), S(m) := S(Ẑ)(modm).

It follows from (14) that, for any positive integer m, one has

G(m) '
∏
`n`‖m

G(`n`), S(m) '
∏
`n`‖m

S(`n`).

The subsets g`n ⊆Mr×r(Z`) and s`n ⊆Mr×r(Z`) defined by the exact sequences

(16) 1 −−−−→ I + `n g`n −−−−→ G(Z`) −−−−→ G(`n) −−−−→ 1

and

(17) 1 −−−−→ I + `n s`n −−−−→ S(Z`) −−−−→ S(`n) −−−−→ 1

will play an important role for us, and in particular, we will consider their reductions modulo `. We define
g`n(`), s`n(`) ⊆ Mr×r(Z/`Z) to be the reductions modulo ` of g`n and s`n respectively, so that there is an
exact sequence

1 −−−−→ I + `n s`n(`) −−−−→ S(`n+1) −−−−→ S(`n) −−−−→ 1.

It follows from the proof of [17, Lemma 3, IV-23] that we have an increasing sequence of Z/`Z-vector spaces

s`(`) ⊆ s`2(`) ⊆ · · · ⊆ s`n(`) ⊆ . . . ⊆Mr×r(Z/`Z) (` odd)

s4(2) ⊆ s8(2) ⊆ · · · ⊆ s2n(2) ⊆ . . . ⊆Mr×r(Z/2Z) (` = 2),

which must stabilize. We will assume that this sequence stabilizes immediately, i.e. we will assume that for
any prime `,

s`(`) = s`2(`) = · · · = s`n(`) = · · · ⊆Mr×r(Z/`Z).

Fix now a positive integer m ≥ 1 and an arbitrary subgroup G(m) ⊆ G(m), and let

(18) G := {g ∈ G(Ẑ) : g (modm) ∈ G(m)}

denote the corresponding finite index subgroup of G(Ẑ). Furthermore, suppose that

ϕ : GQ −→ G

is any Galois representation for which δ◦ϕ : GQ −→ Ẑ× agrees with the cyclotomic character. In this context,
Definition 2.1 may be phrased as follows.

Definition 2.12. A subgroup H ⊆ G(Ẑ) is called commutator-thick if

[H,H] = H ∩ S(Ẑ).

Definition 2.4 remains the same, and we replace Definition 2.2 with

Definition 2.13. A subgroup H ⊆ G(Ẑ) is called δ-surjective if δ(H) = Ẑ×.

We remark that (for the same reason as in the GL2 case) the image ϕ(GQ) must be commutator-thick
and δ-surjective.

Following [17, IV-25], we make the following definition.
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Definition 2.14. Given a topological group G and a finite simple group Σ we say that Σ occurs in G if
and only if there are closed subgroups G1 ⊆ G and G2 ⊆ G1 with G2 a normal subgroup of G1 and such
that G1/G2 ' Σ.

Let us now make the following assumptions about the groups G and S. Recall that g`n(`) := g`n (mod `)
and s`n(`) := s`n (mod `), with g`n , s`n ⊆Mr×r(Z`) as in (16) and (17).

A0 For any prime ` and any n ≥ 1, one has s`n(`) = s`(`).
A1 There is a finite set L of primes such that, for any prime ` /∈ L there is a finite simple non-abelian

group PS(`) and a finite set of surjective homomorphisms

$i : S(`)� PS(`)

satisfying the conditions

(19) ∀ normal subgroup N E S(`), either N ⊆ ker$i for some i, or N = S(`)

and

(20) ∀ prime `′, `′ 6= ` =⇒ PS(`) does not occur in S(`′).

We will assume for convenience that {2, 3} ⊆ L.
A2 For any prime `, one has

〈CD −DC : C,D ∈ g`(`)〉 = s`(`).

A3 For every prime `, s`(`) may be generated as a Z/`Z-vector space by a set of matrices {ui} which
satisfy

∀i, u2
i = 0

∀i, I + ui ∈ S(`).

Remark 2.15. The discussion in [17, IV-25] shows that assumption A1 implies that in fact, for any prime
` /∈ L and any positive integer n,

(21) (∀`′ | n, PS(`) does not occur in S(`′)) =⇒ PS(`) does not occur in
∏
`′|n

S(Z`′).

Remark 2.16. Taken together with the proof of [17, Lemma 3, IV-23], assumption A0 implies that, for
each prime `, there is an exponent e` ≤ 3 such that, whenever K ⊆ S(Z`) is a closed subgroup and
K (mod `e`) = S(`e`), one has K = S(Z`). If ` is an odd prime, one may take e` ≤ 2. Assumption A3
additionally implies that e2, e3 ≤ 2, and e` = 1 for any prime ` ≥ 5.

Remark 2.17. For all but finitely many prime powers `n, we have that G(Z/`nZ) (resp. S(Z/`nZ)) consists
entirely of smooth points. For such primes, it follows that G(Z/`nZ) = G(`n) (resp. S(Z/`nZ) = S(`n)),
and also that assumption A0 holds. In particular, assumption A0 need only be verified for a finite set B of
“bad” primes ` for which G(Z/`Z) (resp. S(Z/`Z)) contains singular points. For these primes, it is possible
that S(`n) ( S(Z/`nZ) for some n ≥ 1. In particular, the sequence

1 −−−−→ S(m) −−−−→ G(m)
δ−−−−→ (Z/mZ)× −−−−→ 1

may fail to be exact when m is divisible by a prime ` ∈ B.

We now define

(22) m0 := lcm

∏
`∈L

`3 ,
∏

` prime
`|m

`2ord`(m)+1

 .

We will prove the following general theorem, of which Theorem 2.6 is a special case.

Theorem 2.18. Let G ⊆ GLr be any matrix group satisfying assumptions A0, A1, A2, and A3 above, and
for any m ∈ N, define G(m) by (15). Let G(m) ⊆ G(m) be any subgroup and G ⊆ G(Ẑ) the corresponding
finite index subgroup defined by (18). Define m0 by (22). Let H ⊆ G be any subgroup. Then [H,H] = [G,G]
if and only if the following two conditions hold.
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(1) For each prime ` not dividing m0, one has [H (mod `), H (mod `)] = [G (mod `), G (mod `)].
(2) One has [H (modm0), H (modm0)] = [G (modm0), G (modm0)].

In particular, if H is commutator-thick, then H is a G-maximal commutator-thick subgroup if and only if
conditions (1) and (2) above hold.

Remark 2.19. Remark 2.16 together with assumptions A1 and A3 imply that for any ` /∈ L and any n ≥ 1,
one has

[S(`n),S(`n)] = S(`n)

and also

(23) N E S(`n) =⇒

{
N (mod `) ⊆ ker$i for some i, or

N = S(`n).

In particular, condition (1) in Theorem 2.18 is equivalent to

For each prime ` not dividing m0, one has S(`) ⊆ H (mod `).

In Section 6, we apply Theorem 2.18 to the Galois representation ϕA on the torsion of a k-dimensional
simple principally polarized abelian variety A over Q, which maps into G(Ẑ) for G = GSp2k, the group of
degree k symplectic similitudes. Fix any subgroup G(m) ⊆ GSp2k(Z/mZ) and let

(24) G = π−1

GSp2k(Ẑ)
(G(m)) ⊆ GSp2k(Ẑ)

be the corresponding finite index subgroup of GSp2k(Ẑ). In this case m0 is given by

(25) m0 = lcm

23 · 33,
∏

` prime
`|m

`2ord`(m)+1

 .

Corollary 2.20. Let A be a simple principally polarized abelian variety over Q of dimension k ≥ 2 and
assume that ϕA(GQ) ⊆ G, where G is as in (24). Define m0 by (25). The image ϕA(GQ) ⊆ G is a G-maximal
commutator-thick subgroup if and only if the following conditions hold.

(1) For each prime ` - m0, one has Sp2k(Z/`Z) ⊆ ϕA(GQ) (mod `).
(2) One has [ϕA(GQ) (modm0), ϕA(GQ) (modm0)] = [G (modm0), G (modm0)].

Finally, we apply our study to the Galois representation ϕ(Ei) on the torsion of a k-tuple (E1, . . . , Ek) of
elliptic curves Ei over Q, in which case the appropriate group G is

G = (GL2)k∆ := {(g1, g2, . . . , gk) ∈ GLk2 : det g1 = det g2 = · · · = det gk}.
Indeed, one has

ϕ(Ei) : GQ −→ (GL2)k∆(Ẑ).

In analogy with (4), we make the following definition.

Definition 2.21. A k-tuple (E1, . . . , Ek) of elliptic curves over Q is a Serre k-tuple if

[(GL2)k∆(Ẑ) : ϕ(Ei)(GQ)] = 2k.

A Serre k-tuple is a k-tuple for which ϕ(Ei)(GQ) is as large as possible. In Section 6, we obtain the
following corollary.

Corollary 2.22. The k-tuple (E1, E2, . . . , Ek) is a Serre k-tuple if and only if the following conditions hold.

(1) For each prime ` ≥ 5, one has SL2(Z/`Z)k ⊆
(
ϕ(Ei)(GQ) (mod `)

)
.

(2) One has [ϕ(Ei)(GQ) (mod 36), ϕ(Ei)(GQ) (mod 36)] = (SL2(Z/36Z) ∩ ker ε)k, where ε is as in (2).

The special case k = 1 gives the following corollary, which improves [10, Lemma 5] to an “if and only-if”
statement.

Corollary 2.23. An elliptic curve E over Q is a Serre curve if and only if the following two conditions
hold.
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(1) For each prime ` ≥ 5, one has SL2(Z/`Z) ⊆ ϕE,`(GQ).
(2) One has [ϕE,36(GQ), ϕE,36(GQ)] = SL2(Z/36Z) ∩ (ker ε (mod 36)), where ε is as in (2).

In [11], Corollary 2.22 is used to prove that, when ordered by height, almost all k-tuples (Ei) are Serre
k-tuples.

Remark 2.24. The fact that ϕE(GQ) must be commutator-thick is a consequence of the Kronecker-Weber
theorem, and so one cannot draw the same conclusion if E is defined over a number field K 6= Q. Indeed, as
shown in [7] (see also [21]), there are number fields K and elliptic curves E over K for which ϕEK

(GK) =

GL2(Ẑ), and (by (34) below) GL2(Ẑ) is not commutator-thick.

3. Notation and preliminaries

Throughout the paper, we will use the following notation. For positive integers n and m, we will write

n | m∞

to mean that, for every prime number p, if p divides n then p divides m. The symbols p and ` will always
denote prime numbers. We use the usual notation

Ẑ := lim
←

Z/mZ

for the inverse limit of the projective system {Z/m1Z → Z/m2Z : m1,m2 ≥ 1, m2 | m1}. The Chinese
remainder theorem gives an isomorphism

Ẑ '
∏
`

Z`,

where Z` denotes the ring of `-adic integers. We will often make implicit use of this isomorphism. For any
fixed positive integer m, we will denote by Zm (respectively by Z(m)) the quotient of Ẑ which corresponds

under this isomorphism to
∏
`|m

Z` (respectively to
∏
`-m

Z`). Given a subgroup H ⊆ GLr(Ẑ), we will denote

by Hm the image of H under the canonical projection GLr(Ẑ)→ GLr(Zm), by H(m) the image of H under

GLr(Ẑ) → GLr(Z(m)), and by H(m) the image of H under GLr(Ẑ) → GLr(Z/mZ). We will overwork the
symbol π, using it to denote any of the following canonical projections:

π : G(Ẑ) −→ G(Zm)

π : G(Ẑ) −→ G(m)

π : G(m1) −→ G(m2) (m2 | m1).

As a consequence of the convention mentioned in Section 2.1, G(m) is always equal to the image modulo m

of G(Ẑ), so that each of these maps is surjective. In some cases we will use πH to denote the restriction of
any of these projections to a subgroup H; hopefully the meaning will be clear from context.

For a pair of elements h and k in any group, we will use the standard notation for the commutator:

[h, k] := hkh−1k−1.

For any positive integer M and any prime ` dividing M , consider the kernel of the reduction modulo M/`
map:

I +
M

`

(
Mr×r(Z/MZ)

`Mr×r(Z/MZ)

)
⊆Mr×r(Z/MZ).

In light of the isomorphism
Mr×r(Z/MZ)

`Mr×r(Z/MZ)
'Mr×r(Z/`Z), we will use the abbreviated notation

I +
M

`
Mr×r(Z/`Z) ⊆Mr×r(Z/MZ),

and refer to I +
M

`
A ∈ Mr×r(Z/MZ) when A ∈ Mr×r(Z/`Z), hoping that this will not cause too much

confusion. In particular, we will use g`(`) and s`(`) in the exact sequences

1 −−−−→ I + `ng`(`) −−−−→ G(`n+1) −−−−→ G(`n) −−−−→ 1
9



and
1 −−−−→ I + `ns`(`) −−−−→ S(`n+1) −−−−→ S(`n) −−−−→ 1.

4. Proof of Theorem 2.18

In this section, we will prove Theorem 2.18. Note that the “only if” part is trivial, so we will focus on the
“if” part. We remark that many of the essential ideas are already present in the proof of the Proposition on
page IV-19 of [17], wherein a slightly weaker hypothesis than that of Theorem 2.18 is used to deduce that

H is an open subgroup of GL2(Ẑ). We begin with some preparatory lemmas.

4.1. Preparatory lemmas. Our first lemma will be used repeatedly throughout the paper.

Lemma 4.1. (Goursat’s Lemma) Let G0 and G1 be groups and G ⊆ G0 ×G1 a subgroup satisfying

πi(G) = Gi (i ∈ {0, 1}),
where πi denotes the canonical projection onto the i-th factor. Let Ni := πi(G ∩ kerπ1−i). Then there is an
isomorphism of groups ψ : G0/N0 → G1/N1 (whose graph is induced by G) for which

G = {(g0, g1) ∈ G0 ×G1 : ψ(g0N0) = g1N1}.

Proof. See [16, Lemma (5.2.1)], which shows that the image of G in G0/N0 × G1/N1 is the graph of an
isomorphism ψ. Thus, G ⊆ {(g0, g1) ∈ G0 × G1 : ψ(g0N0) = g1N1}. Now note that N0 × N1 ⊆ G, from
which the equality follows. �

Remark 4.2. When applying Lemma 4.1 in this paper, we will usually formulate the conclusion equivalently
as “then there exists a group Q and surjective homomorphisms ψ0 : G0 → Q, ψ1 : G1 → Q for which
G = {(g0, g1) ∈ G0 ×G1 : ψ0(g0) = ψ1(g1)}.”

The following corollary may be viewed as a “fibered version” of Lemma 4.1. Suppose now that G0 and
G1 are groups, together with surjective homomorphisms

η0 : G0 −→ R, η1 : G1 −→ R

onto a fixed group R. Let

G0 ×R G1 := {(g0, g1) ∈ G0 ×G1 : η0(g0) = η1(g1)}
denote the fibered product of G0 and G1 over R.

Corollary 4.3. Suppose that G ⊆ G0 ×R G1 is any subgroup satisfying πi(G) = Gi for i ∈ {0, 1}. Then
there is a group Q together with surjective homomorphisms f : Q → R, ψ0 : G0 → Q, and ψ1 : G1 → Q for
which f ◦ ψi = ηi (i ∈ {0, 1}), and

G = {(g0, g1) ∈ G0 ×G1 : ψ0(g0) = ψ1(g1)}.

Proof. We apply Lemma 4.1 and note that there is a well-defined surjective group homomorphism

f : Q ' Gi/Ni → R (i ∈ {0, 1})
giNi 7→ ηi(gi).

The corollary follows. �

4.2. Working in G(Zm0
).

Lemma 4.4. Fix a prime number `, an exponent n ≥ 1, and a pair of matrices C,D ∈ Mr×r(Z`). Then
one has

[I + `nC, I + `nD] = I + `2n(CD −DC) + `3nE,

where E ∈Mr×r(Z`).

Proof. A calculation, using the series representation (I + `nC)−1 = I − `nC + `2nC2 − `3nC3 + . . . verifies
the statement of the lemma. �

Recall that an integer m0 is called square-full if, for each prime `, one has

` | m0 =⇒ `2 | m0.
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Lemma 4.5. Let ` be any prime number and let A ∈Mr×r(Z/`Z). Suppose that m0 is any positive square-
full integer divisible by `2, and in case ` = 2 assume further either that 8 divides m0 or that A2 ≡ 0 (mod 2).
Let H ⊆ GLr(Zm0

) be any subgroup and let M be any multiple of m0 satisfying m0 |M | m∞0 . We then have

I +
m0

`
A ∈ H(m0) =⇒ I +

M

`
A ∈ H(M).

Proof. The proof is by induction on M , the base case M = m0 being trivial. If M > m0, then there is a
prime p dividing M for which m0 |M/p. By induction, we have that

I +
m0

`
A ∈ H(m0) =⇒ I +

M/p

`
A ∈ H (M/p) ,

which implies that

(26) I +
M/p

`
· pA ∈ H(M/p),

since H is a subgroup.
Case: p 6= `. We regard H(M) as a subgroup of the fibered product

(27) H(M) ⊆
{

(h0, h1) ∈ H
(
M

p

)
×H

(
M

`

)
: π0(h0) = π1(h1)

}

via the embedding h 7→ (h (mod M/p), h (mod M/`)). Here, π0 : H

(
M

p

)
→ H

(
M

`p

)
and π1 : H

(
M

`

)
→

H

(
M

`p

)
are the natural projections. By Corollary 4.3, there must be a group Q, a surjective group homo-

morphism f : Q→ H

(
M

`p

)
and surjective group homomorphisms

ψ0 : H

(
M

p

)
−→ Q, ψ1 : H

(
M

`

)
−→ Q

for which f ◦ ψi = πi (i ∈ {0, 1}) and, under (27),

H(M) =

{
(h0, h1) ∈ H

(
M

p

)
×H

(
M

`

)
: ψ0(h0) = ψ1(h1)

}
.

Furthermore, since the degrees of π0 and π1 are relatively prime, we see that Q must be equal to H

(
M

`p

)
,

ψi = πi, and (27) is in fact an equality:

H(M) =

{
(h0, h1) ∈ H

(
M

p

)
×H

(
M

`

)
: π0(h0) = π1(h1)

}
.

By (26) we have that (h0, h1) =

(
I +

M/p

`
· pA, I

)
belongs to the right-hand side above, and this corre-

sponds under h 7→ (h (mod M/p), h (mod M/`)) to h = I + (M/`)A, which therefore belongs to H(M).

Case: p = `. Now we have I +
M

`2
A ∈ H

(
M

`

)
. Let I +

M

`2
A+

M

`
B ∈ H(M) be any lift. In case ` is odd,

note that ` divides M/`2 (since m0 is square-full), and so I +
M

`2
A ≡ I (mod `). It follows that

(
I +

M

`2
A+

M

`
B

)`
≡
(
I +

M

`2
A

)`
(modM)

≡ I +
M

`
A (modM).
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In case ` = 2 and A2 ≡/ 0 (mod 2) note that 8 then divides M/2, so 16 divides (M/4)2, and so we may use
the same reasoning. In case ` = 2 and A2 ≡ 0 (mod 2), one computes(

I +
M

4
A+

M

2
B

)2

≡ I +
M

2
A+MB +

M2

16
A2 +

M2

8
(AB +BA) +

M2

4
B2 (modM)

≡ I +
M

2
A (modM).

This concludes the proof of Lemma 4.5. �

The following key lemma is a corollary of Lemma 4.5.

Lemma 4.6. Assume that A3 holds. Let m0 be any positive square-full integer and H(m0) ⊆ S(m0) any
subgroup satisfying

(28) ∀` | m0, I +
m0

`
s`(`) ⊆ H(m0).

Suppose that K ⊆ S(Zm0) is any closed subgroup for which K(m0) = H(m0). Then we must have

K = π−1
S(Zm0

)(H(m0)).

Remark 4.7. In case A3 does not hold (in particular if s2(2) cannot be generated as a Z/2Z-vector space
by matrices ui simultaneously satisfying u2

i ≡ 0 (mod 2) and I+ui ∈ S(2)), then the same conclusion follows
from the additional hypothesis that 8 divides m0.

Proof. Since K is closed, it suffices to show that K(M) = π−1(H(m0)) ⊆ S(M), for any positive integer
M satisfying m0 | M | m∞0 . This is proved by induction on M , the base case M = m0 being trivial. If
M > m0, then there is a prime ` for which m0 | (M/`). By induction, K(M/`) = π−1(H(m0)) ⊆ S(M/`).
Considering the exact sequence

1 −→ I + (M/`)s`(`) −→ S(M) −→ S(M/`) −→ 1,

we see that K(M) = π−1(H(m0)) if and only if I+(M/`)s`(`) ⊆ K(M). This last containment follows from
(28) and Lemma 4.5. �

Proposition 4.8. Suppose G satisfies assumptions A2 and A3. Let m ≥ 1 be any positive integer and define
m0 by (22). Let G(m) ⊆ G(m) be any subgroup and let Gm0

= π−1
G(Zm0

)(G(m)) be the corresponding finite

index subgroup. Suppose Hm0
⊆ Gm0

is any subgroup which satisfies

(29) [H(m0), H(m0)] = [G(m0), G(m0)].

Then
[Hm0

, Hm0
] = [Gm0

, Gm0
] = π−1

S(Zm0 ) ([G(m0), G(m0)]) .

Proof. By Lemma 4.6 (and noting (29)), the proposition will follow from the containment

∀` | m0, I +
m0

`
s`(`) ⊆ [G(m0), G(m0)].

Define m′0 by m0 = m′0 · `ord`(m0), so that ` - m′0, and view G(m0) ⊆ G(m′0)×G(`ord`(m0)) via the Chinese
remainder theorem. The above condition then becomes

(30) ∀` | m0, {I} ×
(
I + `ord`(m0)−1s`(`)

)
⊆ [G(m0), G(m0)] ⊆ G(m′0)×G(`ord`(m0)).

To prove this, fix a prime ` dividing m0. If ` divides m, then since Gm0 = π−1
G(Zm0 )(G(m)), we see that for

any C ∈ g(Z`), one has

(I, I + `ord`(m)C) ∈ Gm0 ⊆ Gm′
0
×G`.

Likewise, pick (I, I + `ord`(m)D) ∈ Gm0
for another arbitrary D ∈ g(Z`). Applying Lemma 4.4 to the

commutator [(I, I + `ord`(m)C), (I, I + `ord`(m)D)], and using assumption A2, we see that (30) is satisfied. If
` does not divide m, then similarly one finds that

(I, I + `C), (I, I + `D) ∈ Gm0
⊆ Gm′

0
×G`,

for any C,D ∈ g(Z`), implying (30) again by assumption A2. This completes the proof of the proposition. �
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4.3. Working in G(Z(m0)).

Lemma 4.9. Assume that A1 and A3 hold. Let m0 be any integer divisible by
∏
`∈L

` (where L is as in

assumption A1) and suppose that K ⊆ S(Z(m0)) is any closed subgroup satisfying

∀` - m0, K(`) = S(`).

Then K = S(Z(m0)).

Proof. Since K is closed, it suffices to show that, for each integer M with gcd(m0,M) = 1, K(M) = S(M).
We prove this by induction on the number of prime divisors ` of M . The base case where M = `n is a prime
power follows immediately from Remark 2.16. For the induction step, suppose that M is divisible by more
than one prime and write M = `nM ′, where ` -M ′ and M ′ > 1. By induction, we have that

K(M ′) = S(M ′) and K(`n) = S(`n).

By Lemma 4.1, there is a common quotient group Q, together with surjective homomorphisms

ψ0 : K(M ′) −→ Q, ψ1 : K(`n) −→ Q,

such that under the isomorphism of the Chinese remainder theorem, we have

K(M) = {(h0, h1) ∈ K(M ′)×K(`n) : ψ0(h0) = ψ1(h1)}.

Now we apply the observation (23) (with N = kerψ1), concluding that either Q has PS(`) as a quotient, or
else Q = 1. But since M ′ is not divisible by `, (21) implies that Q cannot have PS(`) as a quotient, and so
Q = 1 and K(M) = S(M), finishing the proof of Lemma 4.9. �

Applying Lemma 4.9 with K a commutator subgroup, and using Remark 2.16, we conclude the following
corollary.

Corollary 4.10. Assume that A1 and A3 hold. Suppose that m0 is any positive integer divisible by
∏
`∈L

`

and H(m0) ⊆ G(Z(m0)) is any subgroup satisfying

∀` - m0, S(`) ⊆ H(`).

Then, [H(m0), H(m0)] = [G(Z(m0)),G(Z(m0))] = S(Z(m0)).

4.4. Finishing the proof of Theorem 2.18. We will now finish the proof of Theorem 2.18. If H ⊆ G is
any subgroup satisfying

∀n ∈ {m0} ∪ {primes ` : ` - m0}, [H(n), H(n)] = [G(n), G(n)],

then by Proposition 4.8, Corollary 4.10 and Lemma 4.1, we see that there is a group Q and surjective
homomorphisms ψ0 : [Gm0

, Gm0
]→ Q and ψ1 : S(Z(m0))→ Q for which (regarding H ⊆ Hm0

×H(m0))

[H,H] = {(h0, h1) ∈ [Gm0 , Gm0 ]× S(Z(m0)) : ψ0(h0) = ψ1(h1)}.

We now only need to show that Q = {1}. Consider the subgroup kerψ1 ⊆ S(Z(m0)), and its projection
kerψ1(`) ⊆ S(`). By assumption A1, either S(`)/ kerψ1(`) has PS(`) as a quotient, or kerψ1(`) = S(`). If
S(`)/ kerψ1(`) had PS(`) as a quotient, then so would Q, and hence so would [Gm0

, Gm0
], contradicting (21).

Thus we see that, for each prime ` - m0, kerψ1(`) = S(`). By Lemma 4.9, it follows that kerψ1 = S(Z(m0)),
and so Q = 1 and [H,H] = [G,G], finishing the proof of Theorem 2.18.

5. Examples and remarks

Having proved Theorem 2.18, we will give a few examples which illustrate some of the subtlety of this
study. The first example highlights the fact that, even though there may exist a determinant-surjective,
commutator-thick subgroup H of a given finite index subgroup G ⊆ GL2(Ẑ), there may nevertheless be no
elliptic curve E over Q for which ϕE(GQ) ⊆ G.
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Example 5.1. Let ` be a prime,

G(`) :=

{(
a b
0 d

)
: b ∈ Z/`Z; a, d ∈ (Z/`Z)×

}
,

and G = π−1(G(`)) ⊆ GL2(Ẑ). Even though there do exist commutator-thick, determinant-surjective
subgroups H ⊆ G, Mazur has shown (see [13]) that, for ` > 163, there is no elliptic curve E over Q for which

ϕE(GQ) ⊆ G. More generally, when the index of G in GL2(Ẑ) is large enough, one expects that no subgroup
of G arises as ϕE(GQ) for E over Q (see [18, § 4.3] and [1]).

The next example shows that there do exist finite index subgroupsG ⊆ GL2(Ẑ) which have no commutator-
thick, determinant-surjective subgroups.

Example 5.2. Let ` be an odd prime and fix any element ε ∈ (Z/`Z)× which is not a square, i.e. for which(ε
`

)
= −1. Let Cns(`) denote the non-split Cartan subgroup

Cns(`) :=

{(
x εy
y x

)}
⊆ GL2(Z/`Z).

The group G := π−1(Cns(`)) ⊆ GL2(Ẑ) has no subgroup H which is simultaneously commutator-thick and
determinant-surjective.

Proof. If there were a commutator-thick, determinant-surjective subgroup H ⊆ π−1(Cns(`)) then there would

necessarily be a group homomorphism ψ : Ẑ× −→ Cns(`) for which the diagram

(31)

Ẑ× Ẑ×

ψ

y red

y
Cns(`)

det−−−−→ (Z/`Z)×

commutes. We will show that such a homomorphism ψ cannot exist. Suppose for the sake of contradiction
that such a ψ does exist. The group Cns(`) is a cyclic group of order `2 − 1, from which it follows that ψ
factors as

Ẑ× red−−−−→ (Z/`m′Z)×
ψ−−−−→ ψ((Z/`m′Z)×) ⊆ Cns(`),

where ` does not divide m′. Let g be a generator of Cns(`) and consider the image under ψ of (Z/`Z)××{1} ⊆
(Z/`Z)× × (Z/m′Z)×. By order considerations, we must have

ψ((Z/`Z)× × {1}) ⊆ 〈g`+1〉,
from which it follows by (31) (since g`+1 is a scalar matrix) that the canonical projection (Z/`m′Z)× →
(Z/`Z)× maps into [(Z/`Z)×]2, a contradiction. Thus, there is no ψ making (31) commute, proving the
assertion. �

Remark 5.3. By Remark 2.3, the previous example gives another proof (See also [19, Lemme 17, p. 197])
that

@E/Q for which ϕE,`(GQ) ⊆ Cns(`).

Our third example illustrates, among other things, that the Z/`Z-vector space V ⊆ M2×2(Z/`Z) defined
by the exact sequence

1→ I +mV → H(`m)→ H(m)→ 1

may shrink when we replace m by a multiple of m (thus, care must be taken in Lemma 4.6). Let the
split-Cartan subgroup Cs(Z/`nZ) and the Borel subgroup B(Z/`nZ) be defined as usual by

Cs(Z/`nZ) :=

{(
x 0
0 z

)}
⊆
{(

x y
0 z

)}
=: B(Z/`nZ) ⊆ GL2(Z/`nZ).

Let χ
(1)
`n , χ

(2)
`n : B(Z/`nZ) −→ (Z/`nZ)× be the characters defined by

χ
(1)
`n

((
x y
0 z

))
:= x, χ

(2)
`n

((
x y
0 z

))
:= z,
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and let us use the same symbols to denote their corresponding restrictions to Cs(Z/`nZ). Note that, if
π−1(Cs(Z/`Z)) ⊆ GL2(Z/`2Z) denotes the full pre-image of Cs(Z/`Z), then there is a surjective group
homomorphism

µ : π−1(Cs(Z/`Z)) −→ Cs(Z/`2Z)

µ

((
x+ 3a 3b

3c z + 3d

))
:=

(
x+ 3a 0

0 x+ 3d

)
.

Finally, we use L` : (Z/`Z)× −→ (Z/3Z)× to denote the (unique) surjective homomorphism which sends a
generator of (Z/`Z)× to −1.

Example 5.4. Suppose that G ⊆ GL2(Ẑ) is a subgroup with

G(3 · 7 · 13) =
{

(g3, g7, g13) ∈ Cs(Z/3Z)×B(Z/7 · 13Z) : det(g3) = L7(χ
(1)
7 (g7)), χ

(1)
3 (g3) = L13(χ

(1)
13 (g13))

}
.

It is possible that G(9 · 7 · 13) ⊆ GL2(Z/9 · 7 · 13) is smaller than the full pre-image π−1(G(3 · 7 · 13)) ⊆
GL2(Z/9 · 7 · 13Z). For example, one could have

G(9·7·13) =
{

(g9, g7, g13) ∈ π−1(Cs(Z/3Z))×B(Z/7 · 13Z)) : det(g9) = θ7(χ
(1)
7 (g7)), χ

(1)
9 (µ(g9)) = θ13(χ

(1)
13 (g13))

}
,

where θ` : (Z/`Z)× −→ (Z/9Z)× denotes any surjective homomorphism.

Suppose that G = π−1(G(9 ·7 ·13)) ⊆ GL2(Ẑ), where G(9 ·7 ·13) is as above. To see that π(G(9 ·7 ·13)) =

G(3 · 7 · 13), note that θ`(χ
(1)
` (g`)) (mod 3) = L`(χ(1)

` (g`)) and χ
(1)
9 (µ(g9)) (mod 3) = χ

(1)
3 (g9 (mod 3)). Also

note that the exact sequence

1→ I + 3M2×2(Z/3Z)→ G(9)→ G(3)→ 1

has a larger kernel than

1→ I + 3 · 7
{(

a b
c −a

)
(mod 3)

}
→ G(9 · 7)→ G(3 · 7)→ 1,

whose kernel is still larger than

1→ I + 3 · 7 · 13

{(
0 b
c 0

)
(mod 3)

}
→ G(9 · 7 · 13)→ G(3 · 7 · 13)→ 1.

Remark 5.5. The torsion conductor mE of an elliptic curve E over Q is defined in [9] to be the smallest
positive integer m ≥ 1 for which

ϕE(GQ) = π−1(ϕE,m(GQ)).

Example 5.4 indicates that the determination of mE can be quite delicate.

6. The special cases G = GSp2k and G = (GL2)k∆

For any positive integer k ≥ 1, our study may be applied to the group G = GSp2k of degree k symplectic
similitudes. This group arises when one considers the action of Galois on the torsion of a simple principally
polarized abelian variety of dimension k. For any commutative ring R, the group GSp2k(R) of R-valued
points is

GSp2k(R) = {g ∈ GL2k(R) : ∃c = cg ∈ R× with gtΩg = cΩ},
where Ω is the 2k × 2k matrix given in block form by

Ω :=

(
0 Ik
−Ik 0

)
.

Note that GSp2 = GL2, and the k = 1 case coincides with that of an elliptic curve; this case will be treated
below when considering G = (GL2)k∆. Therefore, for most of our consideration of G = GSp2k, we will assume
that k ≥ 2.

It is well-known that the function

δ : GSp2k(R) −→ R×, g 7→ cg
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is a group homomorphism, whose kernel defines the symplectic group Sp2k, which is also a subgroup of SL2k:

Sp2k(R) = {g ∈ SL2k(R) : gtΩg = Ω}.

Furthermore, if

ϕA : GQ −→ GSp2k(Ẑ)

is the Galois representation defined by letting GQ operate on the torsion of A, then (by virtue of the Weil

pairing) δ ◦ ϕA : GQ −→ Ẑ× agrees with the cyclotomic character.
We will now verify assumptions A0, A1, A2 and A3 for G = GSp2k.

Lemma 6.1. If k ≥ 2, then assumption A1 holds for G = GSp2k, with PS(`) = PSp2k(Z/`Z) :=
Sp2k(Z/`Z)/{±I}, L = {2, 3} and a single map

$ : Sp2k(Z/`Z) −→ PSp2k(Z/`Z)

given by the natural projection.

Proof. In [8, Hauptsatz 9.22] one may find the proof that PSp2k(Z/`Z) is simple in the stated cases. Fix
any normal subgroup N E Sp2k(Z/`Z). Considering the exact sequence

1 −→ {±I} −→ Sp2k(Z/`Z) −→ PSp2k(Z/`Z) −→ 1,

one sees that if N * kerω, it follows that N = Sp2k(Z/`Z) since the above sequence doesn’t split. Finally,
it follows by considering Sylow subgroups that PSp2k(Z/`Z) does not occur in Sp2k(Z/`′Z) for ` ≥ 5 and
`′ 6= `, completing the proof of Lemma 6.1. �

Lemma 6.2. Assumptions A0, A2 and A3 hold for the group G = GSp2k.

Proof. Note that, for any n ≥ 1, one has

s`n(`) = {A ∈M2k×2k(Z/`Z) : AtΩ + ΩA = 0}.

In particular, assumption A0 holds. For indices i and j with 1 ≤ i, j ≤ k, let Ei,j denote the k × k block
matrix with a 1 in the i-th row and j-th column and with all other entries equal to zero, and set

Si,j :=

{
Ei,j + Ej,i if i 6= j

Ei,i otherwise.

One verifies that

U :=

{(
Ei,j 0

0 −Ej,i

)}
1≤i,j≤k
i 6=j

t
{(

0 Si,j
0 0

)}
1≤i,j≤k
i≤j

t
{(

0 0
Si,j 0

)}
1≤i,j≤k
i≤j

t
{(

Ei,i Ei,i
−Ei,i −Ei,i

)}
1≤i≤k

is a basis of s`(`) as a Z/`Z-vector space. Furthermore, one verifies that for each ui ∈ U , u2
i ≡ 0 (mod `) and

also that I + ui ∈ S(`). Thus, assumption A3 holds for G = GSp2k. Now note that

s`(`) = {A ∈M2k×2k(Z/`Z) : AtΩ + ΩA = 0}
= Ω · Sym2k(Z/`Z),

where

Sym2k(Z/`Z) := {A ∈M2k×2k(Z/`Z) : At = A}
is the set of symmetric matrices. Consider the Lie bracket

ΩSym2k(Z/`Z)× ΩSym2k(Z/`Z)→ ΩSym2k(Z/`Z)

[ΩX,ΩY ] = ΩX · ΩY − ΩY · ΩX.

Since Ω−1Sym2k(Z/`Z)Ω = Sym2k(Z/`Z), we may replace X with ΩXΩ, so that the Lie bracket becomes

[Ω · ΩXΩ,ΩY ] = XY + ΩY XΩ.

Writing X andy Y in block form as

X =

(
A B
Bt D

)
and Y =

(
E F
F t J

)
,
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one computes that

XY + ΩY XΩ =

(
AE − JD +BF t − F tB BJ + JBt +AF + F tA
BtE + EB +DF t + FD −EA+DJ +BtF − FBt

)
.

Taking A = D = E = J = 0 and F = Ei,i, B = Ei,j (with i 6= j), we conclude that(
−Ei,j 0

0 Ej,i

)
∈ 〈CD −DC : C,D ∈ g`(`)〉.

Similarly, taking A = Ei,i, E = I and B = D = F = J = 0 gives us that(
Ei,i 0
0 −Ei,i

)
∈ 〈CD −DC : C,D ∈ g`(`)〉.

Taking A = Ei,i, F = Ei,j (i 6= j) and B = D = E = J = 0 and similarly B = Ei,j , E = Ei,i and
A = D = F = J = 0 gives(

0 Ei,j + Ej,i
0 0

)
,

(
0 0

Ei,j + Ej,i 0

)
∈ 〈CD −DC : C,D ∈ g`(`)〉,

while taking A = Ei,i, F = Ei,i and B = D = E = J = 0 and also B = Ei,i, E = Ei,i and A = D = F =
J = 0 gives (

0 2Ei,i
0 0

)
,

(
0 0

2Ei,i 0

)
∈ 〈CD −DC : C,D ∈ g`(`)〉.

This verifies A3 when ` is an odd prime. For ` = 2, one uses the fact that

g`(`) = {A ∈M2k×2k(Z/`Z) : AtΩ + ΩA ∈ Z/`Z · Ω},

so that in particular, (
0 0
0 I

)
∈ g`(`).

Thus, (
0 Ei,i
0 0

)(
0 0
0 I

)
−
(

0 0
0 I

)(
0 Ei,i
0 0

)
=

(
0 Ei,i
0 0

)
,

and a similar calculation verifies that(
0 Ei,i
0 0

)
,

(
0 0
Ei,i 0

)
∈ 〈CD −DC : C,D ∈ g`(`)〉,

finishing the proof of Lemma 6.2. �

As mentioned in Section 2, we may apply Theorem 2.18 to the Galois representation ϕA on the torsion
of a k-dimensional simple abelian variety A over Q. Fix any subgroup G(m) ⊆ GSp2k(Z/mZ) and let

G = π−1

GSp2k(Ẑ)
(G(m)) ⊆ GSp2k(Ẑ)

be the corresponding finite index subgroup of GSp2k(Ẑ). In this case m0 is given by

m0 = lcm

23 · 33,
∏
`|m

`2ord`(m)+1

 .

The following corollary restates Corollary 2.20 from Section 2, which we may now deduce from Theorem
2.18.

Corollary 6.3. Let A be a simple principally polarized abelian variety over Q of dimension k ≥ 2, and
assume that ϕA(GQ) ⊆ G. The image ϕA(GQ) ⊆ G is a G-maximal commutator-thick subgroup if and only
if the following conditions hold.

(1) For each prime ` - m0, one has Sp2k(Z/`Z) ⊆ ϕA(GQ) (mod `).
(2) One has [ϕA(GQ) (modm0), ϕA(GQ) (modm0)] = [G(m0), G(m0)].
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If a k-dimensional abelian variety is a product of elliptic curves, the representation ϕA maps into a
different group, which we now consider. Define the group (GL2)k∆ by specifying its R-valued points, for any
commutative ring R as

(GL2)k∆(R) := {(g1, g2, . . . , gk) ∈ GL2(R)k : det(g1) = det(g2) = · · · = det(gk)}.

Note that the diagonal imbedding

(32) (g1, g2, . . . , gk) 7→


g1 0 . . . 0
0 g2 . . . 0
...

...
. . .

...
0 0 . . . gk


realizes (GL2)k∆ as an algebraic subgroup of GL2k. Taking δ((g1, g2, . . . , gk)) := det gi to be the common
determinant of any of the entries, one has

S = (SL2)k.

We will presently verify the assumptions A0 through A3.

Lemma 6.4. Assumption A1 holds for G = (GL2)k∆, with L = {2, 3, 5}, PS(`) = PSL2(Z/`Z), and

$i : SL2(Z/`Z)k −→ PSL2(Z/`Z) (i = 1, 2, . . . , k)

given by projection onto the i-th factor followed by the projection SL2(Z/`Z)→ PSL2(Z/`Z).

Proof. The well-known fact that PSL2(Z/`Z) is simple for ` ≥ 5 may be found in [8, Hauptsatz 6.13].
To prove that any normal subgroup N E SL2(Z/`Z)k must satisfy either N ⊆ ker$i for some i or

N = SL2(Z/`Z)k, we proceed by induction on k ≥ 1. The k = 1 case follows immediately from the fact that
the exact sequence

1 −→ {±I} −→ SL2(Z/`Z) −→ PSL2(Z/`Z) −→ 1

does not split. By induction we assume that the statement of the lemma holds for some fixed k and now let
N ESL2(Z/`Z)k+1 be any normal subgroup satisfying N * ker$i for each i. Let π1 : SLk+1

2 −→ SLk2 be the

projection onto the first k factors and π2 : SLk+1
2 −→ SL2 the projection onto the last factor. By induction,

we have that π1(N) = SL2(Z/`Z)k and π2(N) = SL2(Z/`Z). By Lemma 4.1, we have that

N = SL2(Z/`Z)k ×Q SL2(Z/`Z)

for some group Q. Either Q has PSL2(Z/`Z) as a quotient, or Q = {1}. Conjugation by {I}k × SL2(Z/`Z),
one sees that the first possibility contradicts N E SL2(Z/`Z)k being a normal subgroup. Thus Q = {1}, and
the induction step is complete.

Finally, we verify that PSL2(Z/`Z) does not occur in SL2(Z/`′Z)k for ` ≥ 7 and `′ 6= `. Define the
notation

Occ(G) := { finite simple non-abelian groups Σ occurring in G }.
Then for any exact sequence of groups

1 −→ G1 −→ G −→ G2 −→ 1,

one has

Occ(G) = Occ(G1) ∪Occ(G2).

This observation reduces to the case k = 1, which in turn follows from the fact that

Occ(SL2(Z/`Z)) = Occ(PSL2(Z/`Z)) ⊆ {PSL2(Z/`Z), A5},

where A5 is the alternating group on 5 elements (see [8, Hauptsatz 8.27]). This finishes the proof of Lemma
6.4. �

Lemma 6.5. Assumptions A0, A2 and A3 hold for the group G = (GL2)k∆.
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Proof. To verify assumption A2, first note that the imbedding (32) realizes g`(`) as

g`(`) =



A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ak

 ; Ai ∈M2×2(Z/`Z), trA1 = trA2 = · · · = trAk

 .

If ` is odd, we observe that 
A1 0 . . . 0
0 xI . . . 0
...

...
. . .

...
0 0 . . . xI

 ∈ g`(`),

where 2x = trA1, and similarly with the other main diagonal entries. If ` = 2 then we observe that
A 0 . . . 0
0 I . . . 0
...

...
. . .

...
0 0 . . . I

 ,


B 0 . . . 0
0 B . . . 0
...

...
. . .

...
0 0 . . . B

 ∈ g2(Z/2Z)

(where trA = 0 and trB = 1), and similarly for the other main diagonal entries. These observations reduce
us to the case k = 1, which is a special case of Lemma 6.2. This verifies assumption A2. For assumptions
A0 and A3, one takes the special case k = 1 of the basis U occurring in the proof of Lemma 6.2, applied to
each main diagonal entry. This verifies assumptions A0 and A3, finishing the proof of Lemma 6.5. �

As mentioned above, the group G = (GL2)k∆ just considered arises when one considers the Galois repre-
sentation

ϕ(Ei) : GQ −→ (GL2)k∆(Ẑ)

attached to a k-tuple (E1, E2, . . . , Ek) of elliptic curves Ei over Q.
Theorem 2.18 gives a criterion for detecting Serre k-tuples (see Definition 2.21) that involves the level

m0 = 23 · 33 · 53 = 27, 000. With a bit more work, using particular information about GL2, one can improve
this to m0 = 22 · 32 = 36, as follows. First, we observe that Remark 2.8 holds. Indeed, choosing L minimally
so that A1 is satisfied, we may decompose L as a disjoint union L = L0 t L1, where

L0 :=

` ∈ L :
∀ finite simple non-abelian group PS(`) and ∀ set {$i}

of surjective homomorphisms $i : S(`)� PS(`),
∃N E S(`), with ∀i N * ker$i and N 6= S(`)

 ∪ {2, 3}
and L1 := L − L0. Thus, L0 is the subset of primes in L for which condition (19) fails (together with the
primes 2 and 3), while L1 is the subset of primes in L for which condition (20) fails.

For the group G = (GL2)k∆, one has L0 = {2, 3} and L1 = {5}. We now show that, replacing m0 with
(12), the proof of Theorem 2.18 still holds in this case. Indeed, the proof of Proposition 4.8 remains valid
for the new value of m0. Furthermore, replacing L = {2, 3, 5} with {2, 3} in Lemma 4.9, and choosing ` in
the decomposition M = `nM ′ occurring in its proof so that ` 6= 5, one sees that Lemma 4.9 also remains
valid. Finally, for any prime ` 6= 5 with ` ≡/ ± 1 (mod 5), since 5 doesn’t divide |SL2(Z/`Z)|, the group
PSL2(Z/5Z) ' A5 does not occur in SL2(Z/`Z). Thus, under the hypothesis that no prime ` dividing m
satisfies ` ≡ ±1 (mod 5), it follows from (21) that PSL2(Z/5Z) does not occur in [Gm0 , Gm0 ], and so the
proof occurring in Section 4.4 also remains valid. Thus, Theorem 2.18 holds with m0 given by (12) when
G = (GL2)k∆. In particular, this justifies Remark 2.8.

In case m = 1, we may further reduce m0 from 23 · 33 = 216 to 22 · 32 = 36. For this, we will need the
following technical lemma. Suppose G1 and G2 are groups together with surjective group homomorphisms

$1 : G1 −→ A

$2 : G2 −→ A

onto a common abelian group A. Let G = G1 ×A G2 denote the fibered product

G = {(g1, g2) ∈ G1 ×G2 : $1(g1) = $2(g2)}.
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Lemma 6.6. With notation as above, suppose that there exists a subset B2 ⊆ G2 satisfying $2(B2) = A
and all of whose elements commute with one another. Then one has

[G,G] = [G1, G1]× [G2, G2].

Proof. See [12, Lemma 1, p. 174]. �

We will now use Lemmas 6.6 and 4.6 to deduce Corollary 2.22 from Section 2:

Corollary 6.7. The k-tuple (E1, E2, . . . , Ek) is a Serre k-tuple if and only if the following conditions hold.

(1) For each prime ` ≥ 5, one has SL2(Z/`Z)k ⊆
(
ϕ(Ei)(GQ) (mod `)

)
.

(2) One has [ϕ(Ei)(GQ) (mod 36), ϕ(Ei)(GQ) (mod 36)] = (SL2(Z/36Z) ∩ ker ε)k, where ε is as in (2).

Proof. In this case one has G = (GL2)k∆ and m = 1. Put m0 = 36. As in the argument of Section 4.4,
Lemma 4.6 and Corollary 4.10 reduce the proof to showing that

(33)
[
(GL2(Z/36Z))k∆, (GL2(Z/36Z))k∆

]
= (SL2(Z/36Z) ∩ ker ε)k.

We observe that for any level n, the image of the embedding

(Z/nZ)× ↪→ GL2(Z/nZ), x 7→
(
x 0
0 1

)
defines a subgroup B2 ⊆ GL2(Z/nZ) which realizes the conditions of Lemma 6.6 for G1 = (GL2(Z/nZ))k−1

∆

and G2 = GL2(Z/nZ). By induction, we are reduced to verifying (33) in the case k = 1. This case follows
from [12, Theorem 2.1, p. 166] and the discussion on pages 181–183 of [12]. (In fact, these observations
imply that

(34) [GL2(Ẑ),GL2(Ẑ)] = SL2(Ẑ) ∩ ker ε,

an index 2 subgroup of SL2(Ẑ).) This finishes the proof of Corollary 2.22. �
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