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THE REALIZABILITY OF OPERATIONS ON HOMOTOPY

GROUPS CONCENTRATED IN TWO DEGREES

HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Abstract. The homotopy groups of a space are endowed with homo-
topy operations which define the Π-algebra of the space. An Eilenberg-
MacLane space is the realization of a Π-algebra concentrated in one
degree. In this paper, we provide necessary and sufficient conditions for
the realizability of a Π-algebra concentrated in two degrees. We then
specialize to the stable case, and list infinite families of such Π-algebras
that are not realizable.

1. Realization problem for homotopy operations

The homotopy groups π∗X of a pointed space X are not merely a list
of groups, but carry the additional structure of an action of the (primary)
homotopy operations, which are natural transformations

πn1X × πn2X × . . .× πnj
X → πnX.

These include for example Whitehead products πpX × πqX → πp+q−1X, as
well as precomposition operations α∗ : πmX → πnX induced by any map
α : Sn → Sm, defined by α∗(x) = x ◦ α. By the Yoneda lemma, j-ary
homotopy operations are parametrized by homotopy classes of pointed maps

Sn → Sn1 ∨ Sn2 ∨ . . . ∨ Snj .

This information is encoded in a category as follows.

Definition 1.1. LetTop∗ denote the category of pointed topological spaces.
Let ΠΠΠ denote the full subcategory of the homotopy category HoTop∗ con-
sisting of finite wedges of spheres ∨Sni, ni ≥ 1. Note that the empty wedge
(a point) is allowed.
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A Π-algebra is a product-preserving functor ΠΠΠop → Set, in other words,
a contravariant functor ΠΠΠ → Set which sends wedges to products. Let ΠΠΠAlg

denote the category of Π-algebras, where morphisms are natural transfor-
mations.

The prototypical example is the homotopy Π-algebra [−,X] of a pointed
space X, which is the functor represented by X in the homotopy category.
One can view this data as the graded group π∗X, with πnX = [Sn,X], en-
dowed with the structure of primary homotopy operations. Likewise, given
any Π-algebra A, the group A(Sn) will be denoted An. Taking the homo-
topy groups π∗X defines a functor π∗ : HoTop∗ → ΠΠΠAlg sending X to its
homotopy Π-algebra.

Definition 1.2. A Π-algebra A is called realizable if there is a space X
together with an isomorphism A ≃ π∗X of Π-algebras. Such a space X is
called a realization of A.

Example 1.3. A Π-algebra concentrated in a single degree n is the same
as a group An, which is abelian if n ≥ 2. All such Π-algebras are realiz-
able (uniquely up to weak equivalence), and the Eilenberg-MacLane space
K(An, n) is a realization of this Π-algebra.

In general, one has the following realization problem: Given a Π-
algebra A, is A realizable by a space? Here, one must realize not only
the homotopy groups, but also the prescribed homotopy operations.

Background on the problem. One has the following classic example due
to Quillen.

Example 1.4. Let A be a simply-connected rational Π-algebra, i.e., satisfying
A1 = 0 and An is a rational vector space. Then A is realizable. In fact, the
category of such Π-algebras is equivalent to the category of reduced graded
Lie algebras, and each such Lie algebra is the Samelson product Lie algebra
of a space [24, Theorem I].

Example 1.5. A Π-algebra concentrated in degrees 1 and n consists of a
group A1 and an A1-module An, and can be realized by a generalized
Eilenberg-MacLane space [29]. Moreover, the moduli space of realizations
is described in [20, Theorem 3.4, Corollary 3.5].

Example 1.6. A Π-algebra concentrated in two consecutive degrees n, n+ 1
(with n ≥ 2) consists of two abelian groups An and An+1 together with a
homomorphism Γ1

n(An) → An+1, where the functor Γ1
n is given by

Γ1
n(An) =

{
Γ(An) for n = 2

An ⊗ Z/2 for n ≥ 3

where Γ denotes Whitehead’s quadratic functor. The structure map Γ1
n(An) →

An+1 corresponds to precomposition η∗ : An → An+1 by the Hopf map
η : Sn+1 → Sn. More precisely, η∗ : An → An+1 is a quadratic map when
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n = 2 (resp. a linear map of order 2 when n ≥ 3), and therefore corresponds
by adjunction to a map of abelian groups Γ1

n(An) → An+1.
All such Π-algebras are realizable. This follows from J.H.C. Whitehead’s

homotopy classification of simply connected 4-dimensional CW-complexes
in terms of the certain exact sequence [30]; see also [6, Theorem 3.3 (A)].
Moreover, the moduli space of realizations is described in [20, Theorem 5.1].

Example 1.7. A Π-algebra concentrated in a stable range can be identified
with a module over the stable homotopy ring πS∗ , i.e., the homotopy groups
of the sphere spectrum; see Section 5. Our results provide examples of such
modules that are not realizable (by a space or, equivalently, by a spectrum).

For more background on Π-algebras, see for example [26, §4] [14, §3.1] [9,
§2] [16, §2] [8, §4]. For literature on the realization problem for Π-algebras
and some generalizations, see for example [10] [11] [8] [12].

Main results and organization. In Section 2, we describe Π-algebras
concentrated in two degrees in terms of homotopy groups of spheres (Propo-
sition 2.10). Section 3 is devoted to the metastable case in degrees n and
2n− 1 (Proposition 3.7).

Section 4 explains the main result of this paper, which solves the real-
ization problem for Π-algebras concentrated in two degrees. Theorem 4.2
provides a necessary and sufficient condition for such a Π-algebra to be
realizable, in terms of homology of Eilenberg-MacLane spaces.

Section 5 specializes to the stable case. In Section 6, we provide infinite
families of non-realizable examples, using elements in the image of the J-
homomorphism (Propositions 6.4 and 6.5). Section 7 contains proofs and
technical material that would have otherwise cluttered the exposition.

Notations and conventions. All tensor products will be over Z unless
otherwise stated, so that we write ⊗ := ⊗Z.

A Π-algebra A is called m-truncated if it satisfies Ai = 0 for i > m and
m-connected if it satisfies Ai = 0 for i ≤ m. We will be working with
Π-algebras concentrated in degrees n, n+1, . . . , n+k for integers n ≥ 2 and
k ≥ 0, in other words, (n− 1)-connected (n+ k)-truncated Π-algebras. We
adopt the following notation, which suggests “starting in degree n at the
bottom and going up k degrees”:

• ΠΠΠAlgn is the full subcategory of ΠΠΠAlg consisting of (n−1)-connected
Π-algebras.

• ΠΠΠAlgkn is the full subcategory of ΠΠΠAlg consisting of Π-algebras con-
centrated in degrees n to n+ k.

We use a similar convention for categories of spheres of certain dimensions:

• ΠΠΠn is the full subcategory of ΠΠΠ consisting of wedges of spheres of
dimensions at least n.

• ΠΠΠk
n is the full subcategory of ΠΠΠ consisting of wedges of spheres of

dimensions from n to n+ k.
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We will use analogous notations for the stable picture in Section 7.

2. Homotopy operation functors

In this section, we first recall the machinery of [6, §1] encoding homotopy
operations inductively, one degree at a time. Then, we specialize to Π-
algebras concentrated in two degrees.

Truncated Π-algebras. The Postnikov truncation functor Pn+k−1 : ΠΠΠAlgkn →

ΠΠΠAlgk−1
n admits a left adjoint L. As in [6, Definition 1.5], consider the ho-

motopy operation functor Γkn : ΠΠΠAlgk−1
n → Ab defined as the composite

ΠΠΠAlgk−1
n

Γk
n

%%
L // ΠΠΠAlgkn

πn+k
// Ab

where πn+k : ΠΠΠAlgkn → Ab is evaluation on the sphere Sn+k, which ex-
tracts from a Π-algebra A the abelian group An+k = A(Sn+k). Using these
functors, ΠΠΠAlgkn can be described as an iterated comma category

ΠΠΠAlgkn
∼= ΓknAb

as in [6, Proposition 1.6]. Note that the inductive process starts with
ΠΠΠAlg0

n
∼= Ab (assuming n ≥ 2). Let us recall some terminology and nota-

tion for comma categories [5, Definition 1.1] [6, §1.5].

Definition 2.1. Let C be a category and let Γ: C → A be a functor. Then
we obtain the category ΓA as follows. An object is a triple (X,A, η) where
X is an object of C and η : ΓX → A is a morphism in A. A morphism
(X,A, η) → (Y,B, λ) in ΓA is a pair (f, g) where f : X → Y is a morphism
in C such that the diagram

ΓX
Γf

//

η

��

ΓY

λ
��

A
g

// B

commutes in A. We call ΓA the comma category of Γ. An object (X,A, η)
of ΓA is also denoted by η.

Comma categories are also described in [22, §2.6], where our ΓA is denoted
(Γ ↓ 1A) or (Γ ↓ A). We will use the following facts about comma categories,
whose proofs are straightforward.

Lemma 2.2. Functors F,G : C → D are isomorphic if and only if the
comma categories FD, GD are equivalent as categories over C × D. Here
the projection FD → C ×D sends an object (X,A, η) to (X,A).

Lemma 2.3. Let C,D be additive categories and F : C → D a functor. Then
the comma category FD is additive if and only if F is an additive functor.
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Π-algebras concentrated in two degrees. Let ΠΠΠAlg(n, n + k) be the
full subcategory of ΠΠΠAlg consisting of Π-algebras concentrated in degrees n
and n+ k for some n, k ≥ 1; these are sometimes called 2-stage Π-algebras.
In light of Example 1.5, we will assume n ≥ 2. The category ΠΠΠAlg(n, n+k)
can be described as a comma category as follows.

Proposition 2.4. Let n ≥ 2. There is a unique functor (up to natural

isomorphism) Γ̃kn : Ab → Ab yielding an isomorphism

ΠΠΠAlg(n, n+ k) ∼= Γ̃knAb

of categories over Ab×Ab.

For example, in the case k = 1, the functor Γ̃1
n = Γ1

n is described in
Example 1.6.

Proof. Uniqueness follows from 2.2. For existence, take

Γ̃kn(An) = Γkn(An, 0, . . . , 0)

where (An, 0, . . . , 0) denotes the (unique) object A of ΠΠΠAlgk−1
n with An+1 =

0, . . ., An+k−1 = 0. In other words, Γ̃kn is the restriction of Γkn : ΠΠΠAlgk−1
n →

Ab to the full subcategory Ab ∼= ΠΠΠAlg0
n →֒ ΠΠΠAlgk−1

n . The full subcate-

gory ΠΠΠAlg(n, n + k) of ΠΠΠAlgkn is isomorphic to the comma category of Γkn
restricted to objects of the form (An, 0, . . . , 0), which is precisely the functor

Γ̃kn. �

In particular, the equality Γ̃kn = 0 holds if and only if the projection

ΠΠΠAlg(n, n + k)
∼=
−→ Ab × Ab is an isomorphism of categories, that is, the

Π-algebra structure concentrated in degrees n and n + k is trivial. The
corresponding Π-algebras (An, An+k) are clearly realizable, for example by
a product of Eilenberg-MacLane spaces K(An, n)×K(An+k, n + k).

Remark 2.5. By 2.3 and 2.4, the category ΠΠΠAlg(n, n+ k) is additive if and

only if the functor Γ̃kn is additive. This certainly happens in the stable range,
but not always (e.g. k = 2, n = 3 as in Example 2.6). In fact, we will see
shortly that it happens often; see Proposition 2.10.

Example 2.6. Taking k = 2, the formula for Γ2
n in [6, 1.10] yields

Γ̃2
n(An) =





0 for n = 2

Λ2(A3) for n = 3

0 for n ≥ 4

where Λ2(A) := A⊗A/(a⊗a ∼ 0) denotes the exterior square. Note that the
map Λ2(A3) → A5 encodes the Whitehead product [−,−] : A3 ⊗A3 → A5.

In a Π-algebra concentrated in degrees n and n + k, any operation that
factors through intermediate degrees would automatically vanish. This sug-
gests looking at indecomposable operations, in the following sense.
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Definition 2.7. An element x ∈ πn+k(S
n) is called decomposable if it

admits a factorization

Sn+k
w //

∨
Sn ∨

∨
Sni // Sn

where the dimensions ni satisfy n < ni < n+ k and the composite Sn+k
w
−→∨

Sn ∨
∨
Sni ։

∨
Sn of w with the collapse map onto the first summand is

null.
This means that x is obtained via primary homotopy operations from

elements of lower degree, possibly of degree n, but in a way that elements
of intermediate degree (between n and n + k) are essential. For example,
the Whitehead product [y, ιn] ∈ πi+n−1(S

n) with y ∈ πi(S
n), i > n, is

decomposable. However, the Whitehead product [ιn, ιn] ∈ π2n−1(S
n) is not

considered decomposable, a priori.
Let Qk,n denote the indecomposables of πn+k(S

n), i.e., the quotient of
πn+k(S

n) by the subgroup generated by all decomposable elements.
In the stable range k ≤ n− 2, Qk,n = QSk does not depend on n. Here QS∗

denotes the indecomposables of the graded ring πS∗ (homotopy groups of the
sphere spectrum S0), with respect to the augmentation πS∗ → Z induced by
the Hurewicz map S0 → HZ.

Warning 2.8. The definition of decomposable in [14, §2.2] does include el-
ements obtained via primary operations from elements of degree n. In
particular, the latter definition makes every element x ∈ πn+k(S

n) de-
composable, since it is obtained as a precomposition of the identity class,
x = ιn◦x = x∗(ιn), as noted in [14, §2.2.2]. Definition 2.7 should be thought
of as “decomposable via intermediate degrees”.

Remark 2.9. The subgroup generated by all decomposables is in fact gener-
ated by compositions of the form Sn+k → Sm → Sn (with n < m < n+ k)
and 3-fold iterated Whitehead products of the identity map ιn ∈ πn(S

n)
of even-dimensional spheres. This follows from the Barcus-Barratt formula
and the fact that all 4-fold iterated Whitehead products of the identity class
for spheres vanish [28, Theorem XI.8.8]. See the discussion before [9, Lemma
3.6].

Proposition 2.10. Assuming k 6= n− 1, we have

Γ̃kn(An) = An ⊗Qk,n.

In particular, in the stable range k ≤ n− 2, we have

Γ̃kn(An) = An ⊗QSk .

Proof. See Section 7. �

Corollary 2.11. For all k and n with k 6= n− 1 such that Qk,n = 0 holds,
2-stage Π-algebras concentrated in degrees n and n+k have trivial homotopy
operations and are thus automatically realizable.
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Example 2.12. Every Π-algebra concentrated in degrees 2 and 2+ k is real-
izable. The case k = 1 is settled in Example 1.6. For the case k ≥ 2, note

that the Hopf map η : S3 → S2 induces an isomorphism π2+kS
3 ≃
−→ π2+kS

2.
Hence every element in x ∈ π2+kS

2 is in fact a decomposable element η ◦ x′

for some x′ ∈ πn+kS
3. Thus we have Qk,2 = 0 and the result follows from

2.11.

As noted in Example 1.6, the realization problem is solved in the affirma-
tive in the case k = 1. The same is true for the case k = 2.

Proposition 2.13. Every Π-algebra concentrated in degrees n and n+2 is
realizable.

Proof. In the stable range n ≥ 4, it follows from 2.11 and QS2 = 0, because
of πS2 = Z/2

〈
η2
〉
. Likewise for n = 2, it follows from the fact Q2,2 = 0,

obtained from π4(S
2) = Z/2 〈η ◦ η〉.

The only case where the Π-algebra data is non-trivial is n = 3, with

Γ̃2
3 = Λ2 as noted in Example 2.6. In that case, the Π-algebra A is realizable

if and only if the obstruction O(A) = η2 ◦ E3(η1) described in [6, Theorem
3.3 (B)] vanishes. The map E3(η1) described in [6, §3.2] factors through A4

and is therefore zero in our case (with A4 = 0). �

3. Metastable case

The situation is somewhat more complicated for the critical dimension
k = n− 1, which is in the metastable range. Let us recall some terminology
and basic facts from [3].

Definition 3.1. [3, Definition 2.1] A quadratic module

M =
(
Me

H
−→Mee

P
−→Me

)

consists of a pair of abelian groups Me and Mee together with homomor-
phisms H and P that satisfy PHP = 2P and HPH = 2H.

A morphism f : M → N of quadratic modules consists of a pair of homo-
morphisms f : Me → Ne and f : Mee → Nee which commute with H and P
respectively.

For any quadratic module M , one has the involution

T := HP − 1: Mee →Mee

which satisfies PT = P , TH = H, and TT = 1.

Note that in [3, Definition 2.1], quadratic modules are called quadratic
Z-modules, because more general ground rings besides Z are considered.

Example 3.2. [3, After Remark 9.2] Consider

πm{S
n} =

(
πmS

n H
−→ πmS

2n−1 P
−→ πmS

n
)
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where H is the Hopf invariant and P = [ιn, ιn]∗ is induced by the Whitehead
square. This data πm{S

n} is a quadratic module. In particular, we have

π3{S
2} =

(
π3S

2 H
−→ π3S

3 P
−→ π3S

2
)
=

(
Z

1
−→ Z

2
−→ Z

)

π5{S
3} =

(
π5S

3 H
−→ π5S

5 P
−→ π5S

3
)
=

(
Z/2

0
−→ Z

0
−→ Z/2

)
.

Definition 3.3. [3, Definition 4.1] Given an abelian group A and a quadratic
module M , their quadratic tensor product A⊗qM is the abelian group
generated by symbols

a⊗m, a ∈ A,m ∈Me

[a, b]⊗ n, a, b ∈ A,n ∈Mee

subject to the relations

(a+ b)⊗m = a⊗m+ b⊗m+ [a, b]⊗H(m)

a⊗ (m+m′) = a⊗m+ a⊗m′

[a, a]⊗ n = a⊗ P (n)

[a, b]⊗ n = [b, a]⊗ T (n)

[a, b]⊗ n is linear in each variable a, b, and n.

Example 3.4. [3, Proposition 4.5] Taking the quadratic module

Z
Γ :=

(
Z

1
−→ Z

2
−→ Z

)
≃ π3{S

2},

the quadratic tensor product with any abelian group A is A⊗q
Z
Γ ∼= Γ(A),

Whitehead’s universal quadratic functor Γ: Ab → Ab described in [30] [2,
§2.1].

Note that the usual tensor product with a given abelian group M defines
an additive functor − ⊗ M : Ab → Ab. Similarly, the quadratic tensor
product with a fixed quadratic module M defines a quadratic functor −⊗q

M : Ab → Ab in the following sense.

Definition 3.5. [2, §2] Let F : Ab → Ab be a functor satisfying F (0) = 0.
Recall that F is additive or linear if the natural projection

F (X ⊕ Y ) → F (X)⊕ F (Y )

is an isomorphism.
We say that F is quadratic if the second cross effect

F (X|Y ) := ker (F (X ⊕ Y ) → F (X)⊕ F (Y ))

viewed as a bifunctor is linear in both X and Y . In this case, one has a
natural decomposition

F (X ⊕ Y ) ∼= F (X) ⊕ F (Y )⊕ F (X|Y ).
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Proposition 2.10 said that a 2-stage Π-algebra is described by indecom-
posable homotopy operations, for k 6= n − 1. There is an analogous notion
in the metastable case k = n− 1.

Definition 3.6. For n ≥ 2, the quadratic module of indecomposables

of π2n−1{S
n} is the quotient quadratic module

Qn−1{S
n} :=

(
Qn−1,n

H
−→ π2n−1S

2n−1 P
−→ Qn−1,n

)

using the notation of 2.7. This is well defined sinceH : π2n−1S
n → π2n−1S

2n−1 ∼=
Z vanishes on decomposable elements, namely compositions, since these are
torsion elements.

Proposition 3.7. In the metastable case k = n− 1, the functor Γ̃n−1
n is the

quadratic functor given by

Γ̃n−1
n (An) = An ⊗

q Qn−1{S
n}.

Proof. See Section 7. �

Example 3.8. In the case n = 2 and k = 1, we have

π3{S
2}

=
։ Q1{S

2} ∼=
(
Z

1
−→ Z

2
−→ Z

)
= Z

Γ.

As noted in Example 3.4, the quadratic tensor product with this quadratic
module is

A2 ⊗
q
Z
Γ ∼= Γ(A2)

which recovers the case n = 2 of Example 1.6.

Example 3.9. In the case n = 3 and k = 2, we have

π5{S
3} ∼=

(
Z/2

0
−→ Z

0
−→ Z/2

)
.

where the group π5S
3 ∼= Z/2 is generated by the composite S5 η

−→ S4 η
−→ S3.

Therefore the quadratic module of indecomposables is

Q2{S
3} ∼= (0 → Z → 0) = Z

Λ

using the notation of [3, Lemma 2.11]. By [3, Proposition 4.5], the quadratic
tensor product with this quadratic module is the exterior square functor

A3 ⊗
q
Z
Λ ∼= Λ2(A3)

which recovers the case n = 3 of Example 2.6.



10 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

4. Criterion for realizability

First recall some notions and notation from [6, §1,2]. Let X be an (n−1)-
connected CW-complex, whose homotopy Π-algebra is given inductively by
the abelian group πn := πnX and maps of abelian groups

η1 : Γ
1
n(πn) → πn+1

η2 : Γ
2
n(η1) → πn+2

. . .

ηk : Γ
k
n(η1, η2, . . . , ηk−1) → πn+k

. . .

Note that ηk encodes the (n+ k)-type of π∗X.
Consider Whitehead’s “certain exact sequence” [30]

(1) . . .→ Hj+1X
b
−→ ΓjX

i
−→ πjX

h
−→ HjX

b
−→ Γj−1X → . . .

where h is the Hurewicz map. There is a natural transformation γ making
the diagram

(2) Γkn(η1, η2, . . . , ηk−1)

γX

��

ηk

((◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

◗

Γn+kX
i // πn+kX

commute. In [6, Theorem 2.4], γ is exhibited as the left edge morphism of
a spectral sequence

E2
p,q = (LpΓ

q
n)(η1, η2, . . . , ηq−1) ⇒ Γn+p+qX.

Lemma 4.1. Postnikov truncation X → PnX induces isomorphisms ΓjX
∼=
−→

ΓjPnX for j ≤ n+ 1.

Proof. The truncation map X → PnX can be chosen as a direct limit of
maps X = X0 → X1 → X2 → . . . which are cell attachments, where
Xj → Xj+1 is attaching cells of dimension at least n+ j+2 (in order to kill
πn+j+1). In particular, only cells of dimension at least n + 2 are involved,

so that with this particular cell structure, the skeleta X(n+1) = (PnX)(n+1)

agree.
Since ΓjX can be defined as ΓjX = im

(
πjX

(j−1) → πjX
(j)

)
induced by

skeletal inclusion, the result follows. �

Theorem 4.2 (Criterion for realizability). The 2-stage Π-algebra A corre-
sponding to

ηk : Γ̃
k
n(An) → An+k
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is realizable if and only if the map ηk factors through the map γK(An,n) as
illustrated in the diagram

Γn+kK(An, n)

��
✤

✤

✤

Γ̃kn(An)

γK(An,n)

77♣♣♣♣♣♣♣♣♣♣♣

ηk
// An+k.

Here we have the isomorphism Γn+kK(An, n) ∼= Hn+k+1K(An, n) by the
Whitehead exact sequence (1). The homology of Eilenberg-MacLane spaces
is well known [17] [18] [19] [15].

Proof. (⇒) If A is realizable by a space X, then the natural transformation
γ for X yields a commutative diagram

Γkn(An, 0, . . . , 0) = Γ̃kn(An)

γX

��

ηk

**❯❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯
❯

Γn+kX
i // πn+kX = An+k

as noted in (2). Because X has (n + k − 1)-type Pn+k−1X ∼= K(An, n),
Lemma 4.1 provides a natural isomorphism

Γn+kX ∼= Γn+k(Pn+k−1X) ∼= Γn+kK(An, n)

and therefore the desired factorization.
(⇐) We will use the theorem on the realizability of the Hurewicz mor-

phism [4, Theorem 3.4.7], starting from the (n+ k− 1)-Postnikov section of
a putative realization, which is K(An, n). Note that for k ≥ 2, the map

in+k−1 : Γn+k−1K(An, n) → πn+k−1K(An, n) = 0

in Whitehead’s exact sequence is null, that is, ker in+k−1 = Γn+k−1K(An, n).
In the case k = 1, the argument below will work anyway, using ker in+k−1

instead of Γn+k−1K(An, n).
We are given a factorization ηk = f ◦ γK(An,n), with f : Γn+kK(An, n) →

An+k. Choose an epimorphism b1 : H1 ։ ker f where H1 is a free abelian
group. Now take H0 := coker f ⊕ Γn+k−1K(An, n) with the map An+k →
H0 surjecting onto the first summand and b0 : H0 ։ Γn+k−1K(An, n) the
projection. These maps assemble into the exact sequence

H1
b1−→ Γn+kK(An, n)

f
−→ An+k → H0 ։ Γn+k−1K(An, n) → 0.

By [4, Theorem 3.4.7], there exists a CW-complex X together with a map
p : X → K(An, n) inducing isomorphisms on homotopy groups πi for i ≤
n+ k − 1 and making the diagram

Hn+k+1X

≃

��

// Γn+kX

≃ p∗
��

// πn+kX

≃

��

// Hn+kX

≃

��

// // Γn+k−1X

≃ p∗
��

// 0

H1
b1 // Γn+kK(An, n)

f
// An+k // H0

// // Γn+k−1K(An, n) // 0
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commute, where the top row is part of Whitehead’s exact sequence for X.
By naturality of γ, the diagram

Γ̃kn(An)
γX

//

ηX
k

**
Γn+kX

∼= p∗

��

in+k
// πn+kX

∼=

��
Γ̃kn(An)

γK(An,n)
//

ηk

55Γn+kK(An, n)
in+k

// An+k

commutes, so that X has the prescribed Π-algebra structure up to degree
n+ k. Hence the Postnikov section Pn+kX is a realization of A. �

Corollary 4.3. Fix n ≥ 2 and k ≥ 1. Then an abelian group An has the
property that “every Π-algebra concentrated in degrees n and n + k with
prescribed group An is realizable” if and only if the map

γK(An,n) : Γ̃
k
n(An) → Γn+kK(An, n)

is split injective.

Proof. (⇒) If γK(An,n) is not split injective, then pick An+k := Γ̃kn(An) with
the structure map

ηk := id : Γ̃kn(An) → Γ̃kn(An)

which does not factor through γK(An,n), and thus defines a non-realizable
Π-algebra.

(⇐) If γK(An,n) is split injective, then a factorization

Γn+kK(An, n) ≃ Γ̃kn(An)⊕ C

f

��
✤

✤

✤

Γ̃kn(An)
(

�

γK(An,n)

55❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦❦

ηk
// An+k

can always be found, taking f to be ηk on the summand Γ̃kn(An) and an
arbitrary map on the complementary summand C. �

Remark 4.4. As a particular case of Corollary 4.3, whenever γ is not injec-
tive, one can find a corresponding non-realizable 2-stage Π-algebra. Here is
another way of thinking about this.

Say that a homotopy operation α ∈ πn+kS
n can be detected by a space X

if there is an x ∈ πnX satisfying α∗x 6= 0 ∈ πn+kX. Using 2.10, Theorem 4.2
says that a homotopy operation α ∈ Qk,n can be detected by a 2-stage space
if and only if it satisfies γK(Z,n)(α) 6= 0. Indeed, one has the realizable 2-
stage Π-algebra A with An = Z, An+k = Γn+kK(Z, n), and γK(Z,n) : Qk,n →
Γn+kK(Z, n) as structure map.
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Remark 4.5. In principle, the obstruction to realizability exhibited in 4.2
could be interpreted in terms of an obstruction class in André-Quillen co-
homology of the Π-algebra A [8] [20], or equivalently, in terms of higher
homotopy operations [13].

Relationship to k-invariants. It is a classic fact that connected spaces
are classified up to homotopy by their k-invariants. In particular, a 2-stage
space X with homotopy groups πn := πnX and πn+k := πn+kX (where
n ≥ 2) is classified by its k-invariant

κ ∈ Hn+k+1 (K(πn, n);πn+k) .

Via the natural surjective map

θ : Hn+k+1 (K(πn, n);πn+k) ։ HomZ (Hn+k+1(K(πn, n),Z), πn+k)

this yields a map of abelian groups

Γn+kK(πn, n) ∼= Hn+k+1(K(πn, n),Z)
θ(κ)
−−→ πn+k.

Another point of view on Theorem 4.2, as well as an alternate proof, is that
the Π-algebra π∗X is given by the structure map

Γ̃kn(πn)
γK(πn,n)

//

ηk

55Γn+kK(πn, n)
θ(κ)

// πn+k.

This follows from the theorem on k-invariants in [4, Theorem 2.5.10 (b)] and
diagram (2). Therefore, the realizable 2-stage Π-algebras are precisely those
whose structure map ηk factors through γK(πn,n).

5. Stable case

A Π-algebra concentrated in a stable range n, n+1, . . . , n+k with k ≤ n−2
can be identified with a module over the stable homotopy ring πS∗ , or more
precisely its Postnikov truncation πS∗≤k. Indeed, in such a Π-algebra A, all
Whitehead products vanish for dimension reasons, and all precomposition
operations α∗ : An+i → An+j are induced by maps α : Sn+j → Sn+i that live
in stable homotopy groups πSj−i. The identification is made more precise in
7.4.

Proposition 5.1. A Π-algebra concentrated in a stable range n, n+1, . . . , n+
k is realizable (by a space) if and only if the corresponding πS∗ -module is re-
alizable (by a spectrum).

Proof. (⇒) Let A be a Π-algebra concentrated in said stable range, and
denote also by A the corresponding πS∗ -module. If X is a space realizing A,
then the Postnikov truncation Pn+kΣ

∞X of the suspension spectrum of X
is a spectrum realizing A.

(⇐) Let M be a πS∗ -module concentrated in a stable range, so that the
corresponding Π-algebra is Ω∞M , by 7.4. If Z is a spectrum realizing M ,
then the infinite loop space Ω∞Z is a space realizing Ω∞M , by 7.3. �
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Remark 5.2. A πS∗ -module M is realizable if and only if any of its shifts
ΣjM (for j ∈ Z) is realizable. This follows from the isomorphism π∗(Σ

jZ) ∼=
Σj(π∗Z) of π

S
∗ -modules.

The criterion 4.2 indicates that the map

γK(An,n) : Γ̃
k
n(An) → Γn+kK(An, n) ∼= Hn+k+1K(An, n)

plays a key role for determining realizability. In the stable range k ≤ n− 2,
we have seen in 2.10 that the domain of γK(An,n) is

Γ̃kn(An) = An ⊗QSk

while its codomain is

Hn+k+1K(An, n) ∼= (HZ)k+1(HAn) ∼= (HAn)k+1(HZ)

where HA denotes the Eilenberg-MacLane spectrum of an abelian group A.
The universal coefficient theorem yields a natural exact sequence

0 → An ⊗HZk+1HZ →֒ (HAn)k+1HZ ։ TorZ1 (An,HZkHZ) → 0

which is split (non-naturally).

Lemma 5.3. Let R be a commutative ring, RMod the category of R-
modules, and ι : RModff → RMod the inclusion of the full subcategory
of finitely generated free R-modules.

Let F : RModff → RMod be an additive functor. Then there is a unique
(up to unique natural isomorphism) extension F : RMod → RMod of F
which preserves all (small) colimits. Moreover, F is natural in F . It is given
by F = −⊗R FR. For any functor G : RMod → RMod, there is a natural
transformation ι∗G→ G, which is natural in G.

Proof. The left Kan extension F = Lanι F satisfies all the properties in the
statement. �

Remark 5.4. The functor ι∗G is not the 0th left derived functor L0G of
G, which provides the best approximation of G by a right exact functor,
with comparison map L0G → G. Indeed, there exist additive right exact
functors Ab → Ab which do not preserve infinite direct sums. However,
the comparison maps do fit together as ι∗G→ L0G→ G.

Proposition 5.5. In the stable range k ≤ n− 2, the map

γK(An,n) : An ⊗QSk → (HZ)k+1(HAn)

factors through the summand An ⊗HZk+1HZ, that is, we have

γK(An,n) : An ⊗QSk → An ⊗HZk+1HZ →֒ (HZ)k+1(HAn).
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Proof. First, note that the assignment A 7→ HZk+1HA defines an additive
functor G : Ab → Ab. Indeed, for abelian groups A,B, we have:

G(A⊕B) = HZk+1H(A⊕B)

∼= HZk+1(HA ∨HB)
∼= HZk+1HA⊕HZk+1HB

= G(A) ⊕G(B).

Now γ : F → G is a natural transformation from the functor F = − ⊗ QSk
to G and, by Lemma 5.3, induces a commutative diagram

ι∗F

ǫF
��

ι∗γ
// ι∗G

ǫG
��

F γ
// G.

Because F is of the form F = −⊗FZ, it preserves all colimits, and thus ǫF
is an isomorphism. Moreover we have

ι∗G = −⊗GZ = −⊗HZk+1HZ

and the coaugmentation

(ǫG)A : A⊗HZk+1HZ → HAk+1HZ

is the usual inclusion of the tensor summand. Therefore γ factors through
said inclusion. �

Corollary 5.6. In the stable range k ≤ n− 2, every Π-algebra concentrated
in degrees n and n+ k is realizable if and only if the map

γK(Z,n) : Q
S
k → HZk+1HZ

is split injective. Note that the map does not depend on n, only on the stable
stem k.

Proof. By 4.3, every Π-algebra concentrated in degrees n and n+ k is real-
izable if and only if the maps

γK(An,n) : An ⊗QSk → (HZ)k+1(HAn)

are split injective for every abelian group An. By 5.5, this is equivalent to
the maps

γK(An,n) : An ⊗QSk → An ⊗HZk+1HZ

being split injective. Since applying An ⊗ − (or any functor) to a split
monomorphism yields a split monomorphism, this is equivalent to the single
map

γK(Z,n) : Q
S
k → HZk+1HZ

being split injective. �



16 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

6. Non-realizable examples

As noted in Example 1.6 and Proposition 2.13, all 2-stage Π-algebras with
stem k = 1 or k = 2 are realizable – for any value of n, not only stably. We
will show that the smallest stem where a non-realizable example appears is
k = 3.

Let us recall the first few stable homotopy groups of spheres; see [6, §4].
In degrees ∗ ≤ 6, the stable homotopy ring πS∗ is generated (as an algebra)
by elements η ∈ πS1 , ν ∈ πS3 , and α ∈ πS3 , subject to relations

2η = 0

4ν = η3

ην = 0

2ν2 = 0

3α = 0

α2 = 0.

Here η is the stabilization of the Hopf map S3 → S2 and ν is the 2-primary
part of the stabilization of the Hopf map H : S7 → S4. Integrally, ν can be
thought of as, say, 3H. The element α is the first in the 3-primary alpha
family.

The first few stable homotopy groups are

πSi =





Z i = 0

Z/2 〈η〉 i = 1

Z/2
〈
η2
〉

i = 2

Z/24 ≃ Z/8 〈ν〉 ⊕ Z/3 〈α〉 i = 3

0 i = 4

0 i = 5

Z/2
〈
ν2

〉
i = 6

and their indecomposables are

QSi =





Z i = 0

Z/2 〈η〉 i = 1

0 i = 2

Z/12 ≃ Z/4 〈ν〉 ⊕ Z/3 〈α〉 i = 3

0 i = 4

0 i = 5

0 i = 6.

Proposition 6.1. Let n ≥ 5. The (stable) Π-algebra A concentrated in
degrees n and n + 3 given by An = Z and An+3 = Z/4 with structure map
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η3 : An ⊗QS3 → An+3 = Z/4 given by the projection

An ⊗QS3
∼= QS3 = Z/4 〈ν〉 ⊕ Z/3 〈α〉 ։ Z/4

sending ν to 1 is not realizable.

Proof. According to [18, Theorem 25.1], we have HZ4HZ ≃ Z/6 = Z/2 ⊕
Z/3. Therefore the map γ : QS3 ≃ Z/12 → Z/6 ≃ HZ4HZ sends 2ν to 0,
whereas η3 does not. The result follows from 4.2. �

Theorem 4.2 reduces realizability questions to the algebraic problem of
understanding the map γ, but it can also be used the other way around. In
the following proposition, we start from a realizable 2-stage Π-algebra and
deduce information about the map γ using Theorem 4.2.

Proposition 6.2. The map γ : QS3 → HZ4HZ sends α to a non-zero ele-
ment (therefore of order 3).

Proof. Take n ≥ 5 and consider the localization at 3 of the sphere Sn → Sn(3),

then take Postnikov sections Pn+3S
n → Pn+3S

n
(3) =: X. Because this map

induces 3-localization on homotopy groups (and a map of Π-algebras), the
Π-algebra π∗X consists of two non-zero groups

πnX ∼= Z(3)

πn+3X ∼= Z/3 〈α〉

with structure map

η3 : πnX ⊗QS3
≃
−→ πn+3X

sending α to α, i.e. the identity via the identification

πnX ⊗QS3
∼= Z(3) ⊗ (Z/4 〈ν〉 ⊕ Z/3 〈α〉) = Z/3 〈α〉 .

By 4.2, we deduce that the map

Z(3) ⊗ γ : Z(3) ⊗QS3
∼= Z/3 〈α〉 → Z(3) ⊗HZ4HZ ≃ Z/3

sends α to a non-zero element, and therefore so does γ. �

In fact, the same argument yields a more general statement.

Proposition 6.3. Fix a prime p ≥ 3 and consider the Greek letter element
α1 ∈ QS2(p−1)−1. The map γ : QS2(p−1)−1 → HZ2(p−1)HZ sends α1 to a non-

zero element (therefore of order p).

Proof. Write the stable stem k := |α1| = 2(p− 1)− 1 and take n very large,
namely n ≥ k + 2. Consider the localization at p of the sphere Sn → Sn(p),

then take Postnikov sections Pn+kS
n → Pn+kS

n
(p) =: X.

A key feature of α1 is that it generates πS2p−3⊗Z(p) ≃ Z/p and is the first

element of order a power of p in πS∗ [27, (13.4)]. Thus the p-localization of
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all lower (positive) stems is zero. Therefore the Π-algebra π∗X consists of
two non-zero groups

πnX ∼= Z(p)

πn+kX ∼= (πSk )(p) ≃ Z/p

in which α1 is detected. More precisely, taking 1 ∈ πnX we have α∗
1(1) =

α1 6= 0 in πn+kX. By 4.2 (and Remark 4.4), γ sends α1 to a non-zero
element. �

Infinite families. Proposition 6.1 provides a non-realizable 2-stage Π-algebra
with the lowest possible stem dimension k = 3. Our next goal is to find an
infinite family of such examples, in infinitely many stem dimensions k. For
this we need an infinite family of indecomposables in Q∗. The Greek letter
elements, for example the α and β families, are good candidates.

The next proposition provides non-realizable examples using a different
method: finding elements of homotopy groups of spheres which are indecom-
posable as primary operations, but decomposable as secondary operations.

Proposition 6.4. Fix a prime p ≥ 3 and consider the alpha elements αi ∈
QS2i(p−1)−1 [25, Definition 1.3.10, Theorem 1.3.11]. For every i ≥ 2, the map

γ : QS2i(p−1)−1 → HZ2i(p−1)HZ sends αi to zero.

Proof. For i ≥ 2, there is a Toda bracket [27, (13.4)]

αi ∈ 〈α1, p, αi−1〉

so that αi cannot be detected by a 2-stage space (or spectrum), and by 4.4
we have γ(αi) = 0.

In more detail, write s = |α1| and t = |αi−1| so that |αi| = s + t + 1,
and assume X is a space with homotopy concentrated in degrees n and
n+ s+ t+ 1 (for n large). Let us illustrate the Toda bracket setup:

Sn+s+t
αi−1
−−−→ Sn+s

p
−→ Sn+s

α1−→ Sn.

Pick any x ∈ πnX. We claim that the precomposition α∗
i (x) = xαi is null.

Postcomposing by x defines a map [27, Proposition 1.2 (iv)]

〈α1, p, αi−1〉
x◦−
−−→〈xα1, p, αi−1〉

= 〈0, p, αi−1〉

using the fact xα1 ∈ πn+sX = 0. The indeterminacy of 〈0, p, αi−1〉 is

0[Sn+s+t+1, Sn+s] + [Sn+s+1,X]αi−1

= (πn+s+1X)αi−1

= {0}

again using the assumption on π∗X. Moreover, 0 is clearly a representative
in 〈0, p, αi−1〉 [27, Proposition 1.2 (0)], thus we have equality 〈0, p, αi−1〉 =
{0}. Therefore xαi ∈ 〈0, p, αi−1〉 is null, as claimed. �
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Proposition 6.5. Fix a prime p ≥ 3 and consider the divided alpha ele-
ments αi/j ∈ QS2i(p−1)−1, where j ≤ νp(i) + 1, and νp denotes the p-adic

valuation [25, Definition 1.3.19]. For every j ≥ 2, we have pαi/j 6= 0 but
γ(pαi/j) = 0.

Proof. Recall a few properties of the divided alpha elements [25] [7, §1]. The
element

αi/j ∈ Ext
1,2i(p−1)
BP∗BP

(BP∗, BP∗)

defined in the E2-term of the Adams-Novikov spectral sequence is a perma-
nent cycle and therefore represents an element in homotopy αi/j ∈ πS2i(p−1)−1

which is known to be in the image of the J-homomorphism. It has (addi-
tive) order pj, is indecomposable, and its order in QS∗ is still pj. This proves
pαi/j 6= 0 in QS∗ .

On the other hand, the p-torsion in HZ∗HZ is annihilated by a single
power of p [21, Theorem 3.1] [15, §11, Theorem 2]. Therefore the map
γ : QS∗ → HZ∗+1HZ must send pαi/j to zero. �

Remark 6.6. In Proposition 6.5, we may as well take i = pj−1.

Whenever γ : QSk → HZk+1HZ is non-injective, we can find a correspond-
ing non-realizable 2-stage Π-algebra in stem dimension k. Therefore, Propo-
sitions 6.4 and 6.5 provide infinite families of non-realizable examples, in
infinitely many stem dimensions.

Note that [10, Theorem 8.1] also provides a (different) infinite family of
non-realizable Π-algebras, which can be truncated to two non-zero degrees.
The argument used there is similar to that of 6.4.

A 3-stage example.

Proposition 6.7. The stable 3-stage Π-algebra A defined by An = An+1 =
An+2 = Z/2 (where n ≥ 4) with structure maps

η1 : Γ
1
n(An) = An ⊗ Z/2 = Z/2

∼=
−→ Z/2 = An+1

η2 : Γ
2
n(An, η1) = An+1 ⊗ Z/2 = Z/2

∼=
−→ Z/2 = An+2

is non-realizable.

Proof. The map En(η1) described in [6, §3.2] is the composite

Tor(An,Z/2)
�

� i // An
q

// // An ⊗ Z/2
η1

// An+1
q

// // An+1 ⊗ Z/2 ∼= Γ2
n(An, η1)

which in our case is the isomorphism

Z/2 �
� i

∼=
// Z/2

q

∼=
// // Z/2

η1
∼=

// Z/2
q

∼=
// // Z/2.

The obstruction O(A) = η2 ◦En(η1) described in [6, Theorem 3.3 (B)] is the

non-zero map Z/2
∼=
−→ Z/2

∼=
−→ Z/2. Therefore A is non-realizable. �

Remark 6.8. By contrast, the example in [10, Example 7.18] with the same
homotopy groups but a different Π-algebra structure is in fact realizable.
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7. Proofs

Theories and πS∗ -modules. The category ΠΠΠ forms a theory in the sense
of Lawvere [5, §6], more precisely a graded (or multisorted) theory [5, §8].
We adopt the following convention.

Definition 7.1. A theory is a category with finite coproducts, including
the empty coproduct (initial object ∗).

Let T be a theory. A model for T is a product-preserving functor Top →
Set, in other words, a contravariant functor sending coproducts to products.

As in [6, §1], let model(T) := Fun×(Top,Set) denote the category of
models for a theory T.

In this terminology, Π-algebras are models for ΠΠΠ, or in symbols: ΠΠΠAlg =
model(ΠΠΠ). Note that ΠΠΠn and ΠΠΠkn are also theories, and the inclusion func-
tors ΠΠΠkn → ΠΠΠn → ΠΠΠ are maps of theories, i.e., preserve coproducts. The

equivalences ΠΠΠAlgn
∼= model(ΠΠΠn) and ΠΠΠAlgkn

∼= model(ΠΠΠkn) are proved in
[20, Proposition 4.5, Remark 4.6].

Let us study the stable case as in Section 5 more precisely. Given a
spectrum Z, its homotopy groups π∗Z naturally form a πS∗ -module, where πS∗
is the stable homotopy ring. This algebraic structure can also be described
as a model for a theory.

Notation 7.2. Let HoSp denote the stable homotopy category [23, §2.2]
and let ΠΠΠst denote its full subcategory consisting of finite wedges of sphere
spectra ∨Sni , ni ∈ Z. Here again, the empty wedge (a point) is allowed.

We have the isomorphism of categories model(ΠΠΠst) ∼= πS∗Mod, sending a
model M to the πS∗ -module with ith graded piece Mi := M(Si), endowed
with the induced precomposition operations. Given a spectrum Z, the real-
izable πS∗ -module π∗Z corresponds to the functor [−, Z].

We can now make the relationship between Π-algebras and πS∗ -modules
precise. Consider the suspension spectrum functor Σ∞ : ΠΠΠ → ΠΠΠst which
sends maps to their stabilization. Because Σ∞ preserves coproducts (wedges),
it induces a restriction functor on models

Ω∞ := (Σ∞)∗ : πS∗Mod → ΠΠΠAlg.

Concretely, Ω∞M has the same underlying graded group as M in degrees
i ≥ 1, and maps between spheres act on Ω∞M via their stabilization. The
notation Ω∞ is justified by the following proposition.

Proposition 7.3. For any spectrum Z, there is an isomorphism of Π-
algebras π∗(Ω

∞Z) ∼= Ω∞(π∗Z), which is natural in Z.

Proof. Let S be an object of ΠΠΠ, that is, a finite wedge of spheres. By
definition, we have:

π∗(Ω
∞Z)(S) = [S,Ω∞Z]

Ω∞(π∗Z)(S) = (π∗Z)(Σ
∞S) = [Σ∞S,Z].
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Moreover, Σ∞ is left adjoint to Ω∞ so that we have an isomorphism of sets

[S,Ω∞Z] ∼= [Σ∞S,Z]

which is natural in S and Z. Naturality in S provides the isomorphism of
Π-algebras π∗(Ω

∞Z) ≃ Ω∞(π∗Z), while naturality in Z implies that this
isomorphism of Π-algebras is also natural. �

Consider the full subcategories (ΠΠΠst)n and (ΠΠΠst)kn of ΠΠΠst, which are them-
selves theories. As in the unstable picture, the inclusion functors (ΠΠΠst)kn →
(ΠΠΠst)n → ΠΠΠst are maps of theories. Here again, there are isomorphisms of

categories πS∗Modn ∼= model((ΠΠΠst)n) and π
S
∗Modkn

∼= model((ΠΠΠst)kn).

Proposition 7.4. In the stable range k ≤ n − 2, the functor Ω∞ restricts
to an equivalence of categories

Ω∞ : πS∗Modkn
∼=
−→ ΠΠΠAlgkn.

Proof. In the stable range, the stabilization functor Σ∞ : ΠΠΠkn → (ΠΠΠst)kn is an
equivalence of categories. Therefore, it induces an equivalence on models

(Σ∞)∗ : model((ΠΠΠst)kn)
∼=
−→ model(ΠΠΠk

n)

which is the desired equivalence. �

Split linear extension of theories.

Proposition 7.5. Let n ≥ 2 and k ≥ 1. Consider the functor

D : (ΠΠΠ0
n+k)

op ×ΠΠΠk−1
n → Ab

(S,U) 7→ [S,U ].

Then the theory ΠΠΠkn with its natural projection

ΠΠΠk
n → ΠΠΠ0

n+k ×ΠΠΠk−1
n

given by “collapse” functors [20, §4] is the split linear extension [5, Definition
7.1] of ΠΠΠ0

n+k ×ΠΠΠk−1
n by D.

Proof. Note that D takes values in Ab because every object S = ∨iS
n+k of

ΠΠΠ0
n+k is an abelian cogroup object (of ΠΠΠ or ΠΠΠkn). Moreover, D is additive in

ΠΠΠ0
n+k:

D(S1 ∨ S2, U) = [S1 ∨ S2, U ] = [S1, U ]∗ × [S2, U ] = D(S1, U)×D(S2, U)

and satisfies D(S, ∗) = [S, ∗] = 0 for any S ∈ ΠΠΠ0
n+k. Therefore, there is

such a thing as the split linear extension T of ΠΠΠ0
n+k ×ΠΠΠk−1

n by D, with its

projection q : T → ΠΠΠ0
n+k ×ΠΠΠk−1

n .

Let us construct an equivalence of categories ϕ : ΠΠΠk
n

∼=
−→ T with inverse

ψ : T
∼=
−→ ΠΠΠkn. Note that every object X of ΠΠΠk

n, i.e. a finite wedge of spheres of
dimensions from n to n+k, can be uniquely expressed as a wedge X = S∨U
with S ∈ ΠΠΠ0

n+k, U ∈ ΠΠΠk−1
n , i.e. S contains the spheres of dimension n + k

and U contains the remaining spheres, of dimensions from n to n + k − 1.
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Moreover, extracting either summand from X is functorial in X, using the
collapse functors

colhi : ΠΠΠkn → ΠΠΠ0
n+k

collo : ΠΠΠkn → ΠΠΠk−1
n

which extract the spheres of highest dimension n+ k and lower dimensions
n to n+ k − 1, respectively. By abuse of notation, write colhi : X ։ S and
collo : X ։ U for the corresponding collapse maps.

Step 1: Construction of ϕ : ΠΠΠkn → T. On objects, take

ϕ(X ∼= S ∨ U) := (S,U) = (colhiX, colloX)

and for a morphism X1
∼= S1 ∨ U1

f
−→ S2 ∨ U2

∼= X2, ϕ(f) is defined by the
data 




S1
inchi1
→֒ S1 ∨ U1

f
−→ S2 ∨ U2

colhi2
։ S2

U1

inclo1
→֒ S1 ∨ U1

f
−→ S2 ∨ U2

collo2
։ U2

S1
inchi1
→֒ S1 ∨ U1

f
−→ S2 ∨ U2

collo2
։ U2

where the last piece of data is an element of [S1, U2]∗ = D(S1, U2). In
symbols:

ϕ(f) =
(
colhi(f), collo(f), collo2 ◦ f ◦ inchi1

)

=:
(
fhi, f lo, fhilo

)
.

We have ϕ(idX) = idϕX = (idS , idU , 0). Remains to check that ϕ respects

composition. Given a composite X1
f
−→ X2

g
−→ X3 in ΠΠΠkr , which we write as

S1 ∨ U1
f
−→ S2 ∨ U2

g
−→ S3 ∨ U3

applying ϕ yields

ϕ(gf) =
(
(gf)hi, (gf)lo, (gf)hilo

)

=
(
ghifhi, glof lo, (gf)hilo

)

whereas the composite in T is

ϕ(g)ϕ(f) =
(
ghi, glo, ghilo

)(
fhi, f lo, fhilo

)

=
(
ghifhi, glof lo, (fhi)∗ghilo + (glo)∗f

hilo
)
.

A straightforward calculation proves the equality (gf)hilo = (fhi)∗ghilo +
(glo)∗f

hilo.
Step 2: Construction of ψ : T → ΠΠΠkn. On objects, take

ψ(S,U) := S ∨ U
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and for a morphism

(fh, f l, δ) : (S1, U1) → (S2, U2)

in T, with δ ∈ D(S1, U2) = [S1, U2], define the morphism

ψ(fh, f l, δ) : S1 ∨ U1 → S2 ∨ U2

ψ(fh, f l, δ) =
(
inchi2 f

h + inclo2 δ
)
; inclo2 f

l.

We have

ψ1(S,U) = ψ(1S , 1U , 0) = inchi ∨ inclo = 1S∨U

and it remains to check that ψ respects composition. Given a composite

(S1, U1)
(fh,f l,δ)

//

(ghfh,glf l,(fh)∗ǫ+(gl)∗δ)

88
(S2, U2)

(gh,gl,ǫ)
// (S3, U3)

in T, applying ψ yields

S1 ∨ U1

inchi2 f
h+inclo2 δ;inc

lo
2 f

l

//

inchi3 g
hfh+inclo3 ((fh)∗ǫ+(gl)∗δ);inclo3 g

lf l

66
S2 ∨ U2

inchi3 g
h+inclo3 ǫ;inc

lo
3 g

l

// S3 ∨ U3

which is still commutative. This follows from right distributivity for maps
between spheres [28, Theorem X.8.1], as well as Hilton’s formula [28, The-
orem XI.8.5] [4, §A.9] and the fact that fh : S1 → S2 is a map between
spheres of equal dimensions (namely n+ k). In that case, the Hilton–Hopf
invariants vanish and composition is in fact left distributive, in other words
precomposition by fh is linear.

Step 3: ψϕ = idΠΠΠk
n
. On objects, the composite of functors does

(X ∼= S ∨ U)
ϕ
7→ (S,U)

ψ
7→ S ∨ U

and on a map X1
∼= S1 ∨ U1

f
−→ S2 ∨ U2

∼= X2, the composite does

f
ϕ
7→

(
fhi, f lo, fhilo

)

ψ
7→

(
inchi2 f

hi + inclo2 f
hilo

)
; inclo2 f

lo.

Here comes the topological argument. Note that S is (n+ k− 1)-connected
and U is (n − 1)-connected, so that the natural map S ∨ U → S × U is
(n+k+n−1)-connected. This implies that for i ≤ n+k+n−2 (in particular

for i ≤ n+k), any map g : Si → S∨U is homotopic to inchicolhig+inclocollog.
On the first summand S1, the map f is

f inchi1 = inchi2 col
hi
2 f inc

hi
1 + inclo2 col

lo
2 f inc

hi
1

= inchi2 f
hi + inclo2 f

hilo
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and on the second summand U1, the map f is

f inclo1 = inclo2 col
lo
2 f inc

lo
1 (by cellular approximation)

= inclo2 f
lo

from which we obtain the desired equality ψϕ(f) = f .
Step 4: ϕψ = idT. On objects, the composite of functors does

(S,U)
ψ
7→ S ∨ U

ϕ
7→ (S,U)

and on a map (fh, f l, δ) : (S1, U1) → (S2, U2), the composite does

(fh, f l, δ)
ψ
7→

(
inchi2 f

h + inclo2 δ
)
; inclo2 f

l

ϕ
7→

(
colhi2

(
inchi2 f

h + inclo2 δ
)
, collo2 inc

lo
2 f

l, collo2

(
inchi2 f

h + inclo2 δ
))

=
(
colhi2 inc

hi
2 f

h + colhi2 inc
lo
2 δ, col

lo
2 inc

lo
2 f

l, collo2 inc
hi
2 f

h + collo2 inc
lo
2 δ

)

=
(
fh, f l, δ

)
. �

Remark 7.6. Proposition 7.5 was implicitly used in [6, Proposition 1.6] with-
out being proved there.

Homotopy operation functors.

Proof of Proposition 2.10. Let An be an abelian group. We want to compute

the abelian group Γ̃kn(An) = Γkn(An, 0, . . . , 0).
Our functor Γkn is the functor denoted ρ∗∆ in [5, (7.3)]. By Proposition

7.5 and [5, Lemma 7.5; Lemma 7.10], Γkn can be computed using a free
presentation, as we will explain shortly. Here we will implicitly use the
identification model(ΠΠΠ0

n+k)
∼= Ab sending a model M to the abelian group

M(Sn+k).
Let g : T → S be a map between wedges of spheres of dimensions n, n+1,

. . ., n+ k − 1 satisfying

(1) coker πn(g) = An;
(2) coker πi(g) = 0 for n < i < n+ k, that is, πi(g) is surjective in those

degrees.

Then the sequence of abelian groups

(3) πn+k(T ∨ S)2
πn+k(g,1)
−−−−−−→ πn+k(S) ։ Γ̃kn(An) → 0

is exact, where the left-hand group is

πn+k(T ∨ S)2 := ker

(
πn+k(T ∨ S)

πn+k(0,1)
−−−−−−→ πn+k(S)

)

i.e. the kernel of the collapse map. In other words, our functor can be

computed as Γ̃kn(An) = coker πn+k(g, 1).

A free presentation can be obtained as follows. Let R
f
−→ F ։ An → 0

be a free presentation of An as abelian group, i.e., an exact sequence where
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R and F are free abelian groups. Realize R → F as πn(g
′) for a map

g′ : S′ → S between wedges of spheres of dimension n (with a sphere Sn for
each summand Z). Now insert spheres of higher dimensions to kill all the
homotopy of S. More precisely, consider the wedge

S′′ :=
∨

x∈πiS
n<i<n+k

Si

and the map g′′ : S′′ → S defined on each summand Si by (a representative
of) the indexing element x ∈ πiS. The map

T = S′′ ∨ S′ g=(g′′,g′)
−−−−−−→ S

provides a free presentation as described above.
Step 1: Assume An ≃ Z is free on one generator.

The free presentation of An is given by R = 0 and F = Z, so that we
take S′ = ∗ and S = Sn. We want to compute the cokernel illustrated in
(3). We claim that the image of πn+k(g, 1) is the subgroup Dec ⊂ πn+k(S

n)

generated by decomposable elements, which would prove the result Γ̃kn(Z) =
Qk,n.

Take x ∈ πn+k(T ∨Sn)2 and consider its image πn+k(g, 1)(x) ∈ πn+k(S
n)

as illustrated in the diagram

Sn+k

$$❏
❏❏

❏
❏❏

❏❏
❏❏

x // T ∨ Sn

(g,1)
��

Sn.

Since T is a wedge of spheres (of dimensions strictly between n and n+ k),
the Hilton–Milnor theorem [28, Theorem XI.8.1] implies

πn+k(T ∨ Sn) ≃
⊕

j

πn+k(S
mj )

for some appropriate dimensions mj, and x can be expressed as

x =
∑

j

pj ◦ xj

where the pj are certain iterated Whitehead products of summand inclusions
of the individual spheres of T ∨ Sn. In particular, the element

(g, 1) ◦ x = (g, 1) ◦



∑

j

pj ◦ xj


 =

∑

j

(g, 1) ◦ pj ◦ xj

is a sum of decomposables, except possibly one term, corresponding to the
summand inclusion Sn →֒ T ∨ Sn. However, that one term is precisely
xj = (0, 1) ◦ x = πn+k(0, 1)(x) = 0 by assumption. Hence πn+k(g, 1)(x) is
decomposable.



26 HANS-JOACHIM BAUES AND MARTIN FRANKLAND

Conversely, take any decomposable element x ∈ πn+k(S
n). By the as-

sumption k 6= n − 1, x must be a sum of compositions x =
∑

i xi ◦ αi for
some αi ∈ πn+k(S

mi), xi ∈ πmi
(Sn), n < mi < n + k. But each such com-

posite is in the image of πn+k(g, 1). By construction of T , there is a wedge
summand Smi →֒ T corresponding to xi ∈ πmi

(Sn). The diagram

Sn+k

))❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙
❙❙

❙❙

αi // Smi

xi

$$■
■
■
■
■
■
■
■
■

�

� ι // T ∨ Sn

(g,1)
��

Sn.

illustrates the equality xi ◦αi = (g, 1) ◦ ι ◦αi = πn+k(g, 1)(ι ◦αi). Moreover,
the map (0, 1)◦ι : Smi → Sn is null, which guarantees ι◦αi ∈ kerπn+k(0, 1) =
πn+k(T ∨ Sn)2.

Step 2: Assume An is free.

Take S = ∨lS
n satisfying An = F ≃ ⊕lZ = πn(S) and take S′ = ∗.

Consider the composition function

πn(S)× πn+k(S
n) → πn+k(S)

(x, α) 7→ x ◦ α.

It is linear in the second variable α but not in the first variable x. Failure to
be linear in x is measured by the “distributive law of homotopy theory” or
Hilton’s formula [28, Theorem XI.8.5]. The error terms are composites which
are all in the image of πn+k(g, 1): πn+k(T ∨ S)2 → πn+k(S) as explained in
step 1. By modding out this image, we obtain a well-defined bilinear map

πn(S)⊗ πn+k(S
n) → Γ̃kn(An).

This map vanishes on elements x ⊗ α where α is decomposable, since such
an α is in the image of πn+k(g, 1). Thus there is an induced canonical map

ϕ : πn(S)⊗Qk,n → Γ̃kn(An).

We claim that ϕ is an isomorphism. The Hilton–Milnor theorem provides
an isomorphism

πn+k(S) = πn+k(∨lS
n)

≃
⊕

j

πn+k(S
mj )

≃
⊕

l

πn+k(S
n)⊕

⊕

j such that mj>n

πn+k(S
mj )

so that we can project onto the first summand ⊕lπn+k(S
n) ∼= F ⊗πn+k(S

n)
and then mod out the decomposables:

πn+k(S) ։ F ⊗ πn+k(S
n) ։ F ⊗Qk,n = πn(S)⊗Qk,n.

This map vanishes on the image of πn+k(g, 1) and therefore induces a map
on the cokernel

ψ : Γ̃kn(An) → πn(S)⊗Qk,n.
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One readily checks that ψ is inverse to ϕ.
Step 3: An is an arbitrary abelian group.

The free presentation of An can be canonically turned into the reflexive
coequalizer diagram:

R⊕ F
(f,1)

//

(0,1)
// Foo // // An

where the summand inclusion F →֒ R⊕F is a common section of the pair of
maps. Since the functor −⊗Qk,n : Ab → Ab preserves reflexive coequalizers

(in fact it is additive and right exact), it suffices to show that Γ̃kn preserves
reflexive coequalizers to obtain the natural isomorphism

Γ̃kn(An) = An ⊗Qk,n

using Step 2.

To prove that Γ̃kn preserves reflexive coequalizers, recall that this functor
is the composite

Ab ∼= ΠΠΠAlg0
n

Γ̃k
n

66
�

� ι // ΠΠΠAlgk−1
n

Γk
n

%%
L // ΠΠΠAlgkn

πn+k
// Ab

where L is left adjoint to Postnikov truncation, and in particular L preserves
colimits. The inclusion ι : ΠΠΠAlg0

n → ΠΠΠAlgk−1
n admits a right adjoint, and

thus preserves colimits. By [1, Chapter 3], reflexive coequalizers in ΠΠΠAlgkn
are computed at the level of underlying graded sets, and are in particular
preserved by the restriction functor πn+k : ΠΠΠAlgkn → Ab. �

Proof of Proposition 3.7. Similar to the proof of 2.10 above. The key ingre-
dient here is the computation of [3, Corollary 9.4]:

π2n−1(S) ∼= πn(S)⊗
q π2n−1{S

n}

where S = ∨lS
n is a wedge of n–spheres, so that πn(S) ∼= ⊕lZ is a free

abelian group. Decomposables (compositions) must be modded out for the
same reason as in the proof of 2.10.

The functor − ⊗q Qn−1{S
n} : Ab → Ab is not additive and does not

preserve cokernels in general, but it does preserve reflexive coequalizers. �
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[15] Henri Cartan. Séminaire Henri Cartan de l’Ecole Normale Supérieure, 1954/1955.
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