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3 Well-separated spherical designs
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Abstract

For each N ≥ Cdt
d we prove the existence of a well-separated

spherical t-design in the sphere Sd consisting of N points, where Cd

is a constant depending only on d.
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gree, Marcinkiewicz-Zygmund inequality, area-regular partitions.

AMS subject classification. 52C35, 41A55, 41A05, 41A63

1 Introduction

In this paper we will discuss the interrelation between several classical opti-

mization problems on spheres Sd such as minimal equal-weight quadratures

(spherical designs), best packing problems, and minimal energy problems.

For d = 1, a regular polygon is an optimal configuration for all of these prob-

lems. However, for d ≥ 2 exact solutions are known in very few cases. Even

asymptotically optimal configurations are sometimes very hard to obtain (see

for example Smale’s 7th Problem [18]).

We will prove the existence of certain configurations in Sd which are

spherical t-designs with asymptotically minimal number of points and that
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no 246016.
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simultaneously have asymptotically the best separation property. These con-

figurations also provide approximate solutions for several other optimization

problems.

Let Sd =
{
x ∈ R

d+1 : |x| = 1
}

be the unit sphere in R
d+1 equipped

with the Lebesgue measure µd normalized by µd(S
d) = 1. A set of points

x1, . . . , xN ∈ Sd is called a spherical t-design if

∫

Sd

P (x) dµd(x) =
1

N

N∑

i=1

P (xi)

for all polynomials in d+1 variables, of total degree at most t. The concept of

a spherical design was introduced by Delsarte, Goethals, and Seidel [9]. For

each d, t ∈ N denote by N(d, t) the minimal number of points in a spherical

t-design in Sd. The following lower bound

(1) N(d, t) ≥





(
d+ k

d

)
+

(
d+ k − 1

d

)
if t = 2k,

2

(
d+ k

d

)
if t = 2k + 1,

is proved in [9] (see also the classical monograph [8]). On the other hand,

it follows from the general result by Seymour and Zaslavsky [17] that spher-

ical designs exist for all positive integers d and t. The method of proof

used in [17] was not constructive and authors did’t indicate an upper bound

for N(d, t) in terms of d and t. First feasible upper bounds were given by

Wagner [19] (N(d, t) ≤ Cdt
Cd4) and Bajnok [3] (N(d, t) ≤ Cdt

Cd3). Ko-

revaar and Meyers [12] have improved these inequalities by showing that

N(d, t) ≤ Cdt
(d2+d)/2. They have also conjectured that N(d, t) ≤ Cdt

d. Note

that (1) implies N(d, t) ≥ cdt
d. Here and in what follows we use the notations

Cd, Ld, etc. (cd, λd, etc.) for sufficiently large (small) constants depending

only on d.

Korevaar and Meyers were motivated by the following problem coming

from potential theory: How to choose N equally charged points x1, . . . , xN
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in S2 to minimize the value

Ur(x1, . . . , xN ) := sup
|x|=r

∣∣∣∣∣
1

N

N∑

i=1

1

|x− xi|
− 1

∣∣∣∣∣ , r ∈ (0, 1)?

The classical Faraday cage phenomenon states that any stable charge dis-

tribution on the compact closed surface cancels the electric field inside the

surface. According to this model the minimal value of Ur should rapidly

decay to 0, when N grows.

It was shown in [12] that if the set of points x1, . . . , xN is a spherical

t-design for some t > cN1/2 then

Ur(x1, . . . , xN ) ≤ rαN
1/2

.

The estimate is optimal up to the constant in the power.

Recently we have suggested a nonconstructive approach to obtain an opti-

mal asymptotic bound for N(d, t) based on the application of the topological

degree theory; see [4, 5]. We have proved the following

Theorem A. For each N ≥ Cdt
d there exists a spherical t-design in Sd

consisting of N points.

This implies the Korevaar-Meyers conjecture.

Now we will give the definition of a well-separated sequence of configura-

tions. A sequence of N -point configurations XN = {x1N , . . . , xNN} in Sd is

called well-separated if

(2) min
1≤i<j≤N

|xiN − xjN | ≥ λdN
−1/d

for some constant λd and all N ≥ 2. The inequality (2) is optimal up to the

constant λd. That is, there exists a constant Ld such that for any N -point

configuration {x1, . . . , xN}

min
1≤i<j≤N

|xi − xj | < LdN
−1/d.

Many authors have predicted the existence of well-separated spherical t-

designs in Sd of asymptotically minimal cardinality O(td) as t → ∞ (see,
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e.g. [2] and [11]). Moreover, in [11] it was shown that if such spherical de-

signs exist then they have asymptotically minimal Riesz s-energy. In this

paper we prove the existence of above mentioned spherical designs. Our

main result is:

Theorem 1. For each d ≥ 2 there exist positive constants Cd and λd depend-

ing only on d such that for each t ∈ N and each N > Cdt
d there exists a spher-

ical t-design in Sd consisting of N points {xi}Ni=1 with |xi − xj | ≥ λdN
−1/d

for i 6= j.

Theorem 1 is a natural generalization of Theorem A. The paper is orga-

nized as follows. In Section 2 we will reduce Theorem 1 to the construction

of a certain N -tuple of maps x1, . . . ,xN : Pt → Sd. Then in Section 3 we will

prove several auxiliary results concerning area regular partitions of sphere Sd

and spherical Marcinkiewicz-Zygmund type inequalities. Finally in Section 4

we will construct the maps x1, . . . ,xN , proving Theorem 1.

2 Application of topological degree theory

We will use the approach similar to that of [4]. Let Pt be the Hilbert space

of polynomials P of degree at most t on Sd such that
∫

Sd

P (x)dµd(x) = 0,

equipped with the usual inner product

(P,Q) =

∫

Sd

P (x)Q(x)dµd(x).

By Riesz representation theorem, for each point x ∈ Sd there exists a unique

polynomial Gx ∈ Pt such that

(Gx, Q) = Q(x) for all Q ∈ Pt.

Then a set of points x1, . . . , xN ∈ Sd forms a spherical t-design if and only if

(3) Gx1
+ · · ·+GxN

= 0.
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The gradient of a differentiable function f : Rd+1 → R is denoted by

∂f

∂x
:=

(
∂f

∂ξ1
, . . . ,

∂f

∂ξd+1

)
, x = (ξ1, . . . , ξd+1).

For a polynomial Q ∈ Pt we define the spherical gradient

∇Q(x) :=
∂

∂x

(
Q
( x

|x|
))

.

Now we will use the following result from topological degree theory [15, Ths.

1.2.6 and 1.2.9].

Theorem B. Let f : Rn → R
n be a continuous map and Ω an open bounded

subset, with boundary ∂Ω, such that 0 ∈ Ω ⊂ R
n. If (x, f(x)) > 0 for all

x ∈ ∂Ω, then there exists x ∈ Ω satisfying f(x) = 0.

We will apply Theorem B to the following open subset of a vector space Pt

(4) Ω =

{
P ∈ Pt

∣∣∣∣
∫

Sd

|∇P (x)|dµd(x) < 1

}
.

Observe that if continuous maps xi : Pt → Sd, i = 1, . . . , N , satisfy for

all P ∈ ∂Ω
N∑

i=1

P (xi(P )) > 0

then there exists a spherical t-design on Sd consisting of N points. To this

end let us consider a map f : Pt → Pt defined by

f(P ) = G
x1(P ) + · · ·+G

xN (P ).

Clearly

(P, f(P )) =

N∑

i=1

P (xi(P ))

for each P ∈ Pt. Thus, applying Theorem B for the map f , vector space

Pt, and the subset Ω defined in (4) immediately gives us the existence of a

polynomial P̃ ∈ Ω such that f(P̃ ) = 0. Hence, by (3), the images of this

polynomial x1(P̃ ), . . . ,xN(P̃ ) form a spherical t-design in Sd consisting of N
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points. If additionally there exists a constant λd such that |xi(P )−xj(P )| ≥
λdN

−1/d for all i 6= j, and P ∈ Ω, then the above mentioned spherical t-design

is well separated, proving Theorem 1.

The maps xi, i = 1, . . . , N , will be constructed in Section 4 below.

3 Area-regular partitions and convex sets

For x, y ∈ Sd denote by dist(x, y) = arccos((x, y)) the geodesic distance

between x and y. Also for a set A ⊂ Sd define the geodesic distance between

x and A as follows

dist(x,A) = inf
y∈A

dist(x, y).

Recall that a spherical cap of radius r with center at x ∈ Sd is the set

A(x, r) = {z ∈ Sd| dist(x, z) ≤ r}.

Below we will use extensively the notion of an area-regular partition. Here

is the definition.

Let R = {R1, . . . , RN} be a finite collection of closed sets Ri ⊂ Sd such

that ∪N
i=1Ri = Sd and µd(Ri ∩ Rj) = 0 for all 1 ≤ i < j ≤ N . The partition

R is called area-regular if µd(Ri) = 1/N , i = 1, . . . , N . The partition norm

for R is defined by

‖R‖ = max
R∈R

diamR = max
R∈R

max
x,y∈R

dist(x, y).

It is easy to prove using isodiametric inequality that each Ri has diameter

at least cdN
−1/d. Therefore, ‖R‖ ≥ cdN

−1/d for each R. However for some

Cd and each N ∈ N there exists an area-regular partition R = {R1, . . . , RN}
of Sd with diameter at most CdN

−1/d. Such area-regular partitions are used

for many optimization problems where a well distributed set of N points

on a sphere having no concentration points is needed (see e.g. [1], [6], [14],

and [13]). In this paper we need area-regular partitions of small diameter

with additional constraint of geodesic convexity. A subset A ⊂ Sd is geodesi-

cally convex if any two points x, y ∈ A can be connected by a geodesic arc
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contained in A. The partition R = {R1, . . . , RN} is said to be convex if each

set Ri, i = 1, . . . , N, is geodesically convex. First we will prove the existence

of convex area-regular partitions of “small” diameter.

Proposition 1. For each N ∈ N there exists a convex area-regular parti-

tion R = {R1, . . . , RN} such that ‖R‖ ≤ KdN
−1/d, where Kd is a constant

depending only on d.

The following construction for the sphere S2 and N = 6n2, where n ∈ N,

is given by Alexander in [1]. Let us first explain his simple and elegant proof.

We begin with a spherical cube, and consider one of its facets. Using n−1

great circles from the pencil determined by two opposite edges we can cut the

facet into n slices of equal area. Each slice can be cut into n quadrilaterals of

equal area using great circles in the pencil in the other pair of opposite edges

of the face. The diameters of the quadrilaterals are of the right magnitude.

This construction has an obvious generalization to higher dimensions.

Start with the appropriate spherical hypercube, then divide each face into n

equal pieces, and so on. In this way we obtain a convex partition of Sd into

2(d+ 1)nd parts of diameter at most Cd/n.

Now we generalize the approach of Alexander to prove Proposition 1 for

all N ∈ N. For each m ∈ N and a vector with positive coordinates a =

(a1, . . . , am) ∈ R
m
+ denote by P (a) the m-dimensional rectangle [−a1, a1] ×

· · · × [−am, am]. Also, a measure dη(x) = α(x)dx defined on P (a) is said to

be M-uniform if

α(x) ≤ Mα(y) for all x, y ∈ P (a).

To prove Proposition 1 we need the following lemma.

Lemma 1. Let a ∈ R
m
+ with

max
1≤i,j≤m

ai
aj

≤ B

and dη be a M-uniform measure defined on P (a). Then for each N ∈ N

there exists a partition of P (a) into N m-rectangles P1, . . . , PN with facets
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parallel to the corresponding facets of P (a) such that

(5)

∫

Pi

dη(x) =
1

N

∫

P (a)

dη(x),

and

(6) diamPi ≤ C(m,B,M)a1N
−1/m

for all i = 1, . . . , N .

Proof. We will prove the lemma by induction on m. For m = 1, first we

choose a point t1 ∈ [−a1, a1] such that

∫ t1

−a1

dη(x) =
1

N

∫ a1

−a1

dη(x).

Then similarly we choose t2 ∈ (t1, a1] such that

∫ t2

t1

dη(x) =
1

N

∫ a1

−a1

dη(x)

and so on. Finally, we get the partition of P (a) = [−a1, a1] into N segments

P1 = [−a1, t1], P2 = [t1, t2],. . ., PN = [tN−1, a1] satisfying (5) by its definition.

Moreover, M-uniformity of η implies (6) with C(1, B,M) = 2M . Assume

that the lemma is true for m = l − 1. Let us prove it for m = l. Put

k = [N1/l], s = [N/k], and r = N−ks. Also for a fixed a = (a1, . . . , al) ∈ R
l
+

denote by P1(a) the rectangle [−a1, a1] × . . . × [−al−1, al−1]. To obtain a

required partition of P (a) first we choose step by step points −al = t0 <

t1 < . . . < tk−1 < tk = al such that

∫

[ti−1,ti]×P1(a)

dη(x) =
s+ 1

N

∫

P (a)

dη(x)

for all i = 1, . . . , r, and

∫

[ti−1,ti]×P1(a)

dη(x) =
s

N

∫

P (a)

dη(x)
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for all i = r + 1, . . . , k. Clearly,

(7) |ti − ti−1| ≤
2(s+ 1)

N
Mal ≤ 4N−1/lBMa1.

Consider the following measures on P1(a)

dηi(x) = αi(x)dx,

where

(8) αi(x) = αi(x1, . . . , xl−1) =

∫ ti

ti−1

α(x1, . . . , xl)dxl

for all (x1, . . . , xl−1) ∈ P1(a) and i = 1, . . . , k. Clearly, each ηi is 2M2-

uniform. Hence, by induction assumption for each i = 1, . . . , k and Ni ∈ N

there exists a partition of P1 into Ni rectangles Pi,1, . . . , Pi,Ni
with facets

parallel to the corresponding facets of P1(a) such that

(9)

∫

Pi,j

dηi(x) =
1

Ni

∫

P1(a)

dηi(x),

and

(10) diamPi,j ≤ C(l − 1, B,M)a1N
−1/(l−1)
j

for all j = 1, . . . , Ni. Choose Ni = s + 1 for i = 1, . . . , r and Ni = s for

i = r + 1, . . . , k. Consider the following partition of P (a) into N rectangles

Pi,j × [ti−1, ti], i = 1, . . . , k, j = 1, . . . , Ni.

By (8) and (9) we immediately get that

∫

Pi,j×[ti−1,ti]

dη(x) =

∫

Pi,j

dηi(x) =
1

Ni

∫

P1(a)

dηi(x) =
1

N

∫

P (a)

dη(x)

for all i = 1, . . . , k and j = 1, . . . , Ni. So, for this partition (5) holds. Finally,

combining (7) with (10) we get (6) for some constant C(l, B,M). Lemma 1

is proved.
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Now we are ready to construct the required convex area-regular partitions.

Proof of Proposition 1: We may assume that N > 8d2. First we consider the

case when N is even. For a (d+1)-rectangle P (a), a ∈ Sd, denote by F2i−1(a)

its facet xi = ai and by F2i(a) its facet xi = −ai, i = 1, . . . , d + 1. One can

naturally associate with P (a) a convex partition {R1(a), . . . , R2d+2(a)} of Sd,

where Ri(a) = g(Fi(a)), and g(x) = x/|x| for all x ∈ R
d+1 \ {0}.

Consider a one-parametric family of (d+ 1)-rectangles P (aλ), where

aλ =
(
λ,

√
1− λ2

d
, . . . ,

√
1− λ2

d

)
.

Now we will choose such a λ = λ(N) that our required convex area-regular

partition could be obtained as a subpartition of {R1(aλ), . . . , R2d+2(aλ)}.
Consider the function G(λ) = µd(R1(aλ)). Clearly, G(1/

√
d+ 1) = 1/(2d+2)

(in this case P (aλ) is a hypercube). On the other hand R1(aλ) is contained in

the spherical cap A((1, 0, . . . , 0), arccosλ). Therefore, we can estimate G(λ)

from above as

G(λ) ≤ µd(A((1, 0, . . . , 0), arccosλ)).

Below we will use the following inequalities: for all d ∈ N and N > 8d2

µd(A((1, 0, . . . , 0), arccos(1−1/10d)) ≤ N/2− d([N/(2d+ 2)] + 1)

N
≤ 1

2d+ 2
.

The left hand side inequality is very rough. We need this inequality with any

constant strictly less than 1 and depending only on d in place of 1 − 1/10d.

Now, by continuity of G there exists

(11) λ ∈ [1/
√
d+ 1, 1− 1/10d]

such that

G(λ) =
N/2− d([N/(2d+ 2)] + 1)

N
.

By symmetry arguments µd(R1(aλ)) = µd(R2(aλ)) and

µd(R3(aλ)) = . . . = µd(R2d+2(aλ)) =
[N/(2d+ 2)] + 1

N
.
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For each i = 1, . . . , 2d + 2 consider the unique measure ηi on Fi(aλ) such

that ηi(E) = µd(g(E)) for each measurable set E ⊂ Fi(aλ) (this is indeed

a measure, since g is one-to-one). Clearly, (11) implies that each ηi is Md-

uniform for large enough Md. Choose

Ni =
N/2− d([N/(2d+ 2)] + 1)

N
for i = 1, 2

and

Ni =
[N/(2d+ 2)] + 1

N
for i = 3, . . . , 2d+ 2.

Now applying Lemma 1 for each d-rectangle Fi(aλ) with measure ηi, i =

1, . . . , 2d+ 2 we can get corresponding partition of Fi(aλ) into Ni rectangles

Pi,j such that ∫

Pi,j

dηi(x) =
1

Ni

∫

Fi(aλ)

dηi(x)

for j = 1, . . . , Ni. Moreover,

(12) diamPi,j ≤ CdN
−1/d.

By its definition µd(g(Pi,j)) = 1/N , i = 1, . . . , 2d + 2, j = 1, . . . , Ni. Now

we observe that each g(Pi,j) is a geodesically convex closed set. Indeed, the

image under the map g of a line segment contained in Fi is a geodesic arc on

sphere Sd. Therefore, the image of the convex set Pi,j is geodesically convex.

Finally, the estimate diam g(Pi,j) ≤ CdN
−1/d follows from (11) and (12).

Now it remains to prove the proposition in the case when N is odd. To

this end we apply the same argument, with only difference that we replace

(d + 1)-rectangles P (aλ) by another family of polytopes Qλ,µ. Namely, for

λ, µ ∈ (0, 1) let Qλ,µ be the convex hull of 2d+1 vertices
(
λ,±

√
1− λ2

d
, . . . ,±

√
1− λ2

d

)
,

(
− µ,±

√
1− µ2

d
, . . . ,±

√
1− µ2

d

)
.

Consider the map φ : [−1, 1]d+1 → Qλ,µ given by

φ(t1, t) :=

(
t1·

λ+ µ

2
+
λ− µ

2
,

(
t1·

√
1− λ2 +

√
1− µ2

2
√
d

+

√
1− λ2 −

√
1− µ2

2
√
d

)
t

)
,
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where t1 ∈ [−1, 1] and t ∈ [−1, 1]d. Let F1, . . . , F2d+2 be the facets of

[−1, 1]d+1 numbered as before. As in the case of even N we can choose

λ ∈ [1/
√
d+ 1, 1− 1/10d] such that

µd(g ◦ φ(F1)) =
(N − 1)/2− d([N/(2d+ 2)] + 1)

N

and then choose µ ∈ [1/
√
d+ 1, 1− 1/10d] such that

µd(g ◦ φ(F2)) =
(N + 1)/2− d([N/(2d+ 2)] + 1)

N
.

Now by the symmetry argument for i = 3, . . . , 2d+ 2

µd(g ◦ φ(Fi)) =
[N/(2d+ 2)] + 1

N
.

Consider the pull-back measures ηi on Fi defined by ηi(E) := µd

(
g ◦ φ(E)

)

for any measurable subset E ⊂ Fi (this is a well-defined measure, since g ◦ φ
is a.e. one-to-one). Clearly, each ηi is Md-uniform for large enough Md,

i = 1, . . . , 2d + 2. Applying again Lemma 1 to the measures ηi we get the

corresponding area-regular partition of Sd. Also, the map φ has a useful

property that the image of a hyperplane parallel to a facet of [−1, 1]d+1 is

again a hyperplane. Therefore the partition is convex. Finally Lemma 1

provides that the diameter of this partition is at most KdN
−1/d for some Kd

large enough.

Remark. The fact thatR is convex easily implies that each Ri, i = 1, . . . , N ,

contains a spherical cap of radius bdN
−1/d.

The following Theorem C states that an arbitrary large enough and well

distributed set of points is “almost” an equal weight quadrature formula in

Sd; see [14, Theorem 3.1].

Theorem C. There exist constants rd > 0 and Bd > 0 such that for each

integer m > Bd, each η ∈ (0, 1), an arbitrary convex area-regular partition

R = {R1, . . . , RN} with ‖R‖ < η rd
m
, and each collection of points xi ∈ Ri,

i = 1, . . . , N , the following inequalities

(13) (1− η)

∫

Sd

|P (x)|dµd(x) ≤
1

N

N∑

i=1

|P (xi)| ≤ (1 + η)

∫

Sd

|P (x)|dµd(x),
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hold for all polynomials P of total degree at most m.

To prove Theorem 1 we need the following lemma.

Lemma 2. For each η ∈ (0, 1), an arbitrary convex area-regular partition

R = {R1, . . . , RN} with ‖R‖ < η rd
m+1

, and any two collections of points

xi, yi ∈ Ri, i = 1, . . . , N , the following inequalities

(14)
1

N

N∑

i=1

| ∇P (xi)−∇P (yi)| ≤ 8dη

∫

Sd

| ∇P (x)| dµd(x),

(15)

(1−8dη)

∫

Sd

| ∇P (x)| dµd(x) <
1

N

N∑

i=1

| ∇P (xi)| < (1+8dη)

∫

Sd

| ∇P (x)| dµd(x),

hold for all polynomials P of total degree m ≥ Bd. The constants rd and Bd

are given by Theorem C.

Proof. First we will prove (14). Since |∇P | =
√

P 2
1 + . . .+ P 2

d+1, where

Pi ∈ Pm+1 for i = 1, . . . , d+ 1, we have

(16)
1

N

N∑

i=1

|∇P (xi)−∇P (yi)| ≤
1

N

N∑

i=1

d+1∑

j=1

|Pj(xi)− Pj(yi)|.

Now, for each Q ∈ Pm+1 we will estimate the value

1

N

N∑

i=1

|Q(xi)−Q(yi)|.

Let I1 be the set of indexes i = 1, . . . , N such that the value Q(x) has the

same sign for all x ∈ Ri, and I2 be the set of all other indexes, that is the set

of i = 1, . . . , N , for which there exists a point x ∈ Ri with Q(x) = 0. Let I3

be the set of indexes i = 1, . . . , N such that |Q(xi)| ≥ |Q(yi)|. Put zi := xi,

if i ∈ I3 and zi := yi otherwise. Put ti := yi, if i ∈ I1 ∩ I3, and ti := xi, if

i ∈ I1 \ I3. For i ∈ I2, let ti be a point in Ri such that Q(ti) = 0. We have

1

N

N∑

i=1

|Q(xi)−Q(yi)| =
1

N

∑

i∈I1

|Q(zi)|−
1

N

∑

i∈I1

|Q(ti)|+
1

N

∑

i∈I2

|Q(xi)−Q(yi)|

13



≤ 1

N

∑

i∈I1

|Q(zi)| −
1

N

∑

i∈I1

|Q(ti)|+
2

N

∑

i∈I2

|Q(zi)| −
2

N

∑

i∈I2

|Q(ti)|

≤ 2

N

N∑

i=1

|Q(zi)| −
2

N

N∑

i=1

|Q(ti)|,

where zi, ti ∈ Ri, i = 1, . . . , N . Thus, by (13) we have

1

N

N∑

i=1

|Q(xi)−Q(yi)| ≤ 4η

∫

Sd

|Q(x)|dµd(x).

So, the inequality (16) implies

1

N

N∑

i=1

|∇P (xi)−∇P (yi)| ≤ 4η
d+1∑

j=1

∫

Sd

|∇Pj(x)|dµd(x) ≤ 8dη

∫

Sd

|∇P (x)|dµd(x).

This proves (14). Now by the mean value theorem there exist yi ∈ Ri such

that
1

N
|∇P (yi)| =

∫

Ri

|∇P (x)|dµd(x), i = 1, . . . , N.

Finally, we obtain the inequality (15) from (14) and the following easy in-

equalities

1

N

N∑

i=1

|∇P (yi)| −
1

N

N∑

i=1

|∇P (xi)−∇P (yi)| ≤
1

N

N∑

i=1

|∇P (xi)|

≤ 1

N

N∑

i=1

|∇P (yi)|+
1

N

N∑

i=1

|∇P (xi)−∇P (yi)|.

The following lemma is crucial to construct the maps x1, . . . ,xN : Pt →
Sd in the next section.

Lemma 3. For x ∈ Sd denote by Tx the space of all vectors y ∈ R
d+1 with

(x, y) = 0. Let R ⊂ Sd be a closed geodesically convex set with diamR < π/2.

Then for each interior point x ∈ R and y ∈ Tx \ {0} the following holds:

14



(i) there exists a unique xmax ∈ R with (xmax, y) = maxz∈R(z, y);

(ii) the map Mx : Tx \ {0} → R given by y → xmax is continuous on Tx \ {0};
(iii) for each w ∈ R and a geodesic γ : [0, 1] → R with γ(0) = xmax, γ(1) = w

the function (y, γ(h)) is decreasing on [0, 1].

Proof. Consider an orthogonal projection p : Rd+1 → Tx given by

p(z) = z − (x, z)x.

Clearly,

(17) (z, y) = (p(z), y)

for all z ∈ R.

Denote by S = p(R) the image of R under the projection p. Since

dist(x, z) < π/2 for each z ∈ R, then p is a homeomorphism between R

and S and the inverse map is given by

p−1(u) = u+
√
1− |u|2x, u ∈ S.

Now we will show that S is a strictly convex subset of Tx, i.e. for each pair

of distinct points u, v ∈ S and each h ∈ (0, 1) the point hu + (1 − h)v is an

interior point of S. To this end we note that

(18) p−1(hu+ (1− h)v) = hp−1(u) + (1− h)p−1(v) + αx,

where α > 0. We will use the following simple statement:

If w1, w2 ∈ Sd are such that (w1, w2) > 0, and w3 = α1w1 + α2w2 ∈ Sd for

some α1, α2 > 0, then w3 lies on the shortest geodesic connecting w1 and w2.

This statement and the fact that p−1(u), p−1(v) ∈ R immediately imply

that z/|z| ∈ R, where z = hp−1(u) + (1 − h)p−1(v). Hence, applying again

the statement for z/|z| and x we get by (18) that p−1(hu + (1 − h)v) ∈ R.

Moreover, since x is an interior point of R, and α > 0, then p−1(hu+(1−h)v)

is an interior point of R as well, and therefore hu + (1 − h)v is an interior

point of S.

15



To prove (i) we will use the known fact that a nonconstant linear function

given on a closed strictly convex subset in R
d attains its maximum in a unique

point. Using this fact we get that there exists a unique zmax ∈ S such that

(zmax, y) = maxz∈S(z, y). Finally, by (17) we get that xmax = p−1(zmax).

Now we will prove (ii). Since p is a homeomorphism it suffices to show

that the composition map p ◦ Mx : Tx \ {0} → S is continuous. Note that

(y, p ◦Mx(y)) = maxz∈S(y, z). Since S is a closed strictly convex set then for

each ε > 0 there exists δ = δ(ε) > 0 such that for all v ∈ Tx with |v− y| < δ

the diameter of the set {z ∈ S|(v, z) > (v, p(Mx(y)))} is less than ε. Hence,

|p(Mx(y))− p(Mx(v))| < ε. Thus, the map p ◦Mx is continuous at y, and so

is Mx. This proves (ii).

Finally, we prove part (iii) of the lemma. Let G be the great circle con-

taining xmax and w. There is a unique point wmax ∈ G such that (y, wmax) =

maxz∈G(y, z). Now for each z ∈ G we have

(19) (y, z) = (y, wmax)(z, wmax).

Hence the scalar product (y, z) is increasing on both geodesic arcs connecting

−wmax and wmax. The geodesic γ : [0, 1] → R is an arc of G. To prove

(iii) it is enough to show that both −wmax and wmax are outside of the arc

γ. The point wmax is outside of γ by the definition of xmax. Moreover,

(y, xmax) > (y, x) = 0. Therefore, substituting z = xmax to (19) we see that

(xmax, wmax) > 0. Hence,

dist(xmax,−wmax) > π/2.

Finally, the fact that diamR < π/2 implies that −wmax is outside of γ as

well. Thus, the function (y, γ(h)) is decreasing on [0, 1].
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4 Proof of Theorem 1

Fix t ∈ N. In Section 2 we explained that it is enough to construct an

N -tuple of continuous maps x1, . . . ,xN : Pt → Sd such that

1

N

N∑

i=1

P (xi(P )) > 0

for all P ∈ ∂Ω and

dist(xi(P ),xj(P )) > λdN
−1/d, 1 ≤ i < j ≤ N,

for all P ∈ Ω, where Ω is given by (4).

Fix ε, δ, η > 0. Consider the function

gε(t) :=





t/ε if t ≤ ε,

1 otherwise.

Let N > td(2Kd

η rd
)d and R = {R1, . . . , RN} be an area-regular partition pro-

vided by Proposition 1. For each i = 1, . . . , N choose a point xi ∈ Ri such

that Ri contains a spherical cap of radius bdN
−1/d with center at xi. Recall

that ‖R‖ ≤ KdN
−1/d.

Let P ∈ Pt. By Lemma 3 for each i = 1, . . . , N there exists a unique

zi = zi(P ) ∈ Ri satisfying

(20) (zi,∇P (xi)) = max
x∈Ri

(x,∇P (xi)),

provided that ∇P (xi) 6= 0. In the case ∇P (xi) = 0 put zi = xi. Let

γ[xi,zi] : [0, 1] → Ri be a geodesic connecting xi and zi. We assume that

the curve γ[xi,zi] has an equal-speed parametrization, i.e. the derivative with

respect to parameter h satisfies |γ′
[xi,zi]

(h)| = dist(xi, zi) for h ∈ (0, 1). Define

(21) xi(P ) := γ[xi,zi] ((1− δ) gε( | ∇P (xi)| )) .

By the definition of gε the map xi : Pt → Sd is continuous in a small

neighborhood of the set {P ∈ Pt|∇P (xi) = 0}. On the other hand, part (ii)
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of Lemma 3 implies that xi is continuous on the set {P ∈ Pt : ∇P (xi) 6= 0}.
Thus the maps x1, . . .xN are continuous in Pt. The following Lemma 4 will

finish the proof of Theorem 1.

Lemma 4. There exist constants ε, δ, η depending only on d such that for

each N > td(2Kd

η rd
)d the N-tuple of maps x1, . . . ,xN : Pt → Sd defined by (21)

satisfies the following properties:

(22)
1

N

N∑

i=1

P (xi(P )) > 0

for all P ∈ ∂Ω and

(23) dist(xi(P ),xj(P )) > λdN
−1/d, 1 ≤ i < j ≤ N,

for all P ∈ Ω.

Proof. Fix P ∈ Pt. For each i = 1, . . . , N choose zi,max ∈ Ri such that

P (zi,max) = maxx∈Ri
P (x). Denote yi,ε := γ[xi,zi](gε(|∇P (xi)|)), where zi and

γ are as in (21). We can split the sum (22) into four pieces

1

N

N∑

i=1

P (xi(P )) =
1

N

N∑

i=1

P (zi,max)(24)

+
1

N

N∑

i=1

(P (zi)− P (zi,max))

+
1

N

N∑

i=1

(P (yi,ε)− P (zi))

+
1

N

N∑

i=1

(P (xi(P ))− P (yi,ε)).

We will estimate each of these sums separately.

Clearly,

(25)
1

N

N∑

i=1

P (zi,max) =

N∑

i=1

∫

Ri

(
P (zi,max)− P (x)

)
dµd(x).
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Now note that if zi,max 6∈ ∂Ri for some i = 1, . . . , N then ∇P (zi,max) = 0,

therefore

(26) P (zi,max)− P (x) ≥ min
y∈Ri

| ∇P (y)| dist(x, ∂Ri)

for all i = 1, . . . , N and x ∈ Ri. Let Ai be a spherical cap of radius bdN
−1/d

contained in Ri. Since ‖R‖ ≤ KdN
−1/d we obtain that

(27)

∫

Ri

dist(x, ∂Ri)dµd(x) ≥
∫

Ai

dist(x, ∂Ai)dµd(x) ≥ βd
‖R‖
N

,

for some constant βd. Thus, it follows from (25) and (26) that

1

N

N∑

i=1

P (zi,max) ≥ βd
‖R‖
N

N∑

i=1

min
y∈Ri

| ∇P (y)|.

Since by Theorem 1 we have ‖R‖ < η rd/(t + 1), using Lemma 2 we arrive

at

(28)
1

N

N∑

i=1

P (zi,max) ≥ ‖R‖ βd (1− 8dη)

∫

Sd

| ∇P (x)| dµd(x).

Next we estimate the sum

1

N

N∑

i=1

(P (zi,max)− P (zi)).

Let γ : [0, 1] → Ri be a geodesic connecting zi and zi,max. We can write

P (zi,max)− P (zi) =

∫ 1

0

(∇P (γ(h)), γ′(h)) dh ≥ 0.

By Lemma 3 (iii) the inequality (γ′(h),∇P (xi)) < 0 holds for all h ∈ (0, 1).

Thus, we have

∫ 1

0

(∇P (γ(h)), γ′(h))dh ≤
∫ 1

0

(∇P (γ(h))−∇P (xi), γ
′(h)) dh

≤
∫ 1

0

| ∇P (γ(h))−∇P (xi)| | γ′(h)| dh ≤ diamRi max
x∈Ri

| ∇P (x)−∇P (xi)|.
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Using Lemma 2 we arrive at

(29)
1

N

N∑

i=1

|P (zi,max)− P (zi)| ≤ ‖R‖ 8dη
∫

Sd

| ∇P (x)| dµd(x).

Now we estimate the third sum in the left-hand side of (24). Recall that

yi,ε =




zi for |∇P (xi)| ≥ ε

γ[xi,zi](|∇P (xi)|/ε) otherwise.

Hence, we obtain

1

N

N∑

i=1

(P (yi,ε)− P (zi)) =
1

N

∑

i:|∇P (xi)|<ε

(P (yi,ε)− P (zi)).

Since zi and yi,ε are both in Ri, we can write an obvious estimate

|P (yi,ε)− P (zi)| ≤ diamRi max
x∈Ri

| ∇P (x)|.

For each i = 1, . . . , N choose wi ∈ Ri such that | ∇P (wi)| = maxx∈Ri
| ∇P (x)|.

Then
1

N

∑

i:|∇P (xi)|<ε

| ∇P (wi)| ≤

1

N

∑

i:|∇P (xi)|<ε

(
| ∇P (wi)|−|∇P (xi)|

)
+ε+

1

N

∑

i:|∇P (xi)|≥ε

(
| ∇P (xi)|−|∇P (xi)|

)
.

Thus, Lemma 2 implies that

1

N

∑

i:|∇P (xi)|<ε

| ∇P (wi)| ≤ ε+ 8dη

∫

Sd

| ∇P (x)| dµd(x).

Hence, we arrive at

(30)

∣∣∣∣∣
1

N

N∑

i=1

(
P (yi,ε)− P (zi)

)
∣∣∣∣∣ ≤ ‖R‖

(
ε+ 8dη

∫

Sd

| ∇P (x)| dµd(x)
)
.
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It remains to estimate the sum

1

N

N∑

i=1

(P (xi(P ))− P (yi,ε)).

The distance between xi(P ) and yi,ε is less than δ ‖R‖. Hence,
∣∣∣∣∣
1

N

N∑

i=1

(P (xi(P ))− P (yi,ε))

∣∣∣∣∣ ≤
δ ‖R‖
N

N∑

i=1

max
x∈Ri

| ∇P (x)|.

Using again Lemma 2 we arrive at

(31)

∣∣∣∣∣
1

N

N∑

i=1

(P (xi)− P (yi,ε))

∣∣∣∣∣ ≤ ‖R‖ δ (1 + 8dη)

∫

Sd

| ∇P (x)| dµd(x).

Now for P ∈ ∂Ω, we get by (24), (28), (29), (30), and (31) that

(32)
1

N

N∑

i=1

P (xi(P )) ≥ ‖R‖(βd(1− 8dη)− 8dη − (8dη + ε)− δ(1 + 8dη)).

Take η = βd/(48d), δ = βd/3 and ε = βd/12, where βd is provided by (27).

Without loss of generality we may assume that βd < 1. Thus we get

βd(1− 8dη)− 8dη − (8dη + ε)− δ(1 + 8dη) > 0,

which together with (32) imply (22).

It remains to show the separation property (23). Fix P ∈ Ω and i ∈
1, . . . , N . By the definition (21), xi(P ) is in Ri. Thus to prove (23) it is

enough to show that dist(xi(P ), ∂Ri) ≥ λdN
−1/d for some constant λd. Recall

that xi(0) = xi, and Ri contains a spherical cap of radius r = bdN
−1/d with

center at xi. The main reason why xi(P ) is “far away” from the boundary

∂Ri is because xi(P ) lies on the geodesic γ[xi,zi], where zi ∈ Ri, and

dist(xi,xi(P )) ≤ (1− δ)dist(xi, zi).

We will also use the fact that Ri is geodesically convex and contains a spher-

ical cap of “big” radius with center at xi.
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Denote by Txi
the space of all vectors in R

d+1 orthogonal to xi and let

p : Rd+1 → Txi
be the orthogonal projection

p(z) = z − (xi, z)xi.

As we have pointed out in Lemma 3 the image Si = p(Ri) is a convex subset

in Txi
. Clearly,

dist(xi(P ), ∂Ri) ≥ disteuc(p(xi(P )), ∂Si),

where disteuc(z, ∂Si) stands for the Euclidean distance between point z and

the set ∂Si in Txi
. The point p(xi(P )) lies between the points p(xi) = 0 and

p(zi) on the line connecting them. Thus we have

(33) |p(xi)− p(zi)| = sin(dist(xi, zi)),

and

(34) |p(xi)− p(xi(P ))| ≤ sin((1− δ)dist(xi, zi)).

Moreover, the fact that Ri contains the spherical cap A(xi, r) implies that

(35) disteuc(p(xi), ∂Si) ≥ sin r.

Finally we note that the function disteuc(z, ∂Si) is concave on Si. Therefore

by (33)-(35) we get

dist(xi(P ), ∂Ri) ≥
δ

2
sin r ≥ λdN

−1/d,

which implies (23). Lemma 4 is proved.
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