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HARMONIC MAASS-JACOBI FORMS WITH SINGULARITIES

AND A THETA-LIKE DECOMPOSITION

KATHRIN BRINGMANN, MARTIN RAUM, AND OLAV K. RICHTER

Abstract. Real-analytic Jacobi forms play key roles in different areas of mathematics and

physics, but a satisfactory theory of such Jacobi forms has been lacking. In this paper, we fill

this gap by introducing a space of harmonic Maass-Jacobi forms with singularities which

includes the real-analytic Jacobi forms from Zwegers’s PhD thesis. We provide several

structure results for the space of such Jacobi forms, and we employ Zwegers’s µ̂-functions

to establish a theta-like decomposition.

1. Introduction

Jacobi forms have a long history, and they provide deep links between different types of

automorphic objects. An extraordinary Jacobi form is Zwegers’s real-analytic function µ̂,

which is a crucial tool in his PhD thesis [26] on mock theta functions. This µ̂-function and

similar real-analytic Jacobi forms also play a role in the theory of Donaldson invariants of

CP2 that are related to gauge theory (see for example Göttsche and Zagier [12], Göttsche,

Nakajima, Yoshioka [11], and Malmendier and Ono [16]), and they also appear in the Mathieu

moonshine (see for example Eguchi, Ooguri, and Tachikawa [9]). Naturally, one wishes to

better understand real-analytic Jacobi forms. In [5], the first and third author suggest

a definition of harmonic Maass-Jacobi forms, which up to singularities includes Zwegers’s

µ̂-function. However, the definition in [5] only allows Jacobi forms without singularities, and

hence the µ̂-function itself does not belong to the space of such forms. Another drawback is

that the entire space of Jacobi forms in [5] is too large, and it seems impossible to analyze

the structure of that space as a whole.

In this paper, we improve the definition in [5] by introducing the space MJ∆,H
k,m of Heisen-

berg harmonic (H-harmonic) Maass-Jacobi forms (see Definition 3.4). This is a space of real-

analytic Jacobi forms with singularities that are annihilated by the Casimir operator Ck,m
in (2.3) and also by the Heisenberg Laplace operator ∆H

m (a Jacobi form analogue of the usual

Laplace operator) in (2.4). This new space of Jacobi forms contains Zwegers’s µ̂-function.

We are able to describe this space explicitly, and we give a series of structure results for it.

We now explain our main results in more detail.
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Recall that the Fourier series expansion of a harmonic weak Maass forms consists of a

holomorphic part and a non-holomorphic part. The holomorphic part has the shape of

a weakly-holomorphic modular form, while the non-holomorphic part is more complicated

and also features the special function H in (3.11). Bruinier and Funke’s [6] operator ξk
maps harmonic weak Maass forms of weight k to weakly-holomorphic modular forms of

weight 2 − k. Hence, one may view ξk as a differential operator that “simplifies” the space

of harmonic weak Maass forms. We encounter similar phenomena in our situation. We

consider the differential operators ξHk,m (defined in (3.1)) and ξk,m (defined in (3.6)), which

are analogs of ξk. H-harmonic Maass-Jacobi forms that are annihilated by these operators

are Jacobi forms with an easier structure. For example, if a H-harmonic Maass-Jacobi form

without singularities is annihilated by ξHk,m, then it is semi-holomorphic, i.e., holomorphic in

the Jacobi variable z.

We introduce the following spaces of Jacobi forms of weight k and index m, where here and

throughout the paper we always assume that k and m are half-integers and that m 6= 0: The

subspaces of forms in MJ∆,H
k,m that are annihilated by ξk,m and ξHk,m are denoted by MJδ,Hk,m

and MJ∆,h
k,m, respectively, and MJδ,hk,m := MJδ,Hk,m ∩MJ∆,h

k,m. We write Jδ,hk,m ⊆ MJδ,hk,m, J∆,h
k,m ⊆

MJ∆,h
k,m, Jδ,Hk,m ⊆ MJδ,Hk,m, and J∆,H

k,m ⊆ MJ∆,H
k,m for the subspaces of forms without singularities.

Note that we suppress the superscript ! that some authors would use to distinguish the

space of holomorphic and weakly holomorphic Jacobi forms. Table 1 lists key characteristics

of the above spaces. The first four spaces consist of smooth functions, while the last four

spaces include Jacobi forms with singularities. The prefix “M” stands for “meromorphic

singularities”; see Corollary 4.4 in this context.

Elements are

smooth annihilated by annihilated by

Space ξHk,m ξk,m

Jδ,hk,m X X X

J∆,h
k,m X X —

Jδ,Hk,m X — X

J∆,H
k,m X — —

MJδ,hk,m — X X

MJ∆,h
k,m — X —

MJδ,Hk,m — — X

MJ∆,H
k,m — — —

Table 1. Spaces of H-harmonic Maass-Jacobi forms
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In Sections 3 and 4 we also study skew-Maass-Jacobi forms, but here we only give structure

results for the spaces in Table 1.

Theorem 1.1.

(1) We have J∆,H
k,m = J∆,h

k,m and Jδ,Hk,m = Jδ,hk,m, i.e., any H-harmonic Maass-Jacobi form without

singularities is semi-holomorphic. If m < 0, then J∆,h
k,m = Jδ,hk,m = {0}.

(2) We have MJ∆,h
k,m = J∆,h

k,m + MJδ,hk,m, i.e., any φ ∈ MJ∆,h
k,m can be written as the sum

of a semi-holomorphic Jacobi form and a meromorphic Jacobi form. In particular, if

0 6= φ ∈ MJ∆,h
k,m is not meromorphic, then m > 0.

(3) We have MJ∆,H
k,m = J∆,h

k,m + MJδ,Hk,m, i.e., any φ ∈ MJ∆,H
k,m can be written as the sum

of a semi-holomorphic Jacobi form and a Jacobi form that is annihilated by ξk,m. In

particular, if 0 6= φ ∈ MJ∆,H
k,m does not vanish under ξk,m, then m > 0.

(4) If m > 0, then MJ∆,H
k,m = MJ∆,h

k,m and MJδ,Hk,m = MJδ,hk,m, i.e., every H-harmonic Maass-

Jacobi form of positive index is semi-holomorphic.

Before we continue, we give examples of the spaces given in Table 1.

Example 1.2.

(1) The usual Jacobi forms and weak Jacobi forms in [10] belong to Jδ,hk,m (which is Jδ,Hk,m by

Theorem 1.1 (1)).

(2) The semi-holomorphic Jacobi-Poincaré series P(n,r)
k,m in [5] are examples of J∆,h

k,m (which

is J∆,H
k,m by Theorem 1.1 (1)).

(3) If 0 6= φ ∈ Jδ,hk,m, then 1
φ ∈ MJδ,h−k,−m.

(4) Theorem 1.1 (2) asserts that a typical element in MJ∆,h
k,m is a sum of a semi-holomorphic

Maass-Jacobi form and a meromorphic Jacobi form. For example, let P(n,r)
k,m be the semi-

holomorphic Jacobi-Poincaré series in [5], and let φ10,1 and φ12,1 be the usual Jacobi cusp

forms of index 1 and weights 10 and 12, respectively. Then P(12,0)
14,1 +

(φ12,1)2

φ10,1
∈ MJ∆,h

14,1.

(5) Let φ ∈ Jsk,δ,hk,m (defined in Section 3) with theta decomposition φ =
∑

l (mod 2m) hl θm,l and

µ̂m,l as in (5.8). Theorem 5.2 implies that
∑

l (mod 2m) hl µ̂m,l ∈ MJδ,Hk,−m.

(6) Theorem 1.1 (3) gives MJ∆,H
k,−m = MJ∆,h

k,−m + MJδ,Hk,−m, which shows how to construct

examples of forms in MJ∆,H
k,−m.

(7) Zwegers’s [26] real-analytic Jacobi form µ̂ has a decomposition of the form µ̂ = µ1 + µ̂2,

where µ1 is a meromorphic Jacobi form on H×C2 and where µ̂2 is a real analytic Jacobi

form on H×C (see the footnote (1) on page 7 of [25] and also (5.10)). Note that the image

of µ̂2 under ξ 1
2
,− 1

2
was given incorrectly in [5], and it should have been ξ 1

2
,− 1

2
(µ̂2) = 0.

One finds that µ̂2 ∈ MJδ,H1
2
,− 1

2

.

Recall that harmonic weak Maass forms are uniquely determined by their singularities

at the cusps up to holomorphic modular forms, which are zero for negative weight. Theo-

rem 1.1 (1) provides the corresponding result for H-harmonic Maass-Jacobi forms. Specifi-

cally, H-harmonic Maass-Jacobi forms are uniquely determined by their singularities up to
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semi-holomorphic Maass-Jacobi forms, which are zero for negative index. Note that the

recent work of Dabholkar, Murthy, and Zagier [8] on quantum black holes and mock mod-

ular forms features mock Jacobi forms, which may be viewed as the holomorphic parts of

semi-holomorphic Maass-Jacobi forms. Theorem 1.1 (1) implies that [8] investigates pre-

cisely the holomorphic parts of H-harmonic Maass-Jacobi forms without singularities. Such

Jacobi forms play also an important role in fully understanding modularity properties of

Kac-Wakimoto characters (see the first author and Olivetto [3]).

We now turn our attention to another main result. The classical Jacobi forms in Eichler

and Zagier [10] have a theta decomposition, which can be phrased as in (5.4). It is easy to see

that the semi-holomorphic Maass-Jacobi forms in [5] also have such a theta decomposition.

In this paper, we employ the µ̂-functions from Zwegers [26, 27] to establish a theta-like

decomposition for H-harmonic Maass-Jacobi forms. More precisely, let M !
k− 1

2
,ρ̌m

be the space

of weakly holomorphic vector-valued modular forms of weight k− 1
2 and type ρ̌m (see Section 5

for details), and let µ̂m,l be the (completed) vector-valued Jacobi form defined in (5.8), and

which is a specialization of Zwegers’s function in [27]. Theorem 5.2 gives the theta-like

decomposition for H-harmonic Maass-Jacobi forms, which can also be stated as follows:

Theorem 1.3. Let m > 0. The spaces M !
k− 1

2
,ρ̌m

and MJδ,Hk,−m /MJδ,hk,−m are isomorphic via

(
hl
)
l
7−→

∑

l (mod 2m)

hl µ̂m,l.

The theta decomposition of classical Jacobi forms in [10] has a natural explanation in terms

of representation theory, which is discussed in detail in Berndt and Schmidt [1]. Specifically,

let πmSW be the Schrödinger-Weil representation of the real Jacobi group with a certain central

character. Then the map

π̃ 7−→ π := π̃ ⊗ πmSW

gives a one-to-one correspondence between genuine automorphic representations π̃ of the

metaplectic double cover of SL2(R) and automorphic representations π of the real Jacobi

group. It would be interesting to find such a representation theoretic interpretation of the

theta-like decomposition in Theorem 1.3. Note that there is no such immediate analog in

representation theoretic language, since nontrivial elements of MJδ,Hk,−m /MJδ,hk,−m correspond

to functions that are not in L2. We expect that a combination of Theorems 1.1 and 1.3

will yield new relations of certain quantities that, so far, have been treated by means of

mixed mock modular forms (for example, “contributions of bounded states of two primitive

constitutents with primitive D4-brane charges to the full N = 2 supergravity partition

function”; see Section 4 and Appendix A in Manschot [17]).

The paper is organized as follows. In Section 2, we review differential operators for the

Jacobi group. In Section 3, we define H-harmonic Maass-Jacobi forms, and we explore their

Fourier series expansions. In Section 4, we apply tools from complex analysis of several

variables to study Maass-Jacobi forms with singularities, and we prove Theorem 1.1 (2).

In Section 5, we determine the structure of H-harmonic Maass-Jacobi forms, and we prove

Theorem 1.1 (1), (3), and (4), and Theorem 1.3. Finally, in Section 6 we discuss H-quasi
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Maass-Jacobi forms, which are real-analytic Jacobi form analogs of the usual quasimodular

forms.

2. Differential operators for the Jacobi group

In this section, we briefly review differential operators for the Jacobi group. Such operators

have been studied in detail in the integral weight case (see [1, 20, 21]), but it is easy to see that

the results carry over to the half-integral weight setting. We will summarize these results,

after introducing necessary notation. Throughout, we write τ = x + iy ∈ H (the usual

complex upper half plane) and z = u+ iv ∈ C. Recall that the metaplectic cover Mp2(R) of

SL2(R) is the group of pairs (g, ω), where g =
(
a b
c d

)
∈ SL2(R) and ω : H → C, τ 7→

√
cτ + d

for a holomorphic choice of the square root, with group law

(g, ω)(g′, ω′) = (gg′, ω ◦ g′ · ω′).

Let GJ := GJ(R) := Mp2(R)⋉ (R2×̃R) be the metaplectic real Jacobi group with group law

(
M,X, κ

)(
M ′,X ′, κ′

)
:=
(
MM ′,XM ′ +X ′,det

(
XM ′

X ′

)
+ κ+ κ′

)

and let ΓJ := Mp2(Z)⋉Z2 be the full Jacobi group, where Mp2(Z) is the preimage of SL2(Z) in

Mp2(R). For fixed half-integers k and m, and for all A =
[( (

a b
c d

)
,
√
cτ + d

)
, (λ, µ), κ

]
∈ GJ ,

define the following slash operators on functions φ : H× C → C :
(
φ
∣∣
k,m

A
)
(τ, z) :=(2.1)

φ
(aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(
√
cτ + d)−2k e2πim

(
− c(z+λτ+µ)2

cτ+d
+λ2τ+2λz+λµ+κ

)

and
(
φ
∣∣sk
k,m

A
)
(τ, z) :=(2.2)

φ
(aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
(
√
cτ + d)2−2k |cτ + d|−1 e2πim

(
− c(z+λτ+µ)2

cτ+d
+λ2τ+2λz+λµ+κ

)
.

If κ = 0, then by a slight abuse of notation we write
[( (

a b
c d

)
,
√
cτ + d

)
, (λ, µ)

]
instead of[( (

a b
c d

)
,
√
cτ + d

)
, (λ, µ), 0

]
∈ GJ . For convenience, we define

∂τ :=
∂

∂τ
=

1

2

(
∂

∂x
− i

∂

∂y

)
, ∂τ :=

∂

∂τ
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

∂z :=
∂

∂z
=

1

2

(
∂

∂u
− i

∂

∂v

)
, ∂z :=

∂

∂z
=

1

2

(
∂

∂u
+ i

∂

∂v

)
.

The raising operators and lowering operators with respect to actions in (2.1) and (2.2) are

given by the differential operators,
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Xk,m
+ := 2i

(
∂τ +

v

y
∂z + 2πim

v2

y2

)
+
k

y
, Xk,m

− := −2iy
(
y∂τ + v∂z

)
,

Y k,m
+ := i∂z − 4πm

v

y
, Y k,m

− := −iy∂z,

Xsk; k,m
+ := 2i

(
y2∂τ + yv∂z + 2πimv2

)
+ 1

2y, Xsk; k,m
− := −2i

(
∂τ +

v

y
∂z

)
+
(
k − 1

2

)1
y

Y sk; k,m
+ := iy∂z − 4πmv, Y sk; k,m

− := −i∂z.

The following proposition summarizes their properties.

Proposition 2.1. ([1, 21]) If A ∈ GJ and φ ∈ C∞(H× C), then

Xk,m
±

(
φ
∣∣
k,m

A
)
=
(
Xk,m

± φ
) ∣∣

k±2,m
A, Y k,m

±
(
φ
∣∣
k,m

A
)
=
(
Y k,m
± φ

) ∣∣
k±1,m

A,

Xsk; k,m
±

(
φ
∣∣sk
k,m

A
)
=
(
Xsk; k,m

± φ
) ∣∣sk

k∓2,m
A, Y sk; k,m

±
(
φ
∣∣sk
k,m

A
)
=
(
Y sk; k,m
± φ

) ∣∣sk
k∓1,m

A.

The Casimir operator with respect to the action in (2.1) is given by

Ck,m := 2Xk−2,m
+ Xk,m

− − 1
2πm

(
Xk−2,m

+ Y k−1,m
− Y k,m

− − Y k−1,m
+ Y k−2,m

+ Xk,m
−
)

(2.3)

+ 1
2πm(k − 2)Y k−1,m

+ Y k,m
− ,

and the Casimir operator with respect to the action in (2.2) is given by (normalized as in

[4])

Csk
k,m := 8πim

(
y

1
2
−kC1−k,my

k− 1
2

)
+ 2k − 1

(see also [1, 20, 5, 7, 21]).

Throughout, we adopt the following terminology. A real-analytic φ : H× C → C is semi-

meromorphic if φ(τ, · ) is meromorphic with isolated singularities for all τ ∈ H. In this case

φ is annihilated by Y k,m
− or by Y sk;k,m

− . Moreover, we call a semi-meromorphic function that

has no singularities semi-holomorphic. Finally, if φ is annihilated by the Heisenberg Laplace

operator

∆H
m := Y k−1,m

+ Y k,m
− = Y sk; k+1,m

+ Y sk; k,m
− ,(2.4)

then φ is Heisenberg harmonic (H-harmonic). Note that the differential operator ∆0 in [1,

p. 38] is very similar to ∆H
m.

3. H-harmonic Maass-Jacobi forms

The understanding of Maass-Jacobi forms is evolving with connections to different areas of

mathematics and physics. Maass-Jacobi forms were first introduced by Berndt and Schmidt

[1], and then more thoroughly investigated by Pitale [20]. The first and third author [5]

extended Pitale’s approach even further to include weak Maass-Jacobi forms. The theory in

[5] includes new examples in the form of semi-holomorphic Poincaré series, but lacked new
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examples that are not holomorphic in z. The notion of harmonic Maass-Jacobi forms in [5]

is also quite general, and refinements of the definition of Maass-Jacobi forms are needed. In

this section, we introduce the space MJ∆,H
k,m of Heisenberg harmonic (H-harmonic) Maass-

Jacobi forms, and we give the differential operators that are needed to define its subspaces

in Table 1. These subspaces provide the desired refinements of Maass-Jacobi forms.

First we recall the weight k hyperbolic Laplacian

∆k := −4y2∂τ∂τ + 2kiy∂τ ,

which is needed for the definition of harmonic weak Maass forms:

Definition 3.1 (Harmonic weak Maass forms). A harmonic weak Maass form of weight k

on a congruence subgroup Γ ⊂ Mp2(Z) is a real-analytic function f : H → C satisfying the

following conditions:

(1) For all
( (

a b
c d

)
,
√
cτ + d

)
∈ Γ, we have f

(
aτ+b
cτ+d

)
=

√
cτ + d

2k
f(τ).

(2) We have that ∆k(f) = 0.

(3) The function f has at most linear exponential growth at all cusps of Γ.

Let Mk denote the space of harmonic Maass forms of weight k, and denote its subspace of

weakly holomorphic modular forms by M!
k ⊂ Mk.

The next definition allows us to define Jacobi forms with singularities in Definition 3.4.

Definition 3.2. We say that a function φ : Rn → C has a singularity of type fg−1 at

x ∈ Rn if there are non-zero real-analytic functions f and g on a neighborhood U ⊂ Rn of

x such that φ − fg−1 can be extended to a real-analytic function on U . In addition, if φ is

defined on a space with a complex structure and if f and g are holomorphic, then we say that

φ has a singularity of meromorphic type.

Remark 3.3. Functions whose natural domain of definition (see [18] for details) are multi

sheeted lead to singularities that are not as in Definition 3.2. Prominent examples are loga-

rithmic singularities and roots.

We now improve the definition of harmonic Maass-Jacobi forms in [5].

Definition 3.4 (H-harmonic Maass-Jacobi forms). Let φ : H × C → C be a real-analytic

function except for possible singularities of type fg−1, where f and g are real-analytic, such

that the singularities of φ(τ, · ) are isolated for every τ ∈ H. Then φ is an H-harmonic

Maass-Jacobi form of weight k and index m if the following conditions are satisfied:

(1) For all A ∈ ΓJ, we have φ
∣∣
k,m

A = φ.

(2) We have that Ck,m(φ) = 0.

(3) We have that ∆H
m(φ) = 0.

(4) For every α, β ∈ Q such that {(τ, ατ + β) : τ ∈ H} is not a polar divisor of φ, we have

that φ(τ, ατ + β) = O
(
eay
)

as y → ∞ for some a > 0.

We write MJ∆,H
k,m for the space of such forms.
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Remark 3.5. We call condition (4) in the previous definition the growth condition. A

priori, it is not clear if there are α, β such that the function φ(τ, ατ + β) has singularities

for arbitrary large y. However, Proposition 5.4 shows that this is not the case. Note that we

need the growth condition (4) only in the proof of Theorems 1.3 and 5.2, in order to establish

a relation to harmonic weak Maass forms, which also satisfy a certain growth condition.

In the following we define analogs of Bruinier and Funke’s [6] operator ξk, which are needed

to characterize the spaces of Jacobi forms in Table 1. Set

ξHk,m(φ) :=
√−my−1

exp
(
− 4πmv2

y

)
Y k,m
− (φ) and(3.1)

ξsk,Hk,m (φ) :=
√−my exp

(
− 4πmv2

y

)
Y sk;k,m
− (φ).(3.2)

The operators ξHk,m and ξsk,Hk,m are covariant with respect to the actions in (2.1) and (2.2): If

φ is a smooth function on H× C and A ∈ GJ , then
(
ξHk,m(φ)

)∣∣sk
k,−m

A = ξHk,m

(
φ
∣∣
k,m

A
)

and(3.3)

(
ξsk,Hk,m (φ)

)∣∣
k,−m

A = ξsk,Hk,m

(
φ
∣∣sk
k,m

A
)
.(3.4)

Recall that the weight k hyperbolic Laplacian factors as ∆k = −ξ2−k ◦ ξk. Similarly, one

finds that

∆H
m = ξsk,Hk,−m ◦ ξHk,m = ξHk,−m ◦ ξsk,Hk,m .(3.5)

From [5] and [4] recall the definitions

ξk,m(φ) := yk−5/2
(
Xk,m

− (φ)− 1
4πmY

k−1,m
− Y k,m

− (φ)
)

and(3.6)

ξskk,m
(
φ
)
:= yk−5/2

(
Xsk;k,m

+ (φ)− 1
4πmY

sk;k+1,m
+ Y sk;k,m

+ (φ)
)
= 1

4πmy
k− 1

2 Lm(φ),(3.7)

where Lm := 8πim∂τ − ∂2z is the usual heat-operator. The operators ξk,m and ξskk,m are also

covariant with respect to the actions in (2.1) and (2.2): If φ is a smooth function on H× C

and A ∈ GJ , then
(
ξk,m(φ)

)∣∣sk
3−k,m

A = ξk,m

(
φ
∣∣
k,m

A
)

and(3.8)

(
ξskk,m(φ)

)∣∣
3−k,m

A = ξskk,m

(
φ
∣∣sk
k,m

A
)
.(3.9)

The actions of the Casimir operators simplify when applied to semi-meromorphic functions.

Precisely, if φ is semi-meromorphic, then one verifies that

Ck,m(φ) = 2 ξsk3−k,m ◦ ξk,m(φ) and Csk
k,m(φ) = 2 ξ3−k,m ◦ ξskk,m(φ).(3.10)

We also consider the space MJsk,∆,H
k,m of H-harmonic skew-Maass-Jacobi forms of weight

k and index m. This space consists of functions φ as in Definition 3.4, where conditions (1)

and (2) are replaced by
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(1’) For all A ∈ ΓJ, we have φ
∣∣sk
k,m

A = φ.

(2’) We have that Csk
k,m(φ) = 0.

The operators ξsk,Hk,m and ξskk,m allow us to define skew-Maass-Jacobi versions of the spaces

in Table 1. Specifically, the forms in MJsk,∆,H
k,m that are annihilated by ξskk,m and ξsk,Hk,m are

denoted by MJsk,δ,Hk,m and MJsk,∆,h
k,m , respectively, and MJsk,δ,hk,m := MJsk,δ,Hk,m ∩MJsk,∆,h

k,m . In this

paper, we will encounter only the following two subspaces of H-harmonic skew-Maass-Jacobi

forms without singularities: The space Jsk,δ,hk,m ⊆ MJsk,δ,hk,m , which contains Skoruppa’s skew-

holomorphic Jacobi forms (see [22, 23]), and Jsk,∆,h
k,m ⊆ MJsk,∆,h

k,m . Note that Corollary 4.3

will show that MJsk,∆,h
k,m = Jsk,∆,h

k,m , and that Jsk,∆,h
k,m = {0} if m < 0.

Our next task is to describe the Fourier series expansions of H-harmonic Maass-Jacobi

forms. For this purpose we will need the lower incomplete Gamma-function γ(s, x) :=∫ x
0 t

s−1e−t dt and the function

H(w) := e−w

∫ ∞

−2w
t
1
2
−ke−t dt.(3.11)

Observe that H(w) converges for k < 3
2 and has a holomorphic continuation in k if w 6= 0.

If w < 0, then H(w) = e−w Γ(32 − k,−2w) (see also page 55 of [6]), where Γ(s, x) :=∫∞
x ts−1e−t dt is the upper incomplete Gamma-function. Throughout, we write q := e2πiτ

and ζ := e2πiz.

Proposition 3.6. Suppose φ ∈ MJ∆,H
k,m has a local Fourier series expansion of the form
∑

n,r∈Z
D=4mn−r2

c(n, r; y, v)qnζr.(3.12)

If m > 0, then c(n, r; y, v) lies in the 2-dimensional vector space spanned by c1(n, r; y, v)

and c2(n, r; y, v) below. If m < 0, then c(n, r; y, v) lies in the 4-dimensional vector space

spanned by c1(n, r; y, v), . . . , c4(n, r; y, v) below. If D 6= 0, then

c1(n, r; y, v) = 1, c2(n, r; y, v) = H
(πDy

2m

)
exp

(πDy
2m

)
,

c3(n, r; y, v) = sgn
(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
,

c4(n, r; y, v) = H
(πDy

2m

)
exp

(πDy
2m

)
sgn
(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
.

If D = 0, then

c1(n, r; y, v) = 1, c2(n, r; y, v) = y
3
2
−k,

c3(n, r; y, v) = sgn
(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
,

c4(n, r; y, v) = y
3
2
−k sgn

(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
.
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Proof. It is easy to verify that all ci(n, r; y, v)q
nζr are in the kernels of Ck,m and ∆H

m. More-

over, for each (n, r) the differential equation Ck,m
(
c(n, r; y, v)qnζr

)
= 0 has at most four

linear independent solutions, which can be seen as follows: For fixed n, r, and y the differ-

ential equation for c(n, r; y, v) arising from ∆H
m

(
c(n, r; y, v) qnζr

)
= 0 has order 2, hence

leading to at most two linear independent solutions fi(n, r; y, v) with coefficients di(n, r; y)

(i = 1, 2). Imposing Ck,m
(
di(n, r; y)fi(n, r; y, v) q

nζr
)
= 0 yields a differential equation of

order 2 for each di(n, r; y). Thus, there are at most two linear independent solutions for each

di(n, r; y), and hence at most four linear independent solutions for c(n, r; y, v).

In Section 4 we will prove Corollary 4.4, which implies that ψ := ξHk,m(φ) has no singular-

ities. In particular, ψ is a semi-holomorphic skew-Maass-Jacobi form of index −m (observe

(3.3) and (3.5)), and if ψ 6= 0, then −m > 0. Thus, if m > 0, then c(n, r; y, v) in (3.12) is a

linear combination of the semi-holomorphic solutions c1(n, r; y, v) and c2(n, r; y, v). �

The situation for H-harmonic skew-Maass-Jacobi forms is very similar. We only record

the result on their Fourier coefficients and omit the proof.

Proposition 3.7. Let φ ∈ MJsk,∆,H
k,m such that ξsk,Hk,m (φ) has no singularities and suppose that

φ has a local Fourier series expansion of the form
∑

n,r∈Z
D=4mn−r2

csk(n, r; y, v)qnζr.(3.13)

If m > 0, then csk(n, r; y, v) lies in the 2-dimensional vector space spanned by csk1 (n, r; y, v)

and csk2 (n, r; y, v) below. If m < 0, then csk(n, r; y, v) lies in the 4-dimensional vector space

spanned by csk1 (n, r; y, v), . . . , csk4 (n, r; y, v) below. If D 6= 0, then

csk1 (n, r; y, v) = exp
(πDy
m

)
, csk2 (n, r; y, v) = H

(−πDy
2m

)
exp

(πDy
2m

)
,

csk3 (n, r; y, v) = exp
(πDy
m

)
sgn
(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
,

csk4 (n, r; y, v) = H
(−πDy

2m

)
exp

(πDy
2m

)
sgn
(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
.

If D = 0, then

csk1 (n, r; y, v) = 1, csk2 (n, r; y, v) = y
3
2
−k,

csk3 (n, r; y, v) = sgn
(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
,

csk4 (n, r; y, v) = y
3
2
−k sgn

(
r + 2mv

y

)
γ
(
1
2 ,

−πy
m

(
r + 2mv

y

)2)
.

The ξ-operators in (3.1), (3.2), (3.6), and (3.7) provide the following interplay between

the Fourier coefficients in Proposition 3.6 and Proposition 3.7.

Proposition 3.8. Let ci(n, r; y, v) and cski (n, r; y, v) be the Fourier coefficients in Propo-

sition 3.6 and Proposition 3.7, respectively. With an abuse of notation we write c̃i :=
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c̃i[k,m, n, r] := ci(n, r; y, v)q
nζr and c̃ski := c̃ski [k,m, n, r] := cski (n, r; y, v)qnζr. If D 6= 0,

then

ξk,m
(
c̃1
)
= 0, ξk,m

(
c̃2
)
= −

(−πD
m

) 3
2
−k

c̃sk1 [3− k,m, n, r],

ξk,m
(
c̃3
)
= 0, ξk,m

(
c̃4
)
= −

(
−πD

m

) 3
2
−k

c̃sk3 [3− k,m, n, r],

ξHk,m
(
c̃1
)
= 0, ξHk,m

(
c̃3
)
= −2

√
π c̃sk1 [k,−m,−n,−r],

ξHk,m
(
c̃2
)
= 0, ξHk,m

(
c̃4
)
= −2

√
π c̃sk2 [k,−m,−n,−r],

ξskk,m
(
c̃sk1
)
= 0, ξskk,m(c̃sk2 ) = −

(
πD
m

) 3
2
−k

c̃1[3− k,m, n, r],

ξskk,m
(
c̃sk3
)
= 0, ξskk,m(c̃sk4 ) = −

(
πD
m

) 3
2
−k

c̃3[3− k,m, n, r],

ξsk,Hk,m

(
c̃sk1
)
= 0, ξsk,Hk,m

(
c̃sk3
)
= −2

√
π c̃1[k,−m,−n,−r],

ξsk,Hk,m

(
c̃sk2
)
= 0, ξsk,Hk,m

(
c̃sk4
)
= −2

√
π c̃2[k,−m,−n,−r].

If D = 0, then

ξk,m
(
c̃1
)
= 0, ξk,m

(
c̃2
)
= (32 − k) c̃sk1 [3− k,m, n, r],

ξk,m
(
c̃3
)
= 0, ξk,m

(
c̃4
)
= (32 − k) c̃sk3 [3− k,m, n, r],

ξHk,m
(
c̃1
)
= 0, ξHk,m

(
c̃3
)
= −2

√
π c̃sk1 [k,−m,−n,−r],

ξHk,m
(
c̃2
)
= 0, ξHk,m

(
c̃4
)
= −2

√
π c̃sk2 [k,−m,−n,−r],

ξskk,m
(
c̃sk1
)
= 0, ξskk,m(c̃

sk
2 ) = (32 − k) c̃1[3− k,m, n, r],

ξskk,m
(
c̃sk3
)
= 0, ξskk,m(c̃

sk
4 ) = (32 − k) c̃3[3− k,m, n, r],

ξsk,Hk,m

(
c̃sk1
)
= 0, ξsk,Hk,m

(
c̃sk3
)
= −2

√
π c̃1[k,−m,−n,−r],

ξsk,Hk,m

(
c̃sk2
)
= 0, ξsk,Hk,m

(
c̃sk4
)
= −2

√
π c̃2[k,−m,−n,−r].

Proof. Observe the covariance properties of the ξ-operators in (3.3) and (3.8). All identities

of the proposition follow from straightforward computations. �

Let FEJ denote the space of real-analytic functions H×C → C that admit a local Fourier

series expansion at some point. H-harmonic Maass-Jacobi forms and H-harmonic skew-

Maass-Jacobi forms that have local Fourier series expansions are connected in a natural way



HARMONIC MAASS-JACOBI FORMS 12

via the ξ-operators in (3.1), (3.2), (3.6), and (3.7), and the following corollary is a direct

consequence of Proposition 3.6, Proposition 3.7, and Proposition 3.8.

Corollary 3.9. The following diagrams are commutative:

FEJ ∩MJsk,δ,H3−k,m

ξsk,H3−k,m

��

FEJ ∩MJ∆,H
k,m

ξk,m
oo

ξH
k,m

��

FEJ ∩MJδ,h3−k,−m FEJ ∩MJsk,∆,h
k,−m

ξsk
k,−m
oo

FEJ ∩MJδ,H3−k,m

ξH3−k,m

��

FEJ ∩MJsk,∆,H
k,m

ξsk
k,m

oo

ξsk,H
k,m

��

FEJ ∩MJsk,δ,h3−k,−m FEJ ∩MJ∆,h
k,−m

ξk,−m
oo

Remark 3.10.

(1) Any H-harmonic Maass-Jacobi form that has non-moving singularities admits a local

Fourier series expansion.

(2) It will follow from Theorem 1.1 and Proposition 4.2 that the left diagram in Corollary

3.9 is already commutative when omitting the intersections with FEJ.

4. Maass-Jacobi forms with singularities

In this section, we investigate the singularities of H-harmonic (skew)-Maass-Jacobi forms

and prove Theorem 1.1 (2). A key ingredient is the next proposition, which relies on the

theory of several complex variables.

Proposition 4.1. Let φ : H × C → C be a real-analytic function except for possible singu-

larities of type fg−1, where f and g are real-analytic, such that the singularities of φ(τ, · )
are isolated for every τ ∈ H. Suppose that ∆H

m(φ) = 0 for some half-integer m. Then either

φ has no singularities, or there exist τ0 ∈ H and real-analytic z0 : H → C such that φ has a

Laurent series expansion of the form
∑

n>−N,n′>−N ′

cn,n′(τ)
(
z − z0(τ)

)n(
z − z0(τ)

)n′

(4.1)

around
(
τ0, z0(τ0)

)
∈ H×C. In particular, if φ is semi-meromorphic, then its Laurent series

expansion around
(
τ0, z0(τ0)

)
∈ H× C equals

∑

n>−N

cn(τ)
(
z − z0(τ)

)n
.(4.2)

Proof. Suppose that φ has a singularity at
(
τ0, z0(τ0)

)
, where τ0 ∈ H and z0(τ0) ∈ C. It

suffices to show that there are open sets τ0 ∈ U ⊂ H and z0(τ0) ∈ V ⊂ C, and a real-analytic

function z0 : U → C such that for τ ∈ U the singularities of φ(τ, · ) in a neighborhood of

z0(τ0) lie exactly at z0(τ) and have the same multiplicities for all τ ∈ U .

We first assume that φ is semi-meromorphic. Choose a neighborhood U×V of
(
τ0, z0(τ0)

)
,

small enough such that φ can be considered as a meromorphic function of three complex

variables x, y ∈ Cj := R+ jR (j2 = −1) and z ∈ C restricted to (τ, z) =
(
x+ iy, z

)
∈ U × V

with x, y ∈ R. We can write φ|U×V as a quotient of two holomorphic functions f(x, y, z)

and g(x, y, z) in three variables, after possibly shrinking U and V (see the treatment of the
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Poincaré problem in [18, Proposition 3.1, Theorem 3.9]). We may also assume that f and

g are coprime, i.e., there is no open set W such that the sets of zeros of f |W and g|W are

equal.

Since φ(τ, · ) has isolated singularities, we can apply the Weierstrass Preparation Theorem

(see [18, Theorem 2.1]) to g. We find that the singularities of τ 7→ φ(τ, z) are given by a

product of powers of pairwise distinct irreducible pseudo polynomials (i.e., polynomials in z

with coefficients that are holomorphic functions of x and y) p1(x, y; z), . . . , pl(x, y; z) for some

l after possibly shrinking U and V further. Since these polynomials are coprime, one can

move τ0 within U (which may be needed if l > 1) and then shrink U and V even further such

that finally p1(x, y; z)
rφ(τ, · ) has a holomorphic continuation on U × V for some 0 < r ∈ Z.

This proves the case when φ is semi-meromorphic.

If φ is not semi-meromorphic, then we will show that the locus of singularities of φ locally

coincides with that of a semi-meromorphic function. Write φ̃ for the image of φ under ξHk,m or

ξsk,Hk,m . Equation (3.5) and the assumption that ∆H
m(φ) = 0 imply that φ̃ is semi-meromorphic,

and φ̃ has singularities that can be described as above. In particular, φ̃ has a local Laurent

series expansion of the form

∑

n>−N

c̃n(τ)
(
z − z0(τ)

)n
.

For brevity we restrict to the case φ̃ = ξHk,m(φ); the case φ̃ = ξsk,Hk,m (φ) is analogous. Then

∂z φ has a local Laurent series expansion of the form

i

√−m
y

exp
(
− πm

(z − z)2

y

) ∑

n>−N

c̃n(τ)
(
z − z0(τ)

)n
.(4.3)

If τ ∈ H is fixed, then the assumptions on the singularities of φ guarantee that φ has a local

Laurent series expansion in z and z. In particular, the coefficient of
(
z−z0(τ)

)−1
of the local

Laurent series expansion of ∂z φ is zero, and one may formally integrate (4.3) with respect

to z. This yields a real-analytic function φra, which has a locally convergent Laurent series

expansion as in (4.1), and which locally has the same locus of singularities as φ̃. Moreover,

φ− φra is semi-meromorphic and by the above it has a local Laurent series expansion as in

(4.2). Thus φ has a local Laurent series expansion as in (4.1), which concludes the proof. �

Another crucial ingredient is the following proposition:

Proposition 4.2. There is no φ ∈ MJsk,∆,H
k,m that has a local Laurent series expansion with

non-zero semi-meromorphic principal part

−1∑

n=−N

cn(τ)
(
z − z0(τ)

)n
,(4.4)

where N > 0 and c−N 6= 0.
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Proof. Let φ ∈ MJsk,∆,H
k,m with singularities, and assume that φ has a local Laurent series

expansion as in Proposition 4.1 with non-zero semi-meromorphic principal part

P(τ, z) :=

−1∑

n=−N

cn(τ)
(
z − z0(τ)

)n
,

where N > 0 and c−N 6= 0. By assumption, P is semi-meromorphic and Csk
k,m(P) = 0. The

factorization (3.10) of Csk
k,m for semi-meromorphic forms implies that ξskk,m(P) is meromorphic.

In particular, ∂τ ξ
sk
k,m(P) = 0. Explicitly, we have

ξskk,m(P) = 2i yk−
1
2

−1∑

n=−N

(
∂τ

(
cn(τ)

(
z − z0(τ)

)n)− n(n− 1)

8πim
cn(τ)

(
z − z0(τ)

)n−2
)

.(4.5)

We inspect the coefficients of
(
z − z0(τ)

)−N−3
and

(
z − z0(τ)

)−N−2
in the Laurent series

expansion of ∂τ ξ
sk
k,m(P)) and see that z0 and yk−

1
2 c−N (τ) are holomorphic. If n < 0, then

an induction argument shows that

cn(τ) =
∑

l∈Z+ 1
2

ylcn,l(τ),

where cn,l(τ) is holomorphic and the sum is finite. If n = −N , then this is true by the above.

Assume that the claim is true for all n < n0 < 0. Apply ∂τ to (4.5) to obtain

∂τ

(
2iyk−

1
2

((
∂τcn0−2

)
(τ)− (n0 − 2)

(
∂τz0

)
(τ)cn0−1(τ)−

n0(n0 − 1)

8πim
cn0(τ)

))
= 0,

which proves that cn0(τ) is of the required form.

Let n0 < 0 be maximal such that cn0 6= 0. Expand the coefficient of
(
z − z0(τ)

)n0

in the Laurent series expansion of ∂τξ
sk
k,m(P) to find that yk−

1
2
∑

l∈Z+ 1
2

(−il
2 y

l−1cn0,l(τ) +

yl∂τcn0,l(τ)
)

is holomorphic. It is easy to see that this is only possible if cn0(τ) = c y
3
2
−k for

some 0 6= c ∈ C.

Note that n0 6= −N , since yk−
1
2 cn0(τ) is not holomorphic. Consider the coefficient of(

z − z0(τ)
)n0−1

in the Laurent series expansion of ∂τ ξ
sk
k,m(P) to discover that −n0cy∂τ z0(τ)+

yk−
1
2
∑

l∈Z+ 1
2

(−il
2 y

l−1cn0−1,l(τ) + yl∂τ cn0−1,l(τ)
)

is holomorphic, which is only possible if

∂τz0(τ) is a polynomial, since the sum over l is finite.

Let AS :=
[( (

0 −1
1 0

)
,
√
τ
)
, (0, 0)

]
∈ ΓJ. If

(
τ0, z0(τ0)

)
is a singularity of φ = φ

∣∣sk
k,m

AS ,

then so is
(
τ̃0, z̃0(τ̃0)

)
, where

(
τ̃0, z̃0(τ)

)
:=
(−1
τ0
, τz0

(−1
τ

))
. Moreover, φ has a local Laurent

series expansion with non-zero semi-meromorphic principal part

P̃(τ, z) :=

−1∑

n=−N

c̃n(τ)
(
z − z̃0(τ)

)n
,

where c̃n = 0 for n > n0 and c̃n0 6= 0. By the above reasoning, c̃n0(τ) = c̃ y
3
2
−k for some

0 6= c̃ ∈ C, and z̃0 is a polynomial in τ . Observe that z̃0 has an analytic continuation to H,
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and φ has singularities along z̃0(τ) for all τ . Compare the n0-th Laurent series coefficients

of P and P̃ at (τ0, z0) = A−1
S (τ̃0, z̃0):

(
c̃n0

∣∣sk
k,m

A−1
S

)
(τ)
(−z
τ

− z̃0

(−1

τ

))n0

= c̃n0

(−1

τ

)
|τ |−1τ1−k(−τ)−n0

(
z − z0(τ)

)n0 .

The fact that φ = φ
∣∣sk
k,m

AS implies that

c̃ Im
(−1

τ

) 3
2
−k |τ |−1τ1−k(−τ)−n0 = (−1)n0 c̃ y

3
2
−k τk−2−n0τ−1 = c y

3
2
−k,

which is impossible, since c, c̃ 6= 0. This contradiction completes the proof. �

Corollary 4.3. We have MJsk,∆,h
k,m = Jsk,∆,h

k,m , and Jsk,∆,h
k,m = {0} if m < 0.

Proof. Let φ ∈ MJsk,∆,h
k,m , and assume that φ(τ0, · ) has singularities for some τ0 ∈ H. Con-

sider the Laurent series expansion of φ around a singular point
(
τ0, z0(τ0)

)
(see Proposi-

tion 4.1):

∑

n≥−N

cn(τ)
(
z − z0(τ)

)n

for some N > 0 and c−N 6= 0. The functions cn : H → C are real-analytic and z0(τ)

parametrizes the singularities in a neighborhood of
(
τ0, z0(τ0)

)
. However, Proposition 4.2

implies the contradiction cn = 0 for n < 0. Hence φ has no singularities and MJsk,∆,h
k,m =

Jsk,∆,h
k,m .

The second part follows from the residue theorem as in the proof of [10, Theorem 1.2]. �

We are now in a position to prove Theorem 1.1 (2).

Proof of Theorem 1.1 (2). If φ ∈ MJ∆,h
k,m, then Corollary 3.9 and Corollary 4.3 imply that

ξk,m(φ) ∈ Jsk,δ,h3−k,m. Moreover, if ξk,m(φ) 6= 0, then m > 0. Note that ξk,m : J∆,h
k,m → Jsk,δ,h3−k,m

is surjective. For the subspace of cusp forms of Jsk,δ,h3−k,m, this observation is the remark after

Theorem 2 of [5]. It is easy to see that the argument with Jacobi-Poincaré series given there

holds for all weak skew-holomorphic Jacobi forms of weight 3−k and index m. In particular,

there exists ψ ∈ J∆,h
k,m such that ξk,m(ψ) = ξk,m(φ). We find that φ− ψ is meromorphic, and

φ = ψ + (φ− ψ) is the desired decomposition. �

We end this section with a corollary, whose proof does not rely on Proposition 3.6, Propo-

sition 3.7, and Proposition 3.8.

Corollary 4.4. Let φ ∈ MJ∆,H
k,m . Then ∂z(φ) has no singularities.

Proof. If ∂z(φ) had singularities, then so would ξHk,m(φ). However, (3.3), (3.5), and Corol-

lary 4.3 yield that ξHk,m(φ) ∈ Jsk,∆,h
k,−m has no singularities. �
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5. Theta decompositions

It is well-known that holomorphic and skew-holomorphic Jacobi forms have a theta decom-

position (see [10, 23]). This follows directly from the invariance under the Heisenberg part

of ΓJ, and hence semi-holomorphic forms in J∆,h
k,m and Jsk,∆,h

k,m also have such a theta decom-

position. Specifically, if 0 6= φ ∈ J∆,h
k,m is semi-holomorphic, then m > 0 by Theorem 1.1 (2),

and

φ(τ, z) =
∑

l (mod 2m)

hl(τ) θm,l(τ, z),

where hl are harmonic weak Maass forms and

θm,l(τ, z) :=
∑

r≡l (mod 2m)

q
r2

4m ζr,(5.1)

where we write again q := e2πiτ and ζ := e2πiz. For semi-holomorphic skew-Maass-Jacobi

forms we have an analogous decomposition
∑

l hl θm,l.

We now review a more precise viewpoint of the theta decomposition. Recall that the

metaplectic cover Mp2(Z) of SL2(Z) is generated by T :=
(
( 1 1
0 1 ) , 1

)
and S :=

( (
0 −1
1 0

)
,
√
τ
)
,

where the root is given by the principal branch. The Weil representation ρm of Mp2(Z)

associated to the Jacobi index m > 0 is defined as follows (for example, see [24] for details).

It is a representation of Mp2(Z) on the group algebra C
[
Z/2mZ

]
, which has canonical basis

elements el for l ∈ Z/2mZ:

ρm(T ) el := e4m(l2) el,(5.2)

ρm(S) el :=
1√
2im

∑

l′ (mod 2m)

e2m(−ll′)el′ ,(5.3)

where here and throughout this section, em(w) := e
2πiw
m . We denote the dual Weil represen-

tation by ρ̌m.

The Weil representation factors over the congruence subgroup

Mp2(Z)[4m] :=
{(a b

c d

)
: a ≡ d ≡ 1 (mod 4m) and b ≡ c ≡ 0 (mod 4m)

}
.

Given h : H → C[Z/2mZ], we define a vector-valued slash action of Mp2(Z):

h
∣∣
k,ρm

g := ρm(g)h
∣∣
k
g

for all g ∈ Mp2(Z). We say that a map h : H → C[Z/2mZ] is a vector-valued modular

form if every component is a modular form (for some congruence subgroup) and if h is

invariant under the
∣∣
k,ρm

-action of Mp2(Z). This definition extends to vector-valued harmonic

weak Maass forms of weight k and type ρm. We write Mk,ρm for the space of such forms,

and M!
k,ρm

⊂ Mk,ρm for the subspace of weakly holomorphic vector-valued modular forms

of weight k and type ρm. Vector-valued Jacobi forms can be defined analogously. The

transformation laws of θm,l (see §5 of [10]) yield that (θm,l)l is a vector-valued Jacobi form

of weight 1
2 , index m, and type ρ̌m.
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The theta decomposition for Jacobi forms can be stated more precisely as an isomorphism

between vector-valued modular forms and Jacobi forms (for example, see [24]). It is easy

to see that such isomorphisms hold also for semi-holomorphic forms in J∆,h
k,m and Jsk,∆,h

k,m .

Specifically,

Mk− 1
2
,ρm

−→ J∆,h
k,m, (hl)l 7−→

∑

l

hl θm,l and(5.4)

Mk− 1
2
,ρ̌m

−→ Jsk,∆,h
k,m , (hl)l 7−→

∑

l

hl θm,l(5.5)

are bijective for m > 0.

We next recall a set of µ-functions from Zwegers [26, 27] that will serve as a substitute for

the theta series in (5.1). Let m > 0. For n ∈ Z2m, write |n| :=∑2m
i=1 ni and ‖n‖ :=

∑2m
i=1 n

2
i .

Define

µm(z1, z2; τ) :=
eπiz1

θ(z2; τ)2m

∑

n∈Z2m

(−1)|n|q
1
2
‖n‖2+ 1

2
|n|e2πi|n|z2

1− e2πiz1q|n|
,(5.6)

where

θ(z; τ) :=
∑

r∈Z+ 1
2

(−1)r+
1
2 q

r2

2 ζr(5.7)

is a Jacobi theta function, and

R(z; τ) :=
∑

n∈Z+ 1
2

(
sgn(n)− E

(√
2y
(
n+ v

y

)))
(−1)n−

1
2 q−

n2

2 ζ−n,

where

E(w) := 2

∫ w

0
e−πu2

du = sgn(w)√
π
γ
(
1
2 , πw

2
)

is the error function. Set

µ̂m,l(z; τ) := (−1)mq
−(l+m)2

4m ζ−(l+m)(5.8)

·
(
µm
(
1
2 + (l +m)τ, 1

4m − z; τ
)
− i

2R
(
2mz + (l +m)τ − 2m+1

2 ; 2mτ
))

.

Note that µ̂m,l(z; τ) in (5.8) coincides with (−1)l µ̂2m,l+m(u, v; τ) of [27] evaluated at u = 1
2

and v =
(

1
4m − z, . . . , 1

4m − z
)
, and [27, Theorem 4.5] immediately implies:

Proposition 5.1. The vector (µ̂m,l)l is a vector-valued Jacobi form of weight 1
2 , index −m,

and of type ρm. More precisely,

µ̂m,l

∣∣
1
2
,−m

[(
( 1 1
0 1 ) ,

√
1
)
, (0, 0)

]
= e4m(−l2) µ̂m,l and

µ̂m,l

∣∣
1
2
,−m

[( (
0 −1
1 0

)
,
√
τ
)
, (0, 0)

]
=

i√
2im

∑

l′ (mod 2m)

e2m(ll′) µ̂m,l′ .
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The following theorem is one of our main results, which provides a theta-like decomposition

for H-harmonic Maass-Jacobi forms.

Theorem 5.2. Let m > 0. The map

M!
k− 1

2
,ρ̌m

×MJδ,hk,−m −→ MJδ,Hk,−m,(5.9)

(
(hl)l (mod 2m), ϕ

)
7−→

∑

l (mod 2m)

hl µ̂m,l + ϕ

is bijective.

Remark 5.3.

(1) If the “meromorphic part” ϕ in Theorem 5.2 has poles only at torsion points, then it

has a decomposition into a so-called polar part and a finite part, which admits a theta

decomposition involving mock modular forms (for details see [26] and [8]).

(2) Note that Theorem 1.3 is simply a reformulation of Theorem 5.2. We find that

ξHk,m : MJδ,Hk,m /MJδ,hk,m−̃→Jsk,δ,hk,−m

is Hecke equivariant. In particular, skew-holomorphic Jacobi Hecke eigenforms corre-

spond to “Hecke eigenforms” in the subspace of moderate growth H-harmonic Maass-

Jacobi forms.

Proof of Theorem 5.2. The map (5.9) is well-defined by Proposition 5.1. Note that we have

not yet used the growth condition (4) in Definition 3.4. As a first step, we will establish a

weaker version of Theorem 5.2, where the growth conditions of the left and right hand sides

of (5.9) are removed. We will denote this weaker map by (5.9)’. The theorem then follows

from Proposition 5.4, whose proof only relies on the weaker version of Theorem 5.2. For the

remainder of this proof we implicitly remove the growth condition for all spaces of modular

forms and Jacobi forms that occur.

A direct computation shows that

ξH1
2
,−m

(
µ̂m,l

)
= θm,l,

and the linear independence of z 7→ ξH1
2
,−m

(
µ̂m,l(z; τ)

)
= θm,l(τ, z), for l = 1, . . . , 2m, and for

any fixed τ establishes the injectivity of (5.9)’. It remains to prove that (5.9)’ is surjective.

Let φ ∈ MJδ,Hk,−m. Equations (3.3) and (3.5) and Corollary 4.3 imply that ξHk,−m(φ) ∈ Jsk,δ,hk,m .

In particular, ξHk,−m(φ) has a theta decomposition of the form
∑

l hl θm,l (see (5.4)) and

ψ :=
∑
hl µ̂m,l ∈ MJδ,Hk,−m by Proposition 5.1. We have ξHk,−m(ψ) = ξHk,−m(φ), so that

ϕ := φ− ψ ∈ MJδ,hk,−m, which yields the surjectivity of (5.9)’. �

We now prove Theorem 1.1 (1), (3), and (4), where we will repeatedly employ the following

fact already used in the proof of Corollary 4.3: If a non-zero semi-holomorphic function φ

satisfies the elliptic transformation property of a Jacobi form of index m (i.e., φ is invariant

under |k,m
[(

( 1 0
0 1 ) ,

√
1
)
, (λ, µ)

]
for λ, µ ∈ Z), then m > 0. This follows exactly as in the

proof of [10, Theorem 1.2].
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Proof of Theorem 1.1 (1). If m < 0, then J∆,h
k,m = Jδ,hk,m = {0} by the above fact. The

second equality in the theorem follows from the first, because Jδ,Hk,m = J∆,H
k,m ∩ ker(ξk,m) and

Jδ,hk,m = J∆,h
k,m ∩ ker(ξk,m). We now show that J∆,H

k,m = J∆,h
k,m. Suppose that φ ∈ J∆,H

k,m , but

φ 6∈ J∆,h
k,m. Then (3.3), (3.5), and Corollary 4.3 imply that 0 6= ξHk,m(φ) ∈ Jsk,∆,h

k,−m is semi-

holomorphic. Hence −m > 0 and ξHk,m(φ) has a theta decomposition of the form
∑

l hl θm,l.

We use the same idea as in the proof of Theorem 5.2. Consider ψ(τ, z) =
∑
hl(τ) R̂m,l(z; τ),

where

R̂m,l(z; τ) := (−1)m+1 i
2q

−(l+m)2

4m ζ−(l+m) R
(
2mz + (l +m)τ − 2m+1

2 ; 2mτ
)

is the “non-holomorphic” part of (5.8). Then ψ (not modular in τ) has no singularities, and

0 6= φ− ψ is semi-holomorphic and elliptic in z (see [27]). Thus, m > 0. This contradiction

completes the proof.

�

Proof of Theorem 1.1 (3) . Let φ ∈ MJ∆,H
k,m . Then ξHk,m(φ) ∈ Jsk,∆,h

k,−m by (3.3), (3.5), and

Corollary 4.3. In particular, all principal parts of φ are semi-meromorphic, and hence the

same is true for ξk,m(φ). Corollary 3.9 and Proposition 4.2 imply that ξk,m(φ) ∈ Jsk,δ,H3−k,m.

Now, if ξk,m(φ) were not annihilated by ξsk,H3−k,m, then m < 0, since ξsk,H3−k,m

(
ξk,m(φ)

)
∈

Jδ,h3−k,−m is semi-holomorphic. As in the proof of Theorem 1.1 (1), we find some ψ(τ, z) =
∑
hl(τ) R̂m,l(z; τ) (not modular in τ) without singularities such that 0 6= ξk,m(φ) − ψ is

semi-holomorphic and elliptic in z. Then m > 0, which is a contradiction to our previous

finding.

Thus, ξk,m(φ) ∈ Jsk,δ,h3−k,m. Recall from the proof of Theorem 1.1 (2) that ξk,m : J∆,h
k,m →

Jsk,δ,h3−k,m is surjective. Hence there exists a φ̃ ∈ J∆,h
k,m such that φ − φ̃ vanishes under ξk,m,

which establishes the claim. �

Proof of Theorem 1.1 (4). If φ ∈ MJ∆,H
k,m , then ξHk,m(φ) ∈ Jsk,∆,h

k,−m by (3.3), (3.5), and Corol-

lary 4.3. Moreover, if ξHk,m
(
φ
)
6= 0, then Corollary 4.3 asserts that −m > 0, yielding the first

equality. The second equality follows from the first, since MJδ,Hk,m = MJ∆,H
k,m ∩ ker(ξk,m) and

MJδ,hk,m = MJ∆,h
k,m ∩ ker(ξk,m). �

We have now settled all analytic and structural properties of H-harmonic Maass Jacobi

forms. We emphasize that we have not yet used the growth condition (4) of Definition 3.4.

To complete the proof of Theorem 5.2, we have to show that the growth condition (4) of

Definition 3.4 implies the growth condition for harmonic weak Maass forms on the left hand

side of (5.9).

Proposition 5.4. Fix φ ∈ MJ∆,H
k,m . Then for all but finitely many α, β ∈ Q (modZ), the

set {(τ, ατ + β) : τ ∈ H} is not a polar divisor of φ. For every such α, β, the function

φ(τ, ατ + β) has no singularities for sufficiently large y.
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Proof. Fix τ ∈ H. By Corollary 4.4, the set of singularities of φ(τ, · ) is discrete in C. In

particular, there are at most finitely many α, β ∈ Q (modZ) such that φ(τ, ατ +β) is a pole.

This proves the first part.

To establish the second part, it suffices to show the claim for φ ∈ MJδ,Hk,m, since MJ∆,H
k,m =

J∆,h
k,m+MJδ,Hk,m by Theorem 1.1. We employ the map (5.9)’ defined in the proof of Theorem 5.2.

Write φ as
∑

l (mod 2m) hl µ̂m,l+ψ. Note that if α, β ∈ Q such that µ̂m,l(τ, ατ +β) is defined,

then it has no singularities. Hence it remains to consider the meromorphic Jacobi form ψ.

Now, since ψ is meromorphic, ψ(τ, ατ + β) is meromorphic, too. This implies that for

sufficiently large y, it has no singularities, proving the proposition. �

We conclude the section with a remark.

Remark 5.5. In Example 1.2 (7), we pointed out that Zwegers’s [26] µ̂-function has a de-

composition of the form µ̂ = µ1 + µ̂2, where µ̂2 ∈ MJδ,H1
2
,− 1

2

. Such a decomposition can for

example be found by setting

µ̂2(z; τ) := µ̂
(
z + 1+τ

2 , 1+τ
2 ; τ

)
.(5.10)

Up to meromorphic Jacobi forms, µ̂2 is essentially the only Jacobi form that can be obtained

as a “specialization” of µ̂ (see [25]). Moreover, there is no meromorphic Jacobi form h such

that µ̂2 + h has no singularities. One can see this by considering the residues of the poles of

z 7→ µ̂2(z; τ). More precisely, suppose that g is a meromorphic Jacobi form of index 0 such

that the Jacobi form (on Mp2(Z)⋉ (2Z)2)

µ̂2(z; τ) −
g(τ, z)

eπizθ
(
τ, z + 1+τ

2

)(5.11)

has no singularities. Then g is holomorphic, since the zeros of the denominator of the second

term in (5.11) occur precisely where µ̂2 has simple poles. Thus, g is independent of z, i.e.,

g is a weakly holomorphic modular form. Suppose that the residues at −1+τ
2 of the first and

second term in (5.11) are the same. Then the transformation behavior of µ̂ and θ under

z 7→ z + 1 shows that the residues of these terms at 1+τ
2 differ by a sign. In particular, the

residues will not cancel, and hence there is no g such that (5.11) has no singularities.

6. H-quasi Maass-Jacobi forms

Kaneko and Zagier [13] introduced the space of quasimodular forms, which includes the

Eisenstein series E2. Quasimodular forms impact various aspects of automorphic forms and

physics, and the theory has been extended to the setting of Jacobi forms (for example,

see [14, 15]). The notion of quasi-Jacobi forms in the literature mimics the definition of

quasimodular forms by Kaneko and Zagier somewhat closely, and “quasimodular behavior”

with respect to the Jacobi variable z has not been considered thus far. In this section, we fill

this gap by introducing completed H-quasi Maass-Jacobi forms (see Definition 6.1). Note that

examples of such forms have recently appeared as generating functions of Gromov Witten

invariants in [19]. The main result of this section (Theorem 6.4) gives a characterization of
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completed H-quasi Maass-Jacobi forms in terms of H-harmonic Maass-Jacobi forms, which

implies that there exists no Jacobi form analog of the quasimodular Eisenstein series E2.

With an abuse of notation we suppress from now on the superscripts and simply write

X± and Y± for the operators defined in Section 2. Recall that every quasimodular form

can be completed to a (real-analytic) modular form f :=
∑D−1

d=0 y
dfd with holomorphic fd.

Then f is annihilated by XD
− . More generally, if the functions fd are only harmonic, then f

is annihilated by XD
+X

D
− . This motivates the next definition of completed H-quasi Maass-

Jacobi forms, where as before m 6= 0.

Definition 6.1. Let φ : H×C → C be a real-analytic function except for possible singularities

of type fg−1, where f and g are real-analytic, such that the singularities of φ(τ, · ) are isolated

for every τ ∈ H. Then φ is a completed H-quasi Maass-Jacobi form of weight k, index m,

and depth D if the following conditions are satisfied:

(1) For all A ∈ ΓJ, we have φ
∣∣
k,m

A = φ.

(2) We have that Ck,m(φ) = 0.

(3) We have that Y D
+ Y D

−
(
φ
)
= 0.

(4) For every α, β ∈ Q such that {(τ, ατ + β) : τ ∈ H} is not a polar divisor of φ, we have

that φ(τ, ατ + β) = O
(
eay
)

as y → ∞ for some a > 0.

Remark 6.2.

(1) H-quasi Maass-Jacobi forms of depth D = 1 are H-harmonic Maass-Jacobi forms.

(2) One can define completed H-quasi skew-Maass-Jacobi forms by replacing
∣∣
k,m

, Ck,m, and

Y± in Definition 6.1 with their skew-analogs.

(3) Observe that the commutator [Y−, Y+] = −2πm. Hence the operator Y D
+ Y D

− can be

expressed as a polynomial in the Heisenberg Laplace operator:

Y D
+ Y D

− =
D−1∏

d=0

(
∆H

m + 2πmd
)
.(6.1)

Analogously, in the quasimodular setting XD
+X

D
− can be expressed as a polynomial in the

hyperbolic Laplace operator:

XD
+X

D
− =

D−1∏

d=0

(
∆k + (k − 2d)d

)
,

where (n)l :=
∏l−1

i=0(n− i) is the Pochhammer symbol ((n)0 := 0).

The following two results give descriptions of completed H-quasi Maass-Jacobi forms.

Lemma 6.3. Let φ be a completed H-quasi Maass-Jacobi form of weight k, index m, and

depth D that is annihilated by Y D
− . Then

φ =

D−1∑

d=0

Y d
+

(
φd
)
,
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where φd ∈ MJ∆,h
k−d,m.

Proof. We induct on D. The case D = 1 is clear by Definition 3.4. Let D > 1, and set φD :=

Y D−1
− (φ). Then φD ∈ MJ∆,h

k+1−D,m. Consider φ̃ := φ−
(
(−2πm)D−1(D − 1)!

)−1
Y D−1
+

(
φD
)
.

With the help of (6.1) and the fact that [Y−,∆H
m] = −2πmY−, we verify that

Y D−1
−

(
φ̃
)
= Y D−1

− (φ)− 1

(−2πm)D−1(D − 1)!
Y D−1
−

(D−2∏

d=0

(
∆H

m + 2πmd
))(

φ
)

= Y D−1
− (φ)− 1

(−2πm)D−1(D − 1)!

(D−2∏

d=0

(
∆H

m + 2πmd− 2πm(D − 1)
))
Y D−1
−

(
φ
)

= φD − 1

(−2πm)D−1(D − 1)!

D−1∏

d=1

(
− 2πmd

)(
φD
)
= 0.

Thus, φ̃ is a completed H-quasi Maass-Jacobi form of weight k, index m, and depth D − 1,

and the claim follows by induction. �

Theorem 6.4. Let φ be a completed H-quasi Maass-Jacobi form of weight k, index m, and

depth D. Then

φ =

D−1∑

d=0

Y d
+

(
φd
)
,

where φd ∈ MJ∆,H
k−d,m.

Proof. First note that for any φ and m < 0, we have

√−my−1
exp

(
− 4πmv2

y

)
Y+(φ) = Y sk

−
(√−my−1

exp
(
− 4πmv2

y

)
φ
)
.(6.2)

Similar relations hold also for Y− and Y sk
+ .

Now, set φ̃ :=
√−my−1 exp

(
− 4πmv2

y

)
Y D
− (φ), and assume that φ̃ 6= 0. Then φ̃ is a

completed H-quasi skew-Maass-Jacobi form of weight k + 1 − D, index −m, and depth D

(see Remarks 6.2 (2)). Using Relation (6.2), we confirm that φ̃ vanishes under
(
Y sk
−
)D

. It is

easy to extend Lemma 6.3 to completed H-quasi skew-Maass-Jacobi forms, and we find that

φ̃ =
D−1∑

d=0

(
Y sk
+

)d(
φd
)
,

for some φd ∈ MJsk,∆,h
k+1−D+d,−m. Proposition 4.2 implies thatm < 0. Let φ

[µ]
d ∈ MJ∆,H

k+1−D+d,m

denote the preimage of φd under ξHk+1−D+d,m. If

φ[µ] :=

D−1∑

d=0

1

(−2πm)D−d−1(D − d− 1)!
Y D−d−1
+

(
φ
[µ]
d

)
,
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then φ− φ[µ] vanishes under Y D
− . Indeed, the image of φ[µ] under Y D

− is given by

D−1∑

d=0

1

(−2πm)D−d−1(D − d− 1)!
Y d+1
−

D−d−1∏

d′=1

(
∆H

m − 2πmd′
)(
φ
[µ]
d

)
=

D−1∑

d=0

Y d+1
−

(
φ
[µ]
d

)
.

We obtain

(
Y−
)D

(φ) =
√−my exp

(
4πmv2

y

)
φ̃ =

√−my exp
(
4πmv2

y

)D−1∑

d=0

(
Y sk
+

)d(
φd
)

=

D−1∑

d=0

Y d
−
(√−my exp

(
4πmv2

y

)
φd

)
=

D−1∑

d=0

Y d
−
(
Y−
(
φ
[µ]
d

))
,

which proves the theorem after applying Lemma 6.3. �

As an immediate consequence of Theorem 6.4 we record:

Corollary 6.5. The space of all completed H-quasi Maass-Jacobi forms of weight k and

index m equals
∞⊕

d=0

Y d
+

(
MJ∆,H

k−d,m

)
.

We end with a final remark.

Remark 6.6. In [2], Folsom and the first author describe a modular completion of characters

of sℓ(m|n)̂ highest weight modules. They encounter products of automorphic forms that are

in the spirit of Theorem 6.4.
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