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THREE FACES OF R∞

ALEXANDER FEL’SHTYN AND EVGENIJ TROITSKY

Abstract. A (countable discrete) group G has the property R∞, if for any its automor-
phism φ the number of twisted conjugacy classes is infinite. We study the following three
aspects of the R∞ property: relation to nonabelian cohomology, relation to isogredience
classes, and relation to representation theory.
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1. Introduction

The following two interrelated problems are among the principal ones in the theory of
twisted conjugacy (Reidemeister) classes in infinite discrete groups. The first one is the
20-years-old conjecture on existence of an appropriate twisted Burnside-Frobenius theory
(TBFT), i.e. identification of the number R(φ) of Reidemeister classes and the number of

fixed points of the induced homeomorphism φ̂ on an appropriate dual object (supposing
R(φ) < ∞). The second one is the problem to outline the class of R∞ groups (that is
R(φ) =∞ for any φ).

The interest in twisted conjugacy relations has its origins, in particular, in the Nielsen-
Reidemeister fixed point theory (see, e.g. [30, 31, 7]), in Selberg theory (see, e.g. [45, 1]),
Algebraic Geometry (see, e.g. [27]), and Galois cohomology (see, e.g. [44]). In representation
theory twisted conjugacy probably occurs first in [21] (see, e.g. [46, 41]).

The TBFT was proved consequently for finite, Abelian [9], almost Abelian [11], and almost
polycyclic groups [18, 12] (see also [17]).
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2 ALEXANDER FEL’SHTYN AND EVGENIJ TROITSKY

The problem of determining, which classes of groups have R∞ property, is an area of active
research initiated in [9]. It was shown by various authors that the following groups have the
R∞-property:

(1) non-elementary Gromov hyperbolic groups [8, 35]; relatively hyperbolic groups [13];
(2) Baumslag-Solitar groups BS(m,n) except for BS(1, 1) [14], generalized Baumslag-

Solitar groups, that is, finitely generated groups which act on a tree with all edge
and vertex stabilizers infinite cyclic [34]; the solvable generalization Γ of BS(1, n)
given by the short exact sequence 1 → Z[ 1

n
] → Γ → Zk → 1, as well as any group

quasi-isometric to Γ [47];
(3) a wide class of saturated weakly branch groups (including the Grigorchuk group [26]

and the Gupta-Sidki group [28]) [10], Thompson’s group F [3]; generalized Thomp-
son’s groups Fn, 0 and their finite direct products [23];

(4) symplectic groups Sp(2n,Z), the mapping class groups ModS of a compact oriented
surface S with genus g and p boundary components, 3g + p − 4 > 0, and the full
braid groups Bn(S) on n > 3 strings of a compact surface S in the cases where S
is either the compact disk D, or the sphere S2 [15], some classes of Artin groups of
infinite type [32];

(5) extensions of SL(n,Z), PSL(n,Z), GL(n,Z), PGL(n,Z), Sp(2n,Z), PSp(2n,Z),
n > 1, by a countable abelian group, and normal subgroup of SL(n,Z), n > 2, not
contained in the center [38];

(6) GL(n,K) and SL(n,K) if n > 2 and K is an infinite integral domain with trivial
group of automorphisms, or K is an integral domain, which has a zero characteristic
and for which Aut(K) is torsion [40];

(7) irreducible lattice in a connected semi simple Lie group G with finite center and real
rank at least 2 [39];

(8) some metabelian groups of the form QnoZ and Z[1/p]noZ [16]; lamplighter groups
Zn o Z if and only if 2|n or 3|n [24]; free nilpotent group Nrc of rank r = 2 and class
c > 9 [25], Nrc of rank r = 2 or r = 3 and class c ≥ 4r, or rank r ≥ 4 and class
c ≥ 2r, any group N2c for c ≥ 4, every free solvable group S2t of rank 2 and class
t ≥ 2 (in particular the free metabelian group M2 = S22 of rank 2), any free solvable
group Srt of rank r ≥ 2 and class t big enough [43]; some crystallographic groups
[6, 37].

In the present paper we study the following three aspects of the R∞ property: relation
to nonabelian cohomology, relation to isogredience classes, and relation to representation
theory.

In Section 2 we establish a natural bijective correspondence between the sets of Reide-
meister classes and the nonabelian cohomology H1(Z, G). As an application we obtain a new
proof of 8-term exact sequence for fixed points and Reidemeister classes of an extension.

In Section 3 we introduce and investigate a new class of groups: S∞ groups. These are
the groups with infinite set of isogredience classes for any outer automorphism. A relation
of S∞ and R∞ is established in Theorem 3.4.

In Section 4 we describe the connection of (ir)rational (finite in the terminology of [36])
representations with twisted conjugacy classes. In particular we obtain a sufficient condition
for R∞ property in Theorem 4.4.

We finish the paper with a couple of conjectures.

Acknowledgment. The authors are grateful to M. Borovoi, G. Levitt, Ye. Nisnevich,
J. Rohlfs, A. Shtern for important discussions.
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2. Nonabelian cohomology

2.1. Main identifications. Suppose, a discrete group Γ acts on a discrete group G. We
denote the action σ of s ∈ Γ on g ∈ G by σ(s)(g) := sg. A map g : Γ → G, g : s 7→ gs, is
called a cocycle, if

gst = gs · sgt.
Two cocycles g and g′ are cohomological if there exists b ∈ G such that

(1) gs = b−1 · g′ssb.
The corresponding quotient set is H1(Γ, G) = H1(Γ, G, σ).

Consider Γ = Z, and denote ϕ := σ(1). Then any cocycle g is determined by g1 = g(1) by
induction. Indeed,

g2 = g1 · 1g1 = g1 · ϕ(g1), g3 = g2 · 2g1 = g2 · ϕ2(g1) = g1 · ϕ(g1) · ϕ2(g1),

g4 = g3 · 3g1 = g3 · ϕ3(g1) = g1 · ϕ(g1) · ϕ2(g1) · ϕ3(g1), . . .

and for negative s:

g1 = g−m
−mgm+1 = g−mϕ

−m(g1 ·ϕ(g1) ·ϕ2(g1) . . . ϕm(g1)) = g−m ·ϕ−m(g1) ·ϕ−m+1(g1) . . . g1,

g−m = (ϕ−m(g1) · ϕ−m+1(g1) . . . ϕ−1(g1))−1.

If we define g : Z→ G by these formulas, we obtain a cocycle: for m > n > 0 we have

gm+n = g1 · ϕ(g1) · ϕ2(g1) . . . ϕm+n−1(g1),

gm · mgn = g1 · ϕ(g1) · ϕ2(g1) . . . ϕm−1(g1) · ϕm(g1 · ϕ(g1) · ϕ2(g1) . . . ϕn−1(g1)) = gm+n,

gm−n = g1 · ϕ(g1) · ϕ2(g1) . . . ϕm−n−1(g1),

gm · mg−n = g1 · ϕ(g1) · ϕ2(g1) . . . ϕm−1(g1)ϕm(ϕ−1(g−1
1 ) · ϕ−2(g−1

1 ) . . . ϕ−n(g−1
1 ) = gm−n,

and similarly for other cases. Thus, we have a bijection between cocycles and elements of G.
Suppose, the relation (1) keeps for s = 1. Then for s > 0

gs = g1 · ϕ(g1) · ϕ2(g1) . . . ϕs−1(g1) =

= b−1g′1ϕ(b) · ϕ(b−1g′1ϕ(b)) . . . ϕs−1(b−1g′1ϕ(b)) = b−1g′sϕ
s(b).

Similarly, for s < 0. Thus this cocycles are cohomological. But the equality g1 = b−1g′1ϕ(b)
means that g1 ∼ϕ g′1. Thus we have proved the following statement:

Theorem 2.1. Reidemeister classes of ϕ are in bijective correspondence with elements of
H1(Z, G, σ), in particular, R(ϕ) = #H1(Z, G, σ).

Now we will indicate one more parallel with the study of Reidemeister classes. One of the
tools which is used for this is a natural identification of the Reidemeister classes of φ : G→ G
with that ordinary conjugacy classes of the group Γ := G oφ Z, which are in the 1-coset
G oφ {1} ⊂ Γ. This identification was successfully used in [12, 17] in the (second) proof of
TBFT for almost polycyclic groups.

For nonabelian cohomology the identification exists even in a more general situation, more
or less known to specialists. More precisely, consider the semidirect product G oσ Γ with
the commutation relation

(2) tat−1 = σ(t)a = ta.

Denote by π the natural (well-defined) projection

π : Goσ Γ→ Γ.

A map a : Γ→ G can be identified with its graph

ass ∈ Goσ Γ, s ∈ Γ.
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If this map is a cocycle, then we have

astst = as
satst = assats

−1st = assatt,

i.e. its graph is a homomorphism γa : Γ → G oσ Γ. Conversely, let γ : G oσ Γ be a
homomorphism such that π ◦ γ = IdΓ, i.e. “of graph type”. Thus, it has the form s 7→ γ̃ss
for some γ̃ : Γ→ G. Then γ̃ is a cocycle. Indeed, γ̃stst = γ̃ssγ̃tt. Then

γ̃st = γ̃ssγ̃ts
−1 = γ̃s

sγ̃t.

We have proved the following statement (well known to specialists, we guess).

Lemma 2.2. Cocycles of H1(Γ, G, σ) can be identified with homomorphisms γ : Γ→ Goσ Γ
such that π ◦ γ = IdΓ.

Remark 2.3. These homomorphisms are completely determined by their graphs — some
specific subsets of Goσ Γ.

Lemma 2.4. Two cocycles are cohomologous if and only if the corresponding homomor-
phisms are conjugate by an element of G.

Proof. Indeed, a′s = b−1as
sb for any s if and only if

a′ss = b−1as
sbs = b−1assbs

−1s = b−1(ass)b.

�

Definition 2.5. Let us call the support of a class α ∈ H1(Γ, G, σ) a union of corresponding
graphs of its cocycles in Goσ Γ. Denote it by S(α).

Remark 2.6. Not every point of Goσ Γ belongs to the graph of a cocycle. For example, let
Γ = G = Z and σ be trivial, i.e. the semi-direct product is the direct product. Then (2, 3)
does not belong to any graph, because if (m, 1) belongs, then we should have (2, 3) = (3m, 3).

2.2. Exact 8-term sequences. Consider a group extension respecting homomorphism φ:

(3) 0 // H
i //

φ′

��

G
p //

φ

��

G/H //

φ
��

0

0 // H
i // G

p // G/H // 0,

where H is a normal subgroup of G. Denote G := G/H. Then the induced mapping of
Reidemeister classes is an epimorphism, because p(g̃)p(g)φ(p(g̃−1)) = p(g̃gφ(g̃−1)).

In [29] the following exact sequence (as a particular case of the main theorem there) was
obtained

(4) 1→ Fix(φ′)→ Fix(φ)→ Fix(φ̄)
δ−→ R(φ′)→ R(φ)→ R(φ̄)→ 1,

where all morphisms are quite evident except of δ, which is defined as follows:

(5) δ(β̄) = {β−1φ(β)}φ′ , β ∈ G, p(β) = β̄.

The definition does not depend on the choice of β with this property, because

{(βh)−1φ(βh)}φ′ = {h−1(β−1φ(β))φ(h)}φ′ = {β−1φ(β)}φ′ .

We will give a short proof of this statement using our interpretation.
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For this purpose consider the diagram

(6) 1 // Fix(φ′) // Fix(φ) // Fix(φ̄)
δ // R(φ′) //

OO

��
1 // H0(Z, H) // H0(Z, G) // H0(Z, Ḡ)

d // H1(Z, H) //

// R(φ) //
OO

��

R(φ̄) //
OO

��

1

// H1(Z, G) // H1(Z, Ḡ) // 1

where the bottom exact row can be found e.g. in [44, Sect. I.5]. First of all, we should
remark that it can be extended to the right by the trivial homomorphism in our case (of
Z-action), because in this case any cocycle is defined by its value at 1 (as it is explained
above). Second, the diagram is commutative: due to naturality only the middle square may
cause doubts. But the map d is defined as

d(β̄) = {s 7→ β−1sβ}, where p(β) = β̄

(see [44, Sect. I.5.5]) and by (5) it commutes.
Our TBFT theorem for an almost polycyclic group G [12, 17] can be inserted in this

context as a version of “Poincaré–Pontryagin–Tate duality”:

(7) #H1(Z, G, σ) = #H0(Z, Ĝf , σ̂),

where Ĝf is the finite-dimensional part of the unitary dual (a more delicate result will be
discussed in the last section) and one of the sides of this equality is finite. Here σ̂(1)[ρ] :=
[ρ ◦ σ].

An interpretation of Reidemeister theory in terms of principal homogeneous spaces (or
torsors) (see [44, Sect. 5.2, 5.3]) seems also prospective.

3. Isogredience classes

Definition 3.1. (see [35] and also [4]) Suppose, Φ ∈ Out(G) := Aut(G)/ Inn(G). We
say that α, β ∈ Φ are isogredient (or similar) if β = τh ◦ α ◦ τ−1

h for some h ∈ G, where
τh(g) := ghg−1.

Let S(Φ) be the set of isogredience classes of Φ. If Φ = IdG, then above α and β are inner,
say α = τg, β = τs. Since elements of center Z(G) give trivial inner automorphisms, we may
suppose g, s ∈ G/Z(G). Then the equivalence relation takes the form τs = τhgh−1 , i.e., s and
g are conjugate in G/Z(G). Thus, S(Id) is the set of conjugacy classes of G/Z(G).

Denote by S(Φ) the cardinality of S(Φ).

For a topological motivation of the above definition of the isogredience suppose that G ∼=
π1(X), X is a compact space, and Φ is induced by a continuous map f : X → X. Let

p : X̃ → X be the universal covering of X , f̃ : X̃ → X̃ a lifting of f , i.e. p ◦ f̃ = f ◦ p.
Two liftings f̃ and f̃ ′ are called isogredient or conjugate if there is a γ ∈ G such that
f̃ ′ = γ ◦ f̃ ◦ γ−1. Different lifting may have very different properties. Nielsen observed (see
[30]) that conjugate lifting of homeomorphism of surface have similar dynamical properties.
This led him to the definition of the isogredience of liftings in this case. Later Reidemeister
and Wecken succeeded in generalizing the theory to continuous maps of compact polyhedra
(see [30]).
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The set of isogredience classes of automorphisms representing a given outer automorphism
and the notion of index Ind(Φ) defined via the set of isogredience classes are strongly related
to important structural properties of Φ (see [20]), for example in another (with respect to
Bestvina–Handel [2]) proof of the Scott conjecture [19].

One of the main results of [35] is that for any non-elementary hyperbolic group and any
Φ the set S(Φ) is infinite, i.e., S(Φ) =∞. We will extend this result. First, we introduce an
appropriate definition.

Definition 3.2. A group G is an S∞-group if for any Φ the set S(Φ) is infinite, i.e., S(Φ) =
∞.

Thus, the above result from [35] says: any non-elementary hyperbolic group is an S∞-
group. On the other hand, finite and Abelian groups are evidently non S∞-groups.

Now, let us generalize the above calculation for Φ = Id to a general Φ (see [35, p. 512]).
Two representatives of Φ have form τs ◦ α, τq ◦ α, with some s, q ∈ G. They are isogredient
if and only if

τq ◦ α = τg ◦ τs ◦ α ◦ τ−1
g = τg ◦ τs ◦ τα(g−1) ◦ α,

τq = τgsα(g−1), q = gsα(g−1)c, c ∈ Z(G).

So, the following statement is proved.

Lemma 3.3. S(Φ) = RG/Z(G)(α), where α is any representative of Φ and α is induced by α
on G/Z(G).

Since Z(G) is a characteristic subgroup, we obtain from Lemma 3.3 and exact sequence
(6) the following statement (in one direction it was discussed in [22, Remark 2.1]).

Theorem 3.4. Suppose, |Z(G)| < ∞. Then G is an R∞-group if and only if G is an
S∞-group.

Remark 3.5. Of course, this argument is applicable to an individual Φ as well.

Now we can give a more advanced example of a non S∞-group. Namely, consider Osin’s
group [42]. This is a non-residually finite exponential growth group with two conjugacy
classes. Since it is simple, it is not S∞ by Theorem 3.4.

4. Rational points

In this section we show that not every finite-dimensional representation can be fixed by φ̂
if R(φ) <∞.

Definition 4.1. Let [ρ] ∈ Ĝf , g 7→ Tg be a (class of a) finite-dimensional representation.
We say that ρ is rational if the number of distinct Tg’s is finite, and irrational otherwise.

Remark 4.2. Evidently, ρ is rational if and only if it can be factorized through a homo-
morphism G → F on a finite group. An interesting research related rational points can be
found in [36], where they are called finite.

We will need the following result from [11, 12].

Lemma 4.3. Let ρ be a finite dimensional irreducible representation of G on Vρ, and φ :
G→ G is an automorphism.

1). There exists a twisted invariant function ω : G→ C being a matrix coefficient of ρ if

and only if φ̂[ρ] = [ρ].
2). In this case such ω is unique up to scaling.

3). If we have several distinct φ̂-fixed representations, then the correspondent twisted
invariant functions are independent.
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Proof. Let us sketch a proof, the details can be found in [11, 12, 48]. Matrix coefficients of
a finite dimensional representation ρ arise from functionals on EndVρ and can be written as
g 7→ Trace(aρ(g)) for some matrix a ∈ EndVρ. Since the equality

0 = Trace(ab)− Trace(aρ(h)bρ(φ(h−1))) = Trace((a− ρ(φ(h−1))aρ(h))b)

for any b and h implies ρ(φ(h))a = aρ(h), the above matrix coefficient is twisted invariant
if and only if a is an intertwining operator between ρ and φ ◦ ρ. This gives 1), and Schur’s
lemma gives 2). Finally, matrix coefficients of distinct finite-dimensional representations are
linear independent and 3) follows e.g. from [5, Corollary (27.13)]. �

Theorem 4.4. Let G be a finitely generated group and for an automorphism φ at least one
of the following two conditions holds:

1). There exist infinitely many finite-dimensional representation classes in Ĝ fixed by φ̂.

2). There exists an irrational representation ρ fixed by φ̂.

Then R(φ) =∞.
In particular, if we have one of these conditions for every automorphism φ, then G has

R∞ property.

Proof. 1) This follows immediately from Lemma 4.3.
2) Suppose that fρ(g) = Trace(aρ(g)) (see Lemma 4.3) takes finitely many values and

will arrive to a contradiction. Indeed, fρ is a non-trivial matrix coefficient. Hence, (see, e.g.
[33]) its left translations generate a finite-dimensional representation, which is equivalent
to a direct sum of several copies of ρ. The space W of this representation has a basis
Lg1fρ, . . . , Lgkfρ. Thus, all functions from W take only finitely many values (with level
sets of the form ∩igiUj, where Uj are the level sets of fρ). Taking unions of these sets (if
necessary) we can form a finite partition G = V1 t · · · t Vm such that elements of W are
constant on the elements of the partition and for each pair Vi 6= Vj there exists a function
from W taking distinct values on them. Thus any left translation maps Vi onto each other
and the representation G on W factorizes through (a subgroup of) the permutation group
on m elements, i.e. a finite group. The same is true for its subrepresentation ρ, thus it is
rational. A contradiction. �

Concluding remarks. We would like two finish this paper with the following to interrelated
conjectures, motivated by known examples and theorems.

Conjecture R. Let G be a finitely generated residually finite group. Either G is R∞, or
G is solvable-by-finite.

By Theorem 3.4 Conjecture R implies the following

Conjecture S. Let G be a finitely generated residually finite group with finite center.
Either G is S∞, or G is solvable-by-finite.
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