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A COHOMOLOGICAL FRAMEWORK

FOR HOMOTOPY MOMENT MAPS

YAËL FRÉGIER, CAMILLE LAURENT-GENGOUX, AND MARCO ZAMBON

Abstract. Given a Lie group acting on a manifold M preserving a closed n + 1-form
ω, the notion of homotopy moment map for this action was introduced in [6], in terms of
L∞-algebra morphisms. In this note we describe homotopy moment maps as coboundaries
of a certain complex. This description simplifies greatly computations, and we use it
to study various properties of homotopy moment maps: their relation to equivariant
cohomology, their obstruction theory, how they induce new ones on mapping spaces, and
their equivalences. The results we obtain extend some of the results of [6].

Contents

Introduction 1
1. Closed forms 3
2. A double complex encoding moment maps 4
3. Closed forms and moment maps as cocycles 6
4. Equivariant cohomology 6
5. Obstruction theory 8
6. Actions on mapping spaces 8
7. Equivalences 10
Appendix A. Equivalences of moment maps and L∞-algebra morphisms 15
References 17

Introduction

Recall that a symplectic form is a closed, non-degenerate 2-form. It is natural to consider
symmetries of a given symplectic manifold, that is, a Lie group acting on a manifold,
preserving the symplectic form. Among such actions, a nice subclass is given by actions that
admit a moment map; in that case the infinitesimal generators of the action are hamiltonian
vector fields. Actions admitting a moment map enjoy remarkable geometric, algebraic and
topological properties, that have been studied extensively in the literature (e.g. symplectic
reduction, the relation to equivariant cohomology and localization, convexity theorems,...)

In this note we consider closed n+1-forms for some n ≥ 1. When they are non-degenerate,
they are called multisymplectic form, and are higher analogues of symplectic forms which
appear naturally in classical field theory.

Recently Rogers [15] (see also [18]) showed that the algebraic structure underlying a man-
ifold with a closed n+ 1-form ω is the one of an L∞-algebra. This allowed [6] for a natural
extension of the notion of moment map to closed forms of arbitrary degree, called homotopy
moment map. The latter is phrased in terms of L∞-algebra morphisms.
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The first contribution of this note is to construct, out of the action of a Lie group G on
a manifold M , a chain complex C with the following property:

• any invariant closed form ω gives rise to a cocycle ω̃ in C
• homotopy moment maps are given exactly by the primitives of ω̃.

The chain complex C is simply the product of the Chevalley-Eilenberg complex of the Lie
algebra of G, with the de Rham complex of M . The action is encoded by the cocycle
ω̃. Notice that by the above the set of homotopy moment maps (for a fixed ω) has the
structure of an affine space, which is unexpected since L∞-algebra morphisms are generally
very non-linear objects.

This characterization of homotopy moment maps is very useful: L∞-algebra morphisms
are usually quite intricate and cumbersome to work with in an explicit way, while working
with coboundaries in a complex is much simpler. In this note we use the above characteri-
zation to:

• show that certain extensions of ω in the Cartan model give rise to homotopy moment
maps (see §4),

• give cohomological obstructions to the existence of homotopy moment maps (see
§5),

• show that a homotopy moment map for a G-action on (M,ω) induces one on
Maps(Σ,M), the space of maps from any closed and oriented manifold Σ into M ,
endowed with the closed form obtained from ω by transgression (see §6),

• obtain a natural notion of equivalence of homotopy moment maps, both under the
requirement that ω be kept fixed and allow ω to vary (see §7). We show that it
is compatible with the geometric notion of equivalence induced by isotopies of the
manifold M , and with the notion of equivalence of L∞-morphisms (see Appendix
A).

In §4 and §5 we obtain results similar to those of [6], but with much less computational
effort. The results obtained in §7 are a significant extension of results obtained in [6], where
only closed 3-forms and loop spaces were considered. The equivalences introduced in 7 and
their properties extend and justify the work carried out for closed 3-forms in [6, §7.4].

One more application of the characterization of moment maps as coboundaries in C is
the following. Given two manifolds endowed with closed forms, their cartesian product
(M1 ×M2, ω1 ∧ ω2) is again an object of the same kind. This construction restricts to the
multisymplectic category, but not to the symplectic one. The above characterization of
moment maps is used in [17] to construct homotopy moment maps for cartesian products.

Remark: Recall that if X is a Lie algebra, a X-differential algebra [14, §3] is a graded
commutative algebra Ω = ⊕i≥0Ω

i with graded derivations ιv,Lv of degrees −1, 0 (depending
linearly on v ∈ X) and a derivation d of degree 1 such that the Cartan relations hold:

[d, d] = 0 [Lv, d] = 0, [ιv, d] = Lv

[ιv, ιw] = 0, [Lv,Lw] = L[v,w]X, [Lv, ιw] = ι[v,w]X.

This note is written in terms of geometric objects, but most of it applies also to the algebraic
setting obtained replacing the setting we assume in §2 with:

X a Lie algebra, Ω a X-differential algebra, ω ∈ Ωn+1 with dω = 0.
g a Lie algebra and ρ : g → X a Lie algebra morphism, so that Lρ(x)ω = 0

for all x ∈ g.
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Remark: The existence and uniqueness of homotopy moment maps is also studied by
Ryvkin and Wurzbacher in [16], where the authors obtain independently results similar to
ours on this subject, putting an emphasis on the differential geometry of multisymplectic
forms.
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1. Closed forms

We recall briefly how some notions from symplectic geometry apply to closed differential
forms of arbitrary degree.

Definition 1.1. Let (M,ω) be a pre-n-plectic manifold, i.e., M is a manifold and ω

a closed n + 1-form. An (n − 1)-form α is Hamiltonian iff there exists a vector field
vα ∈ X(M) such that

dα = −ιvαω.

We say vα is a Hamiltonian vector field for α. The set of Hamiltonian (n − 1)-forms is
denoted as Ωn−1

Ham (M).

In analogy to symplectic geometry, one can endow the set of Hamiltonian (n − 1)-forms
with a skew-symmetric bracket, which however is not a Lie bracket. If one passes from
Ωn−1
Ham (M) to a larger space, one obtains an L∞-algebra [12], which was constructed essen-

tially in [15, Thm. 5.2], and generalized slightly in [18, Thm. 6.7].

Definition 1.2. Given a pre-n-plectic manifold (M,ω), the observables form an L∞

algebra, denoted L∞(M,ω) := (L, {lk}). The underlying graded vector space is given by

Li =

{
Ωn−1
Ham (M) i = 0,

Ωn−1+i(M) −n+ 1 ≤ i < 0.

The maps
{
lk : L

⊗k → L|1 ≤ k <∞
}

are defined as

l1(α) = dα,

if deg(α) > 0, and for all k > 1

lk(α1, . . . , αk) =

{
0 if deg(α1 ⊗ · · · ⊗ αk) < 0,

ς(k)ι(vα1
∧ · · · ∧ vαk

)ω if deg(α1 ⊗ · · · ⊗ αk) = 0,

where vαi
is any Hamiltonian vector field associated to αi ∈ Ωn−1

Ham (M). Here1 ς(k) =

−(−1)k(k+1)/2. Notice that ς(k − 1)ς(k) = (−1)k for all k.

Among the Lie group actions on M that preserve ω, it is natural to consider those whose
infinitesimal generators are hamiltonian vector fields. This leads to the following notion [6,
Def. 5.1].

1So ς(k) = 1, 1,−1,−1, 1, . . . for k = 1, 2, 3, 4, 5, . . . .
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Definition 1.3. A (homotopy) moment map for the action of G on (M,ω) is a L∞-
morphism f : g → L∞(M,ω) such that for all x ∈ g

(1) d(f1(x)) = −ι(vx)ω.

Saying that f is a L∞-morphism means that it consists of components fk : ∧k g →
Ωn−k(M) (for k = 1, . . . , n) satisfying

(2)
∑

1≤i<j≤k

(−1)i+j+1fk−1([xi, xj], x1, . . . , x̂i, . . . , x̂j , . . . , xk)

= dfk(x1, . . . , xk) + ς(k)ι(vx1
∧ · · · ∧ vxk

)ω

for 2 ≤ k ≤ n, as well as

(3) ∑

1≤i<j≤n+1

(−1)i+j+1fn([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn+1) = ς(n+1)ι(vx1
∧· · ·∧vxn+1

)ω.

2. A double complex encoding moment maps

The set-up in the whole of this note is the following:

(M,ω) is a pre-n-plectic manifold,
G is a Lie group acting on M preserving ω.

We denote the Lie algebra of G by g, elements of g by x, and the corresponding infinitesimal
generators of the action (which are vector fields on M) by vx.

In this section we introduce a complex with the property that suitable coboundaries
correspond bijectively to moment maps for the action of G on (M,ω).

The manifold M and the Lie algebra g give rise to a double complex

(4) (∧≥1g∗ ⊗ Ω(M), dg, d),

where dg is the Chevalley-Eilenberg differential of g and d is the De Rham differential of
M . We consider the total complex, which we denote by C, with differential

dtot := dg ⊗ 1 + 1⊗ d.

We use the Koszul sign convention, hence, on an element of ∧kg∗ ⊗ Ω(M), dtot acts as
dg + (−1)kd.

We first need a lemma, which appears (using a slightly different notation) as the Extended
Cartan Formula in [13, Lemma 3.4], and which we present without2 proof.

Lemma 2.1. Let M be a manifold and let Ω be an N -form (not necessarily closed). For
all k ≥ 2 and all vector fields v1, . . . , vk we have:

(−1)kdι(v1 ∧ · · · ∧ vk)Ω =
∑

1≤i<j≤k

(−1)i+jι([vi, vj ] ∧ v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ vk)Ω

+

k∑

1=1

(−1)iι(v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk)LviΩ

+ ι(v1 ∧ · · · ∧ vk)dΩ.

2It can be proven by a direct computation, extending the proof of [6, Lemma 7.2].
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Remark 2.2. The Lie derivative of a form Ω along an multivector field V = v1 ∧ · · · ∧ vk is
defined by LV Ω := dι(V )Ω − (−1)kι(V )dΩ [10, Def. A2]. From the above we deduce that
(−1)kLV Ω equals the first two terms on the right hand side of the identity in Lemma 2.1.

Lemma 2.3. For any G-invariant σ ∈ ΩN(M) define

(5) σk : ∧k g → ΩN−k(M), (x1, . . . , xk) 7→ ι(vx1
∧ · · · ∧ vxk

)σ.

and σ̃ :=
∑N

k=1(−1)k−1σk. The map

˜ : (Ω(M)G, d) → (∧≥1g∗ ⊗ Ω(M), dtot), σ 7→ σ̃

intertwines the differentials, that is: dtotσ̃ = d̃σ.

Proof. Lemma 2.1 implies that (−1)kdσk = dgσk−1 + (dσ)k for all k ≥ 2. Hence

dtotσ̃ =

N∑

k=1

(−1)k−1(dgσk + (−1)kdσk)

=
N+1∑

k=2

(−1)kdgσk−1 −
N∑

k=1

dσk

=
N+1∑

k=2

((−1)kdgσk−1 − dσk)− dσ1 = d̃σ,

where in the third equality we used σN+1 = 0 , and in the last one we used the above
equation and −dσ1 = (dσ)1 (the latter follows from d(ιvxσ) + ιvxdσ = Lvxσ = 0). �

Since ω is a closed differential form, from Lemma 2.3 we obtain:

Corollary 2.4. ω̃ is dtot-closed.

The next proposition states that moment maps for the action of G on (M,ω) correspond
bijectively to primitives of ω̃ in (C, dtot). In particular, moment maps form an affine space,
which is somewhat surprising since generally L∞-morphisms are very non-linear objects.

Proposition 2.5. Let ϕ = ϕ1 + · · ·+ϕn, with ϕk ∈ ∧kg∗ ⊗Ωn−k(M). Then: dtotϕ = ω̃ iff

fk := ς(k)ϕk : ∧k g → Ωn−k(M),

for k = 1, . . . , n, are the components of a homotopy moment map for the action of G on
(M,ω).

Proof. dtotϕ =
∑n+1

k=2 dgϕk−1 +
∑n

k=1(−1)kdϕk is equal to ω̃ iff we have

−dϕ1 = ω1(6)

dgϕk−1 + (−1)kdϕk = (−1)k−1ωk for all 2 ≤ k ≤ n(7)

dgϕn = (−1)nωn+1.(8)

Evaluating eq. (6) on x ∈ g we obtain dϕ1(x) = −ιvxω, which is equivalent to eq. (1).
Evaluating eq. (7) on x1, . . . , xk ∈ g we obtain

∑

1≤i<j≤k

(−1)i+jϕk−1([vxi
, vxj

], vx1
, . . . , v̂xi

, . . . , v̂xj
, . . . , vxk

)

= −(−1)kdϕk(vx1
, . . . , vxk

) + (−1)k−1ι(vx1
∧ · · · ∧ vxk

)ω.
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Multiplying this equation by −ς(k− 1) = −(−1)kς(k) we obtain eq. (2). Similarly one sees
that eq. (8) is equivalent to eq. (3). �

Remark 2.6. The results of this section can be derived also from [9, §3]. See [6] for an
explanation of how this derivation goes.

3. Closed forms and moment maps as cocycles

Recall that whenever f : (A, d) −→ (A′, d′) is a map of complexes, (A[1] ⊕ A′, df ) is a

complex with differential df :=
(

d 0
f −d′

)
. This is known as the cone construction.

We apply this to the map of complexes ˜ of Lemma 2.3. We obtain:

Proposition 3.1. Fix an action of a Lie group G on a manifold M . Then

B := Ω(M)G[1]⊕ (∧≥1g∗ ⊗ Ω(M)), D :=

(
d 0
˜ −dtot

)

is a complex with the property: the D-closed elements in degree n are pairs (ω[1], ϕ) where
ω is a pre-n-plectic form and ϕ corresponds (via Prop. 2.5) to a moment map for ω.

Proof. Compute D(ω[1], ϕ) = (dω[1], ω̃ − dtotϕ) and apply Prop. 2.5. �

4. Equivariant cohomology

In this section we recover in a quick way a result of [6], which states that suitable exten-
sions of ω in the Cartan model give rise to moment maps (see Prop. 4.4).

The following is a variation of Lemma 2.3:

Lemma 4.1. For any G-equivariant F : g → ΩN (M), such that ιvxF (x) = 0 for all x ∈ g,
define

Fk : ∧k g → ΩN+1−k(M), Fk(x1, . . . , xk) = ι(vx1
∧ · · · ∧ vxk−1

)F (xk)

and F̃ := F1 + · · ·+ FN+1 ∈ ∧≥1g∗ ⊗ Ω(M). Then dtotF̃ = −d̃F .

Remark 4.2. 1) Notice that F1 = F .
2) If α ∈ ΩN+1(M) is G-invariant, then α1 : g → Ω(M)N , x 7→ ιvxα is G-equivariant since

Lvx(ιvyα) = ι[vx,vy]α. We have α̃ = (̃α1) (where the l.h.s. was defined in Lemma 2.3 and
the r.h.s. in Lemma 4.1.)

3) F̃ lies in the G-invariant part of ∧≥1g∗ ⊗ Ω(M), see [6, §6] for a proof.

Proof. Notice first that the condition ιvxF (x) = 0 ensures that F̃ is well-defined (as a totally
skew-symmetric map). It also implies that ιvxd(F (x)) = Lvx(F (x)) = F ([x, x]) = 0, so that

d̃F is well-defined.
We compute for all k:

(dgFk−1)(x1, . . . , xk) =
∑

1≤i<j≤k

(−1)i+jFk−1([xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xk)(9)

=
∑

1≤i<j≤k−1

(−1)i+jι([vxi
, vxj

] ∧ · · · ∧ v̂xi
∧ · · · ∧ v̂xj

∧ · · · ∧ vxk−1
)F (xk)

+

k−1∑

i=1

(−1)i+k(−1)k−2ι(vx1
∧ · · · ∧ v̂xi

∧ · · · ∧ vxk−1
)F ([xi, xk])
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and notice that F ([xi, xk]) = Lvxi
F (xk) by the equivariance of F . Hence

(−1)k−1d(Fk(x1, . . . , xk)) = (−1)k−1d(ι(vx1
∧ · · · ∧ vxk−1

)F (xk))

= (dgFk−1)(x1, . . . , xk) + ι(vx1
∧ · · · ∧ vxk−1

)d(F (xk)),

where in the last equation we used Lemma 2.1 (applied to Ω := F (xk)) and eq. (9). In
other words:

(10) (−1)k−1dFk = dgFk−1 + (dF )k.

We conclude the proof computing

dtotF̃ =

N+1∑

k=1

(dgFk + (−1)kdFk) =

N+2∑

k=2

dgFk−1 +

N+1∑

k=1

(−1)kdFk

=

N+2∑

k=2

(dgFk−1 + (−1)kdFk)− dF1

= −d̃F ,

using FN+2 = 0 in the third equality and eq. (10) in the last one. �

Given the action of G on M , recall that the Cartan model is the complex3 (Ω(M)⊗Sg∗)G,
where elements of g∗ are assigned degree two, together with the Cartan differential dG (see
for example [11]). If we choose a basis xi of g and denote by ξi the dual basis of g∗

(concentrated in degree two), we can write dG = d⊗ 1−
∑

i ιvxi ⊗ ξi.

Remark 4.3. The invariant pre-n-plectic form ω (or, more precisely, ω ⊗ 1) is usually not
closed in the Cartan model. Given an equivariant linear map µ : g → Ωn−1(M), which we
can regard as an element of (Ωn−1(M) ⊗ g∗)G, we have [6, §6.1]: ω − µ is a closed element
of the Cartan model iff for all x, y ∈ g

a) dµ(x) = −ιvxω (i.e., vx is the hamiltonian vector field of µ(x)),
b) Lvxµ(y) = µ([x, y]) (i.e., µ : g → Ωn−1

ham(M) is G-equivariant),
c) ιvxµ(x) = 0.

We recover the main statement4 of [6, Thm. 6.3]:

Proposition 4.4. Let µ : g → Ωn−1(M) be an equivariant linear map so that ω − µ is a
cocycle in the Cartan model. Then dtotµ̃ = ω̃, and the maps (1 ≤ k ≤ n)

fk : ∧k g → Ωn−k(M),

(x1, . . . xk) 7→ ς(k)ι(vx1
∧ · · · ∧ vxk−1

)µ(xk)

are the components of a homotopy moment map g → L∞(M,ω).

Proof. By a) in Remark 4.3 we have the following equality of equivariant maps g → Ωn(M):

dµ = −ω1,

where ω1(x) = ιvxω. As ιvxιvxω = 0 for all x, we can apply the map ˜ (see Lemma 4.1) to

obtain d̃µ = −ω̃1. We have dtotµ̃ = −d̃µ by applying Lemma 4.1 to µ (we are allowed to do

3It calculates the equivariant cohomology when G is compact.
4In [6, Thm. 6.3] it is also shown that the moment map f is equivariant, using b) in Remark 4.3.
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so because of c) in Remark 4.3), and we also have ω̃1 = ω̃ (see Rem. 4.2). Altogether we
obtain

dtotµ̃ = ω̃.

We conclude applying Prop. 2.5 to ϕ := µ̃. �

Remark 4.5. Prop. 4.4 can be extended [1] [6], as follows: every arbitrary extension of ω to
a cocycle in the Cartan model gives rise to a moment map.

5. Obstruction theory

We consider the obstruction theory for the existence of moment maps, obtaining results
similar to those contained in [6, §9.1, §9.2].

Fix a point p ∈M . It is immediate to check that

r : (∧≥1g∗ ⊗ Ω(M), dtot) → (∧g∗, dg), η ⊗ α 7→ η · α|p

is a chain map. Here Ω|p ∈ R is declared to vanish if Ω ∈ Ω≥1(M). Since ω̃ is dtot-closed by
Cor. 2.4, it follows that r(ω̃) = (−1)nωn+1|p ∈ ∧n+1g∗ is dg-closed, hence it defines a class
in the Chevalley-Eilenberg cohomology HCE(g).

Corollary 5.1. Let p ∈M . If a homotopy moment map exists, then [ωn+1|p] = 0.

Proof. By Prop. 2.5, a homotopy moment map exists iff [ω̃] = 0. In this case 0 =
H(r)([ω̃]) = (−1)n[ωn+1|p], where H(r) denotes the map on cohomology induced by r. �

Corollary 5.2. If [ωn+1|p] = 0 and5

H
j
CE(g)⊗Hn+1−j(M) = 0 for j = 1, . . . , n

then there exists a moment map.

Proof. The algebraic Künneth formula ([3, Exerc. 14.23]) and the conditions on the van-
ishing of cohomology groups imply that H(r) : Hn+1(∧≥1g∗⊗Ω(M), dtot) → Hn+1(∧g∗, dg)
is an isomorphism. Hence [ω̃] vanishes iff [ωn+1|p] vanishes. The latter does vanish by as-
sumption, so there exists ϕ with dtotϕ = ω̃, and by Prop. 2.5 the primitive ϕ gives rise to
a homotopy moment map. �

6. Actions on mapping spaces

In [6, §11] it is shown that a moment map for a pre-2-plectic manifold M gives rise to
a moment map for the loop space LM and an induced presymplectic form. Recall that

LM = MS1

consists of all differentiable maps from the circle S1 to M . In this section we
generalize this, allowing M to be any pre-n-plectic manifold and replacing the circle with
any compact, orientable manifold.

6.1. Loop spaces. For the sake of exposition, consider first the case of the loop space LM
(an infinite-dimensional Fréchet manifold). The action of G on M induces an action on LM ,
simply given by (g ·γ)(t) := g ·γ(t) for all γ ∈ LM and t ∈ S1. Given an element x of the Lie
algebra g, recall that we denote by vx (a vector field on M) the corresponding infinitesimal
generator of the action on M . The corresponding infinitesimal generator of the action on
LM , which we denote by vℓx, is given as follows: vℓx|γ = γ∗vx ∈ Γ(γ∗TM) = TγLM , for all
γ ∈ LM .

5These cohomology classes vanish, for example, if H1(M) = · · · = Hn(M) = 0.
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There is a degree preserving6 map

ℓ : Ω(M) → Ω(LM)[−1]

called transgression, which commutes with the de Rham differential [4, §3.5]. Explicitly, it
sends a form α ∈ Ωj(M) to αℓ ∈ Ωj−1(LM) given by

αℓ|γ(z1, . . . , zj−1) =

∫ 2π

0
α(z1, . . . , zj−1, γ̇)|γ(s) ds ∀γ ∈ LM, ∀z1, . . . , zj−1 ∈ TγLM.

In particular, the closed form ω ∈ Ωn+1(M) transgresses to a closed form ωℓ ∈ Ωn(LM).
Consider the complex C = (∧≥1g∗ ⊗ Ω(M), dtot) of eq. (4), as well as C′ := (∧≥1g∗ ⊗

Ω(LM)[−1], dtot). The transgression map extends trivially to a degree preserving map

Id⊗ ℓ : C → C′,

which commutes with dg and the de Rham differential, and hence with dtot. We use the
superscript ℓ to denote this map too. In particular, given ϕ = ϕ1+ · · ·+ϕn ∈ C where ϕk ∈
∧kg∗⊗Ωn−k(M), we obtain an element ϕℓ ∈ C′ with components ϕℓ = (ϕℓ)1+ · · ·+(ϕℓ)n−1

where (ϕℓ)k := (ϕk)
ℓ ∈ ∧kg∗ ⊗ Ωn−k−1(LM).

Proposition 6.1. If ϕ corresponds (in the sense of Prop. 2.5) to a homotopy moment map
for (M,ω), then ϕℓ corresponds to a homotopy moment map for (LM,ωℓ).

Proof. If dtotϕ = ω̃ then

(11) dtot(ϕ
ℓ) = (dtotϕ)

ℓ = (ω̃)ℓ = ω̃ℓ.

The last equality holds because for all k we have (ωk)
ℓ = (ωℓ)k, as a consequence of

(ωk)
ℓ(x1, . . . , xk)|γ = (ι(vx1

∧ · · · ∧ vxk
)ω)ℓ|γ =

∫ 2π

0
ω(vx1

, . . . , vxk
, •, γ̇)|γ(s) ds

=ι(vℓ1 ∧ · · · ∧ vℓk)(ω
ℓ)|γ = (ωℓ)k(x1, . . . , xk)|γ ,

where x1, . . . , xk ∈ g, γ ∈ LM , and • denotes n−k slots for elements of TγLM . Recall that

(ωℓ)k was defined in Lemma 2.3.
Thanks to eq. (11) we can now apply Prop. 2.5 (which holds in the setting of Fréchet

manifolds too). �

6.2. General mapping spaces. We now generalize Prop. 6.1. Let Σ be a compact,
oriented manifold of dimension s. The G action on M gives rise to a G action on MΣ, the
Fréchet manifold of smooth maps from Σ to M . (The formulae for the this action and the
corresponding infinitesimal generators are exactly as in §6.1).

Transgression is the differential-preserving map

ℓ :=

∫

Σ
◦ ev∗ : Ω(M) → Ω(MΣ)[−s]

where ev : Σ × MΣ → M is the evaluation map and
∫
Σ denotes integration along the

fibers [2, Cap. VI.4] of the projection Σ × MΣ → MΣ, which lowers the degree of a
differential form by s. Notice that the closed form ω ∈ Ωn+1(M) transgresses to a closed
form ωℓ ∈ Ωn+1−s(MΣ).

The transgression map extends trivially to a map of complexes

Id⊗ ℓ : C → C′,

6The notation Ω(LM)[−1] refers to the fact that here Ωk−1(LM) is assigned degree k.
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where now C′ := (∧≥1g∗ ⊗ Ω(MΣ)[−s], dtot). Let ϕ = ϕ1 + · · · + ϕn, where ϕk ∈ ∧kg∗ ⊗
Ωn−k(M).

Proposition 6.2. If ϕ corresponds (in the sense of Prop. 2.5) to a homotopy moment map
for (M,ω), then ϕℓ corresponds to a homotopy moment map for (MΣ, ωℓ).

Proof. The proof is the same as for Prop. 6.1. We just point out that the equation (ωk)
ℓ =

(ωℓ)k for all k is obtained applying the well-known relation (ιvxω)
ℓ = ι(vx)ℓω

ℓ for all x ∈ g. It
can be proven also directly, exactly as in the proof of Prop.6.1, using the explicit description
of the integration along the fiber given in [2, Cap. VI.4] and the fact that the derivative
d(p,σ)ev : T(p,σ)(Σ ×MΣ) → Tσ(p)M maps a tangent vector of the form (Z, 0) to the vector

σ∗(Z) and, for all x ∈ g, the vector (0, (vx)
ℓ)|(p,σ) to (vx)|σ(p). �

Spelling out Prop. 6.2 in terms of moment maps we obtain:

Corollary 6.3. Let

f : g → L∞(M,ω)

be a homotopy moment map for the pre-n-plectic manifold (M,ω) with components fk : ∧k

g → Ωn−k(M), where k = 1, . . . , n.
Then

f ℓ : g → L∞(MΣ, ωℓ)

is a homotopy moment map for the pre-(n − s)-plectic manifold (MΣ, ωℓ) with components
(f ℓ)k := (fk)

ℓ : ∧k g → Ωn−s−k(MΣ), where k = 1, . . . , n− s.

7. Equivalences

In this section we introduce notions of equivalence for: 1) certain cocycles in the Cartan
model, and 2) pairs consisting of closed invariant forms and moment maps. Recall that
Prop. 4.4 states that to the former Cartan cocycles one can canonically associate moment
maps; we show that the above equivalences are compatible with this association. All along
this section we fix an action of a Lie group G on a manifold M .

7.1. Equivalences of Cartan cocycles.

Definition 7.1. Two cocycles C0 = ω0 − µ0 and C1 = ω1 − µ1 in the Cartan model, with
ω0, ω1 ∈ Ωn+1(M)G and µ0, µ1 ∈ (Ωn−1(M) ⊗ g∗)G, are equivalent iff they differ by a
coboundary of the form7 dG(α+ F ), where

α ∈ Ωn(M)G and F ∈ (Ωn−2(M)⊗ g∗)G.

Explicitly, C1 − C0 = dG(α+ F ) means that

a) ω1 − ω0 = dα

b) µ1 − µ0 = ι•α− dF

c) ι(vx)F (x) = 0 for all x ∈ g,

where we use the short form (ι•α)(x) := ιvxα.

Remark 7.2. In the symplectic case (so n = 1), Def. 7.1 reduces to: ω1 − ω0 = dα and
µ1 − µ0 = ι•α for some α ∈ Ω1(M)G. In particular, if ω1 = ω0, each function ιvxα is
constant.

7If C0
−C1 is exact, in general we may not find a primitive of the form α+ F as above. We justify our

definition remarking that the choices of Cartan cocycles we allow are also not the most general ones.
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The following proposition states that if two Cartan cocycles are related by a G-equivariant
diffeomorphism of M isotopic to the identity, then they are equivalent.

Proposition 7.3. Let the Lie group G act on M . Let ω0, ω1 ∈ Ωn+1(M)G. Let µ0, µ1 ∈
(Ωn−1(M)⊗ g∗)G so that Ci := ωi−µi is a cocycle in the Cartan model. Suppose that there
exists a G-equivariant diffeomorphism ψ, isotopic to IdM by G-equivariant diffeomorphisms,
with

ψ∗ω1 = ω0, ψ∗µ1 = µ0.

(Here µ1 is viewed as a map g → Ωn−1(M) and (ψ∗µ1)(x) := (ψ∗(µ1(x)) for all x ∈ g).
Then C1 and C0 are equivalent in the sense of Def. 7.1.

Proof. We construct explicitly equivariant Cartan cochains α,F such that dG(α + F ) =
C1 −C0.

Let {ψs}s∈[0,1] a isotopy from ψ0 = IdM to ψ = ψ1 by G-equivariant diffeomorphisms,
and denote by {Xs}s∈[0,1] the time-dependent vector field generating {ψs}s∈[0,1]. Define ωs

by ψ∗
s(ω

s) = ω0 and µs ∈ (Ωn−1(M)⊗ g∗)G by ψ∗
s(µ

s) = µ0.
We claim that

α := −

∫ 1

0
ιXsω

s ∈ Ωn(M)

satisfies ω1 − ω0 = dα (condition a) in Def. 7.1). This follows integrating from s = 0 to
s = 1 the equation

d

ds
ωs = −LXsω

s = −dιXsω
s

where in the first equality we use [7, Prop. 6.4]

0 =
d

ds
(ψ∗

sω
s) = ψ∗

s(LXsω
s +

d

ds
ωs).

We claim that

F :=

∫ 1

0
ιXsµ

s ∈ Ωn−2(M)⊗ g∗

satisfies µ1 − µ0 = ι•α− dF (condition b) in Def. 7.1). Similarly to the above, this follows
integrating from 0 to 1 the following expression, for all x ∈ g:

d

ds
µs(x) = −LXs(µ

s(x)) = −ιXs(dµ
s(x))− dιXsµ

s(x)

= ιXs(ιvxω
s)− dιXsµ

s(x)

= ιvx(−ιXsω
s)− dιXsµ

s(x).

Here in the first equality we used again [7, Prop. 6.4], and in the third one ιvxω
s = −d(µs(x))

for all x ∈ g (see Remark 4.3 a)).
We are left with showing ιvxF (x) = 0 for all x ∈ g (condition c) in Def. 7.1). This holds

since ιvxµ
s(x) = 0, a consequence of Remark 4.3 c) and the fact that ωs − µs, being the

pullback of a Cartan cocycle by a G-equivariant map, is itself a Cartan cocycle.
Notice that the Xs are G-invariant, as their flow {ψs} commutes with the G-action.

Further the ωs are G-invariant, since ω is G-invariant. Hence α is G-invariant. By the same
reasoning and the invariance of µ0, we see that F is G-invariant. �
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7.2. Equivalences of moment maps. Let f : g  L∞(M,ω) be a homotopy moment
map for ω, and

(12) ϕk := ς(k)fk : ∧k g → Ωn−k(M) for k = 1, . . . , n.

We know that ϕ = ϕ1 + · · ·+ ϕn satisfies dtotϕ = ω̃.
Indeed, by Prop. 2.5, this equation characterizes moment maps for ω. Therefore, if

η ∈ (∧≥1g∗ ⊗ Ω(M))n−1, then ϕ+ dtotη naturally provides a new moment map for (M,ω).

Further, notice that if α ∈ (Ωn)G, by Lemma 2.3 we have dtot(ϕ + α̃) = ω̃ + dα, i.e.
ϕ+ α̃ provides a moment map for ω + dα. The following definition, which arises naturally
considering the complex B introduced in §3, is made so that these two kinds of moment
maps are equivalent to the original one.

Definition 7.4. Let ω be an invariant pre-n-plectic form on M and f a moment map for
ω, for which we denote by ϕ the corresponding element of (∧≥1g∗ ⊗ Ω(M))n as in Prop.
2.5, and similarly for (ω′, f ′). The pairs (ω, f) and (ω′, f ′) are equivalent if there exist
η ∈ (∧≥1g∗ ⊗ Ω(M))n−1 and α ∈ (Ωn)G such that

ω′ − ω = dα(13)

ϕ′ − ϕ = dtotη + α̃.(14)

Remark 7.5. The equivalence introduced in Def. 7.4 can be phrased as a simple coboundary
condition, thereby providing an algebraic justification for Def. 7.4. Indeed, in terms of the
complex B = (Ω(M)G[1] ⊕ (∧≥1g∗ ⊗ Ω(M)),D) introduced in §3, the conditions (13)-(14)
are simply phrased as

(ω′[1], ϕ′)− (ω[1], ϕ) = D(α[1],−η).

A geometric justification for Def. 7.4 is given in Prop. 7.8.
In Appendix A we compare Def. 7.4 with the natural notion of equivalence for L∞-

morphisms. There we show that two homotopy moment maps are equivalent with α = 0
(see Def. 7.4) iff they are equivalent as L∞-morphisms.

Remark 7.6. Condition (14), explicitly, is that there exists η = η1 + · · ·+ ηn−1 ∈ (∧≥1g∗ ⊗
Ω(M))n−1 and α ∈ (Ωn)G with

−dη1 + α1 = (ϕ′ − ϕ)1,

dgηk−1 + (−1)kdηk + (−1)k−1αk = (ϕ′ − ϕ)k ∀k = 2, . . . , n− 1

dgηn−1 + (−1)n−1αn = (ϕ′ − ϕ)n,

where αi is defined as in eq. (5).

Remark 7.7. Given a G-manifold, we can consider ω = 0 ∈ Ωn+1
closed(M) and the zero moment

map f = 0. Given α ∈ Ωn(M)G, applying the operation described in Def. 7.4 provides a
moment map for (M,dα), which agrees exactly with the one provided in [6, §8.1] for exact
pre-n-plectic forms admitting an invariant primitive.

The following proposition provides a geometric justification for Def. 7.4. It states that
if two moment maps are related by a G-equivariant diffeomorphism of M isotopic to the
identity, then they are equivalent.

Proposition 7.8. Let the Lie group G act on M . Let ω0, ω1 be closed (n+1)-forms preserved
by the action. Suppose that there exists a G-equivariant diffeomorphism ψ, isotopic to IdM
by G-equivariant diffeomorphisms, such that ψ∗ω1 = ω0.
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Let f i : g  L∞(M,ωi) be homotopy moment maps (i = 0, 1) intertwined by ψ that is,
for all their components (k = 1, . . . , n) we have

ψ∗f1k = f0k .

Then f0 and f1 are equivalent in the sense of Def. 7.4.

Proof. Let {ψs}s∈[0,1] a isotopy from ψ0 = IdM to ψ = ψ1 by G-equivariant diffeomor-
phisms, and denote by {Xs}s∈[0,1] the time-dependent vector field generating {ψs}s∈[0,1].

Define ωs by ψ∗
s(ω

s) = ω0 and f s by ψ∗
s(f

s) = f0.
The form

α := −

∫ 1

0
ιXsω

s ds ∈ Ωn(M)

satisfies ω1−ω0 = dα, i.e. eq. (13), as we have already shown at the beginning of the proof
of Prop. 7.3.

Now, for all 1 ≤ k ≤ n (and defining f0 = 0) we have

d

ds
f sk = −LXsf

s
k = −d(ιXsf

s
k)− ιXsdf

s
k

= −d(ιXsf
s
k) + ιXsdgf

s
k−1 + ς(k)ιXsω

s
k

= −d(ιXsf
s
k) + dgιXsf

s
k−1 + (−1)kς(k)(ιXsω

s)k,

where in the first equation we used [7, Prop. 6.4], and in the second one df sk = −dgf
s
k−1 −

ς(k)ωs
k (which holds by eq. (7)).

Multiplying by ς(k) the equation f1k − f0k =
∫ 1
0

d
dsf

s
k ds we hence obtain

ϕ1
k − ϕ0

k = (−1)kdηk + dgηk−1 + (−1)k−1αk,

where we define

ηk : ∧k g → Ωn−1−k(M), ηk(x
1, . . . , xk) = (−1)k−1ς(k)

∫ 1

0
ι(Xs)f

s
k ds.

As this holds for all 1 ≤ k ≤ n, we obtain ϕ1 − ϕ0 = dtotη + α̃, i.e. eq. (14). �

We finish this subsection discussing equivalences for which the pre-n-plectic form is fixed.
Fix a pre-n-plectic form ω. Restricting Def. 7.4 to the space of moment maps for ω we
obtain: two moment maps f, f ′ for ω are equivalent iff there exist η ∈ (∧≥1g∗ ⊗ Ω(M))n−1

and a closed form α ∈ (Ωn)G such that eq. (14) is satisfied8.
The following proposition extends the results of [6, §7.5].

Proposition 7.9. There exist a closed 3-form ω with the following property: There exist
an equivariant moment map for ω which is not equivalent (in the sense of Def. 7.4) to any
moment map for ω arising from a Cartan cocycle of the form ω − µ as in Prop. 4.4.

Proof. Consider an action of a Lie group G on a connected pre-2-plectic manifold (M,ω),
and let f be an equivariant moment map. Let f ′ be another equivariant moment map (for
the same action on (M,ω)) which is equivalent to f . This means exactly that there exist
η1 ∈ g∗ ⊗ C∞(M) and a closed form α ∈ Ω2(M)G satisfying eq. (14). In particular the
equation

(15) − dη1 + α1 = (ϕ′ − ϕ)1

8Loosely speaking, the action of α can be interpreted as induced by a gauge transformation on the higher
Courant algebroid TM ⊕ ∧

n−1T ∗M endowed with the ω-twisted Courant bracket.
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holds, where we denote ϕ1 = f1,ϕ2 = f2, etc.
For every x ∈ g, evaluating the l.h.s. of the eq. (15) on x and applying the interior

product ιvx , we obtain a function. We claim that this function is a constant, which we
denote by Cx. To see this, first notice that evaluating the l.h.s. of the eq. (15) on x and
applying ιvx we obtain ιvx(−dη1(x) + α1(x)) = −Lvx(η1(x)). Second, notice that since
ϕ1, (ϕ

′)1, α1 are equivariant, it follows that dη1 is also equivariant. In particular we have
dLvxη1(x) = Lvxdη1(x) = dη1([x, x]) = 0, i.e., Lvx(η1(x)) := −Cx is a constant function.

From the above claim we conclude: if there exists x ∈ g such that

i) ιvxϕ1(x) 6= 0
ii) Cx = 0

then necessarily ιvx(ϕ
′)1(x) 6= 0, so f ′ can not arise from a Cartan cocycle (compare with

Remark 4.3 c)).
Now, following [6, §7.5], we display an example of moment map f and x ∈ g satisfying

assumption i) and such that for every η1 ∈ g∗⊗C∞(M) assumption ii) is satisfied. It follows
that there exists no moment map which is equivalent to f and which arises from a Cartan
cocycle.

Let G be the abelian group S1×S1, and (M,ω) = (S1×S1×R, dθ1∧ dθ2∧ dz). We take
the infinitesimal action of g on M to be given by (1, 0) ∈ g 7→ ∂θ1 , (0, 1) 7→ ∂θ2 . It is easily
checked that

f1 : g → Ω1
Ham(M), (1, 0) 7→ zdθ2 + dθ1, (0, 1) 7→ −zdθ1 + dθ2,

f2 : ∧2 g → C∞(M), (1, 0) ∧ (0, 1) 7→ −z

are the components of an equivariant moment map. Let x := (1, 0) ∈ g. Since vx = ∂θ1 , we
clearly have ιvxf1(x) = 1 6= 0, hence assumption i) is satisfied. For any h ∈ C∞(M) such
that Lvx(h) = ∂θ1(h) is a constant, integrating Lvx(h)dθ1 along the circles S1 × {point} ×
{point} of M one sees by Stokes’ theorem that the constant Lvx(h) is necessarily zero.
Hence, for any η1 ∈ g∗ ⊗ C∞(M) we have Lvx(η1(x)) = 0, verifying that assumption ii) is
satisfied. �

Remark 7.10. The notion of equivalence on the space of moment maps for ω mentioned
just before Prop. 7.9 should not be confused with the similar but more restrictive one in
which α = 0 is imposed. We refer to the latter notion of equivalence as inner equivalence.
Explicitly: two moment maps f and f ′ for ω are inner equivalent if there exist η ∈ (∧≥1g∗⊗
Ω(M))n−1 such that ϕ′ − ϕ = dtotη, where ϕ denotes the element of (∧≥1g∗ ⊗ Ω(M))n
corresponding to f as in Prop. 2.5, and similarly for ϕ′ and f ′. The notion of inner
equivalence arises naturally if one considers the complex (C, dtot) of §2 (as opposed to the
complex B introduced in §3).

Notice that when α = 0, the first equation in Rem. 7.6 says that, for all x ∈ g, the
elements (ϕ′)1(x) and ϕ1(x) of Ωn−1

ham(M,ω) – which have the same hamiltonian vector field
vx, and hence a priory differ by a closed form – actually differ by an exact form.

7.3. Relation between the two notions of equivalence. We end establishing the rela-
tion between the equivalences introduced in Def. 7.1 and Def. 7.4.

Proposition 7.11. Let the Lie group G act on M . Take two Cartan cocycles C0 = ω0−µ0

and C1 = ω1 − µ1, with ω0, ω1 ∈ Ωn+1(M)G and µ0, µ1 ∈ (Ωn−1(M) ⊗ g∗)G. Assume that
C0 and C1 are equivalent in the sense of Def. 7.1.

Then the homotopy moment maps f0 and f1, induced by the µi as in Prop. 4.4, are
equivalent in the sense of Def. 7.4.
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Proof. Since we assume that C0 and C1 are equivalent, there is α ∈ Ωn(M)G and F ∈
(Ωn−2(M)⊗ g∗)G satisfying the equation appearing below Def. 7.1, that is

a) ω1 − ω0 = dα

b) µ1 − µ0 = ι•α− dF

c) ι(vx)F (x) = 0 for all x ∈ g,

We now check that an equivalence between the homotopy moment maps is given by the

form α and by η := F̃ (notice that F̃ is well-defined by c)). The relation (13) is just a).
Applying the map ˜ (see Lemma 4.1) to equation b) we obtain

µ̃1 − µ̃0 = ι̃•α− d̃F .

Denoting by ϕi ∈ (∧≥1g∗ ⊗ Ω(M))n the element corresponding to f i as in Prop. 2.5, for

i = 0, 1, we have ϕi = µ̃i (to see this, compare the formulae in Prop. 2.5 and Prop. 4.4).

Using ι̃•α = α̃ (by Rem. 4.2) and dtotF̃ = −d̃F (by Lemma 4.1) we obtain exactly the
relation (14). �

Appendix A. Equivalences of moment maps and L∞-algebra morphisms

Let G be a Lie group acting on a pre-n-plectic manifold (M,ω). A moment map for
this action (Def. 1.3) is in particular an L∞-morphism g → L∞(M,ω). There is a natural
notion of equivalence of L∞-morphisms, and the aim of this appendix is to show that it
coincides with the inner equivalence introduced in Rem. 7.10 (that is, equivalence in the
sense of Def. 7.4 imposing α = 0.)

The notion of equivalence of L∞-morphisms comes from homotopy theory, and coincides
with the one given by equivalences of Maurer-Cartan elements [8]. We express it following

[8, §5]: let L̃, L be L∞-algebras. Consider Ω(R) = R[t] + R[t]dt, the differential graded
algebra of polynomial forms on the real line, where t has degree 0 and dt degree 1. Then
L⊗Ω(R) is again an L∞-algebra [5, §1].

Definition A.1. Let L̃, L be L∞-algebras. Let f, f ′ : L̃ → L be L∞-morphisms. f and f ′

are equivalent iff there exists an L∞-morphism H : L̃→ L⊗ Ω(R) such that

(16) H|t=0,dt=0 = f, H|t=1,dt=0 = f ′.

Proposition A.2. Two homotopy moment maps f and f ′ are inner equivalent (see Rem.
7.10) iff they are equivalent in the sense of Def. A.1.

Proof. We first given a characterization of L∞-morphisms from g to L∞(M,ω) ⊗ Ω(R).
L∞(M,ω) ⊗ Ω(R) is concentrated in degrees ≤ 1, and its multibrackets {lk} are as follows
[5, §1]: for k ≥ 2 they are given by the multibrackets of L∞(M,ω) extended by Ω(R)-
linearity (with no signs involved), and the differential is

l1(γ ⊗ Γ) = Dγ ⊗ Γ + (−1)deg(γ)γ ⊗
∂

∂t
Γdt,

where D denotes the differential in L∞(M,ω). All multibrackets, except for the differential,
vanish unless all entries are in degree 0 or 1.

We observe that the truncation

T := (L∞(M,ω)⊗ Ω(R))<0 ⊕ {c ∈ (L∞(M,ω) ⊗ Ω(R))0 : l1(c) = 0}
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is closed9 under the multibrackets. Hence T is a L∞-algebra for which the multibrackets
(except for the differential) vanish unless all entries are in degree zero.

Let

H : ∧≥1 g → L∞(M,ω)⊗ Ω(R)

be a linear map such that H|∧kg has degree 1− k.

Claim: H is an L∞-morphism iff conditions (21) and (22) below are satisfied.
We divide the proof of the claim in three steps.
A) H is a L∞-morphism iff the image of the first component H1 is annihilated by l1 and

for 2 ≤ m ≤ n+ 1, for all xi ∈ g

(17)
∑

1≤i<j≤m

(−1)i+j+1Hm−1([xi, xj], x1, . . . , x̂i, . . . , x̂j , . . . , xm)

= l1Hm(x1, . . . , xm) + lm(H1(x1), . . . ,H1(xm))

where Hn+1 = 0. Indeed, if H is a L∞-morphism, then H1 is a chain map and takes values
in l1-closed elements, and therefore H takes values in T , so that we can apply [6, §3.2].
Conversely, if the image of H1 is annihilated by l1, we can apply [6, §3.2], and eq. (17)
implies that H is a L∞-morphism.

B) Write

H = h0(t) + h1(t)dt

where h0(t) and h1(t) are maps ∧≥1g → L∞(M,ω)⊗R[t]. Notice that the component h0(t)k
has degree 1−k, while h1(t)k has degree −k. The condition that the degree zero component
of H1 takes values in l1-closed elements reads

(18)
∂

∂t
h0(t)1 + dh1(t)1 = 0.

Separating the terms without dt from those containing dt, eq. (17) is equivalent to (2 ≤
m ≤ n+ 1)

(19)
∑

1≤i<j≤m

(−1)i+j+1h0(t)m−1([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xm)

= dh0(t)m(x1, . . . , xm) + lm(h0(t)1(x1), . . . , h
0(t)1(xm))

and

(20)
∑

1≤i<j≤m

(−1)i+j+1h1(t)m−1([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xm)

= dh1(t)m(x1, . . . , xm) + (−1)1−m ∂

∂t
h0(t)m(x1, . . . , xm),

where we used m ≥ 2 and degree counting both to replace D by the de Rham differential
d, and to conclude that lm vanishes if one of its arguments is of the form h1(t)1(xi).

9Indeed, T is closed under l1 since (l1)
2 = 0. For the higher brackets, the only non-trivial case to consider

is l2(γ ⊗Γ, γ′
⊗Γ′) when γ,Γ, γ′,Γ′ all have degree zero. This bracket lies in T since l1 satisfies the Leibniz

rule w.r.t. l2.
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C) Eq. (18), (19) and (20) are equivalent to the fact that the following two equations
hold for all t ∈ R:

h0(t) : g L∞(M,ω) is an L∞- morphism(21)

dtoth1(t) =
∂

∂t
h0(t),(22)

where the bar denotes the following: if ξ =
∑N

k=1 ξk with ξk ∈ ∧kg∗ ⊗ Ω(M), then

ξ̄ :=

N∑

k=1

ς(k)ξk.

The equivalence between eq. (19) (for all 2 ≤ m ≤ n+1) and eq. (21) is given again by [6,
§3.2]. We show the equivalence between eq. (18) and eq. (20) (for all 2 ≤ m ≤ n+1) on one
side, and eq. (22) on the other. Notice that the L.H.S. of eq. (22) consists of three kinds
of terms, exactly as it happens in eq. (6), (7), (8). The analogue of eq. (6) is equivalent
to eq. (18). To take care of the analogues of eq. (7) and (8), write eq. (20) in the form
−dgh

1(t)m−1 = dh1(t)m + (−1)1−m ∂
∂th

0(t)m for all 2 ≤ m ≤ n+1, and use that h1(t)n = 0
by degree reasons. △

Now, given homotopy moment maps f, f ′, let ϕ := f̄ , ϕ′ := f̄ ′ (where the bar has been
defined just above).

Assume first that f and f ′ are inner equivalent, so that there is η ∈ (∧≥1g∗ ⊗Ω(M))n−1

with ϕ′ − ϕ = dtotη. Define

H = h0(t) + h1(t)dt := (ϕ+ tdtotη) + ηdt.

Notice that H satisfies eq. (16). Now we check the two conditions appearing in the above

claim. Condition (21) is satisfied, because dtoth0(t) = dtotϕ = ω̃ for all t and because of
Prop. 2.5. Condition (22) is satisfied as both sides are equal to dtotη. Therefore by the
claim H is an L∞-morphism. We conclude that f and f ′ are equivalent the sense of Def.
A.1.

Conversely, assume we are given H = h0(t)+h1(t)dt satisfying the conditions of Def. A.1,
that is: h0(1) = f ′ = ϕ′ and h0(0) = f = ϕ, and H is an L∞-morphism. Then integrating
over t we define

η :=

∫ 1

0
h1(t).

It satisfies

ϕ′ − ϕ = h0(1)− h0(0) =

∫ 1

0

∂

∂t
h0(t) = dtotη,

where in the last equation condition (22) is used. Hence f and f ′ are inner equivalent. �
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