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Simultaneous deformations of algebras and morphisms via

derived brackets

Yaël Frégier∗†‡ Marco Zambon§

Abstract

We present a method to construct explicitly L∞-algebras governing simultaneous
deformations of various kinds of algebraic structures and of their morphisms. It is an
alternative to the heavy use of the operad machinery of the existing approaches. Our
method relies on Voronov’s derived bracket construction.

Introduction

The deformation theory of various kinds of structures (e.g. [7], [12] and [14]) can be
encapsulated in the language of graded Lie algebras ([16] and [17]) or more generally, for
non quadratic structures, of L∞-algebras ([15]).

It is convenient to have such a formulation since cohomology theory, analogues of Massey
products and a natural equivalence relation on the space of deformations come along for
free. However obtaining such formulation – that is, obtaining the L∞- algebra governing
the given deformation problem – can be difficult.

There are known techniques ([4]) to solve this problem in the case of simultaneous
deformations of various kinds of algebras and their morphisms, but they are based on the
formalism of operads, which provides an obstacle to mathematicians not acquainted with
operad theory.

On the other hand, T. Voronov, building on Y. Kosmann-Schwarzbach’s derived brack-
ets ([13]), developed techniques enabling to produce L∞-algebras out of some simple con-
cepts of graded linear algebra ([22] and [23]). In our work [6] we showed how to adapt
Voronov’s results to the study of simultaneous deformations, and gave geometrical appli-
cations which could not be obtained otherwise.

In this paper we show that this approach also applies successfully to simultaneous de-
formations of algebras and morphisms and that this can be an alternative approach for
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users not willing to use the operadic formalism.

Outline of the content of the paper.

In §1 we recall the formalism of graded Lie algebras and L∞-algebras together with the
derived bracket constructions (see Thm. 1 and 2) and the tool we use to study simultaneous
deformations (Thm. 3). In §2 we give algebraic applications to the study of simultaneous
deformations of algebras and morphisms in the categories of Lie and L∞-algebras. Another
application concerns Lie subalgebras of Lie algebras.

1 L∞-algebras via derived brackets and Maurer-Cartan ele-

ments

We recall the machinery we developed in [6, §1] (which first appeared as [5, §1]). The main
result is Thm. 3, which produces the L∞-algebras appearing in the rest of the article. We
first give some basic material about L∞-algebras in §1.1, then we recall in §1.2 Voronov’s
constructions which will be the main tools used to establish in §1.3 our Theorem 3. We
conclude justifying in §1.4 why no convergence issues arise in our machinery, and discussing
equivalences in §1.5.

We refer the reader to [6, §1] for additional details and proofs (an exception being
Lemma 1.13, which we prove here).

1.1 Background on L∞-algebras

The notion of L∞-algebra is due to Lada and Stasheff [15], and contains graded Lie algebras
and differential graded Lie algebras (DGLAs) as special cases. We will need only a “shifted”
version of this notion, in which all the multibrackets are graded symmetric have degree one.
We refer to the latter as L∞[1]-algebras.

To introduce it, recall that given two elements v1, v2 in a graded vector space, the
Koszul sign of the transposition τ1,2 of these two elements is ǫ(τ1,2, v1, v2) := (−1)|v1||v2|.
This definition is extended to an arbitrary permutation using a its decomposition into
transpositions.

Recall further that σ ∈ Sn is called an (i, n− i)-unshuffle if it satisfies σ(1) < · · · < σ(i)
and σ(i+ 1) < · · · < σ(n). The set of (i, n − i)-unshuffles is denoted by S(i,n−i).

Definition 1.1. ([11, Def. 5]) An L∞[1]-algebra is a graded vector space W =
⊕

i∈Z Wi

equipped with a collection (k ≥ 1) of linear maps mk : ⊗k W −→ W of degree 1 satisfying,
for every collection of homogeneous elements v1, . . . , vn ∈ W :

1) graded symmetry: for every σ ∈ Sn

mn(vσ(1), . . . , vσ(n)) = ǫ(σ)mn(v1, . . . , vn),

2) relations: for all n ≥ 1

∑

i+j=n+1
i,j≥1

∑

σ∈S(i,n−i)

ǫ(σ)mj(mi(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0.
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In a curved L∞[1]-algebra one additionally allows for an element m0 ∈ W1 (which can be
understood as a bracket with zero arguments), one allows i and j to be zero in the relations
2), and one adds the relation corresponding to n = 0.

Remark 1.2. There is a bijection between L∞-algebra structures on a graded vector space
V and L∞[1]-algebra structures on V [1], the graded vector space defined by (V [1])i := Vi+1

[22, Rem. 2.1]. The multibrackets are related by applying the décalage isomorphisms

(⊗nV )[n] ∼= ⊗n(V [1]), v1 . . . vn 7→ v1 . . . vn · (−1)(n−1)|v1 |+···+2|vn−2|+|vn−1|, (1)

where |vi| denotes the degree of vi ∈ V . The bijection extends to the curved case.

From now on, for any v ∈ V , we denote by v[1] the corresponding element in V [1]
(which has degree |v| − 1). Also, we denote the multibrackets in L∞[1]-algebras by {· · · },
we denote by d := m1 the unary bracket, and in the curved case we denote {∅} := m0 (the
bracket with zero arguments).

Definition 1.3. Given an L∞[1]-algebra W , aMaurer-Cartan element is a degree 0 element
Φ satisfying the Maurer-Cartan equation

∞∑

n=1

1

n!
{Φ, . . . ,Φ
︸ ︷︷ ︸

n times

} = 0. (2)

(We consider the convergence of this infinite sum in §1.4). We denote by MC(W ) the set
of Maurer-Cartan elements of W .

If W is a curved L∞[1]-algebra, we define Maurer-Cartan elements by adding m0 ∈ W1

to the left hand side of eq. (2) (i.e. by letting the sum in (2) start at n = 0).

1.2 Th. Voronov’s constructions of L∞-algebras as derived brackets

We recall Th. Voronov’s derived bracket construction [22][23], which out of simple data
constructs an L∞[1]-algebra structure.

Definition 1.4. A V-data consists of a quadruple (L, a, P,∆) where

• L is a graded Lie algebra (we denote its bracket by [·, ·]),

• a an abelian Lie subalgebra,

• P : L → a a projection whose kernel is a Lie subalgebra of L,

• ∆ ∈ Ker(P )1 an element such that [∆,∆] = 0.

When ∆ is an arbitrary element of L1 instead of Ker(P )1, we refer to (L, a, P,∆) as a
curved V-data.

Theorem 1 ([22, Thm. 1, Cor. 1]). Let (L, a, P,∆) be a curved V-data. Then a is a curved
L∞[1]-algebra for the multibrackets {∅} := P∆ and (n ≥ 1)

{a1, . . . , an} = P [. . . [[∆, a1], a2], . . . , an]. (3)

We obtain a L∞[1]-algebra exactly when ∆ ∈ Ker(P ) .
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When ∆ ∈ Ker(P ) there is actually a larger L∞[1]-algebra, which contains a as in Thm.
1 as a L∞[1]-subalgebra.

Theorem 2 ([23, Thm. 2]). Let (L, a, P,∆) be a V-data, and denote D := [∆, ·] : L → L.
Then the space L[1]⊕ a is a L∞[1]-algebra for the differential

d(x[1], a) := (−(Dx)[1], P (x +Da)), (4)

the binary bracket
{x[1], y[1]} = [x, y][1](−1)|x| ∈ L[1],

and for n ≥ 1:

{x[1], a1, . . . , an} = P [. . . [x, a1], . . . , an] ∈ a, (5)

{a1, . . . , an} = P [. . . [Da1, a2], . . . , an] ∈ a. (6)

Here x, y ∈ L and a1, . . . , an ∈ a. Up to permutation of the entries, all the remaining
multibrackets vanish.

Notation 1.5. We will denote by
a
P
∆

and by
(L[1]⊕ a)P∆

the L∞[1]-algebras produced by Thm. 1 and 2. We will also often consider the projection

PΦ := P ◦ e[·,Φ] : L → a. (7)

Remark 1.6. Let (L, a, P,∆) be a curved V-data and Φ ∈ a0 as above. Then Φ is a Maurer-
Cartan element of aP∆ iff

PΦ∆ = 0, (8)

or equivalently ∆ ∈ ker(PΦ). This follows immediately from eq. (3).

Remark 1.7. Let L′ be a graded Lie subalgebra of L preserved by D (for example L′ =
Ker(P )). Then L′[1] ⊕ a is stable under the multibrackets of Thm. 2. We denote by
(L′[1] ⊕ a)P∆ the induced L∞[1]-structure. One stresses that it is essential to consider this
restriction, since the natural inclusion Ker(P )[1] −→ L[1] ⊕ A is a L∞-map and a quasi
isomorphism. In particular, if we do not consider this restriction, every solution of the
Maurer-Cartan equation is gauge equivalent to an element of Ker(P ).

1.3 The main tool

The following statement is the main tool we develop. See [6, §1.3] for its proof. It is a
statement about Maurer-Cartan elements of L∞[1]-algebras that arise as in Thm. 1. In
the applications, these Maurer-Cartan elements will be the objects of interest, since they
will correspond to morphisms, subalgebras, etc.
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Theorem 3. Let (L, a, P,∆) be a filtered V-data and let Φ ∈ MC(aP∆). Then for all ∆̃ ∈ L1

and Φ̃ ∈ a0:
{

[∆ + ∆̃,∆+ ∆̃] = 0

Φ + Φ̃ ∈ MC(aP
∆+∆̃

)
⇔ (∆̃[1], Φ̃) ∈ MC

(

(L[1]⊕ a)PΦ
∆

)

.

In this case, a
P
∆+∆̃

is a curved L∞[1]-algebra. It is a L∞[1]-algebra exactly when ∆̃ ∈

Ker(P ).

Remark 1.8. For any Φ̃ ∈ a0 we have

Φ + Φ̃ is a MC element of aP∆ ⇔ Φ̃ is a MC element of aPΦ
∆ .

This is a well-known statement, saying that perturbations of a Maurer-Cartan element of
a
P
∆ satisfy themselves a Maurer-Cartan equation, and is a particular case of the equivalence
appearing in Thm. 3 (obtained setting ∆̃ = 0).

In the special case in which ∆ = 0 and Φ = 0, we obtain the following corollary about
the space of curved L∞[1]-algebra structures arising as in Thm. 1 and Maurer-Cartan
elements in there:

Corollary 1.9. Let L, a, P such that (L, a, P, 0) is a filtered V-data. The only non-vanishing
multibrackets of (L[1]⊕ a)P0 , up to permutations of the entries, are

d(x[1]) = Px,

{x[1], y[1]} = [x, y][1](−1)|x|,

{x[1], a1, . . . , an} = P [. . . [x, a1], . . . , an] for all n ≥ 1

where x, y ∈ L and a1, . . . , an ∈ a.
Its Maurer-Cartan elements are characterized by: for all ∆̃ ∈ L1 and Φ̃ ∈ a0

{

[∆̃, ∆̃] = 0

Φ̃ is a MC element of aP
∆̃

⇔ (∆̃[1], Φ̃) is a MC element of (L[1] ⊕ a)P0 .

1.4 Convergence issues

The left hand side of the Maurer-Cartan equation (2) is generally an infinite sum. In this
subsection we review Getzler’s notion of filtered L∞[1]-algebra [8], which guarantees that
the above infinite sum converges. We show that simple assumptions on V-data ensure that
the Maurer-Cartan equations of the (curved) L∞[1]-algebras we construct in Thm. 3 do
converge.

Definition 1.10. Let V be a graded vector space. A complete filtration is a descending
filtration by graded subspaces

V = F−1V ⊃ F0V ⊃ F1V ⊃ . . .

such that the canonical projection V → lim
←

V/FnV is an isomorphism. Here

lim
←

V/FnV :={
→
x ∈ Πn≥−1V/F

nV : Pi,j(xj) = xi when i < j},

where Pi,j : V/F
jV −→ V/F iV is the canonical projection induced by the inclusion F jV ⊂ F iV .
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We define Maurer-Cartan elements to be Φ ∈ W0 ∩ F1W for which the left hand side
of eq. (2) vanishes.

Definition 1.11. Let (L, a, P,∆) be a curved V-data (Def. 1.4). We say that this curved
V-data is filtered if there exists a complete filtration on L such that

a) The Lie bracket has filtration degree zero, i.e. [F iL,F jL] ⊂ F i+jL for all i, j ≥ −1,

b) a0 ⊂ F1L,

c) the projection P has filtration degree zero, i.e. P (F iL) ⊂ F iL for all i ≥ −1.

See [6, §1.3] for the proof of the following proposition.

Proposition 1.12. Let (L, a, P,∆) be a filtered, curved V-data. Then for every Φ ∈
MC(aP∆) ⊂ a0:

1) the projection PΦ := P ◦ e[·,Φ] : L → a is well-defined and has filtration degree zero.

2) the curved L∞[1]-algebra a
PΦ
∆ given by Thm. 1 is filtered by Fn

a := FnL∩a. Further,
the sum on the left hand side of eq. (2) converges for any degree zero element a of a.

3) if ∆ ∈ ker(P ): the L∞[1]-algebra (L[1]⊕a)PΦ
∆ given by Thm. 2 is filtered by Fn(L[1]⊕

a) := (FnL)[1]⊕Fn
a. Further, the sum on the left hand side of eq. (2) converges for

any degree zero element (x[1], a) of L[1]⊕ a.

A common way to deal with convergence issues is to work formally (i.e. in terms of
power series in a formal variable ε). The following is the analogue of Prop. 1.12 in the
formal setting:

Lemma 1.13. Let (L, a, P,∆) be a curved V-data (not necessarily filtered). Let Φ ∈ a0 ⊗
ε · R[[ε]].

1) for the Maurer-Cartan equation of the curved L∞[1]-algebra (a ⊗ R[[ε]])PΦ
∆ the following

holds: the sum on the left hand side of eq. (2) converges for any element a of a0⊗ ε ·R[[ε]].

2) if ∆ ∈ ker(P ), for the Maurer-Cartan equation of the L∞[1]-algebra
(
(L[1]⊕a)⊗R[[ε]]

)PΦ

∆
the following holds: the sum on the left hand side of eq. (2) converges for any element
(x[1], a) ∈ (L[1]⊕ a)0 ⊗ ε · R[[ε]].

Proof. One checks easily that the following is a curved V-data:

• the graded Lie algebra L⊗ R[[ε]]

• its abelian subalgebra a⊗ R[[ε]]

• the natural projection P : L⊗R[[ε]] → a⊗R[[ε]]

• ∆,

where the the first three structures are defined by R[[ε]]-linear extension. The natural
complete filtration {Fn}n≥0 on the vector space L⊗ R[[ε]] by Fn := L⊗ εnR[[ε]] satisfies
conditions a), c) of Def. 1.11. It does not satisfy condition b), however the proof of
Prop. 1.12, applied to the above curved V-data, goes through whenever Φ and a lie in
a0 ⊗ ε · R[[ε]].

Remark 1.14. Notice that the curved L∞[1]-algebra (a⊗R[[ε]])P∆ is canonically isomorphic
to (aP∆)⊗ R[[ε]].
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1.5 Equivalences of Maurer-Cartan elements

Let W be an L∞[1]-algebra. On MC(W ), the set of Maurer-Cartan elements, there is
a canonical involutive (singular) distribution D which induces an equivalence relation on
MC(W ) known as gauge equivalence. More precisely, each z ∈ W−1 defines a vector field
Yz on W0, whose value at m ∈ W0 is1

Yz|m := dz + {z,m} +
1

2!
{z,m,m} +

1

3!
{z,m,m,m} + . . . . (9)

This vector field is tangent to MC(W ). The distribution at the point m ∈ MC(W ) is
defined as D|m = {Yz|m : z ∈ W−1}.

Remark 1.15. When the differential d vanishes, the Jacobiator of the binary bracket {·, ·}
is zero. Hence {·, ·} makes the vector space W−1 into an ordinary Lie algebra, and the
assignment W−1 → χ0(W0), z 7→ (Yz)lin := {z, ·} ∈ χ0(W0) to the linear part of Yz is a Lie
algebra morphism.

Consider in particular the L∞[1]-subalgebra ker(P )[1]⊕ a of the L∞[1]-algebra of Cor.
1.9. Notice that the differential vanishes, so Remark 1.15 applies. The vector field associated
to a degree −1 element z = (zL[1], za) ∈ ker(P )[1] ⊕ a, evaluated at m = (mL[1],ma) ∈
MC(ker(P )[1] ⊕ a), reads

Yz|m = [zL,mL][1] +
∑

n≥1

1

n!
P [[zL,ma], . . . ,ma

︸ ︷︷ ︸

n times

] +
∑

n≥1

1

(n − 1)!
P [[[mL, za],ma], . . . ,ma

︸ ︷︷ ︸

n−1 times

]

(10)

where the square bracket is the graded Lie algebra structure on L.

We will display explicitly the equivalence relation induced on morphisms between Lie
algebras in §2.1. It turns out that the equivalence classes coincide with the orbits of a group
action.

2 Applications to Lie theory

We apply now the machinery developed above to instances in Lie theory. For the examples
we treat here, procedures to recover the L∞[1]-algebras governing simultaneous deforma-
tions are known [4], but often are not exhibited in explicit form in the literature. Using
our machinery, we make the L∞[1]-algebras structures quite explicit. The results of §2.1
recover a theorem in [4]. We mention further that the results we obtained in §2.2 have been
recently extended by Ji from the setting of Lie algebras to that of Lie algebroids [10].

2.1 Lie algebra morphisms.

Let (U, [·, ·]U ) and (V, [·, ·]V ) be finite dimensional Lie algebras. We show that the deforma-
tions of Lie algebra morphisms U → V are ruled by a DGLA, recovering classical results of
Nijenhuis and Richardson [17], and that more generally the simultaneous deformations of

1The infinite sum (9) is guaranteed to converge if W is filtered and W−1 ⊂ F1
W , see §1.4. In the

example we consider in this paper, this sum is actually finite, see eq. (20).

7



the Lie algebra structures and Lie algebra morphisms are ruled by a L∞-algebra, recover-
ing a theorem in [4] by the first author, Markl and Yau. The set-up of this subsection is a
special case of the one of §2.4. We consider the simple instance of Lie algebras separately
for the sake of concreteness and clarity of exposition. Further, we discuss equivalences.

We consider the graded manifold (U ×V )[1], and encode the above data as vector fields
on this graded manifold. See [19, §1.4] or [2] for some basic notions on graded manifolds
and the notation; in particular χ(U [1]) denotes the space of vector fields on U [1], and
ι : U → χ−1(U [1]) identifies elements of U with constant vector fields. We adopt the
following conventions:

• The Lie bracket [·, ·]U is encoded by the vector field QU ∈ χ1(U [1]) defined by
[[QU , ιX ], ιY ] = ι[X,Y ]U for all X,Y ∈ U . The Jacobi identity for [·, ·]U is equiva-
lent to this vector field being homological (i.e., [QU , QU ] = 0)

• A linear map φ : U → V is encoded by Φ ∈ χ0((U × V )[1]) defined by [Φ, ιX ] = ιφ(X)

for all X ∈ U .

Remark 2.1. We give coordinate expressions for the vector fields QU , QV ,Φ. Choose a
basis of U , giving rise to coordinates {ui} on U [1], and similarly choosing a basis of V get
coordinates {vα} on V [1]. Then

QU = −
1

2
ckijuiuj

∂

∂uk
, QV = −

1

2
dγαβvαvβ

∂

∂vγ
, Φ = −Alηul

∂

∂vη
(11)

where ckij and dγαβ are the structural constants of the Lie algebras U and V respectively
and Alη is the matrix representing φ in the chosen basis.

The map φ : U → V is a Lie algebra morphism exactly when

[QU ,Φ] +
1

2
[[QV ,Φ],Φ] = 0, (12)

see for example [17, p. 176].

Lemma 2.2. The following quadruple forms a V-data:

• the graded Lie algebra L := χ((U × V )[1])

• its abelian subalgebra a := C(U [1])⊗ V [1]

• the natural projection P : L → a with kernel

ker(P ) =
(

C(U [1])⊗ C≥1(V [1])⊗ V [1]
)

⊕
(

C(U [1]× V [1])⊗ U [1]
)

• ∆ := QU +QV ,

hence by Thm. 1 we obtain a L∞[1]-structure a
P
∆. For every linear map φ : U → V we

have: Φ ∈ a0 is a Maurer-Cartan element in a
P
∆ iff φ is a Lie algebra morphism.
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Proof. Ker(P ) is a Lie subalgebra of L. This can be seen in coordinates, or noticing that
the kernel consists exactly of vector fields on (U × V )[1] which are tangent to (U ×{0})[1].
Further we have [∆,∆] = [QU , QU ] + [QV , QV ] = 0. Hence the above quadruple forms a
V-data.

The L∞[1]-structure induced on a by Thm. 1 is given by the multibrackets P [[[QU +
QV , ·], · · · ], ·]. One computes easily in coordinates using (11) that P [QV , ·], [[QU , ·], ·] and
[[[QV , ·], ·], ·] vanish when applied to elements of a. Hence only the unary and binary
brackets are non-zero, and they are given by

[QU , ·]

[[QV , ·], ·]

respectively. Therefore the Maurer-Cartan equation of aP∆ is given by (12).

Lemma 2.2 allows us to apply Thm. 3 (and Rem. 1.8). Hence we deduce:

Corollary 2.3. Let U, V finite dimensional Lie algebras and φ : U → V a morphism. Let
(L, a, P,∆) as in Lemma 2.2.

1) Let φ̃ : U → V be a linear map. Then

φ+ φ̃ is a Lie algebra morphism ⇔ Φ̃ is a MC element of aPΦ
∆ .

2) For all quadratic vector fields Q̃U on U [1] and Q̃V on V [1] and for all linear maps
φ̃ : U → V :

{

QU + Q̃U and QV + Q̃V define Lie algebra structures on U and V

φ+ φ̃ is a Lie algebra morphism between these new Lie algebra structures

⇔((Q̃U + Q̃V )[1], Φ̃) is a MC element of (L[1]⊕ a)PΦ
∆ .

Remark 2.4. We check that (L, a, P,∆) is filtered V-data (Def. 1.11), as this is a hypothesis
in Thm. 3. We have a direct sum decomposition L = ⊕k≥−1L

k where Lk := Ck+1(U [1]) ⊗
C(V [1])⊗U [1] ⊕ Ck(U [1])⊗C(V [1])⊗V [1]. In other words, Lk is spanned by monomials in
L whose total number of u’s and ∂

∂v
’s, in coordinates, is exactly k+1. Then FnL := ⊕k≥nL

k

is a complete filtration of the vector space L. One checks easily that (L, a, P,∆) is filtered
V-data.

An alternative way to check that there are no convergence issues for e[·,Φ] and the
Maurer-Cartan equations appearing in Cor. 2.3 is to recall that U ×V is finite dimensional
and use a variant of Lemma 2.6 below.

2.1.1 Explicit expressions for the multibrackets

In this subsection we make more explicit the structures of aPΦ
∆ and (L′[1] ⊕ a)PΦ

∆ , where
L′ ⊂ L is specified just after Lemma 2.5.

Given a morphism of Lie algebras φ : U → V , the associated Richardson-Nijenhius
DGLA is given by ⊕i ∧

i U∗ ⊗ V , the differential being the Chevalley-Eilenberg differential
of U with values in the module V (the module structure is given by e ∈ U 7→ [φ(e), ·]V )
and the bracket being the Lie bracket on V combined with the wedge product on ∧U∗ (see
[17, p. 175-6] or [3, §2.3]).

9



Lemma 2.5. a
PΦ
∆ is the suspension of the Richardson-Nijenhius DGLA.

Proof. The n-ary bracket of aPΦ
∆ , evaluated on a1, . . . , an ∈ a is

PΦ[[[QU +QV , a1], · · · ], an]

One computes easily in coordinates that only unary and binary brackets are non-zero, and
they are given by

P [QU + [QV ,Φ], ·] =[QU + [QV ,Φ], ·] (13)

P [[QV , ·], ·] =[[QV , ·], ·]. (14)

respectively. The r.h.s. of (13) is exactly the Chevalley-Eilenberg differential of the Lie
algebra U with values in the module V . The r.h.s. of (14) is given by the Lie bracket
on V combined with the wedge product on ∧U∗. Hence we obtain the suspension of the
Nijenhuis-Richardson DGLA.

Up to this point we only looked at deformations of the morphism φ : U → V . Now we
also deform the Lie algebra structures on the vector spaces U and V .

Define L′ := χ(U [1]) ⊕ χ(V [1]) ⊂ L. By Thm. 3 and Rem. 1.7 we obtain an L∞[1]-
algebra (L′[1]⊕a)PΦ

∆ , governing the simultaneous deformations of the Lie algebra structures
on U, V and of the morphisms.

Lemma 2.6. (L′[1]⊕a)PΦ
∆ has multibrackets of order up to dim(V )+1. Its Maurer-Cartan

equation is cubic, given by eq. (17), (18) and (19) below.

Proof. We write down explicitly the multibrackets of (L′[1] ⊕ a)PΦ
∆ , as given in Thm. 2.

We denote by Q̃i
U , Q̃

i
V and Φ̃i general (homogeneous) elements of χ(U [1]), χ(V [1]) and a

respectively (i = 1, 2, . . . ). The multibrackets involving only Φ̃ are given exactly by (13)
and (14) since a

PΦ
∆ is a L∞-subalgebra of (L′[1] ⊕ a)PΦ

∆ . Explicitly, they are

d(Φ̃) = [QU + [QV ,Φ], Φ̃] ∈ a

and

{Φ̃1, Φ̃2} = [[QV , Φ̃
1], Φ̃2] ∈ a.

Now we compute the multibrackets involving at least one of Q̃U [1] or Q̃V [1]. For the
differential we have in L[1]⊕ a :

d(Q̃U [1]) = −[QU +QV , Q̃U ][1] + PΦ(Q̃U ) = −[QU , Q̃U ][1] + [Q̃U ,Φ]

d(Q̃V [1]) = −[QU +QV , Q̃V ][1] + PΦ(Q̃V ) = −[QV , Q̃V ][1] +
1

k!
[[. . . [Q̃V ,Φ], . . . ],Φ

︸ ︷︷ ︸

k

]

where k = |Q̃V |+ 1. For the binary bracket we have

{(Q̃1
U + Q̃1

V )[1], (Q̃
2
U + Q̃2

V )[1]} = (−1)|Q̃
1
U
+Q̃1

V
|
(

[Q̃1
U , Q̃

2
U ] + [Q̃1

V , Q̃
2
V ]
)

[1] ∈ L[1]

{Q̃U [1], Φ̃} = PΦ[Q̃U , Φ̃] = [Q̃U , Φ̃] ∈ a (15)

{Q̃V [1], Φ̃} = PΦ[Q̃V , Φ̃] ∈ a.
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From (15) it follows that the only non-zero n-brackets with n ≥ 3 are

{Q̃V [1], Φ̃
1, . . . , Φ̃n} = PΦ[[Q̃V , Φ̃

1], . . . , Φ̃n] ∈ a. (16)

In coordinates it is clear that the operation [·, Φ̃] sends C(U [1]) ⊗ Ci(V [1]) ⊗ V [1] to

C(U [1])⊗ Ci−1(V [1])⊗ V [1]. As Q̃V ∈ χ(V [1]) ∼=
∑dim(V )

i=1 Ci(V [1])⊗ V [1], it is clear from
eq. (16) that all n-brackets vanish for n > dim(V ) + 1.

To write down the Maurer-Cartan elements , we can use eq. (2) and the formulae
for the multibrackets derived above. Alternatively, by virtue of Cor. 2.3, we know that
Maurer-Cartan elements Q̃ = Q̃U [1] + Q̃V [1] + Φ̃ are characterized by the equations [QU +
Q̃U , QU + Q̃U ] = 0, [QV + Q̃V , QV + Q̃V ] = 0 and by the equation obtained replacing QU

by QU + Q̃U (and similarly for QV ,Φ) in eq. (12) . The first two equations are equivalent
to

[QU , Q̃U ] +
1

2
[Q̃U , Q̃U ] = 0 (17)

[QV , Q̃V ] +
1

2
[Q̃V , Q̃V ] = 0 (18)

while the third equation reads

0 =[Q̃U ,Φ] +
1

2
[[Q̃V ,Φ],Φ] + [QU + [QV ,Φ], Φ̃] (19)

+[Q̃U , Φ̃] + [[Q̃V , Φ̃],Φ] +
1

2
[[QV , Φ̃], Φ̃]

+
1

2
[[Q̃V , Φ̃], Φ̃].

2.1.2 Equivalences of Lie algebras morphisms

Consider the L∞[1]-algebra whose Maurer-Cartan elements are pairs of Lie algebra struc-
tures and morphisms between them, that is, the L∞[1]-algebra L := (L′[1] ⊕ a)P∆=0 as in
Cor. 1.9. Here we discuss the natural equivalence on the set of Maurer-Cartan elements,
see §1.5.

Elements of L−1 are of the form

z = (zU [1], zV [1], za) ∈ χ0(U [1])[1] ⊕ χ0(V [1])[1] ⊕ V [1].

Restricting the binary bracket {·, ·}2 to L−1 and using the identifications at the beginning
of §2.1 we obtain the ordinary Lie algebra

End(U)× (End(V )⋉ V )

where End(U) and End(V ) are endowed with the commutator bracket, V is abelian and
[A, f ] = Af ∈ V for A ∈ End(V ) and f ∈ V .

Maurer-Cartan elements lie in L0, so they are of the form

m = (mU [1],mV [1],ma) ∈ χ1(U [1])[1] ⊕ χ1(V [1])[1] ⊕ (U [1])∗ ⊗ V [1],

11



and as described at the beginning of §2.1 their components correspond respectively to a Lie
bracket [·, ·]mU

on U , a Lie bracket [·, ·]mV
on V , and a Lie algebra morphism φ : U → V .

By degree reasons eq. (10) reads simply

Yz|m = [zU ,mU ][1] ⊕ [zV ,mV ][1] ⊕ [zU + zV ,ma] + [[mV , za],ma] (20)

∈Tz

(

χ1(U [1])[1] ⊕ χ1(V [1])[1] ⊕ (U [1])∗ ⊗ V [1]
)

.

The assignment z 7→ Yz vector field is not a Lie algebra action: z1 = (0, 0, z1
a
) and

z2 = (0, 0, z2
a
) commute, but the vector fields Yz1 and Yz2 do not commute. However

restricting suitably we obtain an infinitesimal action, which integrates to the group action
of symmetries given in [3, §3]:

Proposition 2.7. The assignment End(U) × End(V ) → χ(MC(L)), z 7→ Yz is a Lie
algebra morphism. It integrates to the group action

(

GL(U)×GL(V )
)

×MC(L) → MC(L)

(g, h) ,
(

[·, ·]mU
, [·, ·]mU

, φ
)

7→
(

g∗([·, ·]mU
), h∗([·, ·]mV

), h ◦ φ ◦ g−1
)

.

Here the Lie bracket g∗([·, ·]mU
) is defined as g[g−1·, g−1·]mU

, and similarly for h∗([·, ·]mV
).

The equivalence classes induced by the singular distribution D := {Yz : z ∈ L−1} on
MC agree with the orbits of the this action.

Proof. Notice that for z ∈ End(U)×End(V ) the vector field Yz is linear, hence z 7→ Yz is
a Lie algebra morphism by Remark 1.15. We compute the integral curve of Yz starting at
m = (mU [1],mV [1],ma) ∈ MC(L).

The first component of Yz is [zU , ·][1]. Its integral curve starting at mU [1] is t 7→
et[zU ,·]mU [1], since the latter forms a 1-parameter group and differentiates to [zV , ·] at time
zero. The Lie bracket on U induced by e[zU ,·]mU [1] is (exp(zU ))

∗([·, ·]mU
) where exp(zU )

is the usual matrix exponential of zU ∈ gl(U) (this follows from the fact that e[zU ,·] is an
automorphism of [·, ·]). The same argument applies to the second component of Yz.

For the third component, the integral curve of [zU + zV , ·] starting at ma is t 7→
et[zU+zV ,·]ma. The element e[zU+zV ,·]ma ∈ (U [1])∗ ⊗ V [1] corresponds to exp(zV ) ◦ φ ◦
exp(−zU ) : U → V . This shows that the group action in the statement of this proposition
integrates the given Lie algebra action.

For the last statement we fix m ∈ MC(L) and show that

Dm = {Yz |m : z = (zU [1], zV [1], 0)}.

To this aim, just notice that Y(0,0,za)|m = Y(0,[mV ,za],0)|m for all za ∈ V [1], as a consequence
of [mV ,mV ] = 0.

2.2 Subalgebras of Lie algebras

Let g be a finite dimensional Lie algebra, U ⊂ g a Lie subalgebra. We study deformations
of the Lie algebra structure on g and of the subspace U as a Lie subalgebra, similarly to
Richardson [18].

12



At first, let U ⊂ g be simply a subspace. We denote by Qg ∈ χ(g[1]) the ho-
mological vector field encoding the Lie algebra structure on g. Choose a subspace V
in g complementary to U . Given a linear map φ : U → V , we view it as an element
Φ ∈ C1(U [1])⊗ χ−1(V [1]) ⊂ χ0(g[1]) defined by [Φ, ιX ] = ιφ(X) for all X ∈ U .

Lemma 2.8. The following quadruple forms a curved V-data:

• the graded Lie algebra L := χ(g[1])

• its abelian subalgebra a := C(U [1])⊗ V [1]

• the natural projection P : L → a with kernel

ker(P ) =
(

C(U [1])⊗ C≥1(V [1]) ⊗ V [1]
)

⊕
(

C(g[1])⊗ U [1]
)

• ∆ := Qg,

hence by Thm. 1 we obtain a curved L∞[1]-structure a
P
∆.

Φ ∈ a0 is a MC element in a
P
∆ iff graph(φ) is a Lie subalgebra of g.

Further, the above quadruple forms a V-data iff U is a Lie subalgebra of g.

Proof. To show that the above quadruple forms a curved V-data proceed as in the proof of
Lemma 2.2.

Rem. 1.6 says that Φ is a Maurer-Cartan element in a
P
∆ iff e−[Φ,·]Qg ∈ ker(P ). This

condition is equivalent to asking that for all X,Y ∈ U :

[[

e−[Φ,·]Qg, ιX

]

, ιY

]

∈ U [1]

Using the fact that e−[Φ,·] is a Lie algebra automorphism of L (to pull it out of the brackets)
and that e[Φ,·]ιX = ιX + [Φ, ιX ] = ιX+φ(X), we see that the above is equivalent to

[X + φ(X), Y + φ(Y )] ∈ {Z + φ(Z) : Z ∈ U} = graph(φ),

i.e. to graph(φ) being a Lie subalgebra of g.
The last statement can be proven as follows: Qg ∈ ker(P ) is equivalent to [[Qg, ιX ], ιY ] ∈

U [1] for all X,Y ∈ U , which in turn means that U is a Lie subalgebra of g. (Alternatively, it
follows from the above noticing that 0 is a Maurer-Cartan element of aP∆ iff PQg = 0.)

Lemma 2.8 allow us to apply Thm. 3 with Φ = 0. We deduce:

Corollary 2.9. Let g be a Lie algebra, U ⊂ g a Lie subalgebra. Choose a subspace V ⊂ g

complementary to U , and let (L, a, P,∆) be the V-data as in Lemma 2.8.
For all Q̃g ∈ L1 and for all linear maps φ̃ : U → V :

{

Qg + Q̃g defines a Lie algebra structure on g

graph(φ̃) is a Lie subalgebra of it

⇔(Q̃g[1], Φ̃) is a MC element of (L[1]⊕ a)P∆.

Remark 2.10. The proof that (L, a, P,∆) is a filtered V-data is given in Remark 2.4.
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Remark 2.11. By Cor. 2.9, the Maurer-Cartan elements of (L[1]⊕a)P∆ are in bijection with
deformations of the Lie algebra structure on g and deformations of the subspace U as a Lie
subalgebra.

Applying Cor. 2.3 to the Lie algebra U , to the Lie algebra g and to the inclusion
i : U →֒ g, we obtain an L∞[1]-algebra whose Maurer-Cartan elements are deformations of
the Lie algebra structure on g and deformations of i to linear maps i + ĩ : U → g whose
image is a Lie subalgebra of the new Lie algebra structure on g. Notice that the two
Maurer-Cartan sets are quite different, as different maps i+ ĩ can have the same image.

2.3 Maurer-Cartan elements of L∞-algebra structures

Fix a (possibly infinite dimensional) graded vector space W . We show that the space of
pairs

(L∞[1]-algebra structures on W , Maurer-Cartan elements for this structure)

is governed by a Maurer-Cartan equation. We will ignore all convergence issues in this
subsection; they are automatically dealt with if one works formally, see Lemma 1.13.

We refer to [1] for the background material on coderivations. Recall that L∞[1]-
algebra structures on W are in bijection with degree 1 self-commuting coderivations Θ
on SW := ⊕∞k=1S

kW . The canonical embedding α : W →֒ Coder(SW ), induces a canoni-
cal bracket-preserving embedding J : Coder(SW ) →֒ Coder(SW ) whose image annihilates
1 ∈ SW . One can prove that all L∞[1]-algebra structures are obtained by the derived
bracket construction:

Proposition 2.12. Let W be an L∞[1]-algebra, and Θ the corresponding coderivation of
SW . The following quadruple forms a V-data:

• the graded Lie algebra L := Coder(SW )

• its abelian subalgebra a := {αw : w ∈ W}

• the projection P : L → a , τ 7→ ατ(1)

• ∆ := JΘ.

The induced L∞[1]-structure on a given by Thm. 1 is exactly the original L∞[1]-structure
on W , under the canonical identification W ∼= a, w 7→ αw.

We apply Cor. 1.9, choosing Θ = 0 above and restrict to {τ ∈ Coder(SW ) : τ(1) =
0} = Ker(P ) ⊂ L (see Rem. 1.7). We obtain:

Corollary 2.13. {τ ∈ Coder(SW ) : τ(1) = 0}[1] ⊕ W , endowed with the L∞[1]-algebra
structure specified in Cor. 1.9, has the following property: for all Θ̃ ∈ Coder(SW )1 and
Φ̃ ∈ W0:

{

Θ̃ defines an L∞[1]-algebra structure on W

Φ̃ is a MC element of this L∞[1]-algebra structure on W

⇔ (J Θ̃[1], Φ̃) is a MC element of {τ ∈ Coder(SW ) : τ(1) = 0}[1] ⊕W

One can show that the image of the embedding J is exactly {τ ∈ Coder(SW ) : τ(1) =
0}, so Cor. 2.13 is a statement about all Maurer-Cartan elements of {τ ∈ Coder(SW ) :
τ(1) = 0}[1] ⊕W .
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2.4 L∞-algebra morphisms

We consider deformations of a pair of arbitrary L∞[1]-algebras and of a L∞[1]-morphism
between them. We show that deformations of the morphism with fixed L∞[1]-algebra
structures are ruled by a L∞[1]-algebra (this follows also from Shoikhet’s work, see [20,
§3][9]), and then show that there is an L∞[1]-algebra governing arbitrary deformations.

We will use the following notation. When E and F are two vector spaces, we will denote
by L(E,F ) the set of linear maps from E to F and use L(E) := L(E,F ) when E = F .

Let U and V be two graded vector spaces. Denote S(U ⊕ V ) := ⊕k≥1S
k(U ⊕ V ). Let

L := L
(

S(U ⊕ V ), U ⊕ V
)

=
∏

i≥1

⊕

q+r=i

Lq,r
U ⊕ Lq,r

V , (21)

where
Lq,r
U :=

{
ΠU ◦ l ◦ Πq,r : l ∈ L(Sq+r(U ⊕ V ), U ⊕ V )

}

for Πq,r : Sq+r(U ⊕ V ) → SqU ⊗ SrV and ΠU : U ⊕ V → U the canonical projections.
Consider the subspace

a :=
∏

q≥1

Lq,0
V

∼= L(SU, V ).

Thanks to the decomposition (21) one has a projection P : L → a. Notice that the vector
space L has a natural Z-grading: L = ⊕n∈ZLn, where a map l : S(U ⊕ V ) → U ⊕ V lies in
Ln if it raises the degree by n.

As remarked by Stasheff [21], L is a graded Lie algebra: the isomorphism of graded
vector spaces

L ∼= Coder(S(U ⊕ V )) (22)

given in Proposition III.2.1 in [1] allows to define the Lie bracket on L, the Nijenhuis-
Richardson bracket, as the pullback of the graded commutator of coderivations.

Proposition 2.14. Let U and V be two graded vector spaces equipped with L∞[1]-algebra
structures µ = (µi)i≥1 and ν = (νj)j≥1, where µi ∈ Li,0

U and νj ∈ L0,j
V . The following

quadruple (with the previous notations) forms a V-data:

• the graded Lie algebra L,

• its abelian subalgebra a,

• the projection P : L → a,

• ∆ := µ+ ν.

Proof. To see that a is an abelian graded Lie subalgebra of L, remark that elements of a are
maps which produce vectors in V and accept only terms in U . Therefore their composition
is zero.

Next we show that KerP is a graded Lie subalgebra of L. To this aim use the decom-
position KerP = A⊕B where

An =
⊕

s+r=n,r>0

Ls,r

V [1],

Bn =
⊕

s+r=n

Ls,r
U [1].
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Let α,α′ ∈ A, β ∈ B and γ ∈ KerP . One has α ◦ β, α ◦α′ ∈ A and β ◦ γ ∈ B, showing that
KerP = A⊕B is closed under the Nijenhuis-Richardson bracket. Further since ν ∈ A and
µ ∈ B, one has ∆ ∈ KerP .

Last we show that [∆,∆] = 0. Indeed,

[∆,∆] = [µ, µ] + [ν, ν] + 2[µ, ν].

Since µ and ν are L∞[1] algebras, they can be characterized by the vanishing of [µ, µ] and
[ν, ν] (see [1] section IV.1). Now, by definition of the bracket,

[µ, ν]n(x1 . . . xn) =
∑

I∐J=[n]

±µ|J |+1(ν|I|(xI) · xJ)± ν|J |+1(µ|I|(xI) · xJ)

but µ accepts only terms in V , whereas ν produces elements in U , hence the first summand
of the right hand side vanishes. Similarly for the second summand. This concludes the
proof that (L, a, P,∆) forms a V-data.

Proposition 2.15. Φ ∈ MC(aP∆) ⇔ Φ is a morphism of L∞[1]-algebras.

Proof. Fix Φ ∈ a0. Our aim is to show that the condition for Φ to be a Maurer-Cartan
element for the L∞[1]-algebra a

P
∆ (see Remark 1.6),

Pe[−,Φ](µ + ν) = 0,

is equivalent to the condition for Φ to be a morphism of L∞[1]-algebras, i.e., for all s ≥ 1
and u1, . . . , us ∈ U :

∑

I∐J=[s]

Φ|J |+1(µ|I|(UI) · UJ) =

s∑

n=1

1

n!

∑

I1∐···∐In=[s]

νn(Φ|I1|(UI1) . . .Φ|In|(UIn)), (23)

where [s] := {1, . . . , s}, ∐ means disjoint union and UI = uα1 . . . uαj
when I = {α1, . . . , αj}.

Some of the Ii’s in the expression I1∐· · ·∐In = [s] can be empty. One will use the convention
that Φ|∅|(U∅) = 0 and UI · U∅ = UI . Here we decompose Φ as a sum of its homogeneous

elements with respect to the polynomial degree, i.e. Φ =
∑

Φn where Φn ∈ Ln,0
V .

It will be convenient to use the isomorphism (22) to view the elements of L as coderiva-
tions, because in this case the Lie bracket is the graded commutator. The coderivation
corresponding to Φ (resp. to µ, ν) will be denoted by Φ̄ (resp. µ̄, ν̄). An explicit expression
is given by (cf prop III.2.1 [1])

Q̄(x1 . . . xn) :=
∑

I∐J=[n]

ǫx(I, J)Q|I|(xI) · xJ (24)

where I∐J denotes a disjoint union of non-empty sets and ǫx(I, J) denotes the sign obtained
by applying the koszul sign rule to the action of the permutation [n] → I∐J on the graded
elements xi. In the sequel we will omit this sign, but it is understood to be there unless
otherwise stated via a ± sign.

Φ is a Maurer-Cartan element of the L∞[1]-algebra a
P
∆ iff

Pe[−,Φ̄](µ̄ + ν̄) = 0.
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But, with the notation adΦ := [−,Φ], one has

e[−,Φ̄] =
∑

n≥0

1

n!
adΦ̄

n,

and one can compute adΦ̄
n(µ̄) and adΦ̄

n(ν̄) with the expansion

adΦ̄
n(τ) =

∑

k+l=n

(−1)k
(
n

k

)

Φ̄kτ Φ̄l.

Therefore everything boils down to compute terms of the form

Φ̄kτ Φ̄l(u1 . . . us).

The results of these computations for τ = ν̄ and τ = µ̄ with n = k + l are claims 1 and 2
respectively, and give the two sides of the equation (23).

Claim 1. The term
prV (Φ̄

k ◦ ν̄ ◦ Φ̄l(U[s]))

always vanishes except for l = n for which one has

prV (Φ̄
0 ◦ ν̄ ◦ Φ̄n(U[s])) =

∑

I1∐···∐In=[s]

ν̄n(Φ|I1|(UI1) . . .Φ|In|(UIn)).

Claim 2. The term
prV (Φ̄

k ◦ µ̄ ◦ Φ̄l(U[s]))

always vanishes, except for k = n = 1 for which one has

prV (Φ̄
1 ◦ µ̄(U[s])) =

∑

I∐J=[s]

Φ|J |+1(µ|I|(UI) · UJ).

Combining the results of claims 1 and 2 finishes the proof of Proposition 2.15.

We now state a lemma and use it to prove claims 1 and 2. All along we fix s ≥ 1 and
u1, . . . , us ∈ U .

Lemma 2.16. For all t ≥ 0

Φ̄t(U[s]) =
∑

I1∐···∐It+1=[s]

Φ|I1|(UI1) . . .Φ|It|(UIt) · UIt+1 . (25)

Proof. Apply formula (24) t times and remark that since Φ admits only elements in U ,
terms of the form Φ(Φ(UI) ·UI′) can not appear in the obtained expression. The case t = 0
is a convention.

Proof of claim 1. We first compute ν̄ ◦ Φ̄l(U[s]). We therefore apply the formula (24) to ν̄
evaluated on the right hand side of the equation (25), with t = l to get

∑

ν|Il+1|+j(Φ|Iα1 |
(UIα1

) . . .Φ|Iαj
|(UIαj

) · UIl+1
) · Φ|Iβ1 |(UIβ1

) . . .Φ|Iβk |
(UIβk

) · UIl+2
,

17



where {α1, . . . , αj} = J and {β1, . . . , βk} = K, and the sum is over I1∐ · · · ∐ Il+2 = [s] and
J ∐K = [l].

Now, since ν admits only elements in U , the term UIl+1
must be absent in the previous

expression, i.e. one has

ν̄ ◦ Φ̄l(U[s]) =
∑

ν|J |(Φ|Iα1 |
(UIα1

) . . .Φ|Iαj
|(UIαj

)) · Φ|Iβ1 |(UIβ1
) . . .Φ|Iβk |

(UIβk
) · UIl+1

,

(sum over I1 ∐ · · · ∐ Il+1 = [s], J ∐K = [l]).
We are interested in evaluating the expression Φ̄k ◦ ν̄ ◦ Φ̄l(U[s]), with k + l = n. By

applying Lemma 2.16 with t = k to the last expression, and by the fact that Φ admits only
terms in U , one gets

Φ̄k ◦ ν̄ ◦ Φ̄l(U[s]) =
∑

ν|J |(Φ|Iα1 |
(UIα1

) . . .Φ|Iαj
|(UIαj

)) · Φ|Iβ1 |(UIβ1
) . . .Φ|Iβk |

(UIβk
) · UIn+1 .

(sum over I1 ∐ · · · ∐ In+1 = [s];J ∐K = [n]).
Finally, if one considers the terms in the above formula which belong to V , one has

prV (Φ̄
k ◦ ν̄ ◦ Φ̄l(U[s])) =

∑

I1∐···∐In=[s]

νn(Φ|I1|(UI1) . . .Φ|In|(UIn)).

Proof of claim 2. We start with evaluating µ̄ ◦ Φ̄l(U[s]). We apply the formula (24) to µ̄
evaluated on the right hand side of the equation (25), with t = l and remark that since µ
admits only elements in U , terms of the form µ(Φ(UI) ·UI′) can not appear in the obtained
expression. Therefore one has

µ̄ ◦ Φ̄l(U[s]) =
∑

I1∐···∐Il+2=[s]

Φ|I1|(UI1) . . .Φ|Il|(UIl) · µ|Il+1|(UIl+1
) · UIl+2

.

We now evaluate Φ̄k ◦ µ̄◦ Φ̄l(U[s]) by applying Lemma 2.16 to the previous expression, with
t = k. Since Φ admits only elements in U , terms of the form Φ(Φ(UI) ·UI′) can not appear
in the obtained expression. Hence one gets (remember that n = k + l)

∑

I1∐···∐In+2=[s]

±Φ|I1|(UI1) . . .Φ|In|(UIn) · µ|In+1|(UIn+1) · UIn+2

+
∑

I1∐···∐In+2=[s]

±Φ|I1|(UI1) . . .Φ|In|+1(UIn · µ|In+1|(UIn+1)) · UIn+2 .

In the previous expression, there are terms which belong to V only if n=k=1. In this case
one has

prV (Φ̄ ◦ µ̄(U[s])) =
∑

I∐J=[s]

Φ|J |+1(µ|I|(UI) · UJ).

Prop. 2.14 and Prop. 2.15 allow us to apply Thm. 3 (and Rem. 1.8) and deduce:
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Corollary 2.17. Let U, V be L∞[1]-algebras and Φ ∈ L(SU, V ) a L∞[1]-morphism from
U to V and let (L, a, P,∆) as in Prop. 2.14.

1) Let Φ̃ ∈ L0(SU, V ) = a0. Then

Φ+ Φ̃ is an L∞[1]-morphism ⇔ Φ̃ ∈ MC(aPΦ
∆ ).

2) For all degree one coderivations Q̃U on SU and Q̃V on SV and for all Φ̃ ∈ L0(SU, V ):

{

QU + Q̃U and QV + Q̃V define L∞[1]-algebra structures on U, V

Φ+ Φ̃ is a L∞[1]-morphism between these L∞[1]-algebra structures

⇔ ((Q̃U + Q̃V )[1], Φ̃) ∈ MC((L[1]⊕ a)PΦ
∆ )

Remark 2.18. We have a direct product decomposition L =
∏

k≥−1 L
k where Lk := Lk+1,•

U ⊕

Lk,•
V . Here we use the short-hand notation Lk,•

V :=
∏

r≥0 L
k,r
V . Then FnL :=

∏

k≥n L
k is

a complete filtration of the vector space L. One checks easily that (L, a, P,∆) is filtered
V-data (Def. 1.11).
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