ON BEAUVILLE STRUCTURES FOR $\mathrm{PSL}_{2}(q)$

SHELLY GARION

Abstract

We characterize Beauville surfaces of unmixed type with group either $\operatorname{PSL}_{2}\left(p^{e}\right)$ or $\mathrm{PGL}_{2}\left(p^{e}\right)$, thus extending previous results of Bauer, Catanese and Grunewald, Fuertes and Jones, and Penegini and the author.

1. Introduction

A Beauville surface $S(\operatorname{over} \mathbb{C})$ is a particular kind of surface isogenous to a higher product of curves, i.e., $S=\left(C_{1} \times C_{2}\right) / G$ is a quotient of a product of two smooth curves C_{1} and C_{2} of genus at least two, modulo a free action of a finite group G which acts faithfully on each curve. For Beauville surfaces the quotients C_{i} / G are isomorphic to \mathbb{P}^{1} and both projections $C_{i} \rightarrow C_{i} / G \cong \mathbb{P}^{1}$ are coverings branched over three points. Beauville surfaces were introduced by Catanese in [5], inspired by a construction of Beauville [3].

A Beauville surface S is either of mixed or unmixed type according respectively as the action of G exchanges the two factors (and then C_{1} and C_{2} are isomorphic) or G acts diagonally on the product $C_{1} \times C_{2}$. The subgroup G_{0} (of index ≤ 2) of G which preserves the ordered pair $\left(C_{1}, C_{2}\right)$ is then respectively of index 2 or 1 in G.

Any Beauville surface S can be presented in such a way that the subgroup G_{0} of G acts effectively on each of the factors C_{1} and C_{2}. Catanese called such a presentation minimal and proved its uniqueness in [5].

In this paper we shall consider only Beauville surfaces of unmixed type so that $G_{0}=G$. A natural question is to determine the finite groups which characterize unmixed Beauville surfaces in a minimal presentation. Since a finite group appears as the underlying group of an unmixed Beauville surface in a minimal presentation if and only if it admits an unmixed Beauville structure (see [1, 2]), the above question is equivalent to determining the finite groups admitting an unmixed Beauville structure.

Definition 1.1. An unmixed Beauville structure for a finite group G consists of two triples (a_{1}, b_{1}, c_{1}) and (a_{2}, b_{2}, c_{2}) of elements of G which satisfy
(i) $a_{1} b_{1} c_{1}=1$ and $a_{2} b_{2} c_{2}=1$,
(ii) $\left\langle a_{1}, b_{1}\right\rangle=G$ and $\left\langle a_{2}, b_{2}\right\rangle=G$,
(iii) $\Sigma\left(a_{1}, b_{1}, c_{1}\right) \cap \Sigma\left(a_{2}, b_{2}, c_{2}\right)=\{1\}$, where, for $i \in\{1,2\}, \Sigma\left(a_{i}, b_{i}, c_{i}\right)$ is the union of the conjugacy classes of all powers of a_{i}, all powers of b_{i}, and all powers of c_{i}.

[^0]Moreover denoting the order of an element g in G by $|g|$, we define the type τ_{i} of $\left(a_{i}, b_{i}, c_{i}\right)$ to be the triple $\left(\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right|\right)$. In this situation, we say that G admits an unmixed Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)$.

The question whether a finite group admits an unmixed Beauville structure of a given type is closely related to the question whether it is a quotient of certain triangle groups. More precisely, a necessary condition for a finite group G to admit an unmixed Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)=\left(\left(r_{1}, s_{1}, t_{1}\right),\left(r_{2}, s_{2}, t_{2}\right)\right)$ is that G is a quotient with torsion free-kernel of the triangle groups $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$, where for $i \in\{1,2\}$,

$$
T_{r_{i}, s_{i}, t_{i}}=\left\langle x, y, z: x^{r_{i}}=y^{s_{i}}=z^{t_{i}}=x y z=1\right\rangle
$$

Indeed, conditions (i) and (ii) of Definition 1.1 are equivalent to the condition that G is a quotient of each of the triangle groups $T_{\left|a_{i}\right|,\left|b_{i}\right|,\left|c_{i}\right|}$, for $i \in\{1,2\}$, with torsion-free kernel.

When investigating the existence of an unmixed Beauville structure for a finite group, one can consider only types $\left(\tau_{1}, \tau_{2}\right)$, where for $i \in\{1,2\}, \tau_{i}=\left(r_{i}, s_{i}, t_{i}\right)$ satisfies $1 / r_{i}+$ $1 / s_{i}+1 / t_{i}<1$. Then $T_{r_{i}, s_{i}, t_{i}}$ is a (infinite non-soluble) hyperbolic triangle group and we say that τ_{i} is hyperbolic.

Indeed, if $1 / r_{i}+1 / s_{i}+1 / t_{i}>1$ then $T_{r_{i}, s_{i}, t_{i}}$ is a finite group, and moreover, it is either dihedral or isomorphic to one of A_{4}, A_{5} or S_{4}. By [1, Proposition 3.6 and Lemma 3.7], in these cases G cannot admit an unmixed Beauville structure. If $1 / r_{i}+1 / s_{i}+1 / t_{i}=1$ then $T_{r_{i}, s_{i}, t_{i}}$ is one of the (soluble infinite) "wall-paper" groups, and by [1, §6], none of its finite quotients can admit an unmixed Beauville structure.

A considerable effort has been made to classify the finite simple groups which admit an unmixed Beauville structure. A finite abelian simple group clearly does not admit an unmixed Beauville structure, since by [1, Theorem 3.4] the only finite abelian groups admitting an unmixed Beauville structure are the abelian groups of the form $Z_{n} \times Z_{n}$ where n is a positive integer coprime to 6 . (Here Z_{n} denotes a cyclic group of order n.) In [1], Bauer, Catanese and Grunewald provided the first results on finite non-abelian simple groups admitting an unmixed Beauville structure, and conjectured that all finite non-abelian simple groups admit an unmixed Beauville structure with the exception of A_{5}.

This conjecture has received much attention and has recently been proved to hold. Concerning the simple alternating groups, it was established in [8] that A_{5} is indeed the only one not admitting an unmixed Beauville structure. In [10, 12], the conjecture is shown to hold for the projective special linear groups $\operatorname{PSL}_{2}(q)$ (where $q>5$), the Suzuki groups ${ }^{2} B_{2}(q)$ and the Ree groups ${ }^{2} G_{2}(q)$ as well as some other families of finite simple groups of Lie type of small rank (where q is sufficiently large). The next major result concerning the investigation of the conjecture with respect to the finite simple groups of Lie type was pursued by Garion, Larsen and Lubotzky who showed in [11] that the conjecture holds for finite non-abelian simple groups of sufficiently large order. The final step regarding the investigation of the conjecture was carried out by Guralnick and Malle [14] and Fairbairn, Magaard and Parker [7] who established its veracity in general.

There has also been an effort to classify the finite quasisimple groups and almost simple groups which admit an unmixed Beauville structure. Recall that a finite group G is quasisimple provided $G / Z(G)$ is a non-abelian simple group and $G=[G, G]$. In [10] it was shown that $\mathrm{SL}_{2}(q)$ (for $q>5$) admits an unmixed Beauville structure. Fairbairn, Magaard and Parker [7] showed that with the exceptions of $\mathrm{SL}_{2}(5)$ and $\mathrm{PSL}_{2}(5) \cong \mathrm{SL}_{2}(4) \cong A_{5}$,
every finite quasisimple group admits an unmixed Beauville structure. By [2, 8], the almost simple symmetric groups S_{n} (where $n \geq 5$) admit an unmixed Beauville structure. Recall that a group G is called almost simple if there is a non-abelian simple group G_{0} such that $G_{0} \leq G \leq \operatorname{Aut}\left(G_{0}\right)$.

Another conjecture of Bauer, Catanese and Grunewald proposed in [1 states that if $\tau_{1}=\left(r_{1}, s_{1}, t_{1}\right)$ and $\tau_{2}=\left(r_{2}, s_{2}, t_{2}\right)$ are two hyperbolic types, then almost all alternating groups A_{n} admit an unmixed Beauville structure of type (τ_{1}, τ_{2}). This has recently been proved in [12], based on results of Liebeck and Shalev [17, where a similar conjecture is raised, replacing A_{n} by a finite simple classical group of Lie type of sufficiently large Lie rank.

In contrast, when the Lie rank is very small, as in the case of $\mathrm{PSL}_{2}(q)$, such a conjecture does not hold. It is therefore the aim of this paper to characterize the possible types of an unmixed Beauville structure for the projective special linear group $\mathrm{PSL}_{2}(q)$. This is done in Theorem 1. A similar result for the projective general linear group $\mathrm{PGL}_{2}(q)$ is described in Theorem 22. In particular we show that the almost simple group $\mathrm{PGL}_{2}(q)$ (where $q \geq 5$) admits an unmixed Beauville structure.

Beauville structures for $\mathrm{PSL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$. If $H=\mathrm{PSL}_{2}(q)$ (respectively, $\mathrm{PGL}_{2}(q)$) with $q \leq 5$ (respectively, $q \leq 4$) then H is isomorphic to one of S_{3}, S_{4}, A_{4} or A_{5}. As none of these groups admits an unmixed Beauville structure by [1, Proposition 3.6], we can assume hereafter that $q \geq 7$ or $q \geq 5$ according respectively as $H=\mathrm{PSL}_{2}(q)$ or $\mathrm{PGL}_{2}(q)$. Unless otherwise stated, we also let $G=\operatorname{PSL}_{2}(q)$ and $G_{1}=\operatorname{PGL}_{2}(q)$ where $q=p^{e}$ for some prime number p and some positive integer e.

Our first result is the characterization of the possible types of unmixed Beauville structures for $\mathrm{PSL}_{2}(q)$.

Theorem 1. Let $G=\operatorname{PSL}_{2}(q)$ where $5<q=p^{e}$ for some prime number p and some positive integer e. Let $\tau_{1}=\left(r_{1}, s_{1}, t_{1}\right), \tau_{2}=\left(r_{2}, s_{2}, t_{2}\right)$ be two hyperbolic triples of integers. Then G admits an unmixed Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)$ if and only if the following hold:
(i) G is a quotient of $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$ with torsion-free kernel.

Equivalently, $\left(e, \tau_{1}\right)$ and $\left(e, \tau_{2}\right)$ satisfy the conditions given in Table 4 in Section 3.2.
(ii) If $p=2$ or e is odd or $q=9$, then $r_{1} s_{1} t_{1}$ is coprime to $r_{2} s_{2} t_{2}$.

If p is odd, e is even and $q>9$, then $g=\operatorname{gcd}\left(r_{1} s_{1} t_{1}, r_{2} s_{2} t_{2}\right) \in\left\{1, p, p^{2}\right\}$. Moreover, if p divides g and τ_{1} (respectively τ_{2}) is up to a permutation (p, p, n) then $n \neq p$ and n is a good G-order (see Definition (1.2).

Definition 1.2. Let q be an odd prime power, let $G=\operatorname{PSL}_{2}(q)$ and let $n>1$ be an integer. Then n is called a good G-order if one of the following holds:

- n is odd and divides either $q-1$ or $q+1$;
- n is even and $4 n$ divides either $q-1$ or $q+1$.

We deduce from Theorem 1 that for any $q>7$ the group $\mathrm{PSL}_{2}(q)$ admits unmixed Beauville structures of types

$$
\left(\left(\frac{q-1}{d}, \frac{q-1}{d}, \frac{q-1}{d}\right),\left(\frac{q+1}{d}, \frac{q+1}{d}, \frac{q+1}{d}\right)\right),
$$

and

$$
\left(\left(\frac{q-1}{d}, \frac{q-1}{d}, \frac{q-1}{d}\right),\left(\frac{q+1}{d}, \frac{q+1}{d}, p\right)\right)
$$

where $d=\operatorname{gcd}(2, q-1)$, thus recovering the results appearing in [12] and 10 respectively (the case $q=7$ is excluded since the triple ($3,3,3$) is not hyperbolic). In addition, if $q \geq 7$ and $q \neq 9$ then $\mathrm{PSL}_{2}(q)$ admits an unmixed Beauville structure of type

$$
\left(\left(\frac{q-1}{d}, \frac{q-1}{d}, p\right),\left(\frac{q+1}{d}, \frac{q+1}{d}, \frac{q+1}{d}\right)\right),
$$

(the case $q=9$ is excluded since $\operatorname{PSL}_{2}(9)$ is not a quotient of $T_{3,4,4}$, see Table 6 in Section (3.2).

When $q \geq 7$ is odd, $\mathrm{PSL}_{2}(q)$ admits an unmixed Beauville structure of type

$$
\left(\left(p, p, \frac{q-1}{2}\right),\left(\frac{q+1}{2}, \frac{q+1}{2}, \frac{q+1}{2}\right)\right),
$$

and when $q>7$, it also admits an unmixed Beauville structure of type

$$
\left(\left(p, p, \frac{q+1}{2}\right),\left(\frac{q-1}{2}, \frac{q-1}{2}, \frac{q-1}{2}\right)\right),
$$

(again, the case $q=7$ is excluded since the triple ($3,3,3$) is not hyperbolic).
If $p \geq 7$ is prime then $\mathrm{PSL}_{2}(p)$ admits unmixed Beauville structures of types

$$
\left((p, p, p),\left(\frac{p-1}{2}, \frac{p-1}{2}, \frac{p+1}{2}\right)\right),\left((p, p, p),\left(\frac{p-1}{2}, \frac{p+1}{2}, \frac{p+1}{2}\right)\right),\left((p, p, p),\left(\frac{p+1}{2}, \frac{p+1}{2}, \frac{p+1}{2}\right)\right),
$$

and if $p>7$ is prime, $\operatorname{PSL}_{2}(p)$ also admits an unmixed Beauville structure of type

$$
\left((p, p, p),\left(\frac{p-1}{2}, \frac{p-1}{2}, \frac{p-1}{2}\right)\right) .
$$

Note that $\operatorname{PSL}_{2}\left(p^{e}\right)$ is a quotient of $T_{p, p, p}$ if and only if $e=1$, by Table 4 in Section 3.2.
Example 1.3. We list below all the possible types for Beauville structures for $\operatorname{PSL}_{2}(q)$ where $q=7,8,9$. This is a direct consequence of Theorem 1 , and in particular it follows from Table 6 in Section 3.2. This table describes all the hyperbolic triples satisfying condition (i), and one can construct all possible pairs of these triples and check whether they are coprime, thus also satisfying condition (ii). It can easily be verified by a computer, for example using Magma.

- $\mathrm{PSL}_{2}(7)$:

$$
\begin{gathered}
((3,7,7),(4,4,4)),((3,4,4),(7,7,7)),((3,3,7),(4,4,4)), \\
((4,4,4),(7,7,7)),((3,3,4),(7,7,7)) .
\end{gathered}
$$

(see also [9, Theorem 13]).

- $\mathrm{PSL}_{2}(8)$:

$$
\begin{aligned}
& ((2,7,7),(9,9,9)),((2,9,9),(7,7,7)),((7,7,7),(9,9,9)),((2,3,9),(7,7,7)) \text {, } \\
& ((3,9,9),(7,7,7)),((3,3,9),(7,7,7)),((2,7,7),(3,9,9)),((2,7,7),(3,3,9)) .
\end{aligned}
$$

- $\operatorname{PSL}_{2}(9) \cong A_{6}$:

$$
((3,5,5),(4,4,4)),((4,4,4),(5,5,5)),((3,3,5),(4,4,4)),((3,3,4),(5,5,5)) .
$$

Observe that condition (iii) of Definition 1.1 is clearly satisfied under the assumption that $r_{1} s_{1} t_{1}$ is coprime to $r_{2} s_{2} t_{2}$. The example of the alternating groups shows that this assumption is not always necessary. But in the case of $\mathrm{PSL}_{2}(q)$ Theorem 1 shows that this assumption is actually not far from being necessary.

However, by Theorem 11, for any odd prime power $q>3$ the group $\operatorname{PSL}_{2}\left(q^{2}\right)$ admits an unmixed Beauville structure of type

$$
\left.\left(p, \frac{q^{2}-1}{2}, \frac{q^{2}-1}{2}\right),\left(p, \frac{q^{2}+1}{2}, \frac{q^{2}+1}{2}\right)\right) .
$$

In particular, $\mathrm{PSL}_{2}\left(q^{2}\right)$ is a quotient of the hyperbolic triangle groups $T_{p,\left(q^{2} \pm 1\right) / 2,\left(q^{2} \pm 1\right) / 2}$ by Table 4 in Section 3.2 and Lemma 3.6 , since $\mathrm{PSL}_{2}\left(q^{2}\right)$ contains elements of orders $\left(q^{2} \pm 1\right) / 2$, but none of its subfield subgroups contain such elements. In addition, $\mathrm{PSL}_{2}\left(q^{2}\right)$ also admits unmixed Beauville structures of types

$$
\left(\left(p, p, t_{1}\right),\left(p, p, t_{2}\right)\right)
$$

for certain t_{1}, t_{2} dividing $\left(q^{2}-1\right) / 2,\left(q^{2}+1\right) / 2$ respectively (see Lemma 4.5).
Example 1.4. We list below all the possible types of the form $\left(\left(p, p, t_{1}\right),\left(p, p, t_{2}\right)\right)$ for Beauville structures for $\mathrm{PSL}_{2}\left(q^{2}\right)$ where $q=5,7,11,13$. This is a direct consequence of Theorem 1, and in particular it follows from Table 9 in Section 3.5. This table describes all the good G-orders, and so one needs only to check when they are pairwise coprime, thus satisfying condition (ii). It can easily be verified by a computer, for example using Magma.

- $\mathrm{PSL}_{2}(25)$:

$$
((5,5,6),(5,5,13))
$$

- $\mathrm{PSL}_{2}(49)$:

$$
((7,7,5),(7,7,6)),((7,7,5),(7,7,12)),((7,7,25),(7,7,6)),((7,7,25),(7,7,12)) .
$$

- $\mathrm{PSL}_{2}(121)$:

$$
((11,11,10),(11,11,61)),((11,11,15),(11,11,61)),((11,11,30),(11,11,61)) .
$$

- $\mathrm{PSL}_{2}(169)$:

$$
\begin{gathered}
((13,13,5),(13,13,14)),((13,13,5),(13,13,17)),((13,13,5),(13,13,21)) \\
((13,13,5),(13,13,42)),((13,13,14),(13,13,17)),((13,13,14),(13,13,85)), \\
((13,13,17),(13,13,21)),((13,13,17),(13,13,42)),((13,13,21),(13,13,85)), \\
((13,13,42),(13,13,85)) .
\end{gathered}
$$

Our next result characterizes the possible unmixed Beauville structures for $\mathrm{PGL}_{2}(q)$.
Theorem 2. Let $G_{1}=\mathrm{PGL}_{2}(q)$ where $3<q=p^{e}$ for some odd prime number p and some positive integer e. Let $\tau_{1}=\left(r_{1}, s_{1}, t_{1}\right)$, $\tau_{2}=\left(r_{2}, s_{2}, t_{2}\right)$ be two hyperbolic triples of integers. Then G_{1} admits a Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)$ if and only if the following hold:
(i) G_{1} is a quotient of $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$ with torsion-free kernel. Equivalently, $\left(e, \tau_{1}\right)$ and $\left(e, \tau_{2}\right)$ satisfy the conditions given in Table 5 in Section 3.2 .
(ii) Each of the integers

$$
\begin{array}{ll}
\operatorname{gcd}\left(r_{1}, r_{2}\right), & \operatorname{gcd}\left(r_{1}, s_{2}\right), \\
\operatorname{gcd}\left(r_{1}, t_{2}\right), \\
\operatorname{gcd}\left(s_{1}, r_{2}\right), & \operatorname{gcd}\left(s_{1}, s_{2}\right), \\
\operatorname{gcd}\left(s_{1}, t_{2}\right), \\
\operatorname{gcd}\left(t_{1}, r_{2}\right), & \operatorname{gcd}\left(t_{1}, s_{2}\right), \\
\operatorname{gcd}\left(t_{1}, t_{2}\right),
\end{array}
$$

is equal to 1 or 2 .
(iii) All even elements in one of the triples divide $q-1$, while all even elements in the other triple divide $q+1$.
(iv) The integer 2 appears only in a good involuting triple w.r.t q (see Definition 1.5).

Definition 1.5. Let q be an odd prime power. A hyperbolic triple of integers $(r, s, 2)$ is called a good involuting triple w.r.t q if one of the following holds:

- $q \equiv 1 \bmod 4$, and r, s both divide $q-1$ but not $(q-1) / 2$;
- $q \equiv 3 \bmod 4$, and r, s both divide $q+1$ but not $(q+1) / 2$;
- $q \equiv 1 \bmod 4, r$ divides $q+1$ but not $(q+1) / 2$, and s is odd;
- $q \equiv 1 \bmod 4, s$ divides $q+1$ but not $(q+1) / 2$, and r is odd;
- $q \equiv 3 \bmod 4, r$ divides $q-1$ but not $(q-1) / 2$, and s is odd;
- $q \equiv 3 \bmod 4, s$ divides $q-1$ but not $(q-1) / 2$, and r is odd.

We deduce from Theorem 2 that for any odd prime power $q \geq 5$ the group $\mathrm{PGL}_{2}(q)$ admits an unmixed Beauville structure of type

$$
((p, q-1, q-1),((q+1) / 2, q+1, q+1))
$$

and if $q \geq 7$ it also admits unmixed Beauville structures of types

$$
(((q-1) / 2, q-1, q-1),(p, q+1, q+1))
$$

and

$$
(((q-1) / 2, q-1, q-1),((q+1) / 2, q+1, q+1))
$$

(the case $q=5$ is excluded since the triple $(2,4,4)$ is not hyperbolic).
In addition, if $9 \leq q \equiv 1 \bmod 4$ then $\mathrm{PGL}_{2}(q)$ admits unmixed Beauville structures of types

$$
\begin{gathered}
((2, p, q+1),(2, q-1, q-1)), \\
((2, p, q+1),((q-1) / 2, q-1, q-1)), \\
((2, q-1, q-1),(p, q+1, q+1)), \\
(((2, q-1, q-1),((q+1) / 2, q+1, q+1)) \\
((2,(q+1) / 2, q+1),(2, q-1, q-1)), \\
((2,(q+1) / 2, q+1),((q-q-1, q-1))
\end{gathered}
$$

whereas if $7 \leq q \equiv 3 \bmod 4$ then $\mathrm{PGL}_{2}(q)$ admits unmixed Beauville structures of types

$$
\begin{aligned}
& \quad((2, p, q-1),(2, q+1, q+1)),((2, p, q-1),((q+1) / 2, q+1, q+1)) \\
& ((2, q+1, q+1),(p, q-1, q-1)),((2, q+1, q+1),((q-1) / 2, q-1, q-1))
\end{aligned}
$$

and if moreover $q \geq 11$ then $\mathrm{PGL}_{2}(q)$ also admits Beauville structures of types

$$
\begin{gathered}
((2,(q-1) / 2, q-1),(2, q+1, q+1)),((2,(q-1) / 2, q-1),((q+1) / 2, q+1, q+1)) \\
((2,(q-1) / 2, q-1),(p, q+1, q+1))
\end{gathered}
$$

These results follow from Definition 1.5 and Table 8 in Section 3.4.

Example 1.6. We list below all the possible types for Beauville structures for $\mathrm{PGL}_{2}(q)$ where $q=5,7,9$. This is a direct consequence of Theorem[2, and in particular it follows from Table 6 in Section 3.2. This table describes all the hyperbolic triples satisfying condition (i), and one can construct all possible pairs of these triples and check whether they also satisfy conditions (ii), (iii) and (iv). It can easily be verified by a computer, for example using Magma.

- $\mathrm{PGL}_{2}(5):$

$$
((3,6,6),(4,4,5))
$$

- $\mathrm{PGL}_{2}(7):$

$$
\begin{gathered}
((2,6,7),(2,8,8)),((2,6,7),(4,8,8)),((2,8,8),(6,6,7)),((4,8,8),(6,6,7)), \\
((3,6,6),(4,8,8)),((2,8,8),(3,6,6)),((3,6,6),(7,8,8)) .
\end{gathered}
$$

- $\mathrm{PGL}_{2}(9)$:

$$
\begin{gathered}
((4,8,8),(5,10,10)),((2,5,10),(3,8,8)),((2,8,8),(5,10,10)),((2,3,10),(2,8,8)), \\
((2,5,10),(2,8,8)),((2,5,10),(4,8,8)),((3,10,10),(4,8,8)), \\
((3,8,8),(5,10,10)),((2,8,8),(3,10,10)),((2,3,10),(4,8,8)) .
\end{gathered}
$$

Example 1.7. We list below all the possible types of the form $\left(\left(2, r_{1}, s_{1}\right),\left(2, r_{2}, s_{2}\right)\right)$ for Beauville structures for $\mathrm{PGL}_{2}(q)$ where $q=11,13$. This is a direct consequence of Theorem 2. and in particular it follows from Table 7 in Section 3.2, in the same way as the previous example.

- $\mathrm{PGL}_{2}(11)$:

$$
((2,4,12),(2,5,10)),((2,4,12),(2,10,11)),((2,10,11),(2,12,12)),((2,5,10),(2,12,12)) .
$$

- $\mathrm{PGL}_{2}(13)$:
$((2,7,14),(2,12,12)),((2,4,12),(2,13,14)),((2,12,12),(2,13,14)),((2,4,12),(2,7,14))$.
Organization. This paper is organized as follows. In Section 2 we present some of the basic properties of the groups $\operatorname{PSL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$ that are needed later. In Section 3 we describe the results of [15, 16] characterizing, for a given q, the hyperbolic triangle groups which have $\mathrm{PSL}_{2}(q)$ (respectively, $\mathrm{PGL}_{2}(q)$) as quotients with torsion-free kernel, and discuss the notions of a good G-order and a good involuting triple w.r.t q. The proofs of Theorems 1 and 2 are presented in Section 4 .

Acknowledgement. I am thankful to Fritz Grunewald for introducing me to the fascinating world of Beauville structures and for giving me inspiration and motivation. He is deeply missed.

I am grateful to Alexandre Zalesski for his enlightening comments. I am thankful to Ingrid Bauer and Fabrizio Catanese for many useful discussions, to Matteo Penegini for many interesting discussions and for his remarks on this manuscript, to Tatiana Bandman for patiently answering my questions, and to Claude Marion for kindly providing me with his recent preprints.

I am grateful to the referee for his careful reading of this manuscript and for his valuable comments.

2. Preliminaries

In this section we shall describe some well-known properties of the groups $\operatorname{PSL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$, their elements and their subgroups (see for example [6, [13, §2.8] and [20, §6]), that will be used later on.
2.1. The groups $\mathrm{PSL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$. We let \mathbb{F}_{q} denote a finite field of q elements where $q=p^{e}$ for some prime number p and some positive integer e. Recall that $\mathrm{GL}_{2}(q)$ is the group of invertible 2×2 matrices over \mathbb{F}_{q}, and $\mathrm{SL}_{2}(q)$ is the subgroup of $\mathrm{GL}_{2}(q)$ comprising the matrices with determinant 1. Then $\mathrm{PGL}_{2}(q)$ and $\mathrm{PSL}_{2}(q)$ are the quotients of $\mathrm{GL}_{2}(q)$ and $\mathrm{SL}_{2}(q)$ by their respective centers. In addition, $\mathrm{PSL}_{2}(q)$ is simple for $q \neq 2,3$. We shall denote by G, G_{0}, G_{1} the groups $\mathrm{PSL}_{2}(q), \mathrm{SL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$ respectively.

Also recall that G can be viewed as a normal subgroup of G_{1} whose index is 2 if p is odd, otherwise G can be identified with G_{1}. Let $d=\operatorname{gcd}(2, q-1)$. Then the orders of G_{0}, G_{1} and G are $q(q-1)(q+1), q(q-1)(q+1)$ and $q(q-1)(q+1) / d$ respectively.

Let $\mathbb{P}_{1}(q)$ denote the projective line over \mathbb{F}_{q}. Then G_{1} acts on $\mathbb{P}_{1}(q)$ by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \quad z \mapsto \frac{a z+b}{c z+d}
$$

hence, it can be identified with the group of projective transformations on $\mathbb{P}_{1}(q)$. Under this identification, G is the set of all transformations for which $a d-b c$ is a square in \mathbb{F}_{q}.
2.2. Group elements. One can classify the elements of G and G_{1} according to their action on $\mathbb{P}_{1}(q)$. This is the same as considering the possible Jordan forms of their pre-images. For a matrix $A \in G_{0}$ we will denote by \bar{A} its image in G.

Table 1 lists the three types of elements according to whether they have 0,1 or 2 fixed points in $\mathbb{P}_{1}(q)$.

type	action on $\mathbb{P}_{1}(q)$	order in $\mathrm{PGL}_{2}(q)$	order in $\mathrm{PSL}_{2}(q)$
unipotent	fixes one point	p	p
split	fixes two points	divides $q-1$	divides $(q-1) / d$
non-split	no fixed points	divides $q+1$	divides $(q+1) / d$
TABLE 1. Elements in PGL $2(q)$ and PSL $_{2}(q)$			

Table 2 describes the Jordan forms of the three types of elements in G, according to whether the characteristic polynomial $P(\lambda):=\lambda^{2}-\alpha \lambda+1$ of the pre-image $A \in G_{0}$ (where α is the trace of A) has 0,1 or 2 distinct roots in \mathbb{F}_{q}.
2.3. Subgroups of $\operatorname{PSL}_{2}(q)$. Table 3 specifies all the subgroups of $G=\operatorname{PSL}_{2}(q)$ up to isomorphism following [20, Theorems 6.25 and 6.26].

These subgroups can be divided into the following three classes, following Macbeath [18]. The subgroups isomorphic to $\operatorname{PSL}_{2}\left(q_{1}\right)$ or $\mathrm{PGL}_{2}\left(q_{1}\right)$ are usually called subfield subgroups (since $\mathbb{F}_{q_{1}}$ is a subfield of \mathbb{F}_{q}). Since A_{4}, S_{4}, A_{5} and dihedral groups correspond to the finite triangle groups, that is, triangle groups $T_{r, s, t}$ such that $1 / r+1 / s+1 / t>1$, we will call them small subgroups. For convenience we will refer to the other subgroups, namely subgroups of the Borel and cyclic subgroups, as structural subgroups.
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \text { type } & \text { roots of } P(\lambda) & \text { Jordan form in } \mathrm{SL}_{2}\left(\overline{\mathbb{F}}_{p}\right) & \text { conjugacy classes } \\
\hline \hline \text { unipotent } & 1 \text { root } & \left(\begin{array}{cc} \pm 1 & 1 \\
0 & \pm 1\end{array}
$$\right)

\alpha= \pm 2\end{array}\right) \left.\quad\)| d classes in G |
| :---: |
| which unite in G_{1} | \right\rvert\,

Table 2. Elements in $\mathrm{PSL}_{2}(q)$ and their Jordan forms

type	maximal order	conditions
p-group	q	-
Frobenius (Borel)	$q(q-1) / d$	-
cyclic (split)	$(q-1) / d$	-
dihedral (split)	$2(q-1) / d$	-
cyclic (non-split)	$(q+1) / d$	-
dihedral (non-split)	$2(q+1) / d$	-
PSL $_{2}\left(q_{1}\right)$	-	$q=q_{1}^{m}(m \in \mathbb{N})$
PGL $_{2}\left(q_{1}\right)$	-	q is odd, $q=q_{1}^{2 m}(m \in \mathbb{N})$
A_{4}	12	q is odd; or $q=2^{e}, e$ even
S_{4}	24	$q^{2} \equiv 1 \bmod 16$
A_{5}	60	$p=5$ or $q^{2} \equiv 1 \bmod 5$

TABLE 3. Subgroups of $\mathrm{PSL}_{2}(q)$

Regarding the conjugacy classes of these subgroups, we recall that there is a single conjugacy class in G of dihedral subgroups of order $2(q-1) / d$ (respectively, $2(q+1) / d$), so that there is a single conjugacy class in G of cyclic subgroups of order $(q-1) / d$ (respectively, $(q+1) / d)$.

We also recall that for any divisor f of e, G has a G_{1}-conjugacy class of subgroups isomorphic to $\mathrm{PSL}_{2}\left(p^{f}\right)$. Moreover, if p is odd and e is even then G has a G_{1}-conjugacy class of subgroups isomorphic to $\mathrm{PGL}_{2}\left(p^{f}\right)$ for any f dividing $e / 2$.

3. Hyperbolic triangle groups and $\mathrm{PSL}_{2}(q), \mathrm{PGL}_{2}(q)$

In order to characterize the possible types of an unmixed Beauville structure for $\mathrm{PSL}_{2}(q)$ (respectively, $\mathrm{PGL}_{2}(q)$) it is crucial to know given q the hyperbolic triangle groups which have $\mathrm{PSL}_{2}(q)$ (respectively, $\mathrm{PGL}_{2}(q)$) as quotients with torsion-free kernel.

Given a prime power q the hyperbolic triangle groups which have $\operatorname{PSL}_{2}(q)$ (respectively, $\left.\mathrm{PGL}_{2}(q)\right)$ as quotients with torsion-free kernel have been determined by Langer and Rosenberger [15] and Levin and Rosenberger [16], following Macbeath [18]. It follows that if (r, s, t) is hyperbolic, then for almost all primes p, there is precisely one group of the form $\mathrm{PSL}_{2}\left(p^{e}\right)$ or $\mathrm{PGL}_{2}\left(p^{e}\right)$ which is a homomorphic image of $T_{r, s, t}$ with torsion-free kernel. The remaining primes p satisfy that at least one of r, s, t is a multiple of p which is not p, and for such primes, for all positive integers e, neither $\mathrm{PSL}_{2}\left(p^{e}\right)$ nor $\mathrm{PGL}_{2}\left(p^{e}\right)$ contains three elements of orders r, s and t. Recently, Marion [19] has provided another proof for the case where r, s, t are primes relying on probabilistic group theoretical methods.

Before stating these results in 93.2 we introduce some notation in 83.1 In 3.3 we present the main results of Macbeath [18] and explain the concept for a hyperbolic triple (r, s, t) to be irregular w.r.t q. In Sections $\$ 3.4$ and $\$ 3.5$ we discuss the notions of good involuting triple w.r.t q and good G-order respectively.
3.1. Orders and traces. If n is a positive integer dividing $(q-1) / d$ or $(q+1) / d$ or equal to p, then $G=\mathrm{PSL}_{2}(q)$ contains an element of order n. In this case, we will say that n is a G-order. Similarly, if n is a positive integer dividing $q-1$ or $q+1$ or equal to p, then $G_{1}=\mathrm{PGL}_{2}(q)$ contains an element of order n, and we will say that n is a G_{1}-order.

More precisely, one would like to determine the smallest positive integer e such that $\mathrm{PGL}_{2}\left(p^{e}\right)$ (respectively $\mathrm{PSL}_{2}\left(p^{e}\right)$) contains an element of order n, hence we introduce the following notation.

For a prime p, a positive integer n coprime to p, and a k-tuple $\left(n_{1}, \ldots, n_{k}\right)$ of positive integers n_{i} each coprime to p or equal to p, we let

$$
\begin{gathered}
\mu_{\mathrm{PGL}}(p, p)=\mu_{\mathrm{PSL}}(p, p)=1, \\
\mu_{\mathrm{PGL}}(p, n)=\min \left\{f>0: p^{f} \equiv \pm 1 \bmod n\right\}, \\
\mu_{\mathrm{PSL}}(p, n)=\min \left\{f>0: p^{f} \equiv \pm 1 \bmod (\operatorname{gcd}(2, n) \cdot n)\right\}, \\
\mu_{\mathrm{PGL}}\left(p ; n_{1}, \ldots, n_{k}\right)=\operatorname{lcm}\left(\mu_{\mathrm{PGL}}\left(p, n_{1}\right), \ldots, \mu_{\mathrm{PGL}}\left(p, n_{k}\right)\right)
\end{gathered}
$$

and

$$
\mu_{\mathrm{PSL}}\left(p ; n_{1}, \ldots, n_{k}\right)=\operatorname{lcm}\left(\mu_{\mathrm{PSL}}\left(p, n_{1}\right), \ldots, \mu_{\mathrm{PSL}}\left(p, n_{k}\right)\right) .
$$

Therefore, $\mu_{\mathrm{PGL}}(p, n)$ (respectively $\mu_{\mathrm{PSL}}(p, n)$) is the smallest positive integer e such that $\mathrm{PGL}_{2}\left(p^{e}\right)$ (respectively $\mathrm{PSL}_{2}\left(p^{e}\right)$) contains an element of order n. Also $\mu_{\mathrm{PGL}}\left(p ; n_{1}, \ldots, n_{k}\right)$ (respectively $\mu_{\mathrm{PSL}}\left(p ; n_{1}, \ldots, n_{k}\right)$) is the smallest positive integer e such that $\mathrm{PGL}_{2}\left(p^{e}\right)$ (respectively $\left.\mathrm{PSL}_{2}\left(p^{e}\right)\right)$ contains elements of orders n_{1}, \ldots, n_{k}.

For any non-central matrix $A \in G_{0}$, its trace $\operatorname{tr}(A)$ determines uniquely the G_{1}-conjugacy class of \bar{A} (see Table (2), and so also the order of \bar{A} is uniquely determined by $\operatorname{tr}(A)$.

Hence, for a G-order n, we denote

$$
\begin{equation*}
\mathcal{T}_{q}(n)=\left\{\alpha \in \mathbb{F}_{q}: \alpha=\operatorname{tr}(A), A \in G_{0},|\bar{A}|=n\right\} . \tag{1}
\end{equation*}
$$

It is easy to see from Table 2 that for any prime power $q, \mathcal{T}_{q}(2)=\{0\}, \mathcal{T}_{q}(3)=\{ \pm 1\}$, and for any odd $q=p^{e}, \mathcal{T}_{q}(p)=\{ \pm 2\}$. Moreover, when q is odd, then $\alpha \in \mathcal{T}_{q}(n)$ if and only if $-\alpha \in \mathcal{T}_{q}(n)$. In fact, for any prime power q and integer $n>1, \mathcal{T}_{q}(n)$ can be effectively computed as follows.
Proposition 3.1. Denote by $\mathcal{P}_{q}(n)$ the set of primitive roots of unity of order n in \mathbb{F}_{q}.

- Let $q=2^{e}$ for some positive integer e and let $n>1$ be an integer, then

$$
\mathcal{T}_{q}(n)= \begin{cases}\{0\} & \text { if } n=2 \tag{2}\\ \left\{a+a^{-1}: a \in \mathcal{P}_{q}(n)\right\} & \text { if } n \text { divides } q-1 \\ \left\{b+b^{q}: b \in \mathcal{P}_{q^{2}}(n)\right\} & \text { if } n \text { divides } q+1 \\ \emptyset & \text { otherwise }\end{cases}
$$

- Let $q=p^{e}$ for some odd prime p and some positive integer e and let $n>1$ be an integer, then

$$
\mathcal{T}_{q}(n)= \begin{cases}\{ \pm 2\} & \text { if } n=p \tag{3}\\ \left\{ \pm\left(a+a^{-1}\right): a \in \mathcal{P}_{q}(2 n)\right\} & \text { if } n \text { divides } \frac{q-1}{2} \\ \left\{ \pm\left(b+b^{q}\right): b \in \mathcal{P}_{q^{2}}(2 n)\right\} & \text { if } n \text { divides } \frac{q+1}{2} \\ \emptyset & \text { otherwise }\end{cases}
$$

Proof. We prove the case where q is odd and n divides $(q-1) / 2$. The other cases are similar.
Assume first that n is even. Let a be a primitive root of unity of order $2 n$. Then $-a$ is also a primitive root of unity of order $2 n$, and $(-a)^{n}=a^{n}=-1$. Thus the matrices

$$
A=\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \quad \text { and } \quad-A=\left(\begin{array}{cc}
-a & 0 \\
0 & -a^{-1}
\end{array}\right)
$$

both reduce to the same element $\bar{A} \in G$ of order n. Hence, $a+a^{-1}$ and $-\left(a+a^{-1}\right)$ both belong to $\mathcal{T}_{q}(n) . \mathcal{T}_{q}(n)$ contains only the elements of the claimed form, since it suffices to consider only the conjugacy classes of elements of G, described in Table 2 ,

Now assume that n is odd. Then a is a primitive root of unity of order n if and only if $-a$ is a primitive root of unity of order $2 n$. In this case, $(-a)^{n}=-a^{n}=-1$. Thus the matrices

$$
A=\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right) \quad \text { and } \quad-A=\left(\begin{array}{cc}
-a & 0 \\
0 & -a^{-1}
\end{array}\right)
$$

both reduce to the same element $\bar{A} \in G$ of order n. Hence, $a+a^{-1}$ and $-\left(a+a^{-1}\right)$ both belong to $\mathcal{T}_{q}(n)$. Again, considering the conjugacy classes appearing in Table 2 shows that $\mathcal{T}_{q}(n)$ contains only the elements of the claimed form.
3.2. Hyperbolic triples and $\mathrm{PSL}_{2}(q), \mathrm{PGL}_{2}(q)$. The following theorems summarize the results in [15, Theorems 4.1 and 4.2] and [16, Theorems 1 and 2], which characterize, for a given q, the hyperbolic triangle groups which have $\mathrm{PSL}_{2}(q)$ (respectively, $\mathrm{PGL}_{2}(q)$) as quotients with torsion-free kernel. The notion of an irregular triple w.r.t q is given in Lemma 3.6 in 3.3 .

Theorem 3.2. [15, [16]. Given a prime p and a hyperbolic triple (r, s, t) of integers, $\mathrm{PSL}_{2}\left(p^{e}\right)$ is a quotient of $T_{r, s, t}$ with torsion-free kernel if and only if (r, s, t) and e satisfy one of the conditions given in Table 4.

Theorem 3.3. [15, 16]. Given an odd prime p and a hyperbolic triple (r, s, t) of integers, $\mathrm{PGL}_{2}\left(p^{e}\right)$ is a quotient of $T_{r, s, t}$ with torsion-free kernel if and only if (r, s, t) and e satisfy one of the conditions given in Table 5.

The following corollary follows immediately from Theorems 3.2 and 3.3 ,

p	(r, s, t)	e	further conditions
$p \geq 5$	(p, p, p)	1	-
$p \geq 3$	$\begin{gathered} \text { permutation of }\left(p, p, t^{\prime}\right) \\ \operatorname{gcd}\left(t^{\prime}, p\right)=1 \end{gathered}$	$\mu_{\text {PSL }}\left(p, t^{\prime}\right)$	-
$p \geq 3$	$\begin{gathered} \text { permutation of }\left(p, s^{\prime}, t^{\prime}\right) \\ \operatorname{gcd}\left(s^{\prime} t^{\prime}, p\right)=1 \end{gathered}$	$\mu_{\mathrm{PSL}}\left(p ; s^{\prime}, t^{\prime}\right)$	either at most one of r, s, t is even, or: if at least two of r, s, t are even then (r, s, t) is not irregular w.r.t p^{e}
$p \geq 3$	$\operatorname{gcd}(r s t, p)=1$	$\mu_{\text {PSL }}(p ; r, s, t)$	
$p=2$	-	$\mu_{\mathrm{PSL}}(2 ; r, s, t)$	-

TABLE 4. Hyperbolic triangle groups $T_{r, s, t}$ which have $\mathrm{PSL}_{2}\left(p^{e}\right)$ as quotients

(r, s, t)	e	further conditions
permutation of $\left(p, s^{\prime}, t^{\prime}\right)$ $\operatorname{gcd}\left(s^{\prime} t^{\prime}, p\right)=1$	$\mu_{\mathrm{PSL}}\left(p ; s^{\prime}, t^{\prime}\right) / 2$	at least two of r, s, t are even
and		
$\operatorname{gcd}(r s t, p)=1$		$\mu_{\mathrm{PSL}}(p ; r, s, t) / 2$

TABLE 5. Hyperbolic triangle groups $T_{r, s, t}$ which have $\mathrm{PGL}_{2}\left(p^{e}\right)$ as quotients

Corollary 3.4. Given a prime p and a hyperbolic triple (r, s, t) of integers, such that each of r, s, t is either coprime to p or equal to p, there exists a unique exponent e such that $\mathrm{PSL}_{2}\left(p^{e}\right)$ or $\mathrm{PGL}_{2}\left(p^{e}\right)$ is a quotient of $T_{r, s, t}$ with torsion-free kernel. More precisely, let $e=\mu_{\mathrm{PSL}}(p ; r, s, t)$ then
(a) If (r, s, t) is not irregular w.r.t to p^{e} then $\mathrm{PSL}_{2}\left(p^{e}\right)$ is a quotient of $T_{r, s, t}$ with torsion-free kernel.
(b) If e is even and (r, s, t) is irregular w.r.t to p^{e} then $\mathrm{PGL}_{2}\left(p^{e / 2}\right)$ is a quotient of $T_{r, s, t}$ with torsion-free kernel.

Example 3.5. In Tables 6 and 7 we present all the hyperbolic triples (r, s, t) of integers such that $\mathrm{PSL}_{2}(q)$ (respectively $\mathrm{PGL}_{2}(q)$) is a quotient of $T_{r, s, t}$ with torsion-free kernel, for $q=3,4,5,7,8,9,11,13$. These triples were computed using Magma.

The irregular triples w.r.t q^{2} are divided according to the three cases of Lemma 3.6, and among them, the good involuting triples w.r.t q are marked in bold (see 33.3 and 93.4).
3.3. Generating triples and irregular triples. Macbeath [18] classified the pairs of elements in G in a way which makes it easy to decide what kind of subgroup they generate. He called a triple (A, B, C) of elements in G (respectively G_{0}) such that $A B C=1$ a G-triple (respectively G_{0}-triple). So if (A, B, C) is a G_{0}-triple then $(\bar{A}, \bar{B}, \bar{C})$ is a G-triple.

By [18, Theorem 1], for any $(\alpha, \beta, \gamma) \in \mathbb{F}_{q}^{3}$, there exists a G_{0}-triple (A, B, C) such that A, B and C have respective traces α, β and γ. Hence, if (r, s, t) is a triple of G-orders then there exists a G-triple $(\bar{A}, \bar{B}, \bar{C})$ such that \bar{A}, \bar{B} and \bar{C} have respective orders r, s and t.

Macbeath [18] called a G_{0}-triple (A, B, C) singular if its corresponding traces (α, β, γ) satisfy the equality

$$
\begin{equation*}
\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta \gamma-4=0 \tag{4}
\end{equation*}
$$

Moreover, by [18, Theorem 2], a G_{0}-triple (A, B, C) is singular if and only if the corresponding G-triple $(\bar{A}, \bar{B}, \bar{C})$ satisfies that $\langle\bar{A}, \bar{B}\rangle$ is a structural subgroup of G.

q	G-orders	G_{1}-orders	triples for G		triples for G_{1} (irregular)
3	2, 3	$\begin{gathered} \hline \hline 2,3, \\ 4 \end{gathered}$	None	(α)	(3, 4, 4)
4	$2,3,5$	$2,3,5$	$\begin{gathered} (2,5,5),(3,3,5), \\ (3,5,5),(5,5,5) \end{gathered}$		None
5	$2,3,5$	$\begin{gathered} 2,3,5, \\ 4,6 \end{gathered}$	$\begin{gathered} (2,5,5),(3,3,5), \\ (3,5,5),(5,5,5) \end{gathered}$	$\begin{aligned} & \hline(\alpha) \\ & (\beta) \\ & (\gamma) \end{aligned}$	$\begin{gathered} (3,4,4),(3,4,6),(3,6,6), \\ (4,4,5),(4,5,6),(5,6,6) \\ (2,4,6),(2,6,6) \\ (2,4,5),(\mathbf{2}, \mathbf{5}, \mathbf{6}) \\ \hline \end{gathered}$
7	$2,3,4,7$	$\begin{gathered} 2,3,4,7, \\ 6,8 \end{gathered}$	$(2,3,7),(2,4,7)$, $(2,7,7),(3,3,4)$, $(3,3,7),(3,4,4)$, $(3,4,7),(3,7,7)$, $(4,4,4),(4,4,7)$, $(4,7,7),(7,7,7)$	(α) (β) (γ)	$(3,6,6),(3,6,8),(3,8,8)$, $(4,6,6),(4,6,8),(4,8,8)$, $(6,6,7),(6,7,8),(7,8,8)$ $(2,6,6),(2,6,8),(\mathbf{2}, \mathbf{8}, \mathbf{8})$ $(2,3,8),(2,4,6),(2,4,8)$, $(\mathbf{2}, \mathbf{6}, \mathbf{7}),(2,7,8)$
8	$2,3,7,9$	$2,3,7,9$	$(2,3,7),(2,3,9)$, $(2,7,7),(2,7,9)$, $(2,9,9),(3,3,7)$, $(3,3,9),(3,7,7)$, $(3,7,9),(3,9,9)$, $(7,7,7),(7,7,9)$, $(7,9,9),(9,9,9)$		None
9	$2,3,4,5$	$\begin{gathered} 2,3,4,5 \\ 8,10 \end{gathered}$	$\begin{aligned} & (2,4,5),(2,5,5), \\ & (3,3,4),(3,3,5), \\ & (3,4,5),(3,5,5), \\ & (4,4,4),(4,4,5), \\ & (4,5,5),(5,5,5) \end{aligned}$	(α) (β) (γ)	$(3,8,8),(3,8,10),(3,10,10)$, $(4,8,8),(4,8,10),(4,10,10)$, $(5,8,8),(5,8,10),(5,10,10)$ $(\mathbf{2}, \mathbf{8}, \mathbf{8}),(2,8,10),(2,10,10)$ $(2,3,8),(\mathbf{2}, \mathbf{3}, \mathbf{1 0}),(2,4,8)$, $(2,4,10),(2,5,8),(\mathbf{2}, \mathbf{5}, \mathbf{1 0})$

TABLE 6. Hyperbolic triples for G and hyperbolic triples for G_{1} (irregular w.r.t q^{2}), where $q=3,4,5,7,8,9$.

Observe that if $\langle\bar{A}, \bar{B}\rangle$ is a small subgroup, then the corresponding orders (r, s, t) of $(\bar{A}, \bar{B}, \bar{C})$ satisfy that either two of r, s, t equal to 2 or $r, s, t \in\{2,3,4,5\}$, but the converse might not be true. Indeed, if $(\bar{A}, \bar{B}, \bar{C})$ is a G-triple of respective orders (r, s, t) such that (r, s, t) is hyperbolic and $r, s, t \in\{2,3,4,5\}$ then $\langle\bar{A}, \bar{B}\rangle$ is not necessarily a small subgroup (see [16]).

In fact, when (r, s, t) is a hyperbolic triple of G-orders, then there is enough freedom in choosing the traces $\alpha \in \mathcal{T}_{q}(r), \beta \in \mathcal{T}_{q}(s)$ and $\gamma \in \mathcal{T}_{q}(t)$, such that Equation (4) does not hold, and in addition, they do not correspond to a G-triple which generates a small subgroup (see [15, Lemma 3.3] and [16]). Therefore, if (r, s, t) is a hyperbolic triple of G orders then there exists a G-triple (A, B, C) such that A, B and C have respective orders r, s and t, and moreover, $\langle A, B\rangle$ is a subfield subgroup of G.

q	G-orders	G_{1}-orders	triples for G		triples for G_{1} (irregular)
11	$\begin{gathered} 2,3, \\ 5,6,11 \end{gathered}$	$\begin{gathered} 2,3, \\ 5,6,11, \\ 4,10,12 \end{gathered}$	$(2,3,11),(2,5,5)$, $(2,5,6),(2,5,11)$, $(2,6,6),(2,6,11)$, $(2,11,11),(3,3,5)$, $(3,3,6),(3,3,11)$, $(3,5,5),(3,5,6)$, $(3,5,11),(3,6,6)$, $(3,6,11),(3,11,11)$, $(5,5,5),(5,5,6)$, $(5,5,11),(5,6,6)$, $(5,6,11),(5,11,11)$, $(6,6,6),(6,6,11)$, $(6,11,11),(11,11,11)$	(α) (β) (γ)	$(3,4,4),(3,4,10),(3,4,12)$, $(3,10,10),(3,10,12),(3,12,12)$, $(4,4,5),(4,4,6),(4,4,11)$, $(4,5,10),(4,5,12),(4,6,10)$, $(4,6,12),(4,10,11),(4,11,12)$, $(5,10,10),(5,10,12),(5,12,12)$, $(6,10,10),(6,10,12),(6,12,12)$, $(10,10,11),(10,11,12),(11,12,12)$ $(2,4,10),(\mathbf{2}, \mathbf{4}, \mathbf{1 2}),(2,10,10)$, $(2,10,12),(\mathbf{2}, \mathbf{1 2}, \mathbf{1 2})$ $(\mathbf{2}, \mathbf{3}, \mathbf{1 0}),(2,3,12),(2,4,5)$, $(2,4,6),(2,4,11),(\mathbf{2}, \mathbf{5}, 10)$, $(2,5,12),(2,6,10),(2,6,12)$, $(\mathbf{2}, \mathbf{1 0}, \mathbf{1 1}),(2,11,12)$
13	$\begin{gathered} 2,3, \\ 6,7,13 \end{gathered}$	$\begin{gathered} 2,3, \\ 6,7,13, \\ 4,12,14 \end{gathered}$	$\begin{gathered} \hline(2,3,7),(2,3,13), \\ (2,6,6),(2,6,7), \\ (2,6,13),(2,7,7), \\ (2,7,13),(2,13,13), \\ (3,3,6),(3,3,7), \\ (3,3,13),(3,6,6), \\ (3,6,7),(3,6,13), \\ (3,7,7),(3,7,13), \\ (3,13,13),(6,6,6), \\ (6,6,7),(6,6,13), \\ (6,7,7),(6,7,13), \\ (6,13,13),(7,7,7), \\ (7,7,13),(7,13,13), \\ (13,13,13) \\ \hline \end{gathered}$	(α) (β) (γ)	$\begin{gathered} \hline(3,4,4),(3,4,12),(3,4,14), \\ (3,12,12),(3,12,14),(3,14,14), \\ (4,4,6),(4,4,7),(4,4,13), \\ (4,6,12),(4,6,14),(4,7,12), \\ (4,7,14),(4,12,13),(4,13,14), \\ (6,12,12),(6,12,14),(6,14,14), \\ (7,12,12),(7,12,14),(7,14,14), \\ (12,12,13),(12,13,14),(13,14,14) \\ (\mathbf{2}, \mathbf{4}, \mathbf{1 2}),(2,4,14),(\mathbf{2}, \mathbf{1 2}, \mathbf{1 2}), \\ (2,12,14),(2,14,14) \\ (2,3,12),(\mathbf{2}, \mathbf{3}, \mathbf{1 4}),(2,4,6), \\ (2,4,7),(2,4,13),(2,6,12), \\ (2,6,14),(2,7,12),(\mathbf{2}, \mathbf{7}, \mathbf{1 4}), \\ (2,12,13),(\mathbf{2}, \mathbf{1 3}, \mathbf{1 4}) \\ \hline \end{gathered}$

TABLE 7. Hyperbolic triples for G and hyperbolic triples for G_{1} (irregular w.r.t q^{2}), where $q=11,13$

When p is odd and e is even there are G-triples (A, B, C) which generate a projective special linear subgroup $\mathrm{PSL}_{2}\left(q_{1}\right)$ (respectively projective general linear group $\mathrm{PGL}_{2}\left(q_{1}\right)$), where $\mathbb{F}_{q_{1}}$ (respectively $\mathbb{F}_{q_{1}^{2}}$) is a subfield of \mathbb{F}_{q} (see Table 3).

If $q=q_{1}^{2}$ and (A, B, C) is a G-triple that generates a subgroup isomorphic to $\mathrm{PGL}_{2}\left(q_{1}\right)$ then exactly one of (A, B, C) lies in $\mathrm{PSL}_{2}\left(q_{1}\right)$, and we say that (A, B, C) is an irregular G triple (see [18, §9]). On the other hand, if (r, s, t) is a hyperbolic triple of $\mathrm{PGL}_{2}\left(q_{1}\right)$-orders then in particular it is a hyperbolic triple of G-orders, hence there exists a G-triple (A, B, C) such that A, B and C have respective orders r, s and t. Consequently, (r, s, t) is said to be irregular w.r.t q if (A, B, C) is an irregular G-triple. Langer and Rosenberger determined in [15], Lemma 3.5] the necessary and sufficient condition for (r, s, t) to be irregular w.r.t q.

Lemma 3.6. [15]. Let $q=p^{e}$ be an odd prime power and let (r, s, t) be a hyperbolic triple of integers such that $\operatorname{gcd}(r s t, p)=1$ or one of r, s, t is equal to p and the two others are coprime to p. Then (r, s, t) is irregular w.r.t q if up to a permutation $\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$ of (r, s, t) one of the following cases holds:

Case (α):

- $r^{\prime}, s^{\prime}, t^{\prime}>2$,
- r^{\prime}, s^{\prime} and $e=\mu_{\mathrm{PSL}}\left(p ; r^{\prime}, s^{\prime}, t^{\prime}\right)$ are all even,
- both $\mu_{\mathrm{PGL}}\left(p, r^{\prime}\right)$ and $\mu_{\mathrm{PGL}}\left(p, s^{\prime}\right)$ divide $\frac{e}{2}$,
- both $\mu_{\mathrm{PSL}}\left(p, r^{\prime}\right)$ and $\mu_{\mathrm{PSL}}\left(p, s^{\prime}\right)$ do not divide $\frac{e}{2}$,
- $\mu_{\mathrm{PSL}}\left(p, t^{\prime}\right)$ divides $\frac{e}{2}$.

Case (β) :

- $r^{\prime}, s^{\prime}>2$ and $t^{\prime}=2$,
- r^{\prime}, s^{\prime} and $e=\mu_{\mathrm{PSL}}\left(p ; r^{\prime}, s^{\prime}\right)$ are all even,
- both $\mu_{\mathrm{PGL}}\left(p, r^{\prime}\right)$ and $\mu_{\mathrm{PGL}}\left(p, s^{\prime}\right)$ divide $\frac{e}{2}$,
- both $\mu_{\mathrm{PSL}}\left(p, r^{\prime}\right)$ and $\mu_{\mathrm{PSL}}\left(p, s^{\prime}\right)$ do not divide $\frac{e}{2}$.

Case (γ):

- $r^{\prime}, s^{\prime}>2$, and $t^{\prime}=2$,
- r^{\prime} and $e=\mu_{\mathrm{PSL}}\left(p ; r^{\prime}, s^{\prime}\right)$ are even,
- $\mu_{\mathrm{PGL}}\left(p, r^{\prime}\right)$ divides $\frac{e}{2}$,
- $\mu_{\mathrm{PSL}}\left(p, r^{\prime}\right)$ does not divide $\frac{e}{2}$,
- $\mu_{\mathrm{PSL}}\left(p, s^{\prime}\right)$ divides $\frac{e}{2}$.

Case (β) is the same as case (α) except that $t^{\prime}=2$. Observe that the difference between the last two cases is that an irregular G-triple (A, B, C) in case (β) contains an involution which belongs to $\mathrm{PSL}_{2}\left(q_{1}\right)$, while in case (γ) the involution belongs to $\mathrm{PGL}_{2}\left(q_{1}\right) \backslash \mathrm{PSL}_{2}\left(q_{1}\right)$. We will therefore investigate in detail irregular triples containing involutions in 83.4 .

As an example, in Tables 6 and 7 we present all the irregular triples w.r.t q^{2}, for $q=$ $3,5,7,9,11,13$, divided according to the above cases. These triples were computed using Magma.
3.4. Irregular triples containing involutions. In this section we consider irregular G triples (A, B, C) where C is an involution. We give a numerical criterion to decide whether all the elements of even order in this triple are of the same type, either split or non-split. Such triples, called "good involuting triples w.r.t q" (see Definition 1.5), are needed in the classification of Beauville structures for G_{1} which include involutions, in Theorem 2(iv).

Recall that all the involutions in $G=\mathrm{PSL}_{2}(q)$ are conjugate to the image of the matrix $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. They are unipotent if $p=2$, split if $(q-1) / 2$ is even, namely if $q \equiv 1 \bmod 4$, and non-split if $(q+1) / 2$ is even, namely if $q \equiv 3 \bmod 4$. Moreover, if q is odd, then there is exactly one G_{1}-conjugacy class of involutions in $G_{1} \backslash G$. They are split if $(q-1) / 2$ is odd, namely if $q \equiv 3 \bmod 4$, and non-split if $(q+1) / 2$ is odd, namely if $q \equiv 1 \bmod 4($ see Tables 1 and (2).

Proposition 3.7. Assume that q is an odd prime power and let (A, B, C) be an irregular $\operatorname{PSL}_{2}\left(q^{2}\right)$-triple of respective orders $(r, s, 2)$. Then one of the following holds:

- $q \equiv 1 \bmod 4, C$ is split and $(r, s, 2)$ is in case (β).
- $q \equiv 1 \bmod 4, C$ is non-split and $(r, s, 2)$ is in case (γ).
- $q \equiv 3 \bmod 4, C$ is non-split and $(r, s, 2)$ is in case (β).
- $q \equiv 3 \bmod 4, C$ is split and $(r, s, 2)$ is in case (γ).

Proof. Recall that by Lemma3.6, an irregular $\mathrm{PSL}_{2}\left(q^{2}\right)$-triple (A, B, C) of respective orders $(r, s, 2)$ is in case (β) if and only if $C \in \operatorname{PSL}_{2}(q)$, whereas it is in case (γ) if and only if $C \in \mathrm{PGL}_{2}(q) \backslash \mathrm{PSL}_{2}(q)$ (up to conjugation). The claim now follows from the above observation.

Corollary 3.8. Assume that q is an odd prime power and let (A, B, C) be an irregular $\mathrm{PSL}_{2}\left(q^{2}\right)$-triple of respective orders $(r, s, 2)$ with $r>2$ even.

If $q \equiv 1 \bmod 4$, then

- Both A and C are split if and only if r divides $q-1$ and $(r, s, 2)$ is in case (β).
- Both A and C are non-split if and only if r divides $q+1$ and $(r, s, 2)$ is in case (γ).

If $q \equiv 3 \bmod 4$, then

- Both A and C are split if and only if r divides $q-1$ and $(r, s, 2)$ is in case (γ).
- Both A and C are non-split if and only if r divides $q+1$ and $(r, s, 2)$ is in case (β).

The proof of part (iv) of Theorem 2 relies on the following corollary which is a consequence of Corollary 3.8. Recall that the notion of a "good involuting triple w.r.t q " was given in Definition 1.5 .

Corollary 3.9. Let q be an odd prime power and let (A, B, C) be an irregular $\operatorname{PSL}_{2}\left(q^{2}\right)$ triple of respective orders $(r, s, 2)$. Then all the elements of even order in this triple are of the same type (either split or non-split) if and only if $(r, s, 2)$ is a good involuting triple w.r.t q (see Definition 1.5).

Proof. Again, let $G=\mathrm{PSL}_{2}(q)$ and $G_{1}=\mathrm{PGL}_{2}(q)$. Without loss of generality we may assume that $A \in G_{1} \backslash G$ and thus $r>2$ is even. By Corollary 3.8 one of the following necessarily holds:

- $q \equiv 1 \bmod 4, r$ divides $q-1$ and $(r, s, 2)$ is in case (β). In case (β), both $A, B \in G_{1} \backslash G$, and so s is also even. Since A, B are split, then r, s both divide $q-1$ but not $(q-1) / 2$.
- $q \equiv 1 \bmod 4, r$ divides $q+1$ and $(r, s, 2)$ is in case (γ). Since $A \in G_{1} \backslash G$ then r does not divide $(q+1) / 2$. In case $(\gamma), B \in G$, and so s is a G-order. If s is even then s divides $(q-1) / 2$, and so B is split. But A is non-split, yielding a contradiction. Hence, s is necessarily odd.
- $q \equiv 3 \bmod 4, r$ divides $q-1$ and $(r, s, 2)$ is in case (γ). Since $A \in G_{1} \backslash G$ then r does not divide $(q-1) / 2$. In case $(\gamma), B \in G$, and so s is a G-order. If s is even then s divides $(q+1) / 2$, and so B is non-split. But A is split, yielding a contradiction. Hence, s is necessarily odd.
- $q \equiv 3 \bmod 4, r$ divides $q+1$ and $(r, s, 2)$ is in case (β). In case (β), both $A, B \in G_{1} \backslash G$, and so s is also even. Since A, B are non-split, then r, s both divide $q+1$ but not $(q+1) / 2$.

As an example, in Tables 6 and 7 we mark in bold all the good involuting triples w.r.t q where $q=5,7,9,11,13$. These triples were computed using Magma.

q		case	elements of even order	good involuting triple w.r.t q
$q \equiv 1 \bmod 4$	$q>5$	(β)	split	$(2, q-1, q-1)$
$q \equiv 1 \bmod 4$	$q \geq 5$	(γ)	non-split	$(2, p, q+1)$
	$q>5$			$(2,(q+1) / 2,(q+1))$
$q \equiv 3 \bmod 4$	$q \geq 7$	(γ)	split	$(2, p, q-1)$
	$q>7$			$(2,(q-1) / 2, q-1)$
$q \equiv 3 \bmod 4$	$q \geq 7$	(β)	non-split	$(2, q+1, q+1)$

TABLE 8. Good involuting triples w.r.t q

Example 3.10. Table 8 presents some general examples for good involuting triples w.r.t q. Note that in case (β) we exclude $q=5$ since the triple $(2,4,4)$ is not hyperbolic, and in case (γ) the second triple is excluded when $q=5$ or 7 since the triple $(2,3,6)$ is not hyperbolic.
3.5. Generating triples containing unipotents. In this section we consider G-triples (A, B, C) where A and B are unipotent elements and C is not unipotent. We give a numerical criterion on the order of C to decide whether A is G-conjugate to B, which is called a "good G-order" (see Definition 1.2). Such triples are needed in the classification of Beauville structures for G which include unipotents, in Theorem 1 (ii).

Assume that q is odd and consider the following matrices in $G_{0}=\mathrm{SL}_{2}(q)$:

$$
\begin{gathered}
U_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad U_{-1}=\left(\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right) \\
U_{1}^{\prime}=X U_{1} X^{-1}=\left(\begin{array}{cc}
1 & x^{2} \\
0 & 1
\end{array}\right) \in G_{0}, \quad U_{-1}^{\prime}=X U_{-1} X^{-1}=\left(\begin{array}{cc}
-1 & x^{2} \\
0 & -1
\end{array}\right) \in G_{0}
\end{gathered}
$$

where $x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ satisfies that $x^{2} \in \mathbb{F}_{q}$ and $X=\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right) \in \operatorname{SL}_{2}\left(q^{2}\right)$.
The following proposition and its corollary are immediate observations.
Proposition 3.11. Assume that q is odd. Then, for any $A \in G_{0}, X A X^{-1} \in G_{0}$. Moreover,

- If $A \neq I$ and $\operatorname{tr}(A)=2$ then A is G_{0}-conjugate to either U_{1} or U_{1}^{\prime}.
- If $A \neq-I$ and $\operatorname{tr}(A)=-2$ then A is G_{0}-conjugate to either U_{-1} or U_{-1}^{\prime}.

Proof. Indeed, if $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{0}$ then $X A X^{-1}=\left(\begin{array}{cc}a & b x^{2} \\ c x^{-2} & d\end{array}\right) \in G_{0}$. Moreover, U_{1} is not G_{0}-conjugate to $U_{1}^{\prime}=X U_{1} X^{-1}$, since x^{2} is not a square of some element in \mathbb{F}_{q}. Hence, any $I \neq A \in G_{0}$ with $\operatorname{tr}(A)=2$ is G_{0}-conjugate to either U_{1} or U_{1}^{\prime} (see Table 2).
Corollary 3.12. Assume that q is odd. Then, for any $\bar{A} \in G, \bar{X} \bar{A} \bar{X}^{-1} \in G$. If, moreover, \bar{A} is unipotent then it is G-conjugate to either \bar{U}_{1} or $\bar{U}_{1}{ }_{1}=\bar{X} \bar{U}_{1} \bar{X}^{-1}$. In addition,

- If $q \equiv 1 \bmod 4$ then \bar{U}_{1} and \bar{U}_{-1} are G-conjugate.
- If $q \equiv 3 \bmod 4$ then \bar{U}_{1} and $\bar{U}^{\prime}{ }_{-1}$ are G-conjugate.

The following lemma is needed later in Section4.2, to decide whether a unipotent element $\bar{A} \in G$ is G-conjugate to some power of \bar{U}_{1} or not.

Lemma 3.13. Assume that p is odd and let $q=p^{e}$. Let $\bar{A} \in G$ be a unipotent element.

- If e is odd, then there exists some $0<i<p$ such that \bar{A}^{i} is G-conjugate to \bar{U}_{1}.
- If e is even, then for every $0<i<p, \bar{A}^{i}$ is G-conjugate to \bar{A}.

Proof. Consider the set $I=\{i: 0<i<p\}$. Observe that if p is odd and e is even then all the elements in I are squares in \mathbb{F}_{q}. If p is odd and e is odd, then half of the elements in I are squares in \mathbb{F}_{q} and half are non-squares.

Hence, if e is odd then there exists some $i \in I$ such that U_{1}^{i} is G_{0}-conjugate to U_{1}^{\prime} and so \bar{U}_{1}^{i} is G-conjugate to $\bar{U}^{\prime}{ }_{1}$. If e is even then for every $i \in I, U_{1}^{i}$ is G_{0}-conjugate to U_{1} and so \bar{U}_{1}^{i} is G-conjugate to \bar{U}_{1}.

We now consider G-triples (A, B, C) such that A and B are unipotent elements and C is not unipotent.

Proposition 3.14. Assume that q is odd. Let (A, B, C) be a G_{0}-triple such that $A, B \neq \pm I$ and $\operatorname{tr}(A), \operatorname{tr}(B) \in\{ \pm 2\}$. Denote $\gamma=\operatorname{tr}(C)$.
(1) If $\operatorname{tr}(A)=\operatorname{tr}(B)$, then A is G_{0}-conjugate to B if and only if $2-\gamma$ is a square in \mathbb{F}_{q}.
(2) If $\operatorname{tr}(A)=-\operatorname{tr}(B)$, then A is G_{0}-conjugate to $-B$ if and only if $2+\gamma$ is a square in \mathbb{F}_{q}.

Proof. Without loss of generality we may assume that $A=U_{1}$.
(1) If $B=M U_{1} M^{-1}$ for some matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in G_{0}$, then

$$
\gamma=\operatorname{tr}(C)=\operatorname{tr}(A B)=\operatorname{tr}\left(U_{1} M U_{1} M^{-1}\right)=\operatorname{tr}\left(\begin{array}{cc}
1-a c-c^{2} & 1+a c+a^{2} \\
-c^{2} & 1+a c
\end{array}\right)=2-c^{2},
$$

and so $2-\gamma$ is a square in \mathbb{F}_{q}.
If $B=M U_{1}^{\prime} M^{-1}$ for some matrix $M \in G_{0}$, then

$$
\gamma=\operatorname{tr}(C)=\operatorname{tr}(A B)=\operatorname{tr}\left(U_{1} M U_{1}^{\prime} M^{-1}\right)=2-x^{2} c^{2},
$$

and since $x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ then $2-\gamma$ is a non-square in \mathbb{F}_{q}.
(2) Similarly, if $B=M\left(-U_{1}\right) M^{-1}$ for some matrix $M \in G_{0}$, then

$$
\gamma=\operatorname{tr}(C)=\operatorname{tr}(A B)=\operatorname{tr}\left(U_{1} M\left(-U_{1}\right) M^{-1}\right)=-2+c^{2},
$$

and so $2+\gamma$ is a square in \mathbb{F}_{q}.
If $B=M\left(-U_{1}^{\prime}\right) M^{-1}$ for some matrix $M \in G_{0}$, then

$$
\gamma=\operatorname{tr}(C)=\operatorname{tr}(A B)=\operatorname{tr}\left(U_{1} M\left(-U_{1}^{\prime}\right) M^{-1}\right)=-2+x^{2} c^{2},
$$

and so $2+\gamma$ is a non-square in \mathbb{F}_{q}.

Therefore, in order to decide whether in a G-triple (A, B, C) of respective orders (p, p, t), $t \neq p, A$ is G-conjugate to B, one needs to determine whether for $\gamma \in \mathcal{T}_{q}(t), 2-\gamma$ or $2+\gamma$ is a square in \mathbb{F}_{q}. In the following we prove that this is equivalent to decide whether t is a good G-order or not. Recall that $G=\mathrm{PSL}_{2}(q), G_{0}=\mathrm{SL}_{2}(q)$ and the notion of a"good G-order" was given in Definition 1.2,

Proposition 3.15. Assume that q is odd. Let $C \in G_{0}, \gamma=\operatorname{tr}(C)$ and $t=|\bar{C}|$. Assume that $\gamma \neq \pm 2$ (or equivalently, $t \neq p$). Then one of $2+\gamma, 2-\gamma$ is a square in \mathbb{F}_{q} if and only if t is a good G-order (see Definition (1.2).

Proof. As $t \neq p$ is a G-order then t divides either $(q-1) / 2$ or $(q+1) / 2$.
If t divides $(q-1) / 2$ then $\gamma=a+a^{-1}$ or $\gamma=-\left(a+a^{-1}\right)$, for some primitive root of unity a of order $2 t$ in \mathbb{F}_{q} (see Proposition 3.1). Hence,

$$
\{2+\gamma, 2-\gamma\}=\left\{a+2+a^{-1},(-a)+2+(-a)^{-1}\right\}
$$

Therefore, $2+\gamma$ or $2-\gamma$ is a square in \mathbb{F}_{q} if and only if $a=c^{2}$ or $-a=c^{2}$ for some $c \in \mathbb{F}_{q}$. Indeed, $a+2+a^{-1}$ is a square if and only if $(a+1)^{2} / a$ is a square if and only if a is a square in \mathbb{F}_{q}, and similarly for $(-a)+2+(-a)^{-1}$.

Now, one the following necessarily holds:

- If t is even then $-a$ is also a primitive root of unity of order $2 t$. Hence, a is a square in \mathbb{F}_{q} if and only if $-a$ is a square is \mathbb{F}_{q}. In addition, a is a square in \mathbb{F}_{q} if and only if \mathbb{F}_{q} contains a primitive root of unity of order $4 t$, namely, if and only if $4 t$ divides $q-1$.
- If t is odd and $q \equiv 1 \bmod 4$ then $4 t$ divides $q-1$, and so \mathbb{F}_{q} contains a primitive root of unity of order $4 t$. Thus a, which is a primitive root of unity of order $2 t$, is a square in \mathbb{F}_{q}, as required.
- If t is odd and $q \equiv 3 \bmod 4$ then \mathbb{F}_{q} contains a primitive root of unity of order $2 t$ but does not contain a primitive root of unity of order $4 t$, and so, a is a non-square in \mathbb{F}_{q}. However, $-a$ is a primitive root of unity of order t, and so, it is necessarily a square in \mathbb{F}_{q}, as required.
In conclusion, $a=c^{2}$ or $-a=c^{2}$ for some $c \in \mathbb{F}_{q}$ if and only if either t is odd and divides $q-1$ or t is even and $4 t$ divides $q-1$.

If t divides $(q+1) / 2$ then $\gamma=a+a^{q}$ or $\gamma=-\left(a+a^{q}\right)$, for some primitive root of unity a of order $2 t$ in $\mathbb{F}_{q^{2}}$ (see Proposition 3.1). Hence,

$$
\{2+\gamma, 2-\gamma\}=\left\{a+2+a^{q},(-a)+2+(-a)^{q}\right\}
$$

Therefore, $2+\gamma$ or $2-\gamma$ is a square in \mathbb{F}_{q} if and only if $a=c^{2}$ or $-a=c^{2}$ for some $c \in \mathbb{F}_{q^{2}}$ satisfying $c^{q+1}=1$.

Now, one the following necessarily holds:

- If t is even then $-a$ is also a primitive root of unity of order $2 t$. Hence, $a=c^{2}$ for some $c \in \mathbb{F}_{q^{2}}$ satisfying $c^{q+1}=1$ if and only if $-a=b^{2}$ for some $b \in \mathbb{F}_{q^{2}}$ satisfying $b^{q+1}=1$. This is equivalent to the condition that $4 t$ divides $q+1$.
- If t is odd and $q \equiv 3 \bmod 4$ then $\mathbb{F}_{q^{2}}$ contains a primitive root of unity b of order $4 t$ satisfying $b^{q+1}=1$. Hence, $a=c^{2}$ for some $c \in \mathbb{F}_{q^{2}}$ satisfying $c^{q+1}=1$, as required.
- If t is odd and $q \equiv 1 \bmod 4$ then $\mathbb{F}_{q^{2}}$ does not contain a primitive root of unity c of order $4 t$ satisfying $c^{q+1}=1$. However, in this case, $-a=b^{2}$ for some $b \in \mathbb{F}_{q^{2}}$ satisfying $b^{q+1}=1$, as required.
In conclusion, $a=c^{2}$ or $-a=c^{2}$ for some $c \in \mathbb{F}_{q^{2}}$ satisfying $c^{q+1}=1$ if and only if either t is odd and divides $q+1$ or t is even and $4 t$ divides $q+1$.

Corollary 3.16. Assume that $q=p^{e}$ for some odd prime p and some positive integer e. Let (A, B, C) be a G-triple of respective orders $(p, p, t), t \neq p$. Then A is G-conjugate to B if and only if t is a good G-order.

Proof. Let (A, B, C) be a G_{0}-triple and assume that its image in $G,(\bar{A}, \bar{B}, \bar{C})$ has respective orders $(p, p, t), t \neq p$. Denote $\gamma=\operatorname{tr}(C)$. Then \bar{A} and \bar{B} are unipotent if and only if $A, B \neq \pm I$ and $\operatorname{tr}(A), \operatorname{tr}(B) \in\{ \pm 2\}$. Moreover, \bar{A} and \bar{B} are G-conjugate if and only if either $\operatorname{tr}(A)=\operatorname{tr}(B)$ and A and B are G_{0}-conjugate or $\operatorname{tr}(A)=-\operatorname{tr}(B)$ and A and $-B$ are G_{0}-conjugate. From Proposition 3.14 we deduce that \bar{A} and \bar{B} are G-conjugate if and only if $2-\gamma$ or $2+\gamma$ is a square in \mathbb{F}_{q}. By Proposition 3.15, the latter is equivalent to t being a good G-order.

Lemma 3.17. Assume that $q=p^{e}$ where p is odd and $5 \leq q \neq 9$. There exists a G-triple (A, B, C) of respective orders (p, p, t), $t \neq p$, such that $\langle A, B\rangle=G$ and A is G-conjugate to B if and only if $e=\mu_{\mathrm{PSL}}(p ; t)$ and t is a good G-order.
Proof. Let (A, B, C) be a G-triple of respective orders $(p, p, t), t \neq p$. If $\langle A, B\rangle=G$ then Theorem 3.2 implies that $e=\mu_{\mathrm{PSL}}(p ; t)$, and if moreover A is G-conjugate to B then Corollary 3.16 implies that t is a good G-order.

If $e=\mu_{\mathrm{PSL}}(p ; t)$ then there exists a G-triple (A, B, C) of respective orders (p, p, t) (see Section (3.3). If moreover t is a good G-order then A is G-conjugate to B, by Corollary 3.16,

We now use the methodology described in Section 3.3. Let $\gamma \in \mathcal{T}_{p^{e}}(t)$. Observe that Equation (4) is equivalent in this case to $(\gamma \pm 2)^{2}=0$. Since $t \neq p$ then $\gamma \neq \pm 2$, and so this equality does not hold, implying that $\langle A, B\rangle$ is not a structural subgroup, by [18, Theorem 2]. As $e=\mu_{\mathrm{PSL}}(p ; t)$, it follows from Table 6 that if $5<q \neq 9$ then either $p>5$; or $p=5$ and $e>1$ implying that $t \neq 2,3,5$; or $p=3$ and $e>2$ implying that $t>5$. Therefore, $\langle A, B\rangle$ cannot be a small subgroup. If $q=5$ then $\langle A, B\rangle \cong A_{5}=G$ as required. In addition, (A, B, C) is clearly not an irregular G-triple. The condition that $e=\mu_{\mathrm{PSL}}(p ; t)$ now ensures that $\langle A, B\rangle=G$.
Remark 3.18. In the case $G=\operatorname{PSL}_{2}(9)$ one needs to consider the G-orders 4 and 5 .

- 4 is not a good G-order, and so, if (A, B, C) is a G-triple of respective orders $(3,3,4)$ then A, B are not G-conjugate.
- 5 is a good G-order. However, if (A, B, C) is a G-triple of respective orders $(3,3,5)$ and A is G-conjugate to B, then one can verify that $\langle A, B\rangle \cong A_{5}$ is a small subgroup of G (see also [13, §2, Theorem 8.4]).
Example 3.19. Table 9 presents for $p=5,7,11,13$ all the G-orders $t \neq p$ such that $e=\mu_{\mathrm{PSL}}(p ; t) \in\{1,2\}$, divided according to whether they are good G-orders or not. They were computed using Magma.

	good G-orders	not good G-orders		good G-orders	not good G-orders
$q=5$	3	2	$q=25$	6,13	4,12
$q=7$	2,3	4	$q=49$	$5,6,12,25$	8,24
$q=11$	3,5	2,6	$q=121$	$10,15,30,61$	$4,12,20,60$
$q=13$	3,7	2,6	$q=169$	$5,14,17,21,42,85$	$4,12,28,84$

TABLE 9. Good G-orders for $q=5,7,11,13,25,49,121,169$

4. Beauville Structures for $\mathrm{PSL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$

In this section we prove Theorems 1 and 2,
4.1. Cyclic groups. The following elementary lemma is needed for the proof of Theorems 1 and 2 .

Lemma 4.1. Let \mathcal{C} be a finite cyclic group, and let x and y be non-trivial elements in \mathcal{C}. If the orders of x and y are not relatively prime, then there exist some integers k and l such that $x^{k}=y^{l} \neq 1$.

Proof. Let a and b denote the orders of x and y respectively and set $c=\operatorname{gcd}(a, b)$. Note that by assumption $c \neq 1$. Also write $a=a^{\prime} c$ and $b=b^{\prime} c$ where $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$, so that $x^{a^{\prime}}$ and $y^{b^{\prime}}$ have order c.

Observe that \mathcal{C} has a unique (cyclic) subgroup of order c, and let z be a generator of this subgroup. Thus,

$$
\left\langle x^{a^{\prime}}\right\rangle=\langle z\rangle=\left\langle y^{b^{\prime}}\right\rangle .
$$

Therefore, there exist some integers k and l such that

$$
x^{a^{\prime} k}=z=y^{b^{\prime} l} \neq 1
$$

where the latter inequality follows from the fact that z is of order $c>1$.
4.2. Elements and conjugacy classes in $\operatorname{PSL}_{2}(q)$ and $\mathrm{PGL}_{2}(q)$. Let $H=\mathrm{PSL}_{2}(q)$ or $\mathrm{PGL}_{2}(q)$ where $q=p^{e}$ for some prime p and some positive integer e. In this section, we determine the elements A_{1}, A_{2} of H such that $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$, where for elements A_{1}, \ldots, A_{m} of H,

$$
\Sigma\left(A_{1}, \ldots, A_{m}\right)=\bigcup_{A \in H} \bigcup_{j=1}^{\infty}\left\{A A_{1}^{j} A^{-1}, \ldots, A A_{m}^{j} A^{-1}\right\}
$$

Given two triples $\left(A_{1}, A_{2}, A_{3}\right)$ and $\left(B_{1}, B_{2}, B_{3}\right)$ of H, this will enable us to determine whether $\Sigma\left(A_{1}, A_{2}, A_{3}\right) \cap \Sigma\left(B_{1}, B_{2}, B_{3}\right)=\{1\}$ which is a necessary condition for H to admit an unmixed Beauville structure (see Definition 1.1(iii)). Indeed the condition $\Sigma\left(A_{1}, A_{2}, A_{3}\right) \cap$ $\Sigma\left(B_{1}, B_{2}, B_{3}\right)=\{1\}$ is equivalent to the condition

$$
\Sigma\left(A_{i}\right) \cap \Sigma\left(B_{j}\right)=\{1\} \quad \forall 1 \leq i, j \leq 3
$$

Lemma 4.2. Let $G=\operatorname{PSL}_{2}(q)$ where $q=p^{e}$ for some prime number p and some positive integer e. Let $A_{1}, A_{2} \in G$. Then $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ if and only if one of the following occurs:
(a) The orders $\left|A_{1}\right|$ and $\left|A_{2}\right|$ are relatively prime.
(b) The prime p is odd, e is even, $\left|A_{1}\right|=\left|A_{2}\right|=p$ and A_{1}, A_{2} are not G-conjugate.

Proof. If the orders of A_{1} and A_{2} are relatively prime then every two non-trivial powers A_{1}^{i} and A_{2}^{j} have distinct orders, and thus $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ as required.

Now, assume that the orders of A_{1} and A_{2} are not relatively prime.
Observe that $(q-1) / d$ and $(q+1) / d$ are coprime, where $d=\operatorname{gcd}(q-1,2)$. Thus, if there exists some prime $r \neq p$ which divides both $\left|A_{1}\right|$ and $\left|A_{2}\right|$, then r divides exactly one of $(q-1) / d$ or $(q+1) / d$. Hence, $\left|A_{1}\right|$ and $\left|A_{2}\right|$ both divide exactly one of $(q-1) / d$ or $(q+1) / d$, and so A_{1} and A_{2} are G-conjugate to two elements C_{1} and C_{2} which belong to the same cyclic group, either of order $(q-1) / d$ or of order $(q+1) / d$ (see Section 2.3). Lemma 4.1 now implies that there exist some integers i and j such that $A_{1}^{i} \neq 1$ and $A_{2}^{j} \neq 1$ are G-conjugate, and so $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$.

It now remains to treat the case where $\left|A_{1}\right|=\left|A_{2}\right|=p$, that is when A_{1} and A_{2} are unipotent elements. If $p=2$ then necessarily A_{1} and A_{2} are G-conjugate and so $\Sigma\left(A_{1}\right) \cap$ $\Sigma\left(A_{2}\right) \neq\{1\}$. However, when p is odd then A_{1} and A_{2} are not necessarily G-conjugate (see Table 2 and Section 3.5).

If p is odd and e is odd then by Lemma 3.13, there exist some integers i and j such that $A_{1}^{i} \neq 1$ and $A_{2}^{j} \neq 1$ are G-conjugate, and so $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$. If p is odd and e is even then by Lemma 3.13, for any two integers $1 \leq i, j<p, A_{1}^{i}$ and A_{2}^{j} are G-conjugate to A_{1} and A_{2} respectively. Thus, $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ if and only if A_{1} and A_{2} are not G-conjugate.

Proposition 4.3. Let $G=\mathrm{PSL}_{2}(q)$ where $q=p^{e}$ for some odd prime p and even integer e. Take some $x \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$ such that $x^{2} \in \mathbb{F}_{q}$, and let $X \in \mathrm{PSL}_{2}\left(q^{2}\right)$ denote the image of the matrix $\left(\begin{array}{cc}x & 0 \\ 0 & x^{-1}\end{array}\right) \in \mathrm{SL}_{2}\left(q^{2}\right)$.

Let $A_{1}, A_{2}, B_{1}, B_{2} \in G$ such that $\left|A_{1}\right|=\left|A_{2}\right|=\left|B_{1}\right|=\left|B_{2}\right|=p$. Then, $X A_{2} X^{-1}$, $X B_{2} X^{-1} \in G$, and A_{1} is G-conjugate to either A_{2} or $X A_{2} X^{-1}$. Moreover,
(i) Either $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}\right)=\{1\}$.
(ii) $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}\right)=\{1\}$ if and only if A_{1} is G-conjugate to B_{1}.
(iii) $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}, B_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}, X B_{2} X^{-1}\right)=\{1\}$ if and only if A_{1} is G-conjugate to B_{1} and A_{2} is G-conjugate to B_{2}.

Proof. By Corollary [3.12, $X A_{2} X^{-1}, X B_{2} X^{-1} \in G, A_{1}$ is G-conjugate to either A_{2} or $X A_{2} X^{-1}$, and B_{1} is G-conjugate to either B_{2} or $X B_{2} X^{-1}$.
(i) If A_{1} and A_{2} are not G-conjugate then by Lemma 4.2, $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$. On the other hand, if A_{1} and A_{2} are G-conjugate, then A_{1} and $X A_{2} X^{-1}$ are not G-conjugate, and again by Lemma 4.2, $\Sigma\left(A_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}\right)=\{1\}$.
(ii) Assume that A_{1} and B_{1} are G-conjugate. If A_{2} is not G-conjugate to A_{1} (and to B_{1}) then by Lemma 4.2, $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ (and $\Sigma\left(B_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$), implying $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$. Otherwise, $X A_{2} X^{-1}$ is not G-conjugate to A_{1} (and to B_{1}) and so, similarly, $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}\right)=\{1\}$.

Now assume that A_{1} and B_{1} are not G-conjugate. In this case, A_{2} is G-conjugate to either A_{1} or B_{1}. If A_{2} is G-conjugate to A_{1} then $X A_{2} X^{-1}$ is G-conjugate to B_{1}, and so by Lemma 4.2, $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$ and $\Sigma\left(B_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}\right) \neq\{1\}$. Otherwise, A_{2} is G conjugate to B_{1} and so $X A_{2} X^{-1}$ is G-conjugate to A_{1}, thus, similarly, $\Sigma\left(B_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$ and $\Sigma\left(A_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}\right) \neq\{1\}$.
(iii) Assume that A_{1} is G-conjugate to B_{1} and A_{2} is G-conjugate to B_{2}. If A_{2} (and B_{2}) are not G-conjugate to $A_{1}\left(\right.$ and $\left.B_{1}\right)$ then by Lemma 4.2, $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}, B_{2}\right)=\{1\}$. Otherwise, $A_{2}\left(\right.$ and $\left.B_{2}\right)$ are G-conjugate to $A_{1}\left(\right.$ and $\left.B_{1}\right)$, and so, $X A_{2} X^{-1}$ (and $X B_{2} X^{-1}$) are not G-conjugate to $A_{1}\left(\right.$ and $\left.B_{1}\right)$, hence, similarly, $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}, X B_{2} X^{-1}\right)=$ $\{1\}$.

If A_{1} is not G-conjugate to B_{1}, then by (ii), $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$ and $\Sigma\left(A_{1}, B_{1}\right) \cap$ $\Sigma\left(X A_{2} X^{-1}\right) \neq\{1\}$. Similarly, if A_{2} is not G-conjugate to B_{2}, then by (ii), $\Sigma\left(A_{1}\right) \cap$ $\Sigma\left(A_{2}, B_{2}\right) \neq\{1\}$ and $\Sigma\left(A_{1}\right) \cap \Sigma\left(X A_{2} X^{-1}, X B_{2} X^{-1}\right) \neq\{1\}$.

Lemma 4.4. Let $G_{1}=\operatorname{PGL}_{2}(q)$ where $q=p^{e}$ for some odd prime number p and some positive integer e. Let $A_{1}, A_{2} \in G_{1}$. Then $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ if and only if one of the following occurs:
(a) The orders $\left|A_{1}\right|$ and $\left|A_{2}\right|$ are relatively prime.
(b) A_{1} is split, A_{2} is non-split and $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=2$.
(c) A_{1} is non-split, A_{2} is split and $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=2$.

Proof. If $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=1$ then any two non-trivial powers A_{1}^{i} and A_{2}^{j} have distinct orders, thus $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$, as required.

If A_{1} is split and A_{2} is non-split, then necessarily $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right) \leq 2$, since $\operatorname{gcd}(q-$ $1, q+1)=2$. In this case, any non-trivial power of A_{1} is a split element, while any nontrivial power of A_{2} is a non-split element, and so they are not G_{1}-conjugate, implying that $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$, as required.

If $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=2$ and both A_{1} and A_{2} are split (respectively non-split) elements, then A_{1} and A_{2} are G_{1}-conjugate to two elements C_{1} and C_{2} which belong to the same cyclic group of order $q-1$ (respectively $q+1$). Lemma 4.1 now implies that there exist some integers i and j such that $A_{1}^{i} \neq 1$ and $A_{2}^{j} \neq 1$ are G_{1}-conjugate, and so $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$.

If $\left|A_{1}\right|=\left|A_{2}\right|=p$, then A_{1} and A_{2} are unipotent, and so they are G_{1}-conjugate, implying that $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$.

Otherwise, $\operatorname{gcd}\left(\left|A_{1}\right|,\left|A_{2}\right|\right)=r$, where $2<r \neq p$, and so r divides exactly one of $q-1$ or $q+1$, implying that $\left|A_{1}\right|$ and $\left|A_{2}\right|$ both divide exactly one of $q-1$ or $q+1$. Hence, A_{1} and A_{2} are G_{1}-conjugate to two elements C_{1} and C_{2} which belong to the same cyclic group, either of order $q-1$ or of order $q+1$. Lemma 4.1 implies again that there exist some integers i and j such that $A_{1}^{i} \neq 1$ and $A_{2}^{j} \neq 1$ are G_{1}-conjugate, and so $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$.

4.3. Proof of Theorem 1.

The conditions are sufficient. Let $\tau_{1}=\left(r_{1}, s_{1}, t_{1}\right)$ and $\tau_{2}=\left(r_{2}, s_{2}, t_{2}\right)$ be two hyperbolic triples of integers. Assume that $G=\mathrm{PSL}_{2}(q)$ is a quotient of the triangle groups $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$ with torsion-free kernel. Then one can find elements $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ in G of orders $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}$, t respectively, such that $A_{1} B_{1} C_{1}=1=A_{2} B_{2} C_{2}$ and $\left\langle A_{1}, B_{1}\right\rangle=$ $G=\left\langle A_{2}, B_{2}\right\rangle$, and so conditions (i) and (ii) of Definition 1.1 are fulfilled.

Moreover, the condition that $r_{1} s_{1} t_{1}$ is coprime to $r_{2} s_{2} t_{2}$ implies that each of r_{1}, s_{1}, t_{1} is coprime to each of r_{2}, s_{2}, t_{2}, and so by Lemma 4.2, $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$, hence condition (iii) of Definition 1.1 is fulfilled, thus $\left(\left(A_{1}, B_{1}, C_{1}\right),\left(A_{2}, B_{2}, C_{2}\right)\right)$ is an unmixed Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)$.

It is left to consider the case where p is odd, e is even, $q=p^{e}>9$ and $\operatorname{gcd}\left(r_{1} s_{1} t_{1}, r_{2} s_{2} t_{2}\right) \in$ $\left\{p, p^{2}\right\}$, which can be reduced to the following three cases.
(1) $r_{1}=r_{2}=p$ and $s_{1}, s_{2}, t_{1}, t_{2} \neq p$.

Let X be as in Proposition 4.3, and denote $A_{2}^{\prime}=X A_{2} X^{-1}, B_{2}^{\prime}=X B_{2} X^{-1}$ and $C_{2}^{\prime}=X C_{2} X^{-1}$. Then also $A_{2}^{\prime} B_{2}^{\prime} C_{2}^{\prime}=1$ and $\left\langle A_{2}^{\prime}, B_{2}^{\prime}\right\rangle=G$. By Proposition 4.3,

$$
\text { either } \Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\} \text { or } \Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}^{\prime}\right)=\{1\}
$$

Moreover, since p is coprime to $s_{2} t_{2}$ then by Lemma4.2,

$$
\Sigma\left(A_{1}\right) \cap \Sigma\left(B_{2}, C_{2}\right)=\{1\}, \Sigma\left(A_{1}\right) \cap \Sigma\left(B_{2}^{\prime}, C_{2}^{\prime}\right)=\{1\}
$$

Similarly, since $s_{1} t_{1}$ is coprime to $p s_{2} t_{2}$, then by Lemma 4.2,

$$
\Sigma\left(B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}, \Sigma\left(B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)=\{1\}
$$

Therefore, either $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)=$ $\{1\}$.
(2) $r_{1}=r_{2}=s_{1}=p$ and $s_{2}, t_{1}, t_{2} \neq p$.

Let $\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)$ be as in Case (1). By the assumption of the theorem, in this case, t_{1} is a good G-order. Hence by Lemma 3.17, there exist $A_{1}, B_{1}, C_{1} \in G$ of respective orders p, p, t_{1} such that A_{1} is G-conjugate to $B_{1}, A_{1} B_{1} C_{1}=1$ and $\left\langle A_{1}, B_{1}\right\rangle=G$. By Proposition 4.3,

$$
\text { either } \Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\} \text { or } \Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}^{\prime}\right)=\{1\}
$$

Moreover, since p is coprime to $s_{2} t_{2}$, then by Lemma 4.2,

$$
\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(B_{2}, C_{2}\right)=\{1\}, \Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(B_{2}^{\prime}, C_{2}^{\prime}\right)=\{1\}
$$

Similarly, since t_{1} is coprime to $p s_{2} t_{2}$, then by Lemma4.2,

$$
\Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}, \Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)=\{1\}
$$

Therefore, either $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)=$ $\{1\}$.
(3) $r_{1}=r_{2}=s_{1}=s_{2}=p$ and $t_{1}, t_{2} \neq p$.

Let $\left(A_{1}, B_{1}, C_{1}\right)$ be as in Case (2). By the assumption of the theorem, in this case, t_{1} and t_{2} are good G-orders. Hence by Lemma 3.17, there exist $A_{2}, B_{2}, C_{2} \in$ G of respective orders p, p, t_{2} such that A_{2} is G-conjugate to $B_{2}, A_{2} B_{2} C_{2}=1$ and $\left\langle A_{2}, B_{2}\right\rangle=G$. Again, we denote $A_{2}^{\prime}=X A_{2} X^{-1}, B_{2}^{\prime}=X B_{2} X^{-1}$ and $C_{2}^{\prime}=$ $X C_{2} X^{-1}$. Then also $A_{2}^{\prime} B_{2}^{\prime} C_{2}^{\prime}=1$ and $\left\langle A_{2}^{\prime}, B_{2}^{\prime}\right\rangle=G$. By Proposition 4.3,
either $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}, B_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}\right)=\{1\}$.
Moreover, since p, t_{1} and t_{2} are pairwise coprime, then by Lemma 4.2,

$$
\begin{gathered}
\Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(C_{2}\right)=\{1\}, \quad \Sigma\left(A_{1}, B_{1}\right) \cap \Sigma\left(C_{2}^{\prime}\right)=\{1\}, \\
\Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}\right)=\{1\}, \quad \Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}\right)=\{1\}, \\
\Sigma\left(C_{1}\right) \cap \Sigma\left(C_{2}\right)=\{1\}, \quad \Sigma\left(C_{1}\right) \cap \Sigma\left(C_{2}^{\prime}\right)=\{1\} .
\end{gathered}
$$

Therefore, either $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$ or $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)=$ $\{1\}$.
We conclude that in these three cases, either $\left(\left(A_{1}, B_{1}, C_{1}\right),\left(A_{2}, B_{2}, C_{2}\right)\right)$ or $\left(\left(A_{1}, B_{1}, C_{1}\right)\right.$, $\left.\left(A_{2}^{\prime}, B_{2}^{\prime}, C_{2}^{\prime}\right)\right)$ is an unmixed Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)$.

The conditions are necessary. Assume that the group $G=\mathrm{PSL}_{2}(q)$ admits an unmixed Beauville structure of type $\left(\tau_{1}, \tau_{2}\right)$, where $\tau_{i}=\left(r_{i}, s_{i}, t_{i}\right)$ for $i=1,2$. Then there exist $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ in G of orders $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}, t_{2}$ respectively, such that $A_{1} B_{1} C_{1}=$ $1=A_{2} B_{2} C_{2}$ and $\left\langle A_{1}, B_{1}\right\rangle=G=\left\langle A_{2}, B_{2}\right\rangle$, implying that G is a quotient of the triangle groups $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$ with torsion-free kernel, and so condition (i) is necessary.

Moreover, $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$, and so by Lemma 4.2, if $p=2$ or e is odd, then each of r_{1}, s_{1}, t_{1} is necessarily coprime to each of r_{2}, s_{2}, t_{2}, implying that $r_{1} s_{1} t_{1}$ is coprime to $r_{2} s_{2} t_{2}$.

If p is odd and e is even then, by Lemma 4.2, $\operatorname{gcd}\left(r_{1}, r_{2}\right)=1$ or $p, \operatorname{gcd}\left(r_{1}, s_{2}\right)=1$ or $p, \operatorname{gcd}\left(r_{1}, t_{2}\right)=1$ or $p, \operatorname{gcd}\left(s_{1}, r_{2}\right)=1$ or $p, \operatorname{gcd}\left(s_{1}, s_{2}\right)=1$ or $p, \operatorname{gcd}\left(s_{1}, t_{2}\right)=1$ or p, $\operatorname{gcd}\left(t_{1}, r_{2}\right)=1$ or $p, \operatorname{gcd}\left(t_{1}, s_{2}\right)=1$ or p, and $\operatorname{gcd}\left(t_{1}, t_{2}\right)=1$ or p. Moreover, it is not possible that $r_{1}=s_{1}=t_{1}=p$ (respectively $r_{2}=s_{2}=t_{2}=p$), since in this case $e=1$, by Theorem 3.2. Thus, $g=\operatorname{gcd}\left(r_{1} s_{1} t_{1}, r_{2} s_{2} t_{2}\right) \in\left\{1, p, p^{2}\right\}$.

If moreover, $q=p^{e}>9, p$ divides g and $\tau_{i}=\left(p, p, t_{i}\right)(i \in\{1,2\})$ then $t_{i} \neq p$ and the condition that $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$ implies that A_{i} is G-conjugate to B_{i}, by Proposition 4.3. We now deduce from Corollary 3.16 that t_{i} is a good G-order.

If $q=9$ then it follows from a careful observation of the possible G-triples in Table 6 and Remark 3.18 that necessarily $g=1$.

In fact, if p is odd, e is even and $q=p^{e}>9$, then $\operatorname{PSL}_{2}(q)$ always admits unmixed Beauville structures of type $\left(\left(p, p, t_{1}\right),\left(p, p, t_{2}\right)\right)$ for certain t_{1}, t_{2}. In the following lemma we explicitly construct such a structure.

Lemma 4.5. Let $3<q=p^{e}$ for some odd prime number p and some positive integer e. Then $\mathrm{PSL}_{2}\left(q^{2}\right)$ admits an unmixed Beauville structure of type $\left(\left(p, p, t_{1}\right),\left(p, p, t_{2}\right)\right)$ for certain t_{1} dividing $\left(q^{2}-1\right) / 2$ and t_{2} dividing $\left(q^{2}+1\right) / 2$.
Proof. As $q>3$, the following Remark 4.6 shows that there exist some $b, c \in \mathbb{F}_{q^{2}}$ such that $b^{2}, c^{2} \in \mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}, c^{2}-4$ is a square in $\mathbb{F}_{q^{2}}$ and $b^{2}-4$ is a non-square in $\mathbb{F}_{q^{2}}$. Let x be a generator of the multiplicative group $\mathbb{F}_{q^{2}}^{*}$ and set $d=b / x$.

Define the following matrices

$$
\begin{aligned}
A_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), & A_{2}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right), \\
g_{1}=\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right), & g_{2}=\left(\begin{array}{ll}
1 & 0 \\
d & 1
\end{array}\right), \\
B_{1}=g_{1} A_{1} g_{1}^{-1}=\left(\begin{array}{cc}
-c+1 & 1 \\
-c^{2} & c+1
\end{array}\right), & B_{2}=g_{2} A_{2} g_{2}^{-1}=\left(\begin{array}{cc}
-d x+1 & x \\
-d^{2} x & d x+1
\end{array}\right), \\
C_{1}=\left(A_{1} B_{1}\right)^{-1}=\left(\begin{array}{cc}
c+1 & -c-2 \\
c^{2} & -c^{2}-c+1
\end{array}\right), & C_{2}=\left(A_{2} B_{2}\right)^{-1}=\left(\begin{array}{cc}
d x+1 & -d x^{2}-2 x \\
d^{2} x & -d^{2} x^{2}-d x+1
\end{array}\right) .
\end{aligned}
$$

In this case, $\left|\bar{A}_{1}\right|=\left|\bar{A}_{2}\right|=\left|\overline{B_{1}}\right|=\left|\overline{B_{2}}\right|=p$, and we denote by t_{1} and t_{2} respectively the orders of \bar{C}_{1} and \bar{C}_{2}. Moreover, \bar{A}_{1} and \bar{B}_{1} are conjugate in $\mathrm{PSL}_{2}\left(q^{2}\right), \bar{A}_{2}$ and \bar{B}_{2} are conjugate in $\operatorname{PSL}_{2}\left(q^{2}\right)$, whereas \bar{A}_{1} and \bar{A}_{2} are not conjugate in $\operatorname{PSL}_{2}\left(q^{2}\right)$ (see Section 3.5). Now, one needs to verify that $\left(\left(\bar{A}_{1}, \bar{B}_{1}, \bar{C}_{1}\right),\left(\overline{A_{2}}, \overline{B_{2}}, \bar{C}_{2}\right)\right)$ is an unmixed Beauville structure for $\mathrm{PSL}_{2}\left(q^{2}\right)$.
(i) By the construction, $\bar{A}_{1} \bar{B}_{1} \bar{C}_{1}=1=\bar{A}_{2} \bar{B}_{2} \bar{C}_{2}$.
(ii) Observe that $\operatorname{tr}\left(C_{1}\right)=2-c^{2}$ and $\operatorname{tr}\left(C_{2}\right)=2-d^{2} x^{2}=2-b^{2}$ both belong to $\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$, as c^{2} and b^{2} both belong to $\mathbb{F}_{q^{2}} \backslash \mathbb{F}_{q}$. Hence, neither \bar{C}_{1} nor \bar{C}_{2} is conjugate to some element of $\mathrm{PSL}_{2}(q)$. We now use the methodology described in Section [3.3. Let $i \in\{1,2\}$. Since $\operatorname{tr}\left(A_{i}\right)=\operatorname{tr}\left(B_{i}\right)=2$ but $\operatorname{tr}\left(C_{i}\right) \neq \pm 2$, the triple $\left(A_{i}, B_{i}, C_{i}\right)$ is not singular, implying that $\left\langle\bar{A}_{i}, \bar{B}_{i}\right\rangle$ is not a structural subgroup, by [18, Theorem 2].

As t_{i} is not an order of an element in $\operatorname{PSL}_{2}(q)$, it follows from Table 6 that if $q^{2}>9$, then either $p>5$; or $p=5$ and $t_{i} \neq 2,3,5$; or $p=3$ and $t_{i}>5$. Therefore,
$\left\langle\bar{A}_{i}, \bar{B}_{i}\right\rangle$ cannot be a small subgroup. In addition, $\left(\bar{A}_{i}, \bar{B}_{i}, \bar{C}_{i}\right)$ is not an irregular $\operatorname{PSL}_{2}\left(q^{2}\right)$-triple. Therefore, $\left\langle\bar{A}_{i}, \bar{B}_{i}\right\rangle=\mathrm{PSL}_{2}\left(q^{2}\right)$ for $i \in\{1,2\}$.
(iii) The characteristic polynomial of C_{1} is $\lambda^{2}-\left(2-c^{2}\right)+1$, and its discriminant equals $c^{2}\left(c^{2}-4\right)$, which is a square in $\mathbb{F}_{q^{2}}$, thus \bar{C}_{1} is split and so t_{1} divides $\left(q^{2}-1\right) / 2$. Similarly, the characteristic polynomial of C_{2} is $\lambda^{2}-\left(2-b^{2}\right)+1$, and its discriminant equals $b^{2}\left(b^{2}-4\right)$, which is a non-square in $\mathbb{F}_{q^{2}}$, thus \bar{C}_{2} is non-split and so t_{2} divides $\left(q^{2}+1\right) / 2$. By Lemma 4.2, $\Sigma\left(\bar{A}_{1}, \bar{B}_{1}, \bar{C}_{1}\right) \cap \Sigma\left(\bar{A}_{2}, \bar{B}_{2}, \bar{C}_{2}\right)=\{1\}$, since t_{1} and t_{2} are coprime, \bar{A}_{1} and \bar{A}_{2} are not conjugate in $\mathrm{PSL}_{2}\left(q^{2}\right)$, and so also \bar{B}_{1} and \bar{B}_{2} are not conjugate in $\mathrm{PSL}_{2}\left(q^{2}\right)$.

Remark 4.6. Recall that if q is odd then an element in $\operatorname{PSL}_{2}(q)$ is non-split if and only if the characteristic polynomial $P(\lambda):=\lambda^{2}-\alpha \lambda+1$ of its pre-image $A \in \mathrm{SL}_{2}(q)$ (where $\alpha=\operatorname{tr}(A)$) has no distinct roots in \mathbb{F}_{q}, or equivalently, the discriminant $\alpha^{2}-4$ is a nonsquare in \mathbb{F}_{q}. Thus, by [18, Lemma 2], $\#\left\{b \in \mathbb{F}_{q}: b^{2}-4\right.$ is a non-square $\}=(q-1) / 2$ and $\#\left\{c \in \mathbb{F}_{q}: c^{2}-4\right.$ is a square $\}=(q+1) / 2$.

Therefore, $\#\left\{c \in \mathbb{F}_{q^{2}}: c^{2}-4\right.$ is a square $\}=\left(q^{2}+1\right) / 2$, and $\#\left\{b \in \mathbb{F}_{q^{2}}: b^{2}-4\right.$ is a non-square $\}=$ $\left(q^{2}-1\right) / 2$. In addition, $\#\left\{c \in \mathbb{F}_{q^{2}}: c^{2} \in \mathbb{F}_{q}\right\}=2 q-1$, and if $c^{2} \in \mathbb{F}_{q}$ then also $c^{2}-4 \in \mathbb{F}_{q}$ is a square in $\mathbb{F}_{q^{2}}$. Hence,

$$
\#\left\{c \in \mathbb{F}_{q^{2}}: c^{2} \notin \mathbb{F}_{q}, c^{2}-4 \text { is a square }\right\}=\left(q^{2}+1\right) / 2-(2 q-1)=\left(q^{2}-4 q+3\right) / 2
$$

and

$$
\#\left\{b \in \mathbb{F}_{q^{2}}: b^{2} \notin \mathbb{F}_{q}, b^{2}-4 \text { is a non-square }\right\}=\left(q^{2}-1\right) / 2
$$

4.4. Proof of Theorem 2,

The conditions are necessary. Assume that the group $G_{1}=\mathrm{PGL}_{2}(q)$ admits an unmixed Beauville structure of type $\left(\left(r_{1}, s_{1}, t_{1}\right),\left(r_{2}, t_{2}, s_{2}\right)\right)$. Then there exist $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ in G_{1} of orders $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}, t_{2}$ respectively, such that $A_{1} B_{1} C_{1}=1=A_{2} B_{2} C_{2}$ and $\left\langle A_{1}, B_{1}\right\rangle=G_{1}=\left\langle A_{2}, B_{2}\right\rangle$, implying that G_{1} is a quotient of the triangle groups $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$ with torsion-free kernel, and so condition (i) is necessary.

Therefore, we may assume that $\left(r_{1}, s_{1}, t_{1}\right)$ and $\left(r_{2}, s_{2}, t_{2}\right)$ are hyperbolic triples, and moreover they are irregular w.r.t q^{2} (see §3.3).

If, for example, $\operatorname{gcd}\left(r_{1}, r_{2}\right)>2$, then Lemma 4.4 implies that $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)$ is non-trivial, contradicting $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$. Hence, condition (ii) is necessary.

Since $\left(r_{1}, s_{1}, t_{1}\right)$ and $\left(r_{2}, s_{2}, t_{2}\right)$ are hyperbolic and irregular, both of them must contain at least two even integers, one of which is greater than 2 . Hence, we may assume that r_{1}, r_{2} are even and that $r_{1}, r_{2}>2$. If both r_{1}, r_{2} divide $q-1$ (respectively $q+1$) then both A_{1}, A_{2} are split (respectively non-split) and by Lemma 4.4, $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$, yielding a contradiction.

Hence, we may assume that r_{1} divides $q-1$ and r_{2} divides $q+1$, and so A_{1} is split and A_{2} is non-split. If s_{1} (respectively t_{1}) is even and does not divide $q-1$, then it is necessarily an even integer greater than 2 , thus it must divide $q+1$, and so B_{1} (respectively C_{1}) is non-split. Lemma 4.4 implies again that $\Sigma\left(B_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$ (respectively $\Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}\right) \neq\{1\}$), yielding a contradiction. Similarly, if s_{2} (respectively t_{2}) is even, then it necessarily divides $q+1$. Hence, condition (iii) is necessary.

Moreover, if C_{1} (respectively C_{2}) has order 2, then the above argument shows that it is necessarily split (respectively non-split). By Corollary 3.9, ($r_{1}, s_{1}, 2$) (respectively $\left(r_{2}, s_{2}, 2\right)$) is a good involuting triple w.r.t q (see Definition 1.5), implying that condition (iv) is necessary.

The conditions are sufficient. Let $\left(r_{1}, s_{1}, t_{1}\right)$ and $\left(r_{2}, s_{2}, t_{2}\right)$ be two hyperbolic triples of integers. Assume that $G_{1}=\operatorname{PGL}_{2}(q)$ is a quotient of the triangle groups $T_{r_{1}, s_{1}, t_{1}}$ and $T_{r_{2}, s_{2}, t_{2}}$ with torsion-free kernel. Then one can find elements $A_{1}, B_{1}, C_{1}, A_{2}, B_{2}, C_{2}$ in G_{1} of orders $r_{1}, s_{1}, t_{1}, r_{2}, s_{2}, t_{2}$ respectively, such that $A_{1} B_{1} C_{1}=1=A_{2} B_{2} C_{2}$ and $\left\langle A_{1}, B_{1}\right\rangle=$ $G_{1}=\left\langle A_{2}, B_{2}\right\rangle$, and so conditions (i) and (ii) of Definition 1.1 are fulfilled.

We may assume that $A_{1}, A_{2}, B_{1}, B_{2} \in G_{1} \backslash G$ and that $C_{1}, C_{2} \in G$. Hence $r_{1}, r_{2}, s_{1}, s_{2}$ are even. Moreover, by Theorem [3.3, $\left(r_{1}, s_{1}, t_{1}\right)$ and $\left(r_{2}, s_{2}, t_{2}\right)$ are irregular w.r.t q^{2}.

The condition that $\operatorname{gcd}\left(r_{1}, r_{2}\right) \leq 2$ now implies that one of r_{1}, r_{2} divides $q-1$ and the other divides $q+1$. We may assume that $r_{1} \mid q-1$ and $r_{2} \mid q+1$, and so A_{1} is split and A_{2} is non-split. Lemma 4.4 now implies that $\Sigma\left(A_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$.

If $s_{1}>2$, then the condition that $s_{1} \mid q-1$ implies that B_{1} is split. If $s_{1}=2$ then $\left(r_{1}, 2, t_{1}\right)$ is a good involuting triple w.r.t q and so by Corollary 3.9, B_{1} is split. Lemma 4.4 implies again that $\Sigma\left(B_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$.

Similarly, if $s_{2}>2$, then the condition that $s_{2} \mid q+1$ implies that B_{2} is non-split. If $s_{2}=2$ then $\left(r_{2}, 2, t_{2}\right)$ is a good involuting triple w.r.t q and so by Corollary 3.9, B_{2} is non-split. Lemma 4.4 implies again that $\Sigma\left(A_{1}\right) \cap \Sigma\left(B_{2}\right)=\{1\}$ and $\Sigma\left(B_{1}\right) \cap \Sigma\left(B_{2}\right)=\{1\}$.

If $t_{1}>2$ is even, then the condition that $t_{1} \mid q-1$ implies that C_{1} is split, If $t_{1}=$ 2 then $\left(r_{1}, s_{1}, 2\right)$ is a good involuting triple w.r.t q and so by Corollary 3.9, C_{1} is split. Lemma 4.4 implies again that $\Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ and $\Sigma\left(C_{1}\right) \cap \Sigma\left(B_{2}\right)=\{1\}$. If t_{1} is odd, then necessarily $\operatorname{gcd}\left(t_{1}, r_{2}\right)=1$ and $\operatorname{gcd}\left(t_{1}, s_{2}\right)=1$, and Lemma 4.4 implies that $\Sigma\left(C_{1}\right) \cap \Sigma\left(A_{2}\right)=\{1\}$ and $\Sigma\left(C_{1}\right) \cap \Sigma\left(B_{2}\right)=\{1\}$.

Similarly, if $t_{2}>2$ is even, then the condition that $t_{2} \mid q+1$ implies that C_{2} is non-split, and if $t_{2}=2$ then $\left(r_{2}, s_{2}, 2\right)$ is a good involuting triple w.r.t q and so by Corollary 3.9, C_{2} is non-split. Lemma 4.4 implies again that $\Sigma\left(A_{1}\right) \cap \Sigma\left(C_{2}\right)=\{1\}$ and $\Sigma\left(B_{1}\right) \cap \Sigma\left(C_{2}\right)=\{1\}$. If t_{2} is odd, then necessarily $\operatorname{gcd}\left(r_{1}, t_{2}\right)=1$ and $\operatorname{gcd}\left(s_{1}, t_{2}\right)=1$, and Lemma 4.4 implies that $\Sigma\left(A_{1}\right) \cap \Sigma\left(C_{2}\right)=\{1\}$ and $\Sigma\left(B_{1}\right) \cap \Sigma\left(C_{2}\right)=\{1\}$. Moreover, either $\operatorname{gcd}\left(t_{1}, t_{2}\right)=1$, or $\operatorname{gcd}\left(t_{1}, t_{2}\right)=2$ and C_{1} is split while C_{2} is non-split, and so, by Lemma 4.4, $\Sigma\left(C_{1}\right) \cap \Sigma\left(C_{2}\right)=$ \{1\}.

To conclude, $\Sigma\left(A_{1}, B_{1}, C_{1}\right) \cap \Sigma\left(A_{2}, B_{2}, C_{2}\right)=\{1\}$, hence condition (iii) of Definition 1.1 is fulfilled.

References

[1] I. Bauer, F. Catanese, F. Grunewald, Beauville surfaces without real structures, Geometric methods in algebra and number theory, Progr. Math., vol. 235, Birkhäuser Boston, (2005), 1-42.
[2] I. Bauer, F. Catanese, F. Grunewald, Chebycheff and Belyi polynomials, dessins d'enfants, Beauville surfaces and group theory, Mediterr. J. Math. 3, no.2, (2006), 121-146.
[3] A. Beauville, Surfaces algébriques complexes, Astérisque 54, Paris (1978).
[4] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235-265.
[5] F. Catanese, Fibred surfaces, varieties isogenous to a product and related moduli spaces, Amer. J. Math. 122, (2000), 1-44.
[6] L.E. Dickson, Linear groups with an exposition of the Galois field theory (Teubner, 1901).
[7] B. Fairbairn, K. Magaard, C. Parker, Generation of finite simple groups with an application to groups acting on Beauville surfaces, to appear in Proc. London Math. Soc.
[8] Y. Fuertes, G. González-Diez, On Beauville structures on the groups S_{n} and A_{n}, Math. Z. 264 (2010), 959-968.
[9] Y. Fuertes, G. González-Diez, A. Jaikin-Zapirain, On Beauville surfaces, Groups Geom. Dyn. 5 (2011), 107-119.
[10] Y. Fuertes, G. Jones, Beauville surfaces and finite groups, J. Algebra 340 (2011), 13-27.
[11] S. Garion, M. Larsen, A. Lubotzky, Beauville surfaces and finite simple groups, J. Reine Angew. Math. 666 (2012), 225-243.
[12] S. Garion, M. Penegini, New Beauville surfaces and finite simple groups, to appear in Manuscripta Math.
[13] D. Gorenstein, Finite groups, Chelsea Publishing Co., New York, 1980.
[14] R. Guralnick, G. Malle, Simple groups admit Beauville structures, to appear in J. London Math. Soc.
[15] U. Langer, G. Rosenberger, Erzeugende endlicher projektiver linearer Gruppen, Results Math. 15 (1989), no. 1-2, 119-148.
[16] F. Levin, G. Rosenberger, Generators of finite projective linear groups. II., Results Math. 17 (1990), no. 1-2, 120-127.
[17] M.W. Liebeck, A. Shalev, Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks, J. Algebra 276 (2004), 552-601.
[18] A.M. Macbeath, Generators of the linear fractional groups, Number Theory (Proc. Sympos. Pure Math., Vol. XII, Houston, Tex., 1967), Amer. Math. Soc., Providence, R.I. (1969), 14-32.
[19] C. Marion, Triangle groups and $\operatorname{PSL}_{2}(q)$, J. Group Theory 12 (2009), 689-708.
[20] M. Suzuki, Group Theory I, Springer-Verlag, Berlin, 1982.
Max-Planck-Institute for Mathematics, D-53111 Bonn, Germany
Current address: Fachbereich Mathematik und Informatik, Universität Münster, Einsteinstrasse 62, D48149 Münster, Germany

E-mail address: shelly.garion@uni-muenster.de

[^0]: 2000 Mathematics Subject Classification. 20D06, 20H10, 14J29, 30F99.
 The author was supported by a European Postdoctoral Fellowship (EPDI) and by the SFB 878 "Groups, Geometry and Actions".

