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ON BEAUVILLE STRUCTURES FOR PSL2(q)

SHELLY GARION

Abstract. We characterize Beauville surfaces of unmixed type with group either PSL2(p
e)

or PGL2(p
e), thus extending previous results of Bauer, Catanese and Grunewald, Fuertes

and Jones, and Penegini and the author.

1. Introduction

A Beauville surface S (over C) is a particular kind of surface isogenous to a higher product
of curves, i.e., S = (C1 × C2)/G is a quotient of a product of two smooth curves C1 and
C2 of genus at least two, modulo a free action of a finite group G which acts faithfully
on each curve. For Beauville surfaces the quotients Ci/G are isomorphic to P

1 and both
projections Ci → Ci/G ∼= P

1 are coverings branched over three points. Beauville surfaces
were introduced by Catanese in [5], inspired by a construction of Beauville [3].

A Beauville surface S is either of mixed or unmixed type according respectively as the
action of G exchanges the two factors (and then C1 and C2 are isomorphic) or G acts
diagonally on the product C1 × C2. The subgroup G0 (of index ≤ 2) of G which preserves
the ordered pair (C1, C2) is then respectively of index 2 or 1 in G.

Any Beauville surface S can be presented in such a way that the subgroup G0 of G acts
effectively on each of the factors C1 and C2. Catanese called such a presentation minimal
and proved its uniqueness in [5].

In this paper we shall consider only Beauville surfaces of unmixed type so that G0 = G.
A natural question is to determine the finite groups which characterize unmixed Beauville
surfaces in a minimal presentation. Since a finite group appears as the underlying group of
an unmixed Beauville surface in a minimal presentation if and only if it admits an unmixed
Beauville structure (see [1, 2]), the above question is equivalent to determining the finite
groups admitting an unmixed Beauville structure.

Definition 1.1. An unmixed Beauville structure for a finite group G consists of two triples
(a1, b1, c1) and (a2, b2, c2) of elements of G which satisfy

(i) a1b1c1 = 1 and a2b2c2 = 1,
(ii) 〈a1, b1〉 = G and 〈a2, b2〉 = G,
(iii) Σ(a1, b1, c1) ∩ Σ(a2, b2, c2) = {1},

where, for i ∈ {1, 2}, Σ(ai, bi, ci) is the union of the conjugacy classes of all powers
of ai, all powers of bi, and all powers of ci.
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Moreover denoting the order of an element g in G by |g|, we define the type τi of (ai, bi, ci)
to be the triple (|ai|, |bi|, |ci|). In this situation, we say that G admits an unmixed Beauville
structure of type (τ1, τ2).

The question whether a finite group admits an unmixed Beauville structure of a given
type is closely related to the question whether it is a quotient of certain triangle groups.
More precisely, a necessary condition for a finite group G to admit an unmixed Beauville
structure of type (τ1, τ2) =

(

(r1, s1, t1), (r2, s2, t2)
)

is that G is a quotient with torsion
free-kernel of the triangle groups Tr1,s1,t1 and Tr2,s2,t2 , where for i ∈ {1, 2},

Tri,si,ti = 〈x, y, z : xri = ysi = zti = xyz = 1〉.

Indeed, conditions (i) and (ii) of Definition 1.1 are equivalent to the condition that G is a
quotient of each of the triangle groups T|ai|,|bi|,|ci|, for i ∈ {1, 2}, with torsion-free kernel.

When investigating the existence of an unmixed Beauville structure for a finite group,
one can consider only types (τ1, τ2), where for i ∈ {1, 2}, τi = (ri, si, ti) satisfies 1/ri +
1/si + 1/ti < 1. Then Tri,si,ti is a (infinite non-soluble) hyperbolic triangle group and we
say that τi is hyperbolic.

Indeed, if 1/ri + 1/si + 1/ti > 1 then Tri,si,ti is a finite group, and moreover, it is either
dihedral or isomorphic to one of A4, A5 or S4. By [1, Proposition 3.6 and Lemma 3.7], in
these cases G cannot admit an unmixed Beauville structure. If 1/ri + 1/si + 1/ti = 1 then
Tri,si,ti is one of the (soluble infinite) “wall-paper” groups, and by [1, §6], none of its finite
quotients can admit an unmixed Beauville structure.

A considerable effort has been made to classify the finite simple groups which admit
an unmixed Beauville structure. A finite abelian simple group clearly does not admit
an unmixed Beauville structure, since by [1, Theorem 3.4] the only finite abelian groups
admitting an unmixed Beauville structure are the abelian groups of the form Zn × Zn

where n is a positive integer coprime to 6. (Here Zn denotes a cyclic group of order n.) In
[1], Bauer, Catanese and Grunewald provided the first results on finite non-abelian simple
groups admitting an unmixed Beauville structure, and conjectured that all finite non-abelian
simple groups admit an unmixed Beauville structure with the exception of A5.

This conjecture has received much attention and has recently been proved to hold. Con-
cerning the simple alternating groups, it was established in [8] that A5 is indeed the only
one not admitting an unmixed Beauville structure. In [10, 12], the conjecture is shown
to hold for the projective special linear groups PSL2(q) (where q > 5), the Suzuki groups
2B2(q) and the Ree groups 2G2(q) as well as some other families of finite simple groups
of Lie type of small rank (where q is sufficiently large). The next major result concerning
the investigation of the conjecture with respect to the finite simple groups of Lie type was
pursued by Garion, Larsen and Lubotzky who showed in [11] that the conjecture holds for
finite non-abelian simple groups of sufficiently large order. The final step regarding the
investigation of the conjecture was carried out by Guralnick and Malle [14] and Fairbairn,
Magaard and Parker [7] who established its veracity in general.

There has also been an effort to classify the finite quasisimple groups and almost simple
groups which admit an unmixed Beauville structure. Recall that a finite group G is qua-
sisimple provided G/Z(G) is a non-abelian simple group and G = [G,G]. In [10] it was
shown that SL2(q) (for q > 5) admits an unmixed Beauville structure. Fairbairn, Magaard
and Parker [7] showed that with the exceptions of SL2(5) and PSL2(5) ∼= SL2(4) ∼= A5,
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every finite quasisimple group admits an unmixed Beauville structure. By [2, 8], the almost
simple symmetric groups Sn (where n ≥ 5) admit an unmixed Beauville structure. Recall
that a group G is called almost simple if there is a non-abelian simple group G0 such that
G0 ≤ G ≤ Aut(G0).

Another conjecture of Bauer, Catanese and Grunewald proposed in [1] states that if
τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) are two hyperbolic types, then almost all alternating
groups An admit an unmixed Beauville structure of type (τ1, τ2). This has recently been
proved in [12], based on results of Liebeck and Shalev [17], where a similar conjecture is
raised, replacing An by a finite simple classical group of Lie type of sufficiently large Lie
rank.

In contrast, when the Lie rank is very small, as in the case of PSL2(q), such a conjecture
does not hold. It is therefore the aim of this paper to characterize the possible types of an
unmixed Beauville structure for the projective special linear group PSL2(q). This is done
in Theorem 1. A similar result for the projective general linear group PGL2(q) is described
in Theorem 2. In particular we show that the almost simple group PGL2(q) (where q ≥ 5)
admits an unmixed Beauville structure.

Beauville structures for PSL2(q) and PGL2(q). IfH = PSL2(q) (respectively, PGL2(q))
with q ≤ 5 (respectively, q ≤ 4) then H is isomorphic to one of S3, S4, A4 or A5. As none of
these groups admits an unmixed Beauville structure by [1, Proposition 3.6], we can assume
hereafter that q ≥ 7 or q ≥ 5 according respectively as H = PSL2(q) or PGL2(q). Unless
otherwise stated, we also let G = PSL2(q) and G1 = PGL2(q) where q = pe for some prime
number p and some positive integer e.

Our first result is the characterization of the possible types of unmixed Beauville struc-
tures for PSL2(q).

Theorem 1. Let G = PSL2(q) where 5 < q = pe for some prime number p and some
positive integer e. Let τ1 = (r1, s1, t1), τ2 = (r2, s2, t2) be two hyperbolic triples of integers.
Then G admits an unmixed Beauville structure of type (τ1, τ2) if and only if the following
hold:

(i) G is a quotient of Tr1,s1,t1 and Tr2,s2,t2 with torsion-free kernel.
Equivalently, (e, τ1) and (e, τ2) satisfy the conditions given in Table 4 in Section 3.2.

(ii) If p = 2 or e is odd or q = 9, then r1s1t1 is coprime to r2s2t2.
If p is odd, e is even and q > 9, then g = gcd(r1s1t1, r2s2t2) ∈ {1, p, p2}. Moreover,
if p divides g and τ1 (respectively τ2) is up to a permutation (p, p, n) then n 6= p and
n is a good G-order (see Definition 1.2).

Definition 1.2. Let q be an odd prime power, let G = PSL2(q) and let n > 1 be an integer.
Then n is called a good G-order if one of the following holds:

• n is odd and divides either q − 1 or q + 1;
• n is even and 4n divides either q − 1 or q + 1.

We deduce from Theorem 1 that for any q > 7 the group PSL2(q) admits unmixed
Beauville structures of types

(

(q − 1

d
,
q − 1

d
,
q − 1

d

)

,
(q + 1

d
,
q + 1

d
,
q + 1

d

)

)

,
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and
(

(q − 1

d
,
q − 1

d
,
q − 1

d

)

,
(q + 1

d
,
q + 1

d
, p
)

)

,

where d = gcd(2, q − 1), thus recovering the results appearing in [12] and [10] respectively
(the case q = 7 is excluded since the triple (3, 3, 3) is not hyperbolic). In addition, if q ≥ 7
and q 6= 9 then PSL2(q) admits an unmixed Beauville structure of type

(

(q − 1

d
,
q − 1

d
, p
)

,
(q + 1

d
,
q + 1

d
,
q + 1

d

)

)

,

(the case q = 9 is excluded since PSL2(9) is not a quotient of T3,4,4, see Table 6 in Sec-
tion 3.2).

When q ≥ 7 is odd, PSL2(q) admits an unmixed Beauville structure of type
(

(

p, p,
q − 1

2

)

,
(q + 1

2
,
q + 1

2
,
q + 1

2

)

)

,

and when q > 7, it also admits an unmixed Beauville structure of type
(

(

p, p,
q + 1

2

)

,
(q − 1

2
,
q − 1

2
,
q − 1

2

)

)

,

(again, the case q = 7 is excluded since the triple (3, 3, 3) is not hyperbolic).
If p ≥ 7 is prime then PSL2(p) admits unmixed Beauville structures of types

(

(

p, p, p
)

,
(p− 1

2
,
p− 1

2
,
p+ 1

2

)

)

,

(

(

p, p, p
)

,
(p− 1

2
,
p+ 1

2
,
p+ 1

2

)

)

,

(

(

p, p, p
)

,
(p+ 1

2
,
p+ 1

2
,
p+ 1

2

)

)

,

and if p > 7 is prime, PSL2(p) also admits an unmixed Beauville structure of type
(

(

p, p, p
)

,
(p− 1

2
,
p− 1

2
,
p− 1

2

)

)

.

Note that PSL2(p
e) is a quotient of Tp,p,p if and only if e = 1, by Table 4 in Section 3.2.

Example 1.3. We list below all the possible types for Beauville structures for PSL2(q)
where q = 7, 8, 9. This is a direct consequence of Theorem 1, and in particular it follows from
Table 6 in Section 3.2. This table describes all the hyperbolic triples satisfying condition (i),
and one can construct all possible pairs of these triples and check whether they are coprime,
thus also satisfying condition (ii). It can easily be verified by a computer, for example using
Magma.

• PSL2(7):
(

(3, 7, 7), (4, 4, 4)
)

,
(

(3, 4, 4), (7, 7, 7)
)

,
(

(3, 3, 7), (4, 4, 4)
)

,
(

(4, 4, 4), (7, 7, 7)
)

,
(

(3, 3, 4), (7, 7, 7)
)

.

(see also [9, Theorem 13]).
• PSL2(8):

(

(2, 7, 7), (9, 9, 9)
)

,
(

(2, 9, 9), (7, 7, 7)
)

,
(

(7, 7, 7), (9, 9, 9)
)

,
(

(2, 3, 9), (7, 7, 7)
)

,
(

(3, 9, 9), (7, 7, 7)
)

,
(

(3, 3, 9), (7, 7, 7)
)

,
(

(2, 7, 7), (3, 9, 9)
)

,
(

(2, 7, 7), (3, 3, 9)
)

.

• PSL2(9) ∼= A6:
(

(3, 5, 5), (4, 4, 4)
)

,
(

(4, 4, 4), (5, 5, 5)
)

,
(

(3, 3, 5), (4, 4, 4)
)

,
(

(3, 3, 4), (5, 5, 5)
)

.
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Observe that condition (iii) of Definition 1.1 is clearly satisfied under the assumption
that r1s1t1 is coprime to r2s2t2. The example of the alternating groups shows that this
assumption is not always necessary. But in the case of PSL2(q) Theorem 1 shows that this
assumption is actually not far from being necessary.

However, by Theorem 1, for any odd prime power q > 3 the group PSL2(q
2) admits an

unmixed Beauville structure of type
(

p,
q2 − 1

2
,
q2 − 1

2

)

,
(

p,
q2 + 1

2
,
q2 + 1

2

)

)

.

In particular, PSL2(q
2) is a quotient of the hyperbolic triangle groups Tp,(q2±1)/2,(q2±1)/2 by

Table 4 in Section 3.2 and Lemma 3.6, since PSL2(q
2) contains elements of orders (q2±1)/2,

but none of its subfield subgroups contain such elements. In addition, PSL2(q
2) also admits

unmixed Beauville structures of types
(

(p, p, t1), (p, p, t2)
)

for certain t1, t2 dividing (q2 − 1)/2, (q2 + 1)/2 respectively (see Lemma 4.5).

Example 1.4. We list below all the possible types of the form
(

(p, p, t1), (p, p, t2)
)

for

Beauville structures for PSL2(q
2) where q = 5, 7, 11, 13. This is a direct consequence of

Theorem 1, and in particular it follows from Table 9 in Section 3.5. This table describes
all the good G-orders, and so one needs only to check when they are pairwise coprime, thus
satisfying condition (ii). It can easily be verified by a computer, for example using Magma.

• PSL2(25):
(

(5, 5, 6), (5, 5, 13)
)

.

• PSL2(49):
(

(7, 7, 5), (7, 7, 6)
)

,
(

(7, 7, 5), (7, 7, 12)
)

,
(

(7, 7, 25), (7, 7, 6)
)

,
(

(7, 7, 25), (7, 7, 12)
)

.

• PSL2(121):
(

(11, 11, 10), (11, 11, 61)
)

,
(

(11, 11, 15), (11, 11, 61)
)

,
(

(11, 11, 30), (11, 11, 61)
)

.

• PSL2(169):
(

(13, 13, 5), (13, 13, 14)
)

,
(

(13, 13, 5), (13, 13, 17)
)

,
(

(13, 13, 5), (13, 13, 21)
)

,

(

(13, 13, 5), (13, 13, 42)
)

,
(

(13, 13, 14), (13, 13, 17)
)

,
(

(13, 13, 14), (13, 13, 85)
)

,
(

(13, 13, 17), (13, 13, 21)
)

,
(

(13, 13, 17), (13, 13, 42)
)

,
(

(13, 13, 21), (13, 13, 85)
)

,
(

(13, 13, 42), (13, 13, 85)
)

.

Our next result characterizes the possible unmixed Beauville structures for PGL2(q).

Theorem 2. Let G1 = PGL2(q) where 3 < q = pe for some odd prime number p and some
positive integer e. Let τ1 = (r1, s1, t1), τ2 = (r2, s2, t2) be two hyperbolic triples of integers.
Then G1 admits a Beauville structure of type (τ1, τ2) if and only if the following hold:

(i) G1 is a quotient of Tr1,s1,t1 and Tr2,s2,t2 with torsion-free kernel.
Equivalently, (e, τ1) and (e, τ2) satisfy the conditions given in Table 5 in Section 3.2.
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(ii) Each of the integers

gcd(r1, r2), gcd(r1, s2), gcd(r1, t2),

gcd(s1, r2), gcd(s1, s2), gcd(s1, t2),

gcd(t1, r2), gcd(t1, s2), gcd(t1, t2),

is equal to 1 or 2.
(iii) All even elements in one of the triples divide q − 1, while all even elements in the

other triple divide q + 1.
(iv) The integer 2 appears only in a good involuting triple w.r.t q (see Definition 1.5).

Definition 1.5. Let q be an odd prime power. A hyperbolic triple of integers (r, s, 2) is
called a good involuting triple w.r.t q if one of the following holds:

• q ≡ 1 mod 4, and r, s both divide q − 1 but not (q − 1)/2;
• q ≡ 3 mod 4, and r, s both divide q + 1 but not (q + 1)/2;
• q ≡ 1 mod 4, r divides q + 1 but not (q + 1)/2, and s is odd;
• q ≡ 1 mod 4, s divides q + 1 but not (q + 1)/2, and r is odd;
• q ≡ 3 mod 4, r divides q − 1 but not (q − 1)/2, and s is odd;
• q ≡ 3 mod 4, s divides q − 1 but not (q − 1)/2, and r is odd.

We deduce from Theorem 2 that for any odd prime power q ≥ 5 the group PGL2(q)
admits an unmixed Beauville structure of type

(

(p, q − 1, q − 1), ((q + 1)/2, q + 1, q + 1)
)

,

and if q ≥ 7 it also admits unmixed Beauville structures of types
(

((q − 1)/2, q − 1, q − 1), (p, q + 1, q + 1)
)

,

and
(

((q − 1)/2, q − 1, q − 1), ((q + 1)/2, q + 1, q + 1)
)

,

(the case q = 5 is excluded since the triple (2, 4, 4) is not hyperbolic).
In addition, if 9 ≤ q ≡ 1 mod 4 then PGL2(q) admits unmixed Beauville structures of

types
(

(2, p, q + 1), (2, q − 1, q − 1)
)

,
(

(2, p, q + 1), ((q − 1)/2, q − 1, q − 1)
)

,
(

(2, q − 1, q − 1), (p, q + 1, q + 1)
)

,
(

(2, q − 1, q − 1), ((q + 1)/2, q + 1, q + 1)
)

,
(

(2, (q + 1)/2, q + 1), (2, q − 1, q − 1)
)

,
(

(2, (q + 1)/2, q + 1), ((q − 1)/2, q − 1, q − 1)
)

,
(

(2, (q + 1)/2, q + 1), (p, q − 1, q − 1)
)

,

whereas if 7 ≤ q ≡ 3 mod 4 then PGL2(q) admits unmixed Beauville structures of types
(

(2, p, q − 1), (2, q + 1, q + 1)
)

,
(

(2, p, q − 1), ((q + 1)/2, q + 1, q + 1)
)

,
(

(2, q + 1, q + 1), (p, q − 1, q − 1)
)

,
(

(2, q + 1, q + 1), ((q − 1)/2, q − 1, q − 1)
)

,

and if moreover q ≥ 11 then PGL2(q) also admits Beauville structures of types
(

(2, (q − 1)/2, q − 1), (2, q + 1, q + 1)
)

,
(

(2, (q − 1)/2, q − 1), ((q + 1)/2, q + 1, q + 1)
)

,
(

(2, (q − 1)/2, q − 1), (p, q + 1, q + 1)
)

.

These results follow from Definition 1.5 and Table 8 in Section 3.4.
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Example 1.6. We list below all the possible types for Beauville structures for PGL2(q)
where q = 5, 7, 9. This is a direct consequence of Theorem 2, and in particular it follows from
Table 6 in Section 3.2. This table describes all the hyperbolic triples satisfying condition (i),
and one can construct all possible pairs of these triples and check whether they also satisfy
conditions (ii), (iii) and (iv). It can easily be verified by a computer, for example using
Magma.

• PGL2(5):
(

(3, 6, 6), (4, 4, 5)
)

.

• PGL2(7):
(

(2, 6, 7), (2, 8, 8)
)

,
(

(2, 6, 7), (4, 8, 8)
)

,
(

(2, 8, 8), (6, 6, 7)
)

,
(

(4, 8, 8), (6, 6, 7)
)

,
(

(3, 6, 6), (4, 8, 8)
)

,
(

(2, 8, 8), (3, 6, 6)
)

,
(

(3, 6, 6), (7, 8, 8)
)

.

• PGL2(9):
(

(4, 8, 8), (5, 10, 10)
)

,
(

(2, 5, 10), (3, 8, 8)
)

,
(

(2, 8, 8), (5, 10, 10)
)

,
(

(2, 3, 10), (2, 8, 8)
)

,
(

(2, 5, 10), (2, 8, 8)
)

,
(

(2, 5, 10), (4, 8, 8)
)

,
(

(3, 10, 10), (4, 8, 8)
)

,
(

(3, 8, 8), (5, 10, 10)
)

,
(

(2, 8, 8), (3, 10, 10)
)

,
(

(2, 3, 10), (4, 8, 8)
)

.

Example 1.7. We list below all the possible types of the form
(

(2, r1, s1), (2, r2, s2)
)

for
Beauville structures for PGL2(q) where q = 11, 13. This is a direct consequence of The-
orem 2, and in particular it follows from Table 7 in Section 3.2, in the same way as the
previous example.

• PGL2(11):
(

(2, 4, 12), (2, 5, 10)
)

,
(

(2, 4, 12), (2, 10, 11)
)

,
(

(2, 10, 11), (2, 12, 12)
)

,
(

(2, 5, 10), (2, 12, 12)
)

.

• PGL2(13):
(

(2, 7, 14), (2, 12, 12)
)

,
(

(2, 4, 12), (2, 13, 14)
)

,
(

(2, 12, 12), (2, 13, 14)
)

,
(

(2, 4, 12), (2, 7, 14)
)

.

Organization. This paper is organized as follows. In Section 2 we present some of the
basic properties of the groups PSL2(q) and PGL2(q) that are needed later. In Section 3
we describe the results of [15, 16] characterizing, for a given q, the hyperbolic triangle
groups which have PSL2(q) (respectively, PGL2(q)) as quotients with torsion-free kernel,
and discuss the notions of a good G-order and a good involuting triple w.r.t q. The proofs
of Theorems 1 and 2 are presented in Section 4.
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2. Preliminaries

In this section we shall describe some well-known properties of the groups PSL2(q) and
PGL2(q), their elements and their subgroups (see for example [6], [13, §2.8] and [20, §6]),
that will be used later on.

2.1. The groups PSL2(q) and PGL2(q). We let Fq denote a finite field of q elements where
q = pe for some prime number p and some positive integer e. Recall that GL2(q) is the
group of invertible 2×2 matrices over Fq, and SL2(q) is the subgroup of GL2(q) comprising
the matrices with determinant 1. Then PGL2(q) and PSL2(q) are the quotients of GL2(q)
and SL2(q) by their respective centers. In addition, PSL2(q) is simple for q 6= 2, 3. We shall
denote by G,G0, G1 the groups PSL2(q), SL2(q) and PGL2(q) respectively.

Also recall that G can be viewed as a normal subgroup of G1 whose index is 2 if p is odd,
otherwise G can be identified with G1. Let d = gcd(2, q − 1). Then the orders of G0, G1

and G are q(q − 1)(q + 1), q(q − 1)(q + 1) and q(q − 1)(q + 1)/d respectively.
Let P1(q) denote the projective line over Fq. Then G1 acts on P1(q) by

(

a b
c d

)

: z 7→
az + b

cz + d

hence, it can be identified with the group of projective transformations on P1(q). Under
this identification, G is the set of all transformations for which ad− bc is a square in Fq.

2.2. Group elements. One can classify the elements of G and G1 according to their action
on P1(q). This is the same as considering the possible Jordan forms of their pre-images.
For a matrix A ∈ G0 we will denote by Ā its image in G.

Table 1 lists the three types of elements according to whether they have 0, 1 or 2 fixed
points in P1(q).

type action on P1(q) order in PGL2(q) order in PSL2(q)
unipotent fixes one point p p

split fixes two points divides q − 1 divides (q − 1)/d
non-split no fixed points divides q + 1 divides (q + 1)/d

Table 1. Elements in PGL2(q) and PSL2(q)

Table 2 describes the Jordan forms of the three types of elements in G, according to
whether the characteristic polynomial P (λ) := λ2−αλ+1 of the pre-image A ∈ G0 (where
α is the trace of A) has 0, 1 or 2 distinct roots in Fq.

2.3. Subgroups of PSL2(q). Table 3 specifies all the subgroups of G = PSL2(q) up to
isomorphism following [20, Theorems 6.25 and 6.26].

These subgroups can be divided into the following three classes, following Macbeath [18].
The subgroups isomorphic to PSL2(q1) or PGL2(q1) are usually called subfield subgroups
(since Fq1 is a subfield of Fq). Since A4, S4, A5 and dihedral groups correspond to the finite
triangle groups, that is, triangle groups Tr,s,t such that 1/r+1/s+1/t > 1, we will call them
small subgroups. For convenience we will refer to the other subgroups, namely subgroups
of the Borel and cyclic subgroups, as structural subgroups.
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type roots of P (λ) Jordan form in SL2(Fp) conjugacy classes

unipotent 1 root

(

±1 1
0 ±1

)

d classes in G

α = ±2 which unite in G1

split 2 roots

(

a 0
0 a−1

)

one class in G

where a ∈ F
∗
q for each α

and a+ a−1 = α

non-split no roots

(

a 0
0 aq

)

one class in G

where a ∈ F
∗
q2 \ F

∗
q for each α

aq+1 = 1 and a+ aq = α
Table 2. Elements in PSL2(q) and their Jordan forms

type maximal order conditions

p-group q –
Frobenius (Borel) q(q − 1)/d –

cyclic (split) (q − 1)/d –
dihedral (split) 2(q − 1)/d –
cyclic (non-split) (q + 1)/d –

dihedral (non-split) 2(q + 1)/d –
PSL2(q1) – q = qm1 (m ∈ N)
PGL2(q1) – q is odd, q = q2m1 (m ∈ N)

A4 12 q is odd; or q = 2e, e even
S4 24 q2 ≡ 1 mod 16
A5 60 p = 5 or q2 ≡ 1 mod 5

Table 3. Subgroups of PSL2(q)

Regarding the conjugacy classes of these subgroups, we recall that there is a single conju-
gacy class in G of dihedral subgroups of order 2(q − 1)/d (respectively, 2(q +1)/d), so that
there is a single conjugacy class in G of cyclic subgroups of order (q − 1)/d (respectively,
(q + 1)/d).

We also recall that for any divisor f of e, G has a G1-conjugacy class of subgroups
isomorphic to PSL2(p

f ). Moreover, if p is odd and e is even then G has a G1-conjugacy
class of subgroups isomorphic to PGL2(p

f ) for any f dividing e/2.

3. Hyperbolic triangle groups and PSL2(q),PGL2(q)

In order to characterize the possible types of an unmixed Beauville structure for PSL2(q)
(respectively, PGL2(q)) it is crucial to know given q the hyperbolic triangle groups which
have PSL2(q) (respectively, PGL2(q)) as quotients with torsion-free kernel.
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Given a prime power q the hyperbolic triangle groups which have PSL2(q) (respectively,
PGL2(q)) as quotients with torsion-free kernel have been determined by Langer and Rosen-
berger [15] and Levin and Rosenberger [16], following Macbeath [18]. It follows that if
(r, s, t) is hyperbolic, then for almost all primes p, there is precisely one group of the form
PSL2(p

e) or PGL2(p
e) which is a homomorphic image of Tr,s,t with torsion-free kernel. The

remaining primes p satisfy that at least one of r, s, t is a multiple of p which is not p, and
for such primes, for all positive integers e, neither PSL2(p

e) nor PGL2(p
e) contains three

elements of orders r, s and t. Recently, Marion [19] has provided another proof for the case
where r, s, t are primes relying on probabilistic group theoretical methods.

Before stating these results in §3.2 we introduce some notation in §3.1. In §3.3 we present
the main results of Macbeath [18] and explain the concept for a hyperbolic triple (r, s, t)
to be irregular w.r.t q. In Sections §3.4 and §3.5 we discuss the notions of good involuting
triple w.r.t q and good G-order respectively.

3.1. Orders and traces. If n is a positive integer dividing (q− 1)/d or (q +1)/d or equal
to p, then G = PSL2(q) contains an element of order n. In this case, we will say that n is
a G-order. Similarly, if n is a positive integer dividing q − 1 or q + 1 or equal to p, then
G1 = PGL2(q) contains an element of order n, and we will say that n is a G1-order.

More precisely, one would like to determine the smallest positive integer e such that
PGL2(p

e) (respectively PSL2(p
e)) contains an element of order n, hence we introduce the

following notation.
For a prime p, a positive integer n coprime to p, and a k-tuple (n1, . . . , nk) of positive

integers ni each coprime to p or equal to p, we let

µPGL(p, p) = µPSL(p, p) = 1,

µPGL(p, n) = min
{

f > 0 : pf ≡ ±1 mod n
}

,

µPSL(p, n) = min
{

f > 0 : pf ≡ ±1 mod (gcd(2, n) · n)
}

,

µPGL(p;n1, . . . , nk) = lcm
(

µPGL(p, n1), . . . , µPGL(p, nk)
)

and

µPSL(p;n1, . . . , nk) = lcm
(

µPSL(p, n1), . . . , µPSL(p, nk)
)

.

Therefore, µPGL(p, n) (respectively µPSL(p, n)) is the smallest positive integer e such that
PGL2(p

e) (respectively PSL2(p
e)) contains an element of order n. Also µPGL(p;n1, . . . , nk)

(respectively µPSL(p;n1, . . . , nk)) is the smallest positive integer e such that PGL2(p
e) (re-

spectively PSL2(p
e)) contains elements of orders n1, . . . , nk.

For any non-central matrix A ∈ G0, its trace tr(A) determines uniquely the G1-conjugacy
class of Ā (see Table 2), and so also the order of Ā is uniquely determined by tr(A).

Hence, for a G-order n, we denote

(1) Tq(n) = {α ∈ Fq : α = tr(A), A ∈ G0, |Ā| = n}.

It is easy to see from Table 2 that for any prime power q, Tq(2) = {0}, Tq(3) = {±1}, and
for any odd q = pe, Tq(p) = {±2}. Moreover, when q is odd, then α ∈ Tq(n) if and only
if −α ∈ Tq(n). In fact, for any prime power q and integer n > 1, Tq(n) can be effectively
computed as follows.

Proposition 3.1. Denote by Pq(n) the set of primitive roots of unity of order n in Fq.
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• Let q = 2e for some positive integer e and let n > 1 be an integer, then

(2) Tq(n) =



















{0} if n = 2

{a+ a−1 : a ∈ Pq(n)} if n divides q − 1

{b+ bq : b ∈ Pq2(n)} if n divides q + 1

∅ otherwise

• Let q = pe for some odd prime p and some positive integer e and let n > 1 be an
integer, then

(3) Tq(n) =



















{±2} if n = p

{±(a+ a−1) : a ∈ Pq(2n)} if n divides q−1
2

{±(b+ bq) : b ∈ Pq2(2n)} if n divides q+1
2

∅ otherwise

Proof. We prove the case where q is odd and n divides (q−1)/2. The other cases are similar.
Assume first that n is even. Let a be a primitive root of unity of order 2n. Then −a is

also a primitive root of unity of order 2n, and (−a)n = an = −1. Thus the matrices

A =

(

a 0
0 a−1

)

and −A =

(

−a 0
0 −a−1

)

both reduce to the same element Ā ∈ G of order n. Hence, a + a−1 and −(a + a−1) both
belong to Tq(n). Tq(n) contains only the elements of the claimed form, since it suffices to
consider only the conjugacy classes of elements of G, described in Table 2.

Now assume that n is odd. Then a is a primitive root of unity of order n if and only
if −a is a primitive root of unity of order 2n. In this case, (−a)n = −an = −1. Thus the
matrices

A =

(

a 0
0 a−1

)

and −A =

(

−a 0
0 −a−1

)

both reduce to the same element Ā ∈ G of order n. Hence, a + a−1 and −(a + a−1) both
belong to Tq(n). Again, considering the conjugacy classes appearing in Table 2 shows that
Tq(n) contains only the elements of the claimed form. �

3.2. Hyperbolic triples and PSL2(q),PGL2(q). The following theorems summarize the
results in [15, Theorems 4.1 and 4.2] and [16, Theorems 1 and 2], which characterize, for
a given q, the hyperbolic triangle groups which have PSL2(q) (respectively, PGL2(q)) as
quotients with torsion-free kernel. The notion of an irregular triple w.r.t q is given in
Lemma 3.6 in §3.3.

Theorem 3.2. [15, 16]. Given a prime p and a hyperbolic triple (r, s, t) of integers,
PSL2(p

e) is a quotient of Tr,s,t with torsion-free kernel if and only if (r, s, t) and e sat-
isfy one of the conditions given in Table 4.

Theorem 3.3. [15, 16]. Given an odd prime p and a hyperbolic triple (r, s, t) of integers,
PGL2(p

e) is a quotient of Tr,s,t with torsion-free kernel if and only if (r, s, t) and e satisfy
one of the conditions given in Table 5.

The following corollary follows immediately from Theorems 3.2 and 3.3.
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p (r, s, t) e further conditions

p ≥ 5 (p, p, p) 1 -
p ≥ 3 permutation of (p, p, t′) µPSL(p, t

′) -
gcd(t′, p) = 1

p ≥ 3 permutation of (p, s′, t′) µPSL(p; s
′, t′) either at most one of r, s, t is even,

gcd(s′t′, p) = 1 or: if at least two of r, s, t are even
p ≥ 3 gcd(rst, p) = 1 µPSL(p; r, s, t) then (r, s, t) is not irregular w.r.t pe

p = 2 - µPSL(2; r, s, t) -
Table 4. Hyperbolic triangle groups Tr,s,t which have PSL2(p

e) as quotients

(r, s, t) e further conditions

permutation of (p, s′, t′) µPSL(p; s
′, t′)/2 at least two of r, s, t are even

gcd(s′t′, p) = 1 and
gcd(rst, p) = 1 µPSL(p; r, s, t)/2 (r, s, t) is irregular w.r.t p2e

Table 5. Hyperbolic triangle groups Tr,s,t which have PGL2(p
e) as quotients

Corollary 3.4. Given a prime p and a hyperbolic triple (r, s, t) of integers, such that each
of r, s, t is either coprime to p or equal to p, there exists a unique exponent e such that
PSL2(p

e) or PGL2(p
e) is a quotient of Tr,s,t with torsion-free kernel. More precisely, let

e = µPSL(p; r, s, t) then

(a) If (r, s, t) is not irregular w.r.t to pe then PSL2(p
e) is a quotient of Tr,s,t with

torsion-free kernel.
(b) If e is even and (r, s, t) is irregular w.r.t to pe then PGL2(p

e/2) is a quotient of Tr,s,t

with torsion-free kernel.

Example 3.5. In Tables 6 and 7 we present all the hyperbolic triples (r, s, t) of integers
such that PSL2(q) (respectively PGL2(q)) is a quotient of Tr,s,t with torsion-free kernel, for
q = 3, 4, 5, 7, 8, 9, 11, 13. These triples were computed using Magma.

The irregular triples w.r.t q2 are divided according to the three cases of Lemma 3.6, and
among them, the good involuting triples w.r.t q are marked in bold (see §3.3 and §3.4).

3.3. Generating triples and irregular triples. Macbeath [18] classified the pairs of
elements in G in a way which makes it easy to decide what kind of subgroup they generate.
He called a triple (A,B,C) of elements in G (respectively G0) such that ABC = 1 a G-triple
(respectively G0-triple). So if (A,B,C) is a G0-triple then (Ā, B̄, C̄) is a G-triple.

By [18, Theorem 1], for any (α, β, γ) ∈ F
3
q, there exists a G0-triple (A,B,C) such that

A, B and C have respective traces α, β and γ. Hence, if (r, s, t) is a triple of G-orders then
there exists a G-triple (Ā, B̄, C̄) such that Ā, B̄ and C̄ have respective orders r, s and t.

Macbeath [18] called a G0-triple (A,B,C) singular if its corresponding traces (α, β, γ)
satisfy the equality

(4) α2 + β2 + γ2 − αβγ − 4 = 0.

Moreover, by [18, Theorem 2], a G0-triple (A,B,C) is singular if and only if the correspond-
ing G-triple (Ā, B̄, C̄) satisfies that 〈Ā, B̄〉 is a structural subgroup of G.
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q G-orders G1-orders triples for G triples for G1 (irregular)

3 2, 3 2, 3, None (α) (3, 4, 4)
4

4 2, 3, 5 2, 3, 5 (2, 5, 5), (3, 3, 5), None
(3, 5, 5), (5, 5, 5)

5 2, 3, 5 2, 3, 5, (2, 5, 5), (3, 3, 5), (α) (3, 4, 4), (3, 4, 6), (3, 6, 6),
4, 6 (3, 5, 5), (5, 5, 5) (4, 4, 5), (4, 5, 6), (5, 6, 6)

(β) (2, 4, 6), (2, 6, 6)
(γ) (2, 4, 5), (2,5,6)

7 2, 3, 4, 7 2, 3, 4, 7, (2, 3, 7), (2, 4, 7), (α) (3, 6, 6), (3, 6, 8), (3, 8, 8),
6, 8 (2, 7, 7), (3, 3, 4), (4, 6, 6), (4, 6, 8), (4, 8, 8),

(3, 3, 7), (3, 4, 4), (6, 6, 7), (6, 7, 8), (7, 8, 8)
(3, 4, 7), (3, 7, 7), (β) (2, 6, 6), (2, 6, 8), (2,8,8)
(4, 4, 4), (4, 4, 7), (γ) (2, 3, 8), (2, 4, 6), (2, 4, 8),
(4, 7, 7), (7, 7, 7) (2,6,7), (2, 7, 8)

8 2, 3, 7, 9 2, 3, 7, 9 (2, 3, 7), (2, 3, 9),
(2, 7, 7), (2, 7, 9), None
(2, 9, 9), (3, 3, 7),
(3, 3, 9), (3, 7, 7),
(3, 7, 9), (3, 9, 9),
(7, 7, 7), (7, 7, 9),
(7, 9, 9), (9, 9, 9)

9 2, 3, 4, 5 2, 3, 4, 5, (2, 4, 5), (2, 5, 5), (α) (3, 8, 8), (3, 8, 10), (3, 10, 10),
8, 10 (3, 3, 4), (3, 3, 5), (4, 8, 8), (4, 8, 10), (4, 10, 10),

(3, 4, 5), (3, 5, 5), (5, 8, 8), (5, 8, 10), (5, 10, 10)
(4, 4, 4), (4, 4, 5), (β) (2,8,8), (2, 8, 10), (2, 10, 10)
(4, 5, 5), (5, 5, 5) (γ) (2, 3, 8), (2,3,10), (2, 4, 8),

(2, 4, 10), (2, 5, 8), (2,5,10)
Table 6. Hyperbolic triples for G and hyperbolic triples for G1 (irregular
w.r.t q2), where q = 3, 4, 5, 7, 8, 9.

Observe that if 〈Ā, B̄〉 is a small subgroup, then the corresponding orders (r, s, t) of
(Ā, B̄, C̄) satisfy that either two of r, s, t equal to 2 or r, s, t ∈ {2, 3, 4, 5}, but the converse
might not be true. Indeed, if (Ā, B̄, C̄) is a G-triple of respective orders (r, s, t) such that
(r, s, t) is hyperbolic and r, s, t ∈ {2, 3, 4, 5} then 〈Ā, B̄〉 is not necessarily a small subgroup
(see [16]).

In fact, when (r, s, t) is a hyperbolic triple of G-orders, then there is enough freedom
in choosing the traces α ∈ Tq(r), β ∈ Tq(s) and γ ∈ Tq(t), such that Equation (4) does
not hold, and in addition, they do not correspond to a G-triple which generates a small
subgroup (see [15, Lemma 3.3] and [16]). Therefore, if (r, s, t) is a hyperbolic triple of G-
orders then there exists a G-triple (A,B,C) such that A, B and C have respective orders
r, s and t, and moreover, 〈A,B〉 is a subfield subgroup of G.
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q G-orders G1-orders triples for G triples for G1 (irregular)

11 2, 3, 2, 3, (2, 3, 11), (2, 5, 5), (α) (3, 4, 4), (3, 4, 10), (3, 4, 12),
5, 6, 11 5, 6, 11, (2, 5, 6), (2, 5, 11), (3, 10, 10), (3, 10, 12), (3, 12, 12),

4, 10, 12 (2, 6, 6), (2, 6, 11), (4, 4, 5), (4, 4, 6), (4, 4, 11),
(2, 11, 11), (3, 3, 5), (4, 5, 10), (4, 5, 12), (4, 6, 10),
(3, 3, 6), (3, 3, 11), (4, 6, 12), (4, 10, 11), (4, 11, 12),
(3, 5, 5), (3, 5, 6), (5, 10, 10), (5, 10, 12), (5, 12, 12),
(3, 5, 11), (3, 6, 6), (6, 10, 10), (6, 10, 12), (6, 12, 12),

(3, 6, 11), (3, 11, 11), (10, 10, 11), (10, 11, 12), (11, 12, 12)
(5, 5, 5), (5, 5, 6), (β) (2, 4, 10), (2,4,12), (2, 10, 10),
(5, 5, 11), (5, 6, 6), (2, 10, 12), (2,12,12)

(5, 6, 11), (5, 11, 11), (γ) (2,3,10), (2, 3, 12), (2, 4, 5),
(6, 6, 6), (6, 6, 11), (2, 4, 6), (2, 4, 11), (2,5,10),

(6, 11, 11), (11, 11, 11) (2, 5, 12), (2, 6, 10), (2, 6, 12),
(2,10,11), (2, 11, 12)

13 2, 3, 2, 3, (2, 3, 7), (2, 3, 13), (α) (3, 4, 4), (3, 4, 12), (3, 4, 14),
6, 7, 13 6, 7, 13, (2, 6, 6), (2, 6, 7), (3, 12, 12), (3, 12, 14), (3, 14, 14),

4, 12, 14 (2, 6, 13), (2, 7, 7), (4, 4, 6), (4, 4, 7), (4, 4, 13),
(2, 7, 13), (2, 13, 13), (4, 6, 12), (4, 6, 14), (4, 7, 12),
(3, 3, 6), (3, 3, 7), (4, 7, 14), (4, 12, 13), (4, 13, 14),
(3, 3, 13), (3, 6, 6), (6, 12, 12), (6, 12, 14), (6, 14, 14),
(3, 6, 7), (3, 6, 13), (7, 12, 12), (7, 12, 14), (7, 14, 14),
(3, 7, 7), (3, 7, 13), (12, 12, 13), (12, 13, 14), (13, 14, 14)
(3, 13, 13), (6, 6, 6), (β) (2,4,12), (2, 4, 14), (2,12,12),
(6, 6, 7), (6, 6, 13), (2, 12, 14), (2, 14, 14)
(6, 7, 7), (6, 7, 13), (γ) (2, 3, 12), (2,3,14), (2, 4, 6),
(6, 13, 13), (7, 7, 7), (2, 4, 7), (2, 4, 13), (2, 6, 12),
(7, 7, 13), (7, 13, 13), (2, 6, 14), (2, 7, 12), (2,7,14),

(13, 13, 13) (2, 12, 13), (2,13,14)
Table 7. Hyperbolic triples for G and hyperbolic triples for G1 (irregular
w.r.t q2), where q = 11, 13

When p is odd and e is even there are G-triples (A,B,C) which generate a projective
special linear subgroup PSL2(q1) (respectively projective general linear group PGL2(q1)),
where Fq1 (respectively Fq2

1

) is a subfield of Fq (see Table 3).

If q = q21 and (A,B,C) is a G-triple that generates a subgroup isomorphic to PGL2(q1)
then exactly one of (A,B,C) lies in PSL2(q1), and we say that (A,B,C) is an irregular G-
triple (see [18, §9]). On the other hand, if (r, s, t) is a hyperbolic triple of PGL2(q1)-orders
then in particular it is a hyperbolic triple of G-orders, hence there exists a G-triple (A,B,C)
such that A, B and C have respective orders r, s and t. Consequently, (r, s, t) is said to be
irregular w.r.t q if (A,B,C) is an irregular G-triple. Langer and Rosenberger determined
in [15, Lemma 3.5] the necessary and sufficient condition for (r, s, t) to be irregular w.r.t q.
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Lemma 3.6. [15]. Let q = pe be an odd prime power and let (r, s, t) be a hyperbolic triple
of integers such that gcd(rst, p) = 1 or one of r, s, t is equal to p and the two others are
coprime to p. Then (r, s, t) is irregular w.r.t q if up to a permutation (r′, s′, t′) of (r, s, t)
one of the following cases holds:

Case (α):

• r′, s′, t′ > 2,
• r′, s′ and e = µPSL(p; r

′, s′, t′) are all even,
• both µPGL(p, r

′) and µPGL(p, s
′) divide e

2 ,
• both µPSL(p, r

′) and µPSL(p, s
′) do not divide e

2 ,
• µPSL(p, t

′) divides e
2 .

Case (β):

• r′, s′ > 2 and t′ = 2,
• r′, s′ and e = µPSL(p; r

′, s′) are all even,
• both µPGL(p, r

′) and µPGL(p, s
′) divide e

2 ,
• both µPSL(p, r

′) and µPSL(p, s
′) do not divide e

2 .

Case (γ):

• r′, s′ > 2, and t′ = 2,
• r′ and e = µPSL(p; r

′, s′) are even,
• µPGL(p, r

′) divides e
2 ,

• µPSL(p, r
′) does not divide e

2 ,
• µPSL(p, s

′) divides e
2 .

Case (β) is the same as case (α) except that t′ = 2. Observe that the difference between
the last two cases is that an irregular G-triple (A,B,C) in case (β) contains an involution
which belongs to PSL2(q1), while in case (γ) the involution belongs to PGL2(q1)\PSL2(q1).
We will therefore investigate in detail irregular triples containing involutions in §3.4.

As an example, in Tables 6 and 7 we present all the irregular triples w.r.t q2, for q =
3, 5, 7, 9, 11, 13, divided according to the above cases. These triples were computed using
Magma.

3.4. Irregular triples containing involutions. In this section we consider irregular G-
triples (A,B,C) where C is an involution. We give a numerical criterion to decide whether
all the elements of even order in this triple are of the same type, either split or non-split.
Such triples, called “good involuting triples w.r.t q” (see Definition 1.5), are needed in the
classification of Beauville structures for G1 which include involutions, in Theorem 2(iv).

Recall that all the involutions in G = PSL2(q) are conjugate to the image of the matrix
(

0 1
−1 0

)

. They are unipotent if p = 2, split if (q − 1)/2 is even, namely if q ≡ 1 mod 4,

and non-split if (q + 1)/2 is even, namely if q ≡ 3 mod 4. Moreover, if q is odd, then there
is exactly one G1-conjugacy class of involutions in G1 \ G. They are split if (q − 1)/2 is
odd, namely if q ≡ 3 mod 4, and non-split if (q + 1)/2 is odd, namely if q ≡ 1 mod 4 (see
Tables 1 and 2).

Proposition 3.7. Assume that q is an odd prime power and let (A,B,C) be an irregular
PSL2(q

2)-triple of respective orders (r, s, 2). Then one of the following holds:

• q ≡ 1 mod 4, C is split and (r, s, 2) is in case (β).
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• q ≡ 1 mod 4, C is non-split and (r, s, 2) is in case (γ).
• q ≡ 3 mod 4, C is non-split and (r, s, 2) is in case (β).
• q ≡ 3 mod 4, C is split and (r, s, 2) is in case (γ).

Proof. Recall that by Lemma 3.6, an irregular PSL2(q
2)-triple (A,B,C) of respective orders

(r, s, 2) is in case (β) if and only if C ∈ PSL2(q), whereas it is in case (γ) if and only
if C ∈ PGL2(q) \ PSL2(q) (up to conjugation). The claim now follows from the above
observation. �

Corollary 3.8. Assume that q is an odd prime power and let (A,B,C) be an irregular
PSL2(q

2)-triple of respective orders (r, s, 2) with r > 2 even.
If q ≡ 1 mod 4, then

• Both A and C are split if and only if r divides q − 1 and (r, s, 2) is in case (β).
• Both A and C are non-split if and only if r divides q+1 and (r, s, 2) is in case (γ).

If q ≡ 3 mod 4, then

• Both A and C are split if and only if r divides q − 1 and (r, s, 2) is in case (γ).
• Both A and C are non-split if and only if r divides q+1 and (r, s, 2) is in case (β).

The proof of part (iv) of Theorem 2 relies on the following corollary which is a consequence
of Corollary 3.8. Recall that the notion of a “good involuting triple w.r.t q” was given in
Definition 1.5.

Corollary 3.9. Let q be an odd prime power and let (A,B,C) be an irregular PSL2(q
2)-

triple of respective orders (r, s, 2). Then all the elements of even order in this triple are of
the same type (either split or non-split) if and only if (r, s, 2) is a good involuting triple
w.r.t q (see Definition 1.5).

Proof. Again, let G = PSL2(q) and G1 = PGL2(q). Without loss of generality we may
assume that A ∈ G1 \ G and thus r > 2 is even. By Corollary 3.8 one of the following
necessarily holds:

• q ≡ 1 mod 4, r divides q−1 and (r, s, 2) is in case (β). In case (β), both A,B ∈ G1\G,
and so s is also even. Since A,B are split, then r, s both divide q−1 but not (q−1)/2.

• q ≡ 1 mod 4, r divides q+1 and (r, s, 2) is in case (γ). Since A ∈ G1 \G then r does
not divide (q + 1)/2. In case (γ), B ∈ G, and so s is a G-order. If s is even then
s divides (q − 1)/2, and so B is split. But A is non-split, yielding a contradiction.
Hence, s is necessarily odd.

• q ≡ 3 mod 4, r divides q−1 and (r, s, 2) is in case (γ). Since A ∈ G1 \G then r does
not divide (q − 1)/2. In case (γ), B ∈ G, and so s is a G-order. If s is even then
s divides (q + 1)/2, and so B is non-split. But A is split, yielding a contradiction.
Hence, s is necessarily odd.

• q ≡ 3 mod 4, r divides q+1 and (r, s, 2) is in case (β). In case (β), both A,B ∈ G1\G,
and so s is also even. Since A,B are non-split, then r, s both divide q + 1 but not
(q + 1)/2.

�

As an example, in Tables 6 and 7 we mark in bold all the good involuting triples w.r.t q
where q = 5, 7, 9, 11, 13. These triples were computed using Magma.
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q case elements of even order good involuting triple w.r.t q

q ≡ 1 mod 4 q > 5 (β) split (2, q − 1, q − 1)
q ≡ 1 mod 4 q ≥ 5 (γ) non-split (2, p, q + 1)

q > 5 (2, (q + 1)/2, (q + 1))
q ≡ 3 mod 4 q ≥ 7 (γ) split (2, p, q − 1)

q > 7 (2, (q − 1)/2, q − 1)
q ≡ 3 mod 4 q ≥ 7 (β) non-split (2, q + 1, q + 1)

Table 8. Good involuting triples w.r.t q

Example 3.10. Table 8 presents some general examples for good involuting triples w.r.t q.
Note that in case (β) we exclude q = 5 since the triple (2, 4, 4) is not hyperbolic, and

in case (γ) the second triple is excluded when q = 5 or 7 since the triple (2, 3, 6) is not
hyperbolic.

3.5. Generating triples containing unipotents. In this section we consider G-triples
(A,B,C) where A and B are unipotent elements and C is not unipotent. We give a
numerical criterion on the order of C to decide whether A is G-conjugate to B, which is
called a “good G-order” (see Definition 1.2). Such triples are needed in the classification of
Beauville structures for G which include unipotents, in Theorem 1(ii).

Assume that q is odd and consider the following matrices in G0 = SL2(q):

U1 =

(

1 1
0 1

)

, U−1 =

(

−1 1
0 −1

)

,

U ′
1 = XU1X

−1 =

(

1 x2

0 1

)

∈ G0, U ′
−1 = XU−1X

−1 =

(

−1 x2

0 −1

)

∈ G0,

where x ∈ Fq2 \ Fq satisfies that x2 ∈ Fq and X =

(

x 0
0 x−1

)

∈ SL2(q
2).

The following proposition and its corollary are immediate observations.

Proposition 3.11. Assume that q is odd. Then, for any A ∈ G0, XAX−1 ∈ G0. Moreover,

• If A 6= I and tr(A) = 2 then A is G0-conjugate to either U1 or U ′
1.

• If A 6= −I and tr(A) = −2 then A is G0-conjugate to either U−1 or U ′
−1.

Proof. Indeed, if A =

(

a b
c d

)

∈ G0 then XAX−1 =

(

a bx2

cx−2 d

)

∈ G0. Moreover, U1 is

not G0-conjugate to U ′
1 = XU1X

−1, since x2 is not a square of some element in Fq. Hence,
any I 6= A ∈ G0 with tr(A) = 2 is G0-conjugate to either U1 or U ′

1 (see Table 2). �

Corollary 3.12. Assume that q is odd. Then, for any Ā ∈ G, X̄ĀX̄−1 ∈ G. If, moreover,
Ā is unipotent then it is G-conjugate to either Ū1 or Ū ′

1 = X̄Ū1X̄
−1. In addition,

• If q ≡ 1 mod 4 then Ū1 and Ū−1 are G-conjugate.
• If q ≡ 3 mod 4 then Ū1 and Ū ′

−1 are G-conjugate.

The following lemma is needed later in Section 4.2, to decide whether a unipotent element
Ā ∈ G is G-conjugate to some power of Ū1 or not.

Lemma 3.13. Assume that p is odd and let q = pe. Let Ā ∈ G be a unipotent element.
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• If e is odd, then there exists some 0 < i < p such that Āi is G-conjugate to Ū1.
• If e is even, then for every 0 < i < p, Āi is G-conjugate to Ā.

Proof. Consider the set I = {i : 0 < i < p}. Observe that if p is odd and e is even then all
the elements in I are squares in Fq. If p is odd and e is odd, then half of the elements in I
are squares in Fq and half are non-squares.

Hence, if e is odd then there exists some i ∈ I such that U i
1 is G0-conjugate to U ′

1 and so
Ū i
1 is G-conjugate to Ū ′

1. If e is even then for every i ∈ I, U i
1 is G0-conjugate to U1 and so

Ū i
1 is G-conjugate to Ū1. �

We now consider G-triples (A,B,C) such that A and B are unipotent elements and C is
not unipotent.

Proposition 3.14. Assume that q is odd. Let (A,B,C) be a G0-triple such that A,B 6= ±I
and tr(A), tr(B) ∈ {±2}. Denote γ = tr(C).

(1) If tr(A) = tr(B), then A is G0-conjugate to B if and only if 2− γ is a square in Fq.
(2) If tr(A) = − tr(B), then A is G0-conjugate to −B if and only if 2 + γ is a square

in Fq.

Proof. Without loss of generality we may assume that A = U1.

(1) If B = MU1M
−1 for some matrix M =

(

a b
c d

)

∈ G0, then

γ = tr(C) = tr(AB) = tr(U1MU1M
−1) = tr

(

1− ac− c2 1 + ac+ a2

−c2 1 + ac

)

= 2− c2,

and so 2− γ is a square in Fq.
If B = MU ′

1M
−1 for some matrix M ∈ G0, then

γ = tr(C) = tr(AB) = tr(U1MU ′
1M

−1) = 2− x2c2,

and since x ∈ Fq2 \ Fq then 2− γ is a non-square in Fq.

(2) Similarly, if B = M(−U1)M
−1 for some matrix M ∈ G0, then

γ = tr(C) = tr(AB) = tr(U1M(−U1)M
−1) = −2 + c2,

and so 2 + γ is a square in Fq.
If B = M(−U ′

1)M
−1 for some matrix M ∈ G0, then

γ = tr(C) = tr(AB) = tr(U1M(−U ′
1)M

−1) = −2 + x2c2,

and so 2 + γ is a non-square in Fq.

�

Therefore, in order to decide whether in a G-triple (A,B,C) of respective orders (p, p, t),
t 6= p, A is G-conjugate to B, one needs to determine whether for γ ∈ Tq(t), 2− γ or 2 + γ
is a square in Fq. In the following we prove that this is equivalent to decide whether t is
a good G-order or not. Recall that G = PSL2(q), G0 = SL2(q) and the notion of a “good
G-order” was given in Definition 1.2.

Proposition 3.15. Assume that q is odd. Let C ∈ G0, γ = tr(C) and t = |C̄|. Assume
that γ 6= ±2 (or equivalently, t 6= p). Then one of 2+ γ, 2− γ is a square in Fq if and only
if t is a good G-order (see Definition 1.2).
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Proof. As t 6= p is a G-order then t divides either (q − 1)/2 or (q + 1)/2.
If t divides (q − 1)/2 then γ = a + a−1 or γ = −(a + a−1), for some primitive root of

unity a of order 2t in Fq (see Proposition 3.1). Hence,

{2 + γ, 2− γ} = {a+ 2 + a−1, (−a) + 2 + (−a)−1}.

Therefore, 2 + γ or 2− γ is a square in Fq if and only if a = c2 or −a = c2 for some c ∈ Fq.
Indeed, a + 2 + a−1 is a square if and only if (a + 1)2/a is a square if and only if a is a
square in Fq, and similarly for (−a) + 2 + (−a)−1.

Now, one the following necessarily holds:

• If t is even then −a is also a primitive root of unity of order 2t. Hence, a is a square
in Fq if and only if −a is a square is Fq. In addition, a is a square in Fq if and only
if Fq contains a primitive root of unity of order 4t, namely, if and only if 4t divides
q − 1.

• If t is odd and q ≡ 1 mod 4 then 4t divides q − 1, and so Fq contains a primitive
root of unity of order 4t. Thus a, which is a primitive root of unity of order 2t, is a
square in Fq, as required.

• If t is odd and q ≡ 3 mod 4 then Fq contains a primitive root of unity of order 2t
but does not contain a primitive root of unity of order 4t, and so, a is a non-square
in Fq. However, −a is a primitive root of unity of order t, and so, it is necessarily a
square in Fq, as required.

In conclusion, a = c2 or −a = c2 for some c ∈ Fq if and only if either t is odd and divides
q − 1 or t is even and 4t divides q − 1.

If t divides (q + 1)/2 then γ = a+ aq or γ = −(a+ aq), for some primitive root of unity
a of order 2t in Fq2 (see Proposition 3.1). Hence,

{2 + γ, 2− γ} = {a+ 2 + aq, (−a) + 2 + (−a)q}.

Therefore, 2 + γ or 2− γ is a square in Fq if and only if a = c2 or −a = c2 for some c ∈ Fq2

satisfying cq+1 = 1.
Now, one the following necessarily holds:

• If t is even then −a is also a primitive root of unity of order 2t. Hence, a = c2 for
some c ∈ Fq2 satisfying cq+1 = 1 if and only if −a = b2 for some b ∈ Fq2 satisfying

bq+1 = 1. This is equivalent to the condition that 4t divides q + 1.
• If t is odd and q ≡ 3 mod 4 then Fq2 contains a primitive root of unity b of order 4t

satisfying bq+1 = 1. Hence, a = c2 for some c ∈ Fq2 satisfying cq+1 = 1, as required.
• If t is odd and q ≡ 1 mod 4 then Fq2 does not contain a primitive root of unity c

of order 4t satisfying cq+1 = 1. However, in this case, −a = b2 for some b ∈ Fq2

satisfying bq+1 = 1, as required.

In conclusion, a = c2 or −a = c2 for some c ∈ Fq2 satisfying cq+1 = 1 if and only if either t
is odd and divides q + 1 or t is even and 4t divides q + 1. �

Corollary 3.16. Assume that q = pe for some odd prime p and some positive integer e.
Let (A,B,C) be a G-triple of respective orders (p, p, t), t 6= p. Then A is G-conjugate to B
if and only if t is a good G-order.
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Proof. Let (A,B,C) be a G0-triple and assume that its image in G, (Ā, B̄, C̄) has respective
orders (p, p, t), t 6= p. Denote γ = tr(C). Then Ā and B̄ are unipotent if and only if
A,B 6= ±I and tr(A), tr(B) ∈ {±2}. Moreover, Ā and B̄ are G-conjugate if and only if
either tr(A) = tr(B) and A and B are G0-conjugate or tr(A) = − tr(B) and A and −B are
G0-conjugate. From Proposition 3.14 we deduce that Ā and B̄ are G-conjugate if and only
if 2− γ or 2 + γ is a square in Fq. By Proposition 3.15, the latter is equivalent to t being a
good G-order. �

Lemma 3.17. Assume that q = pe where p is odd and 5 ≤ q 6= 9. There exists a G-triple
(A,B,C) of respective orders (p, p, t), t 6= p, such that 〈A,B〉 = G and A is G-conjugate to
B if and only if e = µPSL(p; t) and t is a good G-order.

Proof. Let (A,B,C) be a G-triple of respective orders (p, p, t), t 6= p. If 〈A,B〉 = G then
Theorem 3.2 implies that e = µPSL(p; t), and if moreover A is G-conjugate to B then
Corollary 3.16 implies that t is a good G-order.

If e = µPSL(p; t) then there exists a G-triple (A,B,C) of respective orders (p, p, t) (see
Section 3.3). If moreover t is a good G-order then A is G-conjugate to B, by Corollary 3.16.

We now use the methodology described in Section 3.3. Let γ ∈ Tpe(t). Observe that
Equation (4) is equivalent in this case to (γ± 2)2 = 0. Since t 6= p then γ 6= ±2, and so this
equality does not hold, implying that 〈A,B〉 is not a structural subgroup, by [18, Theorem
2]. As e = µPSL(p; t), it follows from Table 6 that if 5 < q 6= 9 then either p > 5; or p = 5
and e > 1 implying that t 6= 2, 3, 5; or p = 3 and e > 2 implying that t > 5. Therefore,
〈A,B〉 cannot be a small subgroup. If q = 5 then 〈A,B〉 ∼= A5 = G as required. In addition,
(A,B,C) is clearly not an irregular G-triple. The condition that e = µPSL(p; t) now ensures
that 〈A,B〉 = G. �

Remark 3.18. In the case G = PSL2(9) one needs to consider the G-orders 4 and 5.

• 4 is not a good G-order, and so, if (A,B,C) is a G-triple of respective orders (3, 3, 4)
then A, B are not G-conjugate.

• 5 is a good G-order. However, if (A,B,C) is a G-triple of respective orders (3, 3, 5)
and A is G-conjugate to B, then one can verify that 〈A,B〉 ∼= A5 is a small subgroup
of G (see also [13, §2, Theorem 8.4]).

Example 3.19. Table 9 presents for p = 5, 7, 11, 13 all the G-orders t 6= p such that
e = µPSL(p; t) ∈ {1, 2}, divided according to whether they are good G-orders or not. They
were computed using Magma.

good G-orders not good G-orders good G-orders not good G-orders

q = 5 3 2 q = 25 6, 13 4, 12
q = 7 2, 3 4 q = 49 5, 6, 12, 25 8, 24
q = 11 3, 5 2, 6 q = 121 10, 15, 30, 61 4, 12, 20, 60
q = 13 3, 7 2, 6 q = 169 5, 14, 17, 21, 42, 85 4, 12, 28, 84

Table 9. Good G-orders for q = 5, 7, 11, 13, 25, 49, 121, 169

4. Beauville Structures for PSL2(q) and PGL2(q)

In this section we prove Theorems 1 and 2.
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4.1. Cyclic groups. The following elementary lemma is needed for the proof of Theorems 1
and 2.

Lemma 4.1. Let C be a finite cyclic group, and let x and y be non-trivial elements in C. If
the orders of x and y are not relatively prime, then there exist some integers k and l such
that xk = yl 6= 1.

Proof. Let a and b denote the orders of x and y respectively and set c = gcd(a, b). Note

that by assumption c 6= 1. Also write a = a′c and b = b′c where gcd(a′, b′) = 1, so that xa
′

and yb
′

have order c.
Observe that C has a unique (cyclic) subgroup of order c, and let z be a generator of this

subgroup. Thus,

〈xa
′

〉 = 〈z〉 = 〈yb
′

〉.

Therefore, there exist some integers k and l such that

xa
′k = z = yb

′l 6= 1,

where the latter inequality follows from the fact that z is of order c > 1. �

4.2. Elements and conjugacy classes in PSL2(q) and PGL2(q). Let H = PSL2(q) or
PGL2(q) where q = pe for some prime p and some positive integer e. In this section, we
determine the elements A1, A2 of H such that Σ(A1) ∩ Σ(A2) = {1}, where for elements
A1, . . . , Am of H,

Σ(A1, . . . , Am) =
⋃

A∈H

∞
⋃

j=1

{AAj
1A

−1, . . . , AAj
mA−1}.

Given two triples (A1, A2, A3) and (B1, B2, B3) of H, this will enable us to determine
whether Σ(A1, A2, A3)∩Σ(B1, B2, B3) = {1} which is a necessary condition for H to admit
an unmixed Beauville structure (see Definition 1.1(iii)). Indeed the condition Σ(A1, A2, A3)∩
Σ(B1, B2, B3) = {1} is equivalent to the condition

Σ(Ai) ∩ Σ(Bj) = {1} ∀1 ≤ i, j ≤ 3.

Lemma 4.2. Let G = PSL2(q) where q = pe for some prime number p and some positive
integer e. Let A1, A2 ∈ G. Then Σ(A1) ∩ Σ(A2) = {1} if and only if one of the following
occurs:

(a) The orders |A1| and |A2| are relatively prime.
(b) The prime p is odd, e is even, |A1| = |A2| = p and A1, A2 are not G-conjugate.

Proof. If the orders of A1 and A2 are relatively prime then every two non-trivial powers Ai
1

and Aj
2 have distinct orders, and thus Σ(A1) ∩ Σ(A2) = {1} as required.

Now, assume that the orders of A1 and A2 are not relatively prime.
Observe that (q− 1)/d and (q+1)/d are coprime, where d = gcd(q− 1, 2). Thus, if there

exists some prime r 6= p which divides both |A1| and |A2|, then r divides exactly one of
(q−1)/d or (q+1)/d. Hence, |A1| and |A2| both divide exactly one of (q−1)/d or (q+1)/d,
and so A1 and A2 are G-conjugate to two elements C1 and C2 which belong to the same
cyclic group, either of order (q−1)/d or of order (q+1)/d (see Section 2.3). Lemma 4.1 now

implies that there exist some integers i and j such that Ai
1 6= 1 and Aj

2 6= 1 are G-conjugate,
and so Σ(A1) ∩ Σ(A2) 6= {1}.
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It now remains to treat the case where |A1| = |A2| = p, that is when A1 and A2 are
unipotent elements. If p = 2 then necessarily A1 and A2 are G-conjugate and so Σ(A1) ∩
Σ(A2) 6= {1}. However, when p is odd then A1 and A2 are not necessarily G-conjugate (see
Table 2 and Section 3.5).

If p is odd and e is odd then by Lemma 3.13, there exist some integers i and j such that

Ai
1 6= 1 and Aj

2 6= 1 are G-conjugate, and so Σ(A1) ∩ Σ(A2) 6= {1}. If p is odd and e is

even then by Lemma 3.13, for any two integers 1 ≤ i, j < p, Ai
1 and Aj

2 are G-conjugate
to A1 and A2 respectively. Thus, Σ(A1) ∩ Σ(A2) = {1} if and only if A1 and A2 are not
G-conjugate. �

Proposition 4.3. Let G = PSL2(q) where q = pe for some odd prime p and even integer
e. Take some x ∈ Fq2 \Fq such that x2 ∈ Fq, and let X ∈ PSL2(q

2) denote the image of the

matrix

(

x 0
0 x−1

)

∈ SL2(q
2).

Let A1, A2, B1, B2 ∈ G such that |A1| = |A2| = |B1| = |B2| = p. Then, XA2X
−1,

XB2X
−1 ∈ G, and A1 is G-conjugate to either A2 or XA2X

−1. Moreover,

(i) Either Σ(A1) ∩ Σ(A2) = {1} or Σ(A1) ∩Σ(XA2X
−1) = {1}.

(ii) Σ(A1, B1) ∩ Σ(A2) = {1} or Σ(A1, B1) ∩ Σ(XA2X
−1) = {1}

if and only if A1 is G-conjugate to B1.
(iii) Σ(A1, B1) ∩ Σ(A2, B2) = {1} or Σ(A1, B1) ∩ Σ(XA2X

−1,XB2X
−1) = {1}

if and only if A1 is G-conjugate to B1 and A2 is G-conjugate to B2.

Proof. By Corollary 3.12, XA2X
−1,XB2X

−1 ∈ G, A1 is G-conjugate to either A2 or
XA2X

−1, and B1 is G-conjugate to either B2 or XB2X
−1.

(i) If A1 and A2 are not G-conjugate then by Lemma 4.2, Σ(A1)∩Σ(A2) = {1}. On the
other hand, if A1 and A2 are G-conjugate, then A1 and XA2X

−1 are not G-conjugate, and
again by Lemma 4.2, Σ(A1) ∩ Σ(XA2X

−1) = {1}.
(ii) Assume that A1 and B1 are G-conjugate. If A2 is not G-conjugate to A1 (and to

B1) then by Lemma 4.2, Σ(A1) ∩ Σ(A2) = {1} (and Σ(B1) ∩ Σ(A2) = {1}), implying
Σ(A1, B1) ∩ Σ(A2) = {1}. Otherwise, XA2X

−1 is not G-conjugate to A1 (and to B1) and
so, similarly, Σ(A1, B1) ∩ Σ(XA2X

−1) = {1}.
Now assume that A1 and B1 are not G-conjugate. In this case, A2 is G-conjugate to

either A1 or B1. If A2 is G-conjugate to A1 then XA2X
−1 is G-conjugate to B1, and so by

Lemma 4.2, Σ(A1) ∩ Σ(A2) 6= {1} and Σ(B1) ∩ Σ(XA2X
−1) 6= {1}. Otherwise, A2 is G-

conjugate to B1 and so XA2X
−1 is G-conjugate to A1, thus, similarly, Σ(B1)∩Σ(A2) 6= {1}

and Σ(A1) ∩ Σ(XA2X
−1) 6= {1}.

(iii) Assume that A1 is G-conjugate to B1 and A2 is G-conjugate to B2. If A2 (and B2)
are not G-conjugate to A1 (and B1) then by Lemma 4.2, Σ(A1, B1) ∩ Σ(A2, B2) = {1}.
Otherwise, A2 (and B2) are G-conjugate to A1 (and B1), and so, XA2X

−1 (and XB2X
−1)

are not G-conjugate to A1 (and B1), hence, similarly, Σ(A1, B1)∩Σ(XA2X
−1,XB2X

−1) =
{1}.

If A1 is not G-conjugate to B1, then by (ii), Σ(A1, B1) ∩ Σ(A2) 6= {1} and Σ(A1, B1) ∩
Σ(XA2X

−1) 6= {1}. Similarly, if A2 is not G-conjugate to B2, then by (ii), Σ(A1) ∩
Σ(A2, B2) 6= {1} and Σ(A1) ∩ Σ(XA2X

−1,XB2X
−1) 6= {1}. �
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Lemma 4.4. Let G1 = PGL2(q) where q = pe for some odd prime number p and some
positive integer e. Let A1, A2 ∈ G1. Then Σ(A1) ∩ Σ(A2) = {1} if and only if one of the
following occurs:

(a) The orders |A1| and |A2| are relatively prime.
(b) A1 is split, A2 is non-split and gcd(|A1|, |A2|) = 2.
(c) A1 is non-split, A2 is split and gcd(|A1|, |A2|) = 2.

Proof. If gcd(|A1|, |A2|) = 1 then any two non-trivial powers Ai
1 and Aj

2 have distinct orders,
thus Σ(A1) ∩ Σ(A2) = {1}, as required.

If A1 is split and A2 is non-split, then necessarily gcd(|A1|, |A2|) ≤ 2, since gcd(q −
1, q + 1) = 2. In this case, any non-trivial power of A1 is a split element, while any non-
trivial power of A2 is a non-split element, and so they are not G1-conjugate, implying that
Σ(A1) ∩ Σ(A2) = {1}, as required.

If gcd(|A1|, |A2|) = 2 and both A1 and A2 are split (respectively non-split) elements, then
A1 and A2 are G1-conjugate to two elements C1 and C2 which belong to the same cyclic
group of order q − 1 (respectively q + 1). Lemma 4.1 now implies that there exist some

integers i and j such that Ai
1 6= 1 and Aj

2 6= 1 are G1-conjugate, and so Σ(A1)∩Σ(A2) 6= {1}.
If |A1| = |A2| = p, then A1 and A2 are unipotent, and so they are G1-conjugate, implying

that Σ(A1) ∩ Σ(A2) 6= {1}.
Otherwise, gcd(|A1|, |A2|) = r, where 2 < r 6= p, and so r divides exactly one of q − 1 or

q+1, implying that |A1| and |A2| both divide exactly one of q−1 or q+1. Hence, A1 and A2

are G1-conjugate to two elements C1 and C2 which belong to the same cyclic group, either
of order q − 1 or of order q + 1. Lemma 4.1 implies again that there exist some integers i

and j such that Ai
1 6= 1 and Aj

2 6= 1 are G1-conjugate, and so Σ(A1) ∩ Σ(A2) 6= {1}. �

4.3. Proof of Theorem 1.

The conditions are sufficient. Let τ1 = (r1, s1, t1) and τ2 = (r2, s2, t2) be two hyperbolic
triples of integers. Assume that G = PSL2(q) is a quotient of the triangle groups Tr1,s1,t1

and Tr2,s2,t2 with torsion-free kernel. Then one can find elements A1, B1, C1, A2, B2, C2 in G
of orders r1, s1, t1, r2, s2, t2 respectively, such that A1B1C1 = 1 = A2B2C2 and 〈A1, B1〉 =
G = 〈A2, B2〉, and so conditions (i) and (ii) of Definition 1.1 are fulfilled.

Moreover, the condition that r1s1t1 is coprime to r2s2t2 implies that each of r1, s1, t1 is
coprime to each of r2, s2, t2, and so by Lemma 4.2, Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1},
hence condition (iii) of Definition 1.1 is fulfilled, thus

(

(A1, B1, C1), (A2, B2, C2)
)

is an
unmixed Beauville structure of type (τ1, τ2).

It is left to consider the case where p is odd, e is even, q = pe > 9 and gcd(r1s1t1, r2s2t2) ∈
{p, p2}, which can be reduced to the following three cases.

(1) r1 = r2 = p and s1, s2, t1, t2 6= p.
Let X be as in Proposition 4.3, and denote A′

2 = XA2X
−1, B′

2 = XB2X
−1 and

C ′
2 = XC2X

−1. Then also A′
2B

′
2C

′
2 = 1 and 〈A′

2, B
′
2〉 = G. By Proposition 4.3,

either Σ(A1) ∩ Σ(A2) = {1} or Σ(A1) ∩Σ(A′
2) = {1}.

Moreover, since p is coprime to s2t2 then by Lemma 4.2,

Σ(A1) ∩ Σ(B2, C2) = {1}, Σ(A1) ∩ Σ(B′
2, C

′
2) = {1}.
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Similarly, since s1t1 is coprime to ps2t2, then by Lemma 4.2,

Σ(B1, C1) ∩ Σ(A2, B2, C2) = {1}, Σ(B1, C1) ∩ Σ(A′
2, B

′
2, C

′
2) = {1}.

Therefore, either Σ(A1, B1, C1)∩Σ(A2, B2, C2) = {1} or Σ(A1, B1, C1)∩Σ(A
′
2, B

′
2, C

′
2) =

{1}.
(2) r1 = r2 = s1 = p and s2, t1, t2 6= p.

Let (A′
2, B

′
2, C

′
2) be as in Case (1). By the assumption of the theorem, in this case,

t1 is a good G-order. Hence by Lemma 3.17, there exist A1, B1, C1 ∈ G of respective
orders p, p, t1 such that A1 is G-conjugate to B1, A1B1C1 = 1 and 〈A1, B1〉 = G.
By Proposition 4.3,

either Σ(A1, B1) ∩ Σ(A2) = {1} or Σ(A1, B1) ∩ Σ(A′
2) = {1}.

Moreover, since p is coprime to s2t2, then by Lemma 4.2,

Σ(A1, B1) ∩ Σ(B2, C2) = {1}, Σ(A1, B1) ∩ Σ(B′
2, C

′
2) = {1}.

Similarly, since t1 is coprime to ps2t2, then by Lemma 4.2,

Σ(C1) ∩ Σ(A2, B2, C2) = {1}, Σ(C1) ∩ Σ(A′
2, B

′
2, C

′
2) = {1},

Therefore, either Σ(A1, B1, C1)∩Σ(A2, B2, C2) = {1} or Σ(A1, B1, C1)∩Σ(A
′
2, B

′
2, C

′
2) =

{1}.
(3) r1 = r2 = s1 = s2 = p and t1, t2 6= p.

Let (A1, B1, C1) be as in Case (2). By the assumption of the theorem, in this
case, t1 and t2 are good G-orders. Hence by Lemma 3.17, there exist A2, B2, C2 ∈
G of respective orders p, p, t2 such that A2 is G-conjugate to B2, A2B2C2 = 1
and 〈A2, B2〉 = G. Again, we denote A′

2 = XA2X
−1, B′

2 = XB2X
−1 and C ′

2 =
XC2X

−1. Then also A′
2B

′
2C

′
2 = 1 and 〈A′

2, B
′
2〉 = G. By Proposition 4.3,

either Σ(A1, B1) ∩Σ(A2, B2) = {1} or Σ(A1, B1) ∩ Σ(A′
2, B

′
2) = {1}.

Moreover, since p, t1 and t2 are pairwise coprime, then by Lemma 4.2,

Σ(A1, B1) ∩ Σ(C2) = {1}, Σ(A1, B1) ∩ Σ(C ′
2) = {1},

Σ(C1) ∩ Σ(A2, B2) = {1}, Σ(C1) ∩ Σ(A′
2, B

′
2) = {1},

Σ(C1) ∩ Σ(C2) = {1}, Σ(C1) ∩ Σ(C ′
2) = {1}.

Therefore, either Σ(A1, B1, C1)∩Σ(A2, B2, C2) = {1} or Σ(A1, B1, C1)∩Σ(A
′
2, B

′
2, C

′
2) =

{1}.

We conclude that in these three cases, either
(

(A1, B1, C1), (A2, B2, C2)
)

or
(

(A1, B1, C1),

(A′
2, B

′
2, C

′
2)
)

is an unmixed Beauville structure of type (τ1, τ2).

The conditions are necessary. Assume that the group G = PSL2(q) admits an unmixed
Beauville structure of type (τ1, τ2), where τi = (ri, si, ti) for i = 1, 2. Then there exist
A1, B1, C1, A2, B2, C2 in G of orders r1, s1, t1, r2, s2, t2 respectively, such that A1B1C1 =
1 = A2B2C2 and 〈A1, B1〉 = G = 〈A2, B2〉, implying that G is a quotient of the triangle
groups Tr1,s1,t1 and Tr2,s2,t2 with torsion-free kernel, and so condition (i) is necessary.

Moreover, Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}, and so by Lemma 4.2, if p = 2 or e is
odd, then each of r1, s1, t1 is necessarily coprime to each of r2, s2, t2, implying that r1s1t1
is coprime to r2s2t2.



ON BEAUVILLE STRUCTURES FOR PSL2(q) 25

If p is odd and e is even then, by Lemma 4.2, gcd(r1, r2) = 1 or p, gcd(r1, s2) = 1 or
p, gcd(r1, t2) = 1 or p, gcd(s1, r2) = 1 or p, gcd(s1, s2) = 1 or p, gcd(s1, t2) = 1 or p,
gcd(t1, r2) = 1 or p, gcd(t1, s2) = 1 or p, and gcd(t1, t2) = 1 or p. Moreover, it is not
possible that r1 = s1 = t1 = p (respectively r2 = s2 = t2 = p), since in this case e = 1, by
Theorem 3.2. Thus, g = gcd(r1s1t1, r2s2t2) ∈ {1, p, p2}.

If moreover, q = pe > 9, p divides g and τi = (p, p, ti) (i ∈ {1, 2}) then ti 6= p and the
condition that Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1} implies that Ai is G-conjugate to Bi,
by Proposition 4.3. We now deduce from Corollary 3.16 that ti is a good G-order.

If q = 9 then it follows from a careful observation of the possible G-triples in Table 6 and
Remark 3.18 that necessarily g = 1.

In fact, if p is odd, e is even and q = pe > 9, then PSL2(q) always admits unmixed
Beauville structures of type

(

(p, p, t1), (p, p, t2)
)

for certain t1, t2. In the following lemma
we explicitly construct such a structure.

Lemma 4.5. Let 3 < q = pe for some odd prime number p and some positive integer
e. Then PSL2(q

2) admits an unmixed Beauville structure of type
(

(p, p, t1), (p, p, t2)
)

for

certain t1 dividing (q2 − 1)/2 and t2 dividing (q2 + 1)/2.

Proof. As q > 3, the following Remark 4.6 shows that there exist some b, c ∈ Fq2 such that

b2, c2 ∈ Fq2 \ Fq, c
2 − 4 is a square in Fq2 and b2 − 4 is a non-square in Fq2 . Let x be a

generator of the multiplicative group F
∗
q2 and set d = b/x.

Define the following matrices

A1 =

(

1 1
0 1

)

, A2 =

(

1 x
0 1

)

,

g1 =

(

1 0
c 1

)

, g2 =

(

1 0
d 1

)

,

B1 = g1A1g
−1
1 =

(

−c+ 1 1
−c2 c+ 1

)

, B2 = g2A2g
−1
2 =

(

−dx+ 1 x
−d2x dx+ 1

)

,

C1 = (A1B1)
−1 =

(

c+ 1 −c− 2
c2 −c2 − c+ 1

)

, C2 = (A2B2)
−1 =

(

dx+ 1 −dx2 − 2x
d2x −d2x2 − dx+ 1

)

.

In this case, |Ā1| = |Ā2| = |B̄1| = |B̄2| = p, and we denote by t1 and t2 respectively
the orders of C̄1 and C̄2. Moreover, Ā1 and B̄1 are conjugate in PSL2(q

2), Ā2 and B̄2 are
conjugate in PSL2(q

2), whereas Ā1 and Ā2 are not conjugate in PSL2(q
2) (see Section 3.5).

Now, one needs to verify that
(

(Ā1, B̄1, C̄1), (Ā2, B̄2, C̄2)
)

is an unmixed Beauville structure

for PSL2(q
2).

(i) By the construction, Ā1B̄1C̄1 = 1 = Ā2B̄2C̄2.
(ii) Observe that tr(C1) = 2− c2 and tr(C2) = 2−d2x2 = 2− b2 both belong to Fq2 \Fq,

as c2 and b2 both belong to Fq2 \Fq. Hence, neither C̄1 nor C̄2 is conjugate to some
element of PSL2(q). We now use the methodology described in Section 3.3. Let
i ∈ {1, 2}. Since tr(Ai) = tr(Bi) = 2 but tr(Ci) 6= ±2, the triple (Ai, Bi, Ci) is not
singular, implying that 〈Āi, B̄i〉 is not a structural subgroup, by [18, Theorem 2].

As ti is not an order of an element in PSL2(q), it follows from Table 6 that if
q2 > 9, then either p > 5; or p = 5 and ti 6= 2, 3, 5; or p = 3 and ti > 5. Therefore,
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〈Āi, B̄i〉 cannot be a small subgroup. In addition, (Āi, B̄i, C̄i) is not an irregular
PSL2(q

2)-triple. Therefore, 〈Āi, B̄i〉 = PSL2(q
2) for i ∈ {1, 2}.

(iii) The characteristic polynomial of C1 is λ2 − (2− c2) + 1, and its discriminant equals
c2(c2 − 4), which is a square in Fq2 , thus C̄1 is split and so t1 divides (q2 − 1)/2.

Similarly, the characteristic polynomial of C2 is λ
2−(2−b2)+1, and its discriminant

equals b2(b2−4), which is a non-square in Fq2 , thus C̄2 is non-split and so t2 divides

(q2 +1)/2. By Lemma 4.2, Σ(Ā1, B̄1, C̄1)∩Σ(Ā2, B̄2, C̄2) = {1}, since t1 and t2 are
coprime, Ā1 and Ā2 are not conjugate in PSL2(q

2), and so also B̄1 and B̄2 are not
conjugate in PSL2(q

2).

�

Remark 4.6. Recall that if q is odd then an element in PSL2(q) is non-split if and only
if the characteristic polynomial P (λ) := λ2 − αλ + 1 of its pre-image A ∈ SL2(q) (where
α = tr(A)) has no distinct roots in Fq, or equivalently, the discriminant α2 − 4 is a non-
square in Fq. Thus, by [18, Lemma 2], #{b ∈ Fq : b2 − 4 is a non-square} = (q − 1)/2 and
#{c ∈ Fq : c

2 − 4 is a square} = (q + 1)/2.
Therefore, #{c ∈ Fq2 : c

2−4 is a square} = (q2+1)/2, and #{b ∈ Fq2 : b2−4 is a non-square} =

(q2 − 1)/2. In addition, #{c ∈ Fq2 : c2 ∈ Fq} = 2q − 1, and if c2 ∈ Fq then also c2 − 4 ∈ Fq

is a square in Fq2 . Hence,

#{c ∈ Fq2 : c
2 /∈ Fq, c2 − 4 is a square} = (q2 + 1)/2 − (2q − 1) = (q2 − 4q + 3)/2,

and

#{b ∈ Fq2 : b
2 /∈ Fq, b2 − 4 is a non-square} = (q2 − 1)/2.

4.4. Proof of Theorem 2.

The conditions are necessary. Assume that the group G1 = PGL2(q) admits an unmixed
Beauville structure of type

(

(r1, s1, t1), (r2, t2, s2)
)

. Then there exist A1, B1, C1, A2, B2, C2

in G1 of orders r1, s1, t1, r2, s2, t2 respectively, such that A1B1C1 = 1 = A2B2C2 and
〈A1, B1〉 = G1 = 〈A2, B2〉, implying that G1 is a quotient of the triangle groups Tr1,s1,t1

and Tr2,s2,t2 with torsion-free kernel, and so condition (i) is necessary.
Therefore, we may assume that (r1, s1, t1) and (r2, s2, t2) are hyperbolic triples, and

moreover they are irregular w.r.t q2 (see §3.3).
If, for example, gcd(r1, r2) > 2, then Lemma 4.4 implies that Σ(A1)∩Σ(A2) is non-trivial,

contradicting Σ(A1, B1, C1) ∩ Σ(A2, B2, C2) = {1}. Hence, condition (ii) is necessary.
Since (r1, s1, t1) and (r2, s2, t2) are hyperbolic and irregular, both of them must contain

at least two even integers, one of which is greater than 2. Hence, we may assume that
r1, r2 are even and that r1, r2 > 2. If both r1, r2 divide q − 1 (respectively q+ 1) then both
A1, A2 are split (respectively non-split) and by Lemma 4.4, Σ(A1) ∩ Σ(A2) 6= {1}, yielding
a contradiction.

Hence, we may assume that r1 divides q−1 and r2 divides q+1, and so A1 is split and A2

is non-split. If s1 (respectively t1) is even and does not divide q−1, then it is necessarily an
even integer greater than 2, thus it must divide q+1, and so B1 (respectively C1) is non-split.
Lemma 4.4 implies again that Σ(B1) ∩ Σ(A2) 6= {1} (respectively Σ(C1) ∩ Σ(A2) 6= {1}),
yielding a contradiction. Similarly, if s2 (respectively t2) is even, then it necessarily divides
q + 1. Hence, condition (iii) is necessary.
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Moreover, if C1 (respectively C2) has order 2, then the above argument shows that
it is necessarily split (respectively non-split). By Corollary 3.9, (r1, s1, 2) (respectively
(r2, s2, 2)) is a good involuting triple w.r.t q (see Definition 1.5), implying that condition (iv)
is necessary.

The conditions are sufficient. Let (r1, s1, t1) and (r2, s2, t2) be two hyperbolic triples of
integers. Assume that G1 = PGL2(q) is a quotient of the triangle groups Tr1,s1,t1 and
Tr2,s2,t2 with torsion-free kernel. Then one can find elements A1, B1, C1, A2, B2, C2 in G1

of orders r1, s1, t1, r2, s2, t2 respectively, such that A1B1C1 = 1 = A2B2C2 and 〈A1, B1〉 =
G1 = 〈A2, B2〉, and so conditions (i) and (ii) of Definition 1.1 are fulfilled.

We may assume that A1, A2, B1, B2 ∈ G1 \ G and that C1, C2 ∈ G. Hence r1, r2, s1, s2
are even. Moreover, by Theorem 3.3, (r1, s1, t1) and (r2, s2, t2) are irregular w.r.t q2.

The condition that gcd(r1, r2) ≤ 2 now implies that one of r1, r2 divides q − 1 and the
other divides q+1. We may assume that r1 | q− 1 and r2 | q+1, and so A1 is split and A2

is non-split. Lemma 4.4 now implies that Σ(A1) ∩ Σ(A2) = {1}.
If s1 > 2, then the condition that s1 | q − 1 implies that B1 is split. If s1 = 2 then

(r1, 2, t1) is a good involuting triple w.r.t q and so by Corollary 3.9, B1 is split. Lemma 4.4
implies again that Σ(B1) ∩ Σ(A2) = {1}.

Similarly, if s2 > 2, then the condition that s2 | q + 1 implies that B2 is non-split. If
s2 = 2 then (r2, 2, t2) is a good involuting triple w.r.t q and so by Corollary 3.9, B2 is
non-split. Lemma 4.4 implies again that Σ(A1) ∩ Σ(B2) = {1} and Σ(B1) ∩ Σ(B2) = {1}.

If t1 > 2 is even, then the condition that t1 | q − 1 implies that C1 is split, If t1 =
2 then (r1, s1, 2) is a good involuting triple w.r.t q and so by Corollary 3.9, C1 is split.
Lemma 4.4 implies again that Σ(C1) ∩ Σ(A2) = {1} and Σ(C1) ∩ Σ(B2) = {1}. If t1 is
odd, then necessarily gcd(t1, r2) = 1 and gcd(t1, s2) = 1, and Lemma 4.4 implies that
Σ(C1) ∩ Σ(A2) = {1} and Σ(C1) ∩ Σ(B2) = {1}.

Similarly, if t2 > 2 is even, then the condition that t2 | q+ 1 implies that C2 is non-split,
and if t2 = 2 then (r2, s2, 2) is a good involuting triple w.r.t q and so by Corollary 3.9, C2 is
non-split. Lemma 4.4 implies again that Σ(A1) ∩ Σ(C2) = {1} and Σ(B1) ∩ Σ(C2) = {1}.
If t2 is odd, then necessarily gcd(r1, t2) = 1 and gcd(s1, t2) = 1, and Lemma 4.4 implies
that Σ(A1) ∩ Σ(C2) = {1} and Σ(B1) ∩ Σ(C2) = {1}. Moreover, either gcd(t1, t2) = 1, or
gcd(t1, t2) = 2 and C1 is split while C2 is non-split, and so, by Lemma 4.4, Σ(C1)∩Σ(C2) =
{1}.

To conclude, Σ(A1, B1, C1) ∩Σ(A2, B2, C2) = {1}, hence condition (iii) of Definition 1.1
is fulfilled.
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