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Rectification of enriched co-categories

RUNE HAUGSENG

We prove a rectification theorem for enriched-categories: IfV is a nice
monoidal model category, we show that the homotopy theorgwetategories
enriched inV is equivalent to the familiar homotopy theory of categosggtly
enriched inV. It follows, for example, thato-categories enriched in spectra or
chain complexes are equivalent to spectral categoriesgquaigégories. A similar
method gives a comparison result for enriched Segal caegarhich implies that
the homotopy theories af-categories andof, n)-categories defined by iterated
oo-categorical enrichment are equivalent to those of mordli@nversions of
these objects. In the latter case we also include a diregpadson with complete
n-fold Segal spaces. Along the way we prove a comparisontrémufibrewise
simplicial localizations potentially of independent use.

18D2, 55U35; 18D50, 55P48

1 Introduction

In [13], David Gepner and | set up a general theory of “weakly emdchategories”
— more precisely, we introduced a notion®f-categoriegnrichedin a monoidaloo-
category, and constructed an-category of these objects where the equivalences are
the natural analogue of fully faithful and essentially sative functors in this context.
In this paper we are interested in the situation where theondahoo-category we
enrich in can be described by a monoidal model category —afip$ies to many, if not
most, interesting examples of monoidsal-categories. 1V is a model category, then
inverting the weak equivalencé¥ gives anoo-categoryV[W—1]; if V is a monoidal
model category, the’W[W~1] inherits a monoidal structure, so our theory produces
an oco-category ofV[W~1]-enriched co-categories. On the other hand, there is also
often a model structure on ordinaky-enriched categories (cf19, 6, 32, 24]) where

the weak equivalences are the so-call@d-equivalencesnamely the functors that
areweakly fully faithful(i.e. given by weak equivalences \n on morphism objects),
and essentially surjective (up to homotopy). Our main goahis paper is to prove a
rectification theorem in this setting:
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Theorem 1.1 If V is a nice monoidal model category, then the homotopy thebry o
oo -categories enriched M[W~1] is equivalent to the homotopy theory of ordinary
V -enriched categories with respect to the DK-equivalences.

In particular, V[W~1]-enriched oo -categories can be rectified Y6-categories: every
V[W~1-enrichedoo-category is equivalent to one coming from a category eadgh
V. We will state and prove a precise version of this resultdn Bhe precise meaning
of “nice” required applies, for example, to the category lzdio complexes over a ring
with the usual projective model structure, and certain rhettactures on symmetric
spectra. We can therefore conclude that thecategory of spectral categories is
equivalent to that of spectrak -categories, and theo-category of dg-categories to
that of co-categories enriched in the derived-category of abelian groups.

If V is a nice Cartesian model category, i.e. a monoidal modeboay with respect
to the Cartesian product, then the theory\ofenriched Segal categories, as defined
by Lurie [20] and Simpson 30Q], gives an alternative notion of “weakly -enriched
categories”. Using a similar proof strategy we also proveramgarison result in this
setting:

Theorem 1.2 If V is a nice Cartesian model category, then the homotopy thefory
oo -categories enriched M[W~1] is equivalent to the homotopy theory\étenriched
Segal categories.

We will prove a precise version of this theorem i6. §rom this we can conclude that
the homotopy theories af-categories andot, n)-categories constructed i3, §6.1]
using iterated enrichment are equivalent to those coriettuas iterated Segal cate-
gories, starting with sets or simplicial sets, respecdfiv@hese are due to Tamsamani
and Pellissier-Hirschowitz-Simpson, and are construatecthodel categories i3()].

Our last main result, which we will prove in7g is a more direct comparison with
(o0, N)-categories, generalizing that between-categories enriched in spaces and
Segal spaces irlB, 84.4]:

Theorem 1.3 The homotopy theory ofco, n)-categories obtained by iterate -
categorical enrichment is equivalent to that of completield Segal spaces.

We now outline the proof of Theorerh.1 and the organization of the paper. In
[13] we defined enrichedo-categories in a monoidak -categoryV as “many-object
associative algebras” M, or more precisely as algebras for a “many-object assueiati
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operad”’As’, whereX is a space. In 8we briefly review this definition and the context
in which it takes places, hamely the theory of non-symmetsicoperads.

The first step in the proof of our rectification theorem is towlthat for X a set andv/

a nice monoidal model category, the-category Algyor(V[W~1]) of AP -algebras in
V[W~1] is equivalent to thex-category obtained by inverting the weakly fully faithful
functors in the category Gatv) of V-categories with a fixed set of objecks To
see this, we first (in 8) review Lurie’s rectification theorem for associative ddopes
(Theorem 4.1.4.4 ofZ1]) and observe that it generalizes to associative algeloras i
certain non-symmetric monoidal model categories.

Next, we wish to combine these equivalences to an equivaleneo-categories
where the sets of objects are allowed to vary. 18] iwe combined thex-categories
Alg A;p(V) for all spacesX to anoco-category Alg,(V) of categorical algebrasHere,
we consider thexo-category Alg,(V)set Of categorical algebras witketsof objects.
We will prove that ifV is a nice monoidal model category, then AWV [W1)set is
equivalent to thexo-category obtained from the category G4t(of V -categories by
inverting those morphisms that are weakly fully faithfutldsijective on sets of objects.
To see this we need a technical result absticategorical localizations of fibrations
of categories, which we prove im§

The “correct” co-category ofV-oo-categories is not Alg(V), but rather theco-
category obtained from this by inverting the fully faithfahd essentially surjective
functors. One of the main results dfj] was that this is equivalent to the full subcat-
egory Ca@O of Alg.,(V) spanned by thos¥-oo-categories that areompletein the
sense that their space of objects is equivalent to theisifj@sy space of equivalences.
We also showed, in1f3, Theorem 5.2.17], that inverting the fully faithful and ess
tially surjective morphisms in Alg(V) is equivalent to inverting them in Alg(V)set.
Since the DK-equivalences in CHli, if V is a nice monoidal model category, corre-
spond to the fully faithful and essentially surjective ftors in Alg.,(V[W~1])set, we
conclude that theo-category obtained from Catj by inverting the DK-equivalences
is equivalent to C¥fW 1. We will give the details of the proof we have just sketched
in 85, after the technical preliminaries of3&nd &. We then prove the comparison
with Segal categories using a similar proof ié &d the comparison with-fold Segal
spaces in &.

1.1 Notation

Much of this paper is based on work of Lurie ib9 21]; we have generally kept his
notation and terminology. In particular, by an-categorywe mean a quasicategory,
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i.e. a simplicial set satisfying certain horn-filling prafies. However, in the few cases
where the notation ofl[3] differs from that of Lurie we have kept that of the latter.
Here are some hopefully useful reminders:

1.2

Generic categories are generally denoted by single capitial-face letters
(A, B, C) and generico-categories by single caligraphic letters,(B, C). Spe-
cific categories ando-categories both get names in the normal text font: thus
the category of smalV/ -categories is denoted C¥{( and theocc-category of
small V-co-categories is denoted Cat

A is the simplicial indexing category, i.e. the category withjects the non-
empty ordered setsn] = {0,1,...,n} and order-preserving maps as mor-
phisms.

A model category igractable if it is combinatorial and there exists a set of
generating cofibrations that consists of morphisms betweéhrant objects.

Setr is the category of simplicial sets, and §e|s the category ofmarked
simplicial sets, i.e. simplicial sets equipped with a atfilen of 1-simplicies
including the degenerate ones.

If C is anoo-category, we write.C for theinterior or underlying spacef C,
i.e. the largest subspace @fthat is a Kan complex.

If f: ¢ — Disleftadjointto afunctog: D — €, we will refer to the adjunction
asf 4g.

8 is theoo-category of spaces (in the sense of homotopy types @roupoids),
and Cat, is the co-category ofco-categories.

If C is a model category, we writ€% for the full subcategory o€ spanned
by the cofibrant objects.
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2 Brief Review of Non-Symmetricoo-Operads and Enriched
oco-Categories

To orient the reader, we begin with a brief review of the ngmetric version of
Lurie’s oco-operads and the definition of enriched-categories. We focus on the
essential ideas and do not give complete technical detidefmitions or results; for
a more detailed introduction we refer the readerl® g2].

The starting point for the theory of non-symmetric-operads is thecategory of
operatorsof a non-symmetric operad (originally introduced by May dimdmason for
symmetric operads):

Definition 2.1 Let O be a coloured non-symmetric operad (or in other wordgii-
category. Itscategory of operator©® has objects (possibly empty) list&y( . . ., Xp)
of objects of O, and a morphismXa, ..., Xn) — (Y1,...,Ym) is given by a mor-
phism¢: [m] — [n] in A and for each = 1,..., m a multimorphism inO from
(X¢(i_1)+1, e ,X¢(i)) to ;.

There is an obvious projection: O® — A°P, with the following properties:

(a) Recall that a morphism: [n] — [m] in A is inert if it is the inclusion of
a subinterval, i.e. ifo(i) = ¢(0)+i foralli = 0,...,n. For every inert
morphism¢: [n] — [m] and every objectX € O® with 7(X) = [m], there
exists arr-coCartesian morphis — ¢ X over ¢.

(b) Let pi: [1] — [n] denote the inert morphism it that sends 0 td — 1 and 1
toi. The functorsof?ﬂ — Oﬁ] induced by the coCartesian morphisms owger
combine to give an equivalence of categories

n
® ~ ®
o — 1 of:
i=1

(c) Given objectsX € Opy, Y € Opyy, and a morphismp: [m] — [n] in A, the
inert mapsY — p; 1Y induce an isomorphism

m
Homg, (X, Y) = [ [ Homge (X, piaY),
i=1

where Hor@@,(X,Y) denotes the set of morphist¥s— Y in O% that map to
¢ in A°P,
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It is not hard to see that these three propertiearacterizethe categories of operators
of coloured non-symmetric operads:

Proposition 2.2 Any functorm: C — A°P that satisfies (a)—(c) determines a coloured
non-symmetric operad that h&s as its category of operators. Moreover, under this
identification morphisms of operads correspond preciselfumctors overA°P that
preserve the coCartesian morphisms over the inert mas$fin

Properties (a)—(c) have precise analogues in the theory afategories, and aon-
symmetricoo-operadis precisely a functor obo-categories® — A°P with these
properties. IfO and®P are non-symmetrieo-operads in this sense, it is also easy to
define theco-category ofO-algebrasin P:

Definition 2.3 The co-category Alg,(P) of O-algebrasin P is the full subcategory
of the functoroo-category Fupoe(O, P) of functors fromO to P over A°P spanned
by those functors that preserve the coCartesian morphisersreert maps inA°P,

The simple definition of the homotopically correct categofyalgebras is one of the
key advantages of the theory ef-operads over operads enriched in topological spaces
or simplicial sets.

An important source of non-symmetrigo-operads are non-symmetric operads en-
riched in simplicial sets or topological spaces: Of is a coloured non-symmetric
operad enriched in simplicial sets, all of whose mappingepare Kan complexes,
then its simplicial category of operators (defined compfesmalogously to the set-
based version discussed above) is fibrant, and its coheeevie NO® — A°P is an
oo-operad; for operads enriched in topological spaces, welgitake the singular sim-
plicial sets of the mapping spaces first. For example, thecests/e operad just gives
the identity mapA°P — A°P, which is easily seen to be equivalent to theoperad as-
sociated to am\,-operad. This should not be surprising: in tikecategorical setting
it does not make sense to talk about “strict” associativelaigs, the only meaningful
notion is that of an algebra associative up to coherent hopied, and this notion is
already encoded in algebras for the associativeoperad.

We can also recognize monoidal categories from the caterfayerators perspective:
they are precisely those categories of operat@rs—+ A°P that are Grothendieck
opfibrations. Analogously we can define a monoigalcategory to be a non-symmetric
oco-operad that is also a coCartesian fibration, but this camlasreformulated more
simply:
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Definition 2.4 A monoidal co-categoryis a coCartesian fibratioW® — A°P such
that for each fil € A the functor Vi, — [TiL, Vjj; induced by the coCartesian
morphisms over the inert maps: [1] — [n] is an equivalence ofo-categories.

Using the correspondence between coCartesian fibratiodsfuarttors to theoo-
category Cat, of co-categories, we getan equivalence between moneig&ategories
andassociative monoids Cat:

Definition 2.5 Let € be anco-category with products. Aassociative monoith ©
is a functory: A°° — C that satisfies th&egal condition for any [n] € A the map
w(n) — Hinzl #([1]) induced by the mapg(p;) is an equivalence.

There is also an equivalence between associative monoigisind algebras for the as-
sociativeco-operad inC (equipped with the monoidal structure given by the Cartesia
product). In particular, we have:

Proposition 2.6 There are equivalences af -categories between associative algebras
in Cat,,, associative monoids iBat,,, and monoidabc -categories.

What we have discussed so far is the non-symmetric variant ajperads. Lurie’s
original theory, developed ir2[l], concerns symmetrico-operads. This has a com-
pletely analogous motivation, the only difference is thahie definition of the category
of operators the categorx°F is replaced by the categoiy’P of pointed finite sets. In
the co-categorical setting this leads to Lurie’s definitions ahsgetricoo-operads and
symmetric monoidabo-categories. As the non-symmetric theory is the one retevan
to the present paper, we refer the readelid for more details and do not discuss this
further here.

Instead, we turn to a brief summary of the theory of enricheecategories as intro-
duced in [L3]. Recall thatifV is a monoidal category, thev-enriched categories with
a fixed setX of objects can be regarded as the algebras for a certainymomstric
coloured opera®y:

Definition 2.7 If X is a set, the multicategor®x hasX x X as its set of objects, and
the multimorphism sets are defined by

%, ifyi=x,i=0,...,n,
Ox((X0, Y1), (X1, ¥2), - - -, (Xn—1, ¥n); (Yo, Xn)) := Y .
(), otherwise.



8 R Haugseng

This suggests that i¥ is a monoidaloo-category then we can defirig-enrichedoc-
categories with set of objecd$ to be algebras iV for (the non-symmetriec-operad
associated toDx. This is indeed a correct definition, but it turns out not tothe
most convenient to work with — for instance, we get a muchepdiehaved theory
of enrichedoo-categories if we allow them to hawpacesf objects, which is more
easily accomplished with an alternative definition.

We therefore considageneralized non-symmetrigo-operads— these are what we
obtain by relaxing condition (b) for a category of operatapsve to aIIova%] to not
be just a point, and instead requidg;; to be an iterated fibre product 6f;; over O -
(The objects that have such categories of operators in ttiegsef ordinary categories
have been studied under the nanfiegnulticategoriesby Leinster andvirtual double
categorieshy Cruttwell and Shulman.) For each sétve can define such a category of
operators whose algebras in a monoidal category (i.e. dumaverA°P that preserve
coCartesian morphisms over inert maps) are preciselyledicategories with set of

objectsX:

Definition 2.8 Let X be a set. The categorg)s?(p has objects listsxg, ..., X,) of
elementsx; € X, and a unique morphisnxd; ..., Xn) — (Xy(0), - - -, X¢(m) for each
mapo¢: [m] — [n] in A.

There is an obvious projection}’ — A, and if V is a monoidal category, then
ASP-algebras in the category of operat8 are precisely -enriched categories with
set of objectsX. This leads to our definition of enricheg-categories:

Definition 2.9 If V¥ — A% is a monoidaloo-category, then &-enriched co-
categorywith set of objectsX is an algebra for the generalized non-symmetxic
operadAy’ in V®.

The projectionAS? — AP is the Grothendieck opfibration associated to the functor
A% — Set that sendsn] to X*(™1D and¢: [m] — [n] in A to the mapx*("+D —;
X*(M1D) that takesXo, . . ., Xn) tO (X4(0), - - - » X¢(m)) - This has an obvious generalization
where we letX be a space: we simply take the coCartesian fibraﬁ@ﬁ — A of

the analogous functoA® — X that sendsr] to X*(M1),

When X is a set, bothOx-algebras and\}’-algebras in a monoidal categow are
equivalent toV -categories withX as their set of objects. Similarly, algebras for the
non-symmetricxo-operadOy and the generalized non—symmet<|5'm:—operadA§’<p are
equivalent, with the equivalence induced by a map of geizethbo-operads (this is

a special case ofl3, Corollary 4.2.8]):



Rectification of enrichedo-categories 9

Proposition 2.10 SupposeX is a set. There is an obvious functex from ASP to
Oy that sends the listxo, . .. ,%n) to the list ((Xo, X1), (X1,%2), - - - , (¥n—1,%n)). If V
Is a monoidaloo -category, then the functor fromlgg, (V) to Alg A;p(\?) given by
composition withvy is an equivalence afo -categories.

3 Rectifying Associative Algebras

In [21, 84.1.4] Lurie proves a rectification result for assocatalgebras: ifV is

a nice symmetric monoidal model category, then shecategory of to-categorical)
associative algebras W], i.e. theco-category of algebras for the non-symmetric
oo-operad A°P, is equivalent to that associated to the model category tatt{g)
associative algebras M, as constructed by Schwede and Shipgg}.[ This is proved
by showing that both sides are equivalent to thecategory of algebras for the free
associative algebra monad a{W~1]. In this section we review this result, and
observe that it generalizes slightly to the setting of ngmmetric monoidal model
categories; we will apply this to enriched categoriesin §

3.1 Review of Monoidal Model Categories

In this subsection we briefly review the construction of a mdal co-category from
a monoidal model category; the full details can be foun®i §4.1.3].

If V is a simplicial model category, then one way of constructmgoo-category
from V is to regard the full subcategon® of fibrant-cofibrant objects as a simplicial
category. This is fibrant in the model structure on simpliciategories, and so its
coherent nerve M° is anoo-category. However, this construction does not work well
with respect to monoidal structures. We will therefore éast use a more general, but
less explicit, construction, that does not requitrdo have a simplicial enrichment:

Definition 3.1 Recall that there is a model structure (constructedl1® g3.1.3])
on the category Sgtof marked simplicial sets that is Quillen equivalent to togal
model structure on Sgt In this model category all objects are cofibrant and thefitora
objects are precisely those marked simplicial st whereX is a quasicategory and
Sis the collection of equivalences K. If C is anoco-category andV is a collection of
morphisms inC, then a fibrant replacement for the marked simplicial 8eY\() in this
model structure gives the universal-categoryC[W~1] obtained frome by inverting
the morphisms inV.
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If V is a model category, an@V is the class of weak equivalences \h we can
therefore define thex-categoryV[W~1] associated to the model category to be a
fibrant replacement for the marked simplicial selV(\W) in this model structure on
Setg. Equivalently, we can restrict ourselves to cofibrant, filbrar fibrant-cofibrant
objects and the weak equivalences between them. To get dedrsbiuctures on the
localization it is convenient to consider the cofibrant obje since this gives anc-
category equivalent t&%[W~1] we will use this notation also in this case, despite the
slight ambiguity this introduces.

Definition 3.2 LetV be a model category equipped with a biclosed monoidal streict
We say thatVv is amonoidal model categorif the unit of the monoidal structure is
cofibrant and the tensor product functer V x V — V is a left Quillen bifunctor.

Remark 3.3 LetV be a model category equipped with a biclosed monoidal streict
whose unit is cofibrant. If : A — B andg: A’ — B’ are morphisms iV, let f(1g be
the induced morphism

A® B Ilpon B A — B® B

this is thepushout-producof f andg. ThenV is a monoidal model category if and
only if f(lg is a cofibration whenevef and g are both cofibrations, and a trivial
cofibration if eitherf or g is also a weak equivalence.

Lurie shows in P1, Proposition 4.1.3.2] that the functor that takes a p&ir\)
consisting of armo-categoryC and a collection of morphismé/ to the localization
C[W~1] preserves products. It follows that this functor pressi@ealgebra structures
for any co-operad®. If V is a monoidal model category with weak equivalenéés
then (N\V°°f, W) is an associative algebra in the-category of such pairs, and so, since
a monoidaloco-category is the same thing as an algebra for the associathaperad

in Cat,,, we obtain the following key special case of this result:

Proposition 3.4 ([21, Example 4.1.3.6]) LetV be a monoidal model category. Then
V[W~Y] inherits the structure of a monoidab -category.

Remark 3.5 The requirement that the unit be cofibrant is often not takempart
of the definition of a monoidal model category, as there angontant examples of
model categories with monoidal structures where the univisofibrant, but the other
requirements for a monoidal model category as we have defiireed satisfied. We
therefore point out that the assumption thathas a cofibrant unit is not essential
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for Proposition3.4 to hold. If we drop this assumption then \NW) is still a non-
unital associative algebra, and ¥$W—1] inherits a non-unital monoidato-category
structure. It is easy to see that a cofibrant replacementh&unit of the monoidal
structure inV gives aquasi-unitin the sense ofg1, Definition 5.4.3.5] — roughly
speaking, this is an objettsuch thalX ® | ~ X ~ | ® X for every objectX, but we are
not given coherent associativity data for combinations oitiple such equivalences. A
non-unital monoidabo-category with a quasi-unit can be extended to a full moroida
structure with this as unit in an essentially unique way BY, [Theorem 5.4.3.8],
and so a monoidal model category without a cofibrant unit istluces a monoidal
oo-category structure on its associategcategory.

3.2 Model Categories of Associative Algebras

In this subsection we briefly recall the construction of a elatructure on associative
algebras, due to Schwede and Shipley, and observe thatitajzes to non-symmetric
monoidal model categories satisfying an appropriate eisfithe monoid axiom. First
we recall an observation of Schwede and Shipley on modedtates for algebras over
monads:

Definition 3.6 Let T be a monad on a model catego@. We say thatT is an
admissiblemonad if there exists a model structure on the category TAlgif T-
algebras where a morphism is a weak equivalence or fibratiamd only if the
underlying morphism irC is a weak equivalence or fibration.

Write Fr: C 2 Alg(T): Ut for the associated adjunction. @ is a combinatorial
model category with setsandJ of generating cofibrations and trivial cofibrations, we
say thatT is combinatorially admissiblé it is admissible and the model structure on
Alg(T) is combinatorial withF(l1) and F1(J) as sets of generating cofibrations and
trivial cofibrations.

Remark 3.7 Given a monad on C, a model structure on Alg() where a morphism

is a weak equivalence or a fibration if and only if its undertyimorphism inC is

one is unique if it exists. Clearly, the existence of such aehstructure implies
certain restrictions off — for example, it must preserve weak equivalences between
cofibrant objects — but we will not attempt to describe the=re has we will only need

the following admissibility criterion of Schwede and Sieipl

Theorem 3.8 (Schwede-Shipley,2P, Lemma 2.3]) SupposeC is a combinatorial
model category and is a filtered-colimit-preserving monad @, and letd be a set
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of generating trivial cofibrations fo€. If the underlying morphism irC of every
morphism in the weakly saturated class generated-p§d) in Alg(T) is a weak
equivalence, them is combinatorially admissible.

Remark 3.9 Since weak equivalences {D are closed under retracts and transfinite
composites, the weakly saturated class generateB7i(§) will be contained in the
weak equivalences provided the pushout of any morphidfg (d) along any morphism

in Alg(T) is a weak equivalence.

In [29], Schwede and Shipley analyze such pushouts in the cassatfiasve algebras.
They show that the pushout is a transfinite composite of pushaf certain maps, as
follows:

Theorem 3.10 (Schwede-Shipley29, §6]) SupposeC is a combinatorial biclosed
monoidal model category. Writglg(C) for the category of associative algebra objects
of C andF: C = Alg(C) : U for the free algebra functor and forgetful functor. Let
f: X =Y be a morphism irC andg: F(X) — A be a morphism irAlg(C). If

F()
F(X) —— F(Y)

gh hg,

A B

f/
is a pushout diagram iAlg(C), then there is a sequence of morphismg&in

A=By B B,

such thatB = colim;B; and ¢, is a pushout ofjIf)="0j, wherej is the unique
morphism() — A.

Based on this result Schwede and Shipley give a condition e-thnoid axiom
— for the hypothesis of Theore®.8 to hold, when the monoidal structure on the
model categoryC is symmetri¢ which is true in most of the interesting examples.
However, in the next section we wish to consider associailgebras in functor
cateogories Fu{ x X,V) (where X is a set), equipped with the non-symmetric
“matrix multiplication” tensor product, for which assotiiee algebras are precisely
V -categories withX as their set of objects. As noted by Murad], the following
non-symmetric version of the monoid axiom applies in thistest:
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Definition 3.11 SupposeC is a monoidal model category, and lgtbe the set of
morphisms inC of the form f,(0- - - OOf,, where eachH is either a trivial cofibration
or of the form() — X; for some cofibrani; € C, with at least ond; being a trivial

cofibration. We say that satisfies thenonoid axionif the weakly saturated class$

generated byl is contained in the weak equivalencesdn

Remark 3.12 Since the pushout-produdi (~ A)CIf is just the tensor produd& ® f
for any morphisnt , the morphisms iril are all trivial cofibrations irC.

Remark 3.13 If C is symmetricmonoidal, then we can use the symmetry to move
all the morphisms of the forn§ — A in an element ofl to one side. Thus, since
the pushout product of trivial cofibrations @ is a trivial cofibration by RemarR.3,

in the symmetric case the monoid axiom is equivalent to tlmeesponding statement
wheresl consists of morphisms of the forin X with f a trivial cofibration andX a
cofibrant object ofC. This is the original form of the monoid axiom, due to Schwede
and Shipley.

Corollary 3.14 Let C be a combinatorial biclosed monoidal model category that
satisfies the monoid axiom. Then the free associative agabnad orC is combina-
torially admissible.

Proof By Remark3.9it suffices to show that if : X — Y is a trivial cofibration in
C, g: F(X) — Ais a morphism in AlgC), and

F()
F(X) —— F(Y)

gh hg,

A B

fl

is a pushout diagram in Al§)), thenf’ is a weak equivalence i6. SinceC satisfies
the monoid axiom, it suffices to show thdtis contained in the weakly saturated class
il generated by the class from Definition3.11

By TheorenB3.10 the morphisnf’ is a transfinite composite of pushouts of morphisms
of the form {O0f)~"0Jj, wherej is the unique morphisnd — A, so to show thaf’
is contained ini it suffices to observe that these morphisms are contained by
definition. O

We will also need the following result of Schwede and Shipley
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Corollary 3.15 Let C be a combinatorial biclosed monoidal model category that
satisfies the monoid axiom. Then the forgetful fundttg(C) — C preserves cofibrant
objects.

3.3 Rectifying Algebras

We now observe that Lurie’s rectification result for asstagaalgebras also holds
for non-symmetric monoidal model categories. To state ¢isalt, we first make the
following definition:

Definition 3.16 Let C be a left proper tractable biclosed monoidal model category
that satisfies the monoid axiom. By CorollaByl5 the forgetful functor from as-
sociative algebras i€ to C preserves cofibrant objects, so we have a natural func-
tor Alg(C)®°" — Alg(C®f. It is immediate from the construction of the monoidal
oo-category structure oi€[W~1] in Proposition3.4, where W denotes the weak
equivalences irC, that there is a monoidal funct@®’ — C[W~1], which induces

a functor of co-categories AlgC®") — Alge(C[W~1]). The composite functor
Alg(C)°°f — Alg Ao(C[W™1]) clearly takes weak equivalences of algebras to equiva-
lences, and so induces a functor

AlG(C)IW 1] — Alg xor(CIW])

is an equivalence, whe denotes the weak equivalences in the model structure on
Alg(C).

Theorem 3.17 (Lurie) Let C be a left proper tractable biclosed monoidal model
category that satisfies the monoid axiom. Then the functevefategories

Alg(C)[W~1] — Alg(C[W ™))

defined above is an equivalence.

The proof is exactly the same as the proof 2f,[Theorem 4.1.4.4]; in particular, the
key technical resultd1, Lemma 4.1.4.13] generalizes to this context:

Definition 3.18 SupposeC is a left proper tractable biclosed monoidal model category
that satisfies the monoid axiom. Then the forgetful funttorAlg(C) — C takes weak
equivalences to weak equivalences, by definition of the mnstiecture on AlgC).
The composite functor obo-categories AlgC) — C — C[W™1] thus takes the
morphisms inW to equivalences ifC[W~1] and so factors through a unique functor
Uso: Alg(C)[W™1] — C[W~1] — this is the functor ofco-categories associated to
the right Quillen functoiJ.
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Lemma 3.19 (Lurie) SupposeC is a left proper tractable biclosed monoidal model
category that satisfies the monoid axiom dnds a small category such thal

is sifted. Then the forgetful functod.,: Alg(C)[W~1] — C[W~1] preservesNI -
indexed colimits.

We omit the proof, as it is exactly the same as thadf Lemma 4.1.4.13]. We will
make use of Lemma&.19in the case of enriched categories, for which we have the
following observation:

Lemma 3.20 If V is a left proper tractable biclosed monoidal model categarys-
fying the monoid axiom and is a set, then there is a combinatorial model category
structure on the categofyat(V) such that a morphism is a fibration or weak equiva-
lence if and only if its image ifFun(X x X, V) is. Moreover, ifl is a small category
such thaNI is sifted then the forgetful functor

Catc(V)[FFx ] — FunX x X, V)[Wy 1]

preservedN| -indexed colimits, wher&\ly denotes the class of natural transformations
that are weak equivalences objectwise.

Proof Recall that ifV is a biclosed monoidal category aixdis a set then there is a
monoidal structure on FuK(x X, V), given by

F2G)(xy) = [[Fx2 ®Gzy),
zeX
such that an associative algebra object in Run, V) is precisely & -category with
objectsX. By [23, Proposition 10.3], ifV is a monoidal model category satisfying
the monoid axiom, then so is Fufik X, V) equipped with this monoidal structure.
Applying Corollary3.14and Lemma&.19to Fun x X, V) then implies the result. O

4 Fibrewise Localization

Suppose we have a functor of ordinary categoRe<C — Cat together with a collec-
tion W of weak equivalences in each categ®ifC) that is preserved by the functors
F(f). Then we have two ways to construct an-category ovelC where these weak
equivalences are inverted: On the one hand we can invert ¢ad wquivalences in
each category-(C) to get a functorC — Cat,, that sendsC to F(C)[W 1, which
corresponds to a coCartesian fibratibn— C. On the other hand, iE — C is a
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Grothendieck opfibration corresponding Fothen there is a natural collectio of
weak equivalences ik induced by those in the fibres, and we can invert these to get
an oo-categoryE[W~1]. Our main goal in this section is to prove that in this sitoiat

the natural mafE[W—1] — & is an equivalence ofo-categories.

We will do this in two steps: in §.1we show that thexo-category€ here is a fibrant
replacement in the coCartesian model structure OnX(ﬁﬁé for NE marked by the
edges inW, then in .2 we use an explicit model foE[W~1] to show that this,
equipped with a natural choice of marked edges, is also weaklivalent to (NE, W).
In addition, we prove in 8.3that when the weak equivalences in each catedG)
come from a (combinatorial) model structure, then there (sombinatorial) model
structure orE whose weak equivalences are the morphism#/in

Remark 4.1 Fibrewise localization has also recently been studied mycHiin [15].
His approach is quite different from ours, but allows him toye a comparison
analogous to ours also in the more general case where thelbaséself equipped
with a class of weak equivalences.

4.1 The Relative Nerve

Recall that arelative categoryis a categoryC equipped with a collection of “weak
equivalences”, i.e. a subcategadfy containing all objects and isomorphisms. Write
RelCat for the obvious category of relative categories liais been studied as a model
for the theory of ¢o, 1)-categories by Barwick and Kad][ The usual nerve functor
from categories to simplicial sets extends to a fund¢toRelCat— Setg that sends
(C,W) to (NC,NW,). In [19, §3.1.3] Lurie constructs a model structure ongSet
where a fibrant replacement fafC, W) is precisely arbo-categorical localization of
C that inverts the morphisms W (marked by the equivalences).

If C is a category, there is a model structure on Ksﬁlc where a fibrant object is a
coCartesian fibration marked by its coCartesian morphisorsstructed in19, 83.1.3],
and in [19, 83.5.2] Lurie describes a right Quillen equivalencg flom the projective
model structure on Fuf@y, Setg) to this model structure on (S@/NC. Given a functor
F: C — RelCat we therefore have two reasonable ways of constguatiibbrant object

of (Sef{)/nc:

(i) Find a fibrant replacemerf for the functorLF: C — Setg, and then form
NEF.



Rectification of enrichedo-categories 17

(i) Construct a Grothendieck opfibratioeB — C associated td~, regarded as
a functor to categories, and write for the collection of 1-simplices in N
that correspond to composites of (fibrewise) weak equicaieiand coCartesian
morphisms. Then find a fibrant replacement in QS@(;C for (NE,S) — NC.

Our main goal in this subsection is to prove that these givaklyeequivalent objects.
We begin by reviewing the definition of the functorﬁgN

Definition 4.2 Let C be a category. Given a functér: C — Setr, we define NF
to be the simplicial set characterized by the property thatoaphismA! — NcF,
wherel is a partially ordered set, is determined by:

(1) afunctoro: | — C,
(2) for every non-empty subsétC | with maximal elemenj, a mapry: A’ —

F(a()).

such that for all subsetk C J C | with maximal elementk € K andj € J, the
diagram

AK T F(o(K)

-

A —— F(o())
commutes. This defines a functoeNFun(C, Setr) — (Seta) /nc -

The functor N has a left adjoint, which we denote

Sc: (Seta)/ne — FunC, Set).

Proposition 4.3 Letn: E — C be afunctor. The§cNE is isomorphic to the functor
O;: C — Set defined byC — NE .

Proof We mustshow thatthere is anaturalisomorphism HoEi(Nc({)) = Hom(O,, {);
we will do this by defining explicit natural transformations

¢: Hom(O;,{) — Hom(NE, Nc({))

and
¢: Hom(NE, Nc({)) — Hom(Ox, {)

that are inverse to each other.
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Given X: C — Setn and a natural transformation: O, — X, define¢(n): NE —
NcX to be the morphism that sends a simptexA! — NE (which we can identify
with a functorl — E) to the simplex of M X determined by

o the composite functor - E — C,
o for J C | with maximal element, the composite

AV =5 NE /oy —25 X((0(j))).
Conversely, given a maG: NE — NcX of simplicial sets over I8, let ¢/(G) be the
natural transformatiorD, — X determined as follows: fo€ € C, the morphism
P(G)c: NE,c — X(C) sends a simplex: Al — NE,c, wherel has maximal
elementi, to the composite
Al T X(ro(i)) 29 x(0)

where

e 7 isthel-simplex determined by the image underof the | -simplexs’ of NE

underlying o,
e f isthe morphismr(o(i)) — Cin C from o.

The remaining data i o o’ implies that this defines a map of simplicial setB N —
X(C), and itis also easy to see tha(G) is natural inC.

Both ¢ and+ are obviously natural irX, and expanding out the definitions we see
that ¢¢» = id and¢ = id, so we have the required natural isomorphism. O

Definition 4.4 Let C be a category. Given a functér: C — Set{ we define N(F to
be the marked simplicial set @¥, M) whereF is the underlying functoC — Seta
of F, andM is the set of edgedA! — NcF determined by

e amorphismf: C— C'in C,

e avertexX € F(C),

o avertexX' € F(C') and an edgé(f)(X) — X’ that is marked ifF(C').

This determines a functor N Fun(C, Sef{) — (Sef{) nc-
The functor Nt has a left adjoint, which we denog .

Corollary 4.5 Letw: E — C be a functor, and Iek) be a set of edges ME that
contains the degenerate edges. TRE(NE, M) is isomorphic to the functoD,
defined byC — (NE,c,Mc), whereMc is the collection of edges determined by
E — E' in E andn(E) — n(E') — C in C such thatr(E') = C andE — E’ isin M.
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Proof We must show that there is a natural isomorphism
Hom((NE, M),N£ () = Hom©x, {) -

Given X: C — Setg, with underlying functorX: C — Setn, and a morphism
G: NE — NcX, it isimmediate from the definitions th& takes an edge: E — E’

of NE lying overC — C’ in C to a marked edge of&\R if and only if (G)cr takeso,
regarded as an edge o)/, to amarked edge of(C’). Thusthe naturalisomorphism
Hom(NE, NcX) = Hom(O,, X) of Proposition4.3 identifies Hom((NE,M),NéY),
regarded as a subset of HonENNcX), with Hom(@O,, X), regarded as a subset of
Hom(O,, X). O

Theorem 4.6 (Lurie, [19, Proposition 3.2.5.18])

(i) The adjunction§c - Nc is a Quillen equivalence betwe€Bet ) nc equipped
with the covariant model structure ak@in(C, Setn) equipped with the projec-
tive model structure.

(i) The adjunctiongt 4 N¢ is a Quillen equivalence betweéBet!) nc equipped
with the coCartesian model structure dfah(C, Setg) equipped with the pro-
jective model structure.

Remark 4.7 By[19, Lemma 3.2.5.17], the funct@‘ér is naturally weakly equivalent
to the straightening functor defined id9, §3.2.1], which takes a fibrant functor
C — Sef} to the associated coCartesian fibration.

Recall that if@ is an co-category we writel? for the marked simplicial set given by
€ marked by the equivalences, and that if+~ NC is a coCartesian fibration we write
&f for the object of (S@)/NC given by & marked by the coCartesian morphisms.

Lemma 4.8 Let F: C — Cat be a functor. Writer: E — C for the Grothendieck
opfibration associated t6, so thatE has objects pair¢C € C,X € F(C)) and a
morphism(C,X) — (D,Y) in E is given by a morphisni: C — D in C and a
morphismF(f)(X) — Y in F(D). Then:

() Nc(NF) — NC is isomorphic toNr .
(i) NE(NF?) — NC is isomorphic toNE)* — NC.

Proof lItis clear from the definition of i that there is a natural isomorphism between
n-simplices of No(NF) and n-simplices of NE, which proves (i). By definition, an
edge of l%(NF“) is marked if it is given byf: C — C' in C, X € F(C), and
F(f)(X) — X’ an isomorphism irF(C’). Under the identification with edges off
such edges precisely correspond to the coCartesian edgissproves (ii). O



20 R Haugseng

Proposition 4.9 GivenF: C — RelCat the counit maif§ENELF — LF is a weak
equivalence ifFun(C, Set{).

Proof Since FunC, Setg) is equipped with the projective model structure, it sufice
to show that for allC € C the morphisn§ENELF(C) — LF(C) is a weak equivalence
in Setg. Let Fo be the underlying functo€ — Cat, and lett — C be the canonical
Grothendieck opfibration associated fg. Then by Lemmad.8 we can identify
NENFS with NE?, and so by Corollargt.5we can identifygENENFS(C) with NE ¢,
marked by the se¥ic of coCartesian morphisms — E’ such thatr(E') = C.

The adjunctiong¢ - N¢& is a Quillen equivalence, so sincd:EKI is fibrant and every
object of (Sef) nc is cofibrant, the Couni§ENENFS — NFg is a weak equivalence
in FunC, Setg). In particular, (NE ¢, Mc) — NFo(C)? is a weak equivalence.

Let M be the set of edges of B¢ corresponding to weak equivalencesH(C).
Then we have a pushout diagram

NFo(C)?

|

(NE/Ca MC U Mé:) - LF(C)>

(NE/Ca MC)

since both vertical maps are pushouts alig Al — ]_[feM,c(Al)ﬁ. As the model

structure on Sét is left proper, it follows that ()¢, Mc UMg) — LF(C) is a weak
equivalence.

By Corollary 4.5we can identifygéNéLF(C) with the simplicial set ¥ ,c, marked
by the setM{ of morphismsE — E’ with =(E") = C such that given a coCartesian
factorizationE — E — E’ the morphismE — E’ is a weak equivalence ihF(C).
The obvious map (H,c,Mc UMg) — FENELF(C) is therefore marked anodyne,
since the edges iM{ are precisely the composites of edgesMg and M¢. In
particular this is also a weak equivalence, and so by thet%&8 property the map
FENELF(C) — LF(C) is a weak equivalence, as required. m]

Corollary 4.10 GivenF: C — RelCat let LF — F be a fibrant replacement in the
projective model structure oRun(C, Set{). ThenN.LF — NLF is a coCartesian
equivalence inSet) nc -

Proof The adjunctiongt - N¢ is a Quillen equivalence, so sinéeis fibrant and
every object of (S€t)nc is cofibrant, the morphism NLF — N(F is a weak
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equivalence if and only if the adjunct morphifg N LF — F is a weak equivalence.
This follows by the 2-out-of-3 property, since in the comative diagram

FENELF ——— LF
E

the morphismLF — F is a weak equivalence by assumption, IINLLF — LF is
a weak equivalence by Propositidrd. O

Using Lemma4.8 we can equivalently state this as:

Corollary 4.11 Given F: C — RelCat supposer: E — C is a Grothendieck
opfibration corresponding to the underlying functor— Cat. Let M be the set
of morphismsf: E — E’ in E such that given a coCartesian factorizati&n—
w(f) E — E’, the morphismr(f) E — E’ is a weak equivalence ia(w(E’)). Then if
LF — F is a fibrant replacement iBun(C, Setg), there is a coCartesian equivalence
(NE,M) — NZF.

4.2 The Hammock Localization

Consider a functoF: C — RelCat, and letr: E — C be an opfibration associated
to the underlying functoC — Cat. Our main goal in this subsection is to prove that
inverting the collectionW of fibrewise weak equivalences B gives a coCartesian
fibration EfW~1] — C. As a corollary, we will also see th& W] is the total space
of the coCartesian fibration associated to the functor nbthifrom F by inverting
the weak equivalences in the relative categof€€). We will prove this result by
analyzing an explicit model foE[W~1] as a simplicial category, namely thammock
localization We begin by recalling the definition of this, specificallyethersion
defined in 7, §35], and its basic properties:

Definition4.12 A zig-zagtype Z (Z,Z_) consists of adecompositidf, ... ,n} =
Z, 11Z_. Thezig-zag categoryZ is the category with objects zig-zag types and mor-
phismsZ — Z' given by order-preserving morphisnfis {1,....n} — {1,....,n'}
such thatf(Z,) € Z/, andf(Z_) C Z__. If Z is a zig-zag type, the associated zig-zag



22 R Haugseng

category|Z| is the category with objects, 0..,n and
x, 1<jkeZ fork=i+1,...,j,
IZ|(,])) =<, i>jkeZ_ fork=j+1,...,i,
(), otherwise

This clearly gives a functof |: ZZ — Cat. If nis an odd integer, we abbreviate

(n):=({2,4,...,n—1},{1,3,...,n})

and if n is an even integer we abbreviate

(ny:=({13,....,n—1},{2,4,...,n}).

Definition 4.13 Suppose €, W) is a relative category. Fot,y € C andZ € ZZ we
defineLwCz(x,y) to be the subcategory of FU#(, C) whose objects are the functors
F: |Z| — C such that~(0) = x, F(n) =y, andF({ — (i— 1)) isinW foralli € Z_,
and whose morphisms are the natural transformatigns — G such thatyy = idy,
nn = idy, andy; isin W for all i. We write LwCz(X,y) := NLWCz(X,y).

This construction gives a funct@Z °® — Cat; we letL wC(x,y) — ZZ be the fibration
associated to it by the Grothendieck construction. Usingatenation of zig-zags we
get a strict 2-categorizwC with the same objects & and with mapping categories
LwC(x,y); taking nerves, this gives a simplicial categdiy,C whose mapping spaces
are LywC(x,y) := NLwC(x,y). This simplicial category is theammock localization

of (C,W).
Theorem 4.14 (Dwyer-Kan) Let (C, W) be a relative category. Then:
(i) The diagram
W —— LywW

|

C —— LwC

is a homotopy pushout square in simplicial categories.

(i) If LwW — LwW is a fibrant replacement in simplicial categories, thetyW
is a Kan complex anblW — NLwW is a weak equivalence of simplicial sets.
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Proof (i) follows by combining |, Proposition 35.7],§, Proposition 2.2], and9
84.5] (observe that a cofibration in the model structure orpkcial categories with a
fixed set of objects described i8,[87] is also a cofibration in the model structure on
simplicial categories).

To prove (ii), we first observe that it follows fron9,[89.1] thatL{W is a simplicial
groupoid. If LwW — LwW is a fibrant replacement in simplicial categories, then
NLwW is the nerve of a fibrant simplicial groupoid, hence a Kan demjy [10,
Theorem 3.3]. Let® denote the left adjoint to the nerve of simplicial groupoids
as defined in 10, §3.1]; by [10, Theorem 3.3] the morphismW — NLwW is a
weak equivalence if and only if the adjun&iNW — LW is a weak equivalence of
simplicial groupoids. This follows fromd] §5.5], since this implies that the mapping
spaces in both are the appropriate loop spacesvéf N O

Corollary 4.15 Let(C, W) be a relative category. Suppo&@,C — LwC is a fibrant
replacement in the model category of simplicial categorigsen
L(C, W) — NZwC"
is a weak equivalence iBeff .
Proof We must show that for everyo-categoryD, the induced map
MapSefg(NZWCu, D) - Mapg, (L(C, W), DF)
is a weak equivalence of simplicial sets. Observe that
Mapgeg (L(C, W), D*) = Mapga,, (NC, D) Xviap,, _ w,) Mapeq,, (NW, D)

and Mag,,_ (NW,.D) ~ Maps(NW, D) ~ Mapc,, (NW, D), where W — NW
denotes a fibrant replacement in the usual model structusingplicial sets, so this is
equivalent to requiring

NW —— NW

-

NC —— NLwC

to be a homotopy pushout square. Theoretd(i) implies that
NW —— NLwW

|

NC —— NLwC
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is a homotopy pushout square, since N is a right Quillen edgmce and all the
objects are fibrant. By Theorem14ii) we also have that W/ — NLwW is a fibrant
replacement in the usual model structure on simplicial, setshe result follows. O

We now fix afuncto-: C — RelCat, andletr: E — C be a Grothendieck opfibration
associated to the underlying functér — Cat. We say a morphisrh: X — Y in E
lying overf: A — Bin C is aweak equivalenc# f is an isomorphism anfiX — F

is a weak equivalence iR(B); write W for the subcategory dE whose morphisms are
the weak equivalences. Our goal is to show that the nervigyd@ — C is (equivalent
to) a coCartesian fibration. To prove this we need a techhigabthesis on the relative
categoried(C):

Definition 4.16 A relative category €, W) satisfies théwo-out-of-three propertyf
given morphismg: A — B ands: B — C such that two out of,s,sor are inW,
then so is the third.

Definition4.17 We say that a relative catego@/= (C, W) is apartial model category
if C satisfies the two-out-of-three property a@dadmits athree-arrow calculusi.e.
there exist subcategoriés, V C W such that

(i) for every zig-zagA' A f—> B in C with u € U, there exists a functorial
zig-zag
ANlpdp
with U € U such thatu'f = f’u and U’ is an isomorphism ifi is,
(i) forevery zig-zagX 2 v & Yin C with v € V, there exists a functorial Zig-zag

x< xSy
with V' € V such thatgy = vg andV is an isomorphism if/ is,

(ii) every mapw € W admits a functorial factorizatiomw = vu with u € U and
vev.

Remark 4.18 If M is a model category (with functorial factorizations), thie
relative category obtained by equippihd with the weak equivalences in the model
structure is a partial model category. Similarly, the neiatategories obtained from
the full subcategories! " of cofibrant objectsM™ of fibrant objects, and° of
fibrant-cofibrant objects together with the weak equivadsrmetween these objects are
all partial model categories. The term “partial model catggis taken from B], but
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we use the more general definition @f B6.1] since the more restrictive definition of
Barwick and Kan does not include what is for us the key exanmalmelyM < for M
a model category.

Theorem 4.19 (Dwyer-Kan) SupposgC, W) is a partial model category. Then for
every pair of objectX,Y € C, the morphismlwC ) (X,Y) — LwC(X,Y) is a weak
equivalence of simplicial sets for ail> 3.

Proof Forn = 3 thisis B, Proposition 6.2(i)]; the general case follows similarlya

Proposition 4.20 Supposer: C — RelCatis a functor such thalf(C) is a partial
model category for eaclk € C. Let ¢: A — B be a morphism irC, and letX
andY be objects oEa andEg, respectively. WriteCwE(X, YY), for the subspace of
LwE(X,Y) over¢. The morphism

@1 LwEs(#1X,Y) = LwE(X, V),

given by composition with a coCartesian morphismX — ¢ X is a weak equivalence
of simplicial sets.

Proof Itis easy to see thdt is also a partial model category. It therefore follows from
Theoremd.19that the mapSJWE<4> (X, Y)¢ — LwE(X, Y)¢ andLW(EB)<4> (2 X,Y) —
LwEB(¢1X,Y) are weak equivalences. Since composition withives a functor

¢ 1 Lp = Lw(Es)a) (¢ X,Y) = LwE4(X,Y)s =i L
it therefore suffices to prove that this gives a weak equiadeaupon taking nerves.

We will prove this in two steps. Ldt! denote the full subcategory &f spanned by
objects

X=Xo 5 X 42 X B Xg & Xy = Y
such thatX; € Eg for i > 1 andf; lies over ig in C fori > 2; thena’k factors as
Lg 5L 5L,
We will show that each of these functors induces a weak elguiga of nerves.

First we considef : Lg — L1, given by composition with$. Defineq: L* — Lg by
sending a zig-zag
X5Z«Z Y Y
inL!to ,
X HZZ 5Y Y
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whereX % O X g—/> Z is the coCartesian factorization @{which exists since the other
maps lie over igd). Then itis clear thagf ~ id andfq ~ id, sof is an equivalence of
categories.

Next we want to define a functgr: L — L. Given a zig-zag
XS zhv ey
in L, this lies over
AsClcoB LB
where~ and g are isomorphisms, since weak equivalencels imap to isomorphisms

in C. Thus the coCartesian ma@é — ~, 2’ andB' — 5, !B’ are isomorphisms,
and our zig-zag is isomorphic to the zig-zag

X—1Z «Z— 7Y « V.
To definep we may therefore assume thaand~y are identities, in which cagesends
XLzZez8y ey

lying over

ALbcldchpls
to
X—=hZ < WZ Y Y
in LY; this is clearly functorial.
We wish to prove thap gives an inverse td after taking nerves. It is obvious that
poi ~ id, so it suffices to show thab p is homotopic to the identity after taking nerves.

To see this we consider the natural transformatjoh. — Fun([1], LwE @) (X, Y)s) that
sends our zig-zag to the diagram

id

X y4 z Wz Wz Y Y
hid hid h h ‘id ‘id hid
X z z Wz’ WZ Y Y,

id

After composing with the inclusio wE (%, ¥)g — LwE(X,Yy), the functorsng is
clearly linked to the inclusion. — LwE(X,Y), by a sequence of natural transforma-
tions, and similarlyn; is linked to the composite dafo p with this inclusion. Since
natural transformations give homotopies of the inducedsthapwveen nerves it follows
from Theoremd.19that the morphism on nerves inducedibyp is homotopic to the
identity. This completes the proof. O
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Theorem 4.21 SupposeF: C — RelCatis a functor such thaE(C) is a partial
model category for eadh € C. There is anc -categoryE[W~1] such that (E, W) —
E[W~1]% is a weak equivalence Bef; , andE[W~1] — NC is a coCartesian fibration.

Proof Let LwE — LwE — C denote a factorization oEwE — C as a trivial
cofibration followed by a fibration in the model category afiplicial categories. Then
(NLwE)? is a fibrant replacement far(E, W) in Sef; . By [19, Proposition 2.4.4.3] to
prove that NowE — NC is equivalent to a coCartesian fibration it suffices to shaw th
for each morphisni: C — D in C and eachX in Ec we have a homotopy pullback
square of simplicial sets

I

f
LWERX,Y) —— LwE(X,Y)

|

C(D,B) — C(C,B)

forall B <€ C andY < Eg, wheref: X — f;X denotes a coCartesian morphismén
overf.

Since the inclusion of a point in a discrete simplicial setk&n fibration and the model
structure on simplicial sets is right proper, givgnD — B the fibres a{ g} and{gof}
in this diagram are homotopy fibres. To see that the diagraarhismotopy pullback
square it thus suffices to show that composition Viihduces a weak equivalence

LwE X, Y)g = LwE(X, Y)gf

for all g: D — B. But by Propositiort.20, in the commutative diagram

LwEs((gf)1 X, Y)

N

LWEX, Y)g LwEX, Y)gt

the diagonal morphisms are both weak equivalences, hentte[#¢out-of-3 property
so is the horizontal morphism. O

Corollary 4.22 Supposé-: C — RelCatis a functor such thdt(C) is a partial model
category foreackt € C. LetLF — F be a fibrant replacement Fun(C, Sefg). Then
there is a weak equivalent4E, W) — (NcF)" in Setf .



28 R Haugseng

Proof By Theoremé.21, there exists a coCartesian fibrati&fw—!] — NC with a
map
¢: L(E,W) — E[W']°

that is a weak equivalence in %et The map¢ is also a weak equivalence when
regarded as a morphism in the over-category model struotu(Seg)/Nch . Let

pr: (Set) ne: = (Sel) nc:: P*
be the adjunction wherg, is the identity on the underlying marked simplicial sets,
and p* forgets the marked edges that do not lie over isomorphism&.inlf we
equip (SeZ)/Ncu with the over-category model structure and @%cu with the
coCartesian model structure, then this is a Quillen adjoncby [19, Proposition
B.2.9], since these functors clearly come from a map of categl patterns. Since all
objects in (Se}) /nca are cofibrant, the functop preserves weak equivalences, and
S0 ¢ is also a weak equivalence when regarded as a morphism (X)@g;.

Let M’ be the set of edges of E&Ncorresponding to coCartesian morphismginand
let EfW~1]* denote the marked simplicial set obtained frEfiw—1]? by also marking
the morphisms in the image ®&’. We have a pushout diagram

L(E, W) E[W"

| |

(NE,NW; UM’y —— E[W-Y+,

as both vertical maps are pushouts algg.,, Al — ]_[feM,(Al)ﬁ. Since the model
structure on (S&) nc: is left proper, it follows that (M, NWy UM’) — E[W~']* is
a weak equivalence.

Let E[W~1]* denote E[W~1], marked by the coCartesian morphisms. These are
composites of equivalences and morphisms in the imag®/ofso E[W—1]T —
E[W~1]* is marked anodyne. Moreover, it follows as in the proof of neas.8 that

NE marked by the composites of morphisms itVNand M’ is precisely N LF, so
(NE,NW, U M) — NJCFLF is also marked anodyne. By the 2-out-of-3 property we
therefore have a weak equivalencg INF — E[W~1]*. Thus E[W~1]* and NF

are both fibrant replacements foréNF, and so are linked by a zig-zag of weak
equivalences between fibrant objects.

This implies that the underlyingo-categoriesE[W~—1] and NcF are equivalent, and
so by the 2-out-of-3 property the map ENW) — (NcF)? is a weak equivalence in
Set!, as required. 0
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4.3 Total Space Model Structures

As before we consider a functét: C — RelCat and leE — C be an opfibration
associated té. Although not strictly necessary for the applications we iaterested

in below, in this subsection we show that if the funckoiis obtained from a suitable
functor from C to the category of combinatorial model categories, thenrétegive
category structure ot considered above also comes from a combinatorial model
category.

Definition 4.23 Let ModCaR be the category of model categories and right Quillen
functors. Aright Quillen presheafon a categoryC is a functorC°? — ModCaf.

A right Quillen presheaf isombinatorialif it factors through the full subcategory of
combinatorial model categories.

Definition 4.24 SupposeC is ax-accessible category. A right Quillen presheaf®n
is k-accessibldgf for each x-filtered diagrami: | — C with colimit X, the category
F(X) is the limit of the categorieE(i(«)), and the model structure df(X) is induced
by those onF(i(«)) in the sense that a mdp A — B in F(X) is a (trivial) fibration
if and only if F(g.)(f) is a (trivial) fibration inF(i(«)) for all o € I, whereg,, is the
canonical morphism(a) — X. We say a right Quillen preshe& on an accessible
categoryC is accessibléf there exists a cardinal such thatC andF arex-accessible.

Proposition 4.25 SupposeC is a complete and cocomplete category &3 a right
Quillen presheaf oiC. Letw: E — C be the Grothendieck fibration corresponding
to F. Then there exists a model structure®rsuch that a morphisrm: X — Y with
imagef: A—BinC is

(W) a weak equivalence if and onlyfifis an isomorphism irC and the morphism
fiX = Y is a weak equivalence (b).
(F) a fibration if and only ifX — f*Y is a fibration inF(a).
(C) a cofibration if and only if X — Y is a cofibration inF(b).

Moreover, ifC is a presentable category aRds an accessible and combinatorial right
Quillen presheaf, then this model structuretoms combinatorial.

Remark 4.26 If f: A — Bisanisomorphism i€, thenf* = F(f) is an isomorphism
of model categories with inverde. Thus if ¢: X — Y is a morphism inE such that
f = w(¢) is an isomorphism irC, thenf,X — Y is a weak equivalence ig&g if and
only if X — f*Y is a weak equivalence iBa.
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Remark 4.27 This model category structure is a particular case of thastrocted
by Roig [27] (and corrected by Stanculesc81]), though he does not consider the
combinatorial case. Roig’s construction has also recéeiiy significantly generalized
by Harpaz and Prasmé&4]. We include a proof for completeness.

Proof Limits in E are computed by first taking Cartesian pullbacks to the filbex o
the limit of the projection of the diagram G, and then taking the limit in that fibre.
Since all the fibre€€g have limits, it is therefore clear th& has limits. Similarly,
since each functop* for ¢ in C has a left adjoint, and each of the fibrigg has all
colimits, it is clear thaE has colimits.

To show thatE is a model category we must now prove that the weak equivetenc
satisfy the 2-out-of-3 property, and the cofibrations amdatrfibrations, as well as
the trivial cofibrations and fibrations, form weak factotiaa systems. We check the
2-out-of-3 property first: Suppose we have morphiSmX — Y andg: Y — Zin E
lying overf: A — B andg: B — Cin C. If two out of the three morphismis, g and

gf are weak equivalences, it is clear tliaand g must be isomorphisms. Thug is

an isomorphism of model categories, aptiX — @'Y is a weak equivalence B¢ if
and only ifffX — Y is a weak equivalence iBg. Combining this with the 2-out-of-3
property for weak equivalences i gives the 2-out-of-3 property fdE.

We now prove that the cofibrations and trivial fibrations foamweak factorization
system:

(1) Any morphism has a factorization as a cofibration followed lyvial fibration:
Givenf: X — Y in E lying over f: a — b in C, choose a factorization
fiX - Z — Y of fiX — Y as a cofibration followed by a trivial fibration i&g.
Then by definitionX — Z is a cofibration and& — Y is a trivial fibration inE.

(2) A morphism that has the left lifting property with respecglidrivial fibrations
is a cofibration: Supposef: X — Y, lying overf: A — B in C, has the left
lifting property with respect to all trivial fibrations. Then particular there
exists a lift in all diagrams

X
Y

where X’ — Y’ is a trivial fibration in Eg. By the universal property of
coCartesian morphisms, this clearly implies tfia¢ — Y has the left lifting

—_—

<%

_
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property with respect to trivial fibrations iBg, and so is a cofibration ikg.
Thusf is a cofibration.

(3) Cofibrations have the left lifting property with respectiwital fibrations: Sup-
posef: X — Y, lying overf: A — B in C, is a cofibration, andj: X' — Y/,
lying overg: A’ — B', is a trivial fibration. Given a commutative diagram

lying over

B—— B

we must show there exists a lift — X’. Sinceg is a trivial fibration, g is an
isomorphism. Pulling back along and pushing forward alonge = 3f and
B gives a diagram

X —— BfX —— (@)X —— X

N

Y —— BY Y %

Here 5ifiX — BY is a cofibration inEg: sincefiX — Y is a cofibration inEg
and g is a left Quillen functor, andg1)*X’ — (g~1)*g*Y = Y is a trivial
fibration in Eg: sinceX — g*Y is a trivial fibration inEap and @1)* is a right
Quillen functor. Thus there exists alifiY — (g~1)*X’ which gives the desired
lift Y — X',

(4) A morphism that has the right lifting property with respexttl cofibrations is
a trivial fibration: Supposeg: X' — Y’, lying overg: A’ — B’ in C, has the
right lifting property with respect to all cofibrations. Thén particular there
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exists a lift in all diagrams

—_—

<%

|

where X — Y is a cofibration inEa . By the universal property of Cartesian
morphisms, this clearly implies tha¢ — g*Y’ has the right lifting property
with respect to cofibrations ik, and so is a trivial fibration irea . On the
other hand, there exists a lift in the diagram

_

X ——F X

|

g!X/ - Ylv

and projecting this down t€ we see thag must be an isomorphism. Thags
is a trivial fibration inE.

The proof that trivial cofibrations and fibrations form a wedaktorization system is
dual to that for cofibrations and trivial fibrations, so we ttné details. This completes
the proof thatE is a model category.

Now suppose the right Quillen preshdafis combinatorial and accessible. It follows
from [22, Theorem 5.3.4] that the categoBy is accessible, and the functar is
accessible, thuk is a presentable category since we already proved that gra#l
colimits.

Let x be a cardinal such tha is x-accessible andy is x-accessible for each-
compact objecX in C. For X € C, let Ix andJx be sets of generating cofibrations
and trivial cofibrations folEy. Let| andJ be the unions ofyx andJx, respectively,
over all k-compact objectX € C; thenl andJ are sets.

Suppose a morphisrh: X — Y, lying overf: A — B in C, has the right lifting
property with respect to the morphismsJdnthen X — f*Y is a fibration inEa: To
see this letk — C, a — A, be ak-filtered diagram ofx-compact objects with
colimit A, and lety,,: A, — A be the canonical morphism. ThefjX — ~+:f*Y has
the right lifting property with respect to a set of generatirivial cofibrations inEp_, ,
and hence this is a fibration B, . Since the right Quillen preshe&fis x-accessible,



Rectification of enrichedo-categories 33

this implies thatX — f*Y is a fibration inEa. This meand is a fibration inE, soJ
is a set of generating trivial cofibrations.

Similarly, if f has the right lifting property with respect to the morphisms, then

X — f*Y is atrivial fibration inEa. Tofind a set of generating cofibrations we consider
also the set’ of morphisms)y — 0c andficiic — Oc whereC is ax-compact object

of C and()c denotes the initial object dEc. We claim that iff : X — Y in E, with
imagef: A — B in C, has the right lifting property with respect to the morphssim

I”, thenf is an isomorphism il€. To prove this it suffices to show that for every object
C € C the mapf,: Homc(C, A') — Homc(C, B') induced by composition withi is a
bijection; sinceC is k-presentable it is enough to prove this o x-compact object.
Sincef has the right lifting property with respect ft — (c and every morphism

C — B induces a morphisriic — Y, there exists a lift in the diagram

0 —— A

for every mapC — B; this shows that, is surjective. Moreover, given two morphisms
C — A such that the composit€s — B are equal, we get a lift in the diagram

cuc ——A

since f has the right lifting property with respect tiic;ic — 0c; thus the two
morphismsC — A must be equal and 9 is injective. It follows that if a morphism
in E has the right lifting property with respect to the unibfl I’ then it is a trivial
fibration, sol 111’ is a set of generating cofibrations far HenceE is a combinatorial
model category. ]

Remark 4.28 Let F be a right Quillen presheaf on a categdty and letE — C
be an opfibration associated to the underlying functor tegmies. WriteG for
the associated “left Quillen presheaf” obtained by passmdeft adjoints, and let
G®f: C — RelCat be the functor to relative categories obtained btrictiag to
cofibrant objects. Then the full subcategdE§®" of cofibrant objects irE, with the
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model structure defined above, is the total space of the apifibrassociated t&°°",
and the weak equivalences if°" are precisely those considered above.

5 Rectifying Enriched oo-Categories

Our goal in this section is to prove the main result of thisggaphe homotopy theory
of categories enriched in a nice monoidal model catedbrfith respect to the DK-
equivalences) is equivalent to the homotopy theorywofcategories enriched in the
monoidal co-categoryV[W—1]. We will do this in three steps:

(1) We first apply the results of &to get an equivalence between tie-category
obtained by inverting the weakly fully faithful morphisma the category
Cat(V) of V-categories with a fixed set of objeck and the co-category
Alg A;p(V[W‘l]) of AyP-algebras.

(2) Next, using the results of&g we see that this induces an equivalence between
the co-category obtained by inverting those morphisms in thegmate Cat{/)
of small V -categories that are weakly fully faithful and bijective @lbjects and
the oo-category Alg,(V[W~1])set of categorical algebras iN[W~1] whose
spaces of objects are sets.

(3) Finally, from this we deduce that the-category obtained by inverting the DK-
equivalences in Ca¥() is equivalent to thexo-category CHW 1 of V[W~1]-
oco-categories.

For the first step, the map we wish to prove is an equivalendefised as follows:

Definition 5.1 SupposeV is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom, and 12t be a set. The map of generalized-operads
vx: AY — Of defined in Propositio.10gives an equivalence

Ca(V) ~ Algo, (V) — Alg A (V).

As in Definition3.16the monoidal functol/°" — V[W~1] induces, since the forgetful
functor Cag(V) — FunX x X,V) preserves cofibrant objects by Coroll&8yl5 a
functor

Cat (V)" — Alg ac(VIW)).

Let FFx denote the class of morphisms in Qat)°°' that are weakly fully faithful, i.e.
given by weak equivalences on all morphism objects. It iardeat these are taken to
equivalences in Alg;p(V[W‘l]) by this functor, and so there is an induced functor

nx: Cat(V)[FFy'] — Alg aee(V[W ).
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Moreover, it is clear that this is natural K.
Proposition 5.2 SupposeV is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom, and bétbe a set. The natural map

nx: Cak(V)[FFy '] — Alg aor(V[W])

is an equivalence.

Proof of Proposition 5.2 We apply R1, Corollary 4.7.4.16] as in the proof o2],
Theorem 4.1.4.4]: We have a commutative diagram

TIX

Cai(V)[FFx!] Alg Ao (VIW1))

T

FunX x X, V[W™1)),

whereU is the functor ofoo-categories associated to the forgetful functor

U: Cak(V) — FunX x X,V),
which is a right Quillen functor, an¥l is given by restricting&ip—algebras to the fibre
(AP == X x X. Then we observe:

(@) The co-category Ca&(V)[FF;l] is presentable byZ1, Proposition 1.3.4.22],
and theoo-category Algh;p(V[W—l]) is presentable by1[3, Corollary B.5.7]
sinceV[W™1] is presentable by[1, Proposition 1.3.4.22] and the induced tensor
product onV[W1] preserves colimits in each variable 1] Lemma 4.1.4.8].

(b) The functorV admits a left adjointG by [13, Theorem B.4.6].

(c) The functorU,, also admits a left adjoirfe,, since it arises from a right Quillen
functor.

(d) ThefunctorV is conservative byll3, Lemma B.5.5] and preserves sifted colimits
by [13, Corollary B.5.4].

(e) The functorU,, is conservative by the definition of the weak equivalences in
Alg(V), and preserves sifted colimits by Lemi®20

(f) The canonical maly o G — U, o F, is an equivalence since both induce, on
the level of homotopy categories, the figecategory monad

o] I 2k0 %)@ @ 200-1,%).
n>0Xp,...,XnEX

This is obvious folU,, o F, and forV o G it follows by [13, Proposition B.4.9].
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The hypotheses of[l, Corollary 4.7.4.16] thus hold, which implies that the mugm
in question is an equivalence. O

For the second step, let us first define the class of maps itV CHitat we will invert:

Definition 5.3 We say that a functoFF: C — D of V-categories isveakly fully
faithful if for all objects X, Y € C the morphismC(X,Y) — D(FX,FY) is a weak
equivalence inv. We denote the class of morphisms in Ggtthat are weakly fully
faithful and given by bijections on sets of objects by FFB.

The mapnx: Catx(V)[FF;l] — AIgA;p(V[W‘l]) is natural in X, so it induces a
natural transformation of functors Set Setg. Applying Corollary4.22we therefore
get the required comparison of “pre-localized” homotopsoaities:

Theorem 5.4 The natural transformation induces a functor
Cat(V)[FFB™'] — Algca VW Dset

and this is an equivalence.

Remark 5.5 Using Propositiort.25we can combine the (fibrewise) model structures
on Cak(V) to get a model structure on CHi. Explicitly, if V is aleft proper tractable
biclosed monoidal model category satisfying the monoid xithen there is a model
structure on Cay() such that a morphisrk: C — D is a weak equivalence if and
only if F is weakly fully faithful and a bijection on objects, and a &tion if and only

if C(x,y) — D(Fx, Fy) is a fibration inV for all x,y € obC. Thus Cat{)[FFB~] is

the co-category associated to this model category.

The weakly fully faithful functors that are bijective on ebjs are clearly not the
right weak equivalences betweé&ficategories — just as for ordinary categories the
equivalences are the functors that are fully faithful argkatially surjective, here they
should be the functors that are weakly fully faithful andeggilly surjective up to
homotopy, in the following sense:

Definition 5.6 Let V be a monoidal model category. Then the projectibr— hV
to the homotopy category is a monoidal functor; this theeefimduces a functor
Cat(V) — Cat(hV). A functor of V -categories ilomotopically essentially surjective
if its image in Cat(V) is essentially surjective, andlK-equivalencef it is weakly
fully faithful and homotopically essentially surjectiver(equivalently if it induces an
equivalence of Y -categories). We write DK for the class of DK-equivalences i

Cat(V).



Rectification of enrichedo-categories 37

The DK-equivalences in Cat) clearly correspond to the fully faithful and essen-
tially surjective functors in Alg,(V[W~1])set, as defined in13, §5.2]. Theoren®.4
therefore immediately implies the following:

Corollary 5.7 SupposeV is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. Thebat(V)[DK ~] is equivalent to the localization of
Alg .. (V[W~1])set with respect to the fully faithful and essentially surjeetfunctors.

Combining this with L3, Theorem 5.2.17] we get our main result:

Theorem 5.8 SupposeéV is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. The functgr. Cat(V)[FFB™1] — Alg a(VIW™1])set
induces an equivalence

Cat(V)[DK 1] = cat/W ™.

Proof By [13, Theorem 5.2.17], for any monoidab-categoryV the localization of
Alg..(V)set at the fully faithful and essentially surjective functosseiquivalent to the
corresponding localization of Alg(V), which is Ca(‘fO by [13, Theorem 5.5.6]. The
result follows by combining this, in the case whétdés V[W~1], with Corollary5.7.
O

Remark 5.9 Under the hypotheses of Theorén8there is a model structure on the
category Cai{) whose weak equivalences are the DK-equivalences — théraotien

of Muro [24] requires slightly weaker hypotheses ¥nthan our theorem. Thus we
have shown that C4V " is the co-category associated to this model category. Other
general constructions of model structures on enrichedjoggs are given inl[9, 6, 32]

(see B, 81] for a historical discussion).

Example 5.10 Thestable model structuren the category Spof symmetric spectra

as described in1[g], satisfies the hypotheses of TheorBr@ The associated monoidal
oco-category is thexo-category of spectra with the smash product monoidal stract
Thus we have an equivalence

Cat(Sp’)[DK ~1] = catP
between spectral categories and specisatategories.
Example 5.11 The projective model structure on the category”€{Modg) of non-

negatively graded chain complexes of modules over a comiveiteng R, as de-
scribed for example in12], satisfies the hypotheses of Theorén8 The same
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is true of the projective model structure on the categoryMehg) of unbounded
chain complexes oR-modules described inlf, §2.3]. The associated monoidal
co-categories are the bounded and unbounded detwvethtegoriesDZ%(Modg) and
D(Modg) of R-modules, as described i2], 81.3.2]. (These are equivalent to the
oo-categories Moﬁg and Modir of connective modules and all modules over the
Eilenberg-MacLane ring spectrumRsirespectively.) Thus we have equivalences

>0
Cat(CRO(Modg))[DK ~1] = Caf2x'Modw) ~ caf!odi
Cat(Ch(Mog))[DK ~1] =5 Caf2Modr) ~ cafodir,

betweenoco-categories of (two versions of) dg-categories and theapmte corre-
sponding enrichedo-categories.

6 Comparison with Segal Categories

Segal categorieare a model for the theory obq4, 1)-categories where composition
is only associative up to coherent homotopy, inspired byaBemodel of A, -spaces.
They first appeared in papers of Scémzl and Vogt 28] and Dwyer, Kan, and
Smith [11], though not with this name; they were later rediscovereHlingchowitz and
Simpson 6], who used them as a model faxy( n)-categories. A generalization to Se-
gal categories enriched in a Cartesian model categoryaingonoidal model category
where the tensor product is the Cartesian product) was firehdy Pellissier 25],
further developed by Lurie2], and finally extensively studied by SimpsaB0]. In
this section we will show that, fov a nice Cartesian model category with weak equiv-
alencesW, the homotopy theory of Segal categories enriched irs equivalent to
that of co-categories enriched iW[W~1]. We will first carry out the comparison in
the case of a fixed set of objects, and then apply the resufg af prove the general
comparison.

Definition 6.1 A model category i€artesianif it is a monoidal model category with
respect to the Cartesian product. Mfis a Cartesian model category,\Vaenriched
Segal categoryor SegalV -category with set of objectsS is a functorC: A — V
such that for every objecixq, . . ., x,) of A the Segal morphisnC(xo, . . . , %)) —
C(X0,X1) X ---C(Xn—1,%n) induced by the projectionsx(; . ..,X%,) — (Xi,X+1) IS a
weak equivalence. We say the Segal catedonyg fibrant if the objectsC(xg, . . . , Xn)
in V are fibrant for allxy, . .., X, € S, andstrictly unital if the objectsC(x) are final
objects inV forall x € S.
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Remark 6.2 We can regard/ -categories as those Segal categories where the Segal
morphisms arésomorphismgsrather than just weak equivalences.

We can describe fibrant Segal categories with a fixedSset objects as the fibrant
objects in a Bousfield localization of the projective modalsture on Fumgp, V):

Definition 6.3 If X is an object of AZ", let ix: * — A denote the functor with
image X, write ix: Fun(Agp, V) — V for the functor given by composition with
ix, and letix;: V — FunA V) be its left adjoint, given by left Kan exten-
sion alongix. Thenix, is a left Quillen functor with respect to the projective
model structure on Fut(’,V). A functor C: A — V is a fibrant Segal cate-
gory if and only if it is projectively fibrant and local with spect to the morphisms
i) AT T i1, 30) A = ,...x),tA Tor all Xo, ..., %, in Sand allA in a set
of objects that generatég under colimits. IfV is a left proper combinatorial Carte-
sian model category, then we can define a model structureenitant objects are
fibrant Segal categories by taking the left Bousfield loeditn of the projective model
structure on Furx(xgp, V) with respect to these morphisms — this exists under these
hypotheses oV by a theorem of Smith (a proof can be found ) Theorem 4.7]).
We refer to this model structure as tBegal category model structure on functarsl
write FUn(Ag”, V)seg for the category Fu§g”, V) equipped with this model structure.

To obtain a well-behaved model structure, it turns out to eieb to consider only
strictly unital Segal categories. This leads to considgiie category o¥/ -precategories

Definition 6.4 Let V be a left proper combinatorial Cartesian model category. A
V -precategorywith set of objectsSis a functorC: Agp — V such thatC(x) is a final
object for allx € S. Write Precai(V) for the full subcategory of FuiX2’, V) spanned

by theV -precategories and* : Precag(V) — Fun(Ag, V) for the inclusion. Them*

has a left adjoint, which we denote.

There is a model structure on Pregat) analogous to that for Fuﬂ@p, V) we de-
scribed above:

Proposition 6.5 (Simpson B0, Propostion 13.4.3]) SupposeV is a left proper com-
binatorial Cartesian model category. There exists a (ptog) model structure on
Precag(V) where a morphism is a weak equivalence or fibration if it lewge is one
in V. The functoru*: Precag(V) — Fun(A(S’p, V) is a right Quillen functor.
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Definition 6.6 SupposeV is a left proper combinatorial Cartesian model category.
The(projective) Segal category model structure on precatiegas the left Bousfield
localization of this (projective) model structure on Prefd) with respect to the
morphismsu (ix, ) ATT - 1T 1,x),18) = Wik, ...x) 1A forall (xo,..., %) in S
and all A in a set of objects that generatésunder colimits. We write PrecglV)seq

for the category Precglv) equipped with this model structure.

Under mild hypotheses these two model categories in the-fikgetts case are equiv-
alent:

Proposition 6.7 SupposéV is a left proper combinatorial Cartesian model category
where monomorphisms are cofibrations. Then the adjunctiehu* gives a Quillen
equivalence

FUNQAS, V)seg = Precag(V)seg

Proof It is obvious thatu* is a right Quillen functor, so this is a Quillen adjunction.
Sinceu* is fully faithful, the counituu*F — F is an isomorphism in PregdV) for

all F. By [30, Lemma 14.2.1] the functam only changes the values of a functor at
the constant sequences (. ., x) for x € S, in which casauF is given by forming the
pushout

F(X) ————

<

F(x,...,X) —— uF(x,...,X),

whereo: (X) — (X,...,X) is the map over the unique map [0] — [n] in A°P. If
dis any map fif — [0] in A°P, thends = id, henceF(c) is a monomorphism. By
assumptionitis therefore a cofibration, and s¥asleft proper, the mag(x, ..., x) —
uwF(x,...,X) is a weak equivalence ¥(xX) — * is a weak equivalence. Thus —
u*uF is a levelwise weak equivalence if the mafx) — * is a weak equivalence
for everyx € S. Since every object of Fu’, V)seqis weakly equivalent to one for
which this is true, it is clear that the Quillen adjunctian- u* gives an equivalence
of homotopy categories, and so is a Quillen equivalence. ]

Next, we will compare theo -category associated to Flmgp, V)segto Alg Agp(V[W‘l]) .
We know that thex -category associated to the projective model structurem/g2", V)
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is equivalent to theo-categorical functor category Fuhg’, V[W~1]). The Bousfield-
localized model category FUAg’, V)seq can therefore be identified with the full sub-
category of Furz(&gp,V[W‘l]) spanned by the objects that are local with respect to
certain maps. We can identify this with the-category ongp—monoids:

Definition 6.8 Recall that if V is an oo-category with finite limits andM is a
generalized non-symmetrico-operad, anM-monoidin V is a functorM — V
such that for every objeatn € My, if m — m (i = 1,...,n) are coCartesian
morphisms corresponding to the inert mags [1] — [n] in A, then the induced
morphismF(m) — F(my) x - - - x F(my) is an equivalence. We write Mgf(V) for the

full subcategory of Furi{(, V) spanned by the monoids. There is a natural equivalence
Mony (V) ~ Alg,,(V) (by [13, Proposition 3.5.3]).

Definition 6.9 SupposeV is a presentablec-category and\ is a generalized non-
symmetricoo-operad. Fom € M, write i,: * — M for the inclusion of this object,
and letiyn denote left Kan extension along. Then for any functoi~: M — V and
X € V we have Mapim,cx, F) ~ Map(cx, inF) ~ Mapy(X, F(m)), wherecy is the
functor x — V with imageX.

Lemma 6.10 SupposéV is a presentablec-category such that the Cartesian prod-
uct preserves colimits separately in each variable, &hds a small generalized
non-symmetricoo -operad. Then thec-categoryMony(V) is the localization of
Fun, V) with respect to the morphismg, | X1I- - - Iliy, 1 X = imX forallme M
with X ranging over a set of objects that generdlesnder colimits.

Proof A functor F: M — 'V is a monoid if and only if it is local with respect to these
morphisms. O

Since Mony (V) is equivalent to Alg,(V), we have proved the following:

Proposition 6.11 SupposeV is a left proper combinatorial Cartesian model cate-
gory, and letWseys denote the class of weak equivalenceﬂm(Agp, V)seg- Then

the natural mapys: FunA, V)[Ws‘elgs'] — Alg o (VIW™1) is an equivalence. If
moreover monomorphisms M are cofibrations, then we also have a natural equiva-
IencePrecag(V)[WgrleX] — Alg Agp(V[W‘l]) , whereWpex denotes the class of weak
equivalences ifPrecag(V)seg.

Having dealt with the fixed-objects case, we will now allow get of objects to vary:
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Definition 6.12 Let Seg,,(V) denote the total space of the right Quillen presheaf
given by S — Fun(Ag’, V)seq and let Precal() denote the total space of the right
Quillen presheaf given b$ — Precag(V)seg. The adjunctionu - u* is natural and

so gives a natural transformation between these right ugtesheaves.

Proposition 6.13 Let V be a left proper combinatorial Cartesian model category.
There exist combinatorial model structures on the categ&eg (V) andPrecat{/)
where a morphisnt: C — D is a weak equivalence if and only if the induced
morphismf on objects is a bijection an€ — f*D is a weak equivalence in
Fun(Agb <, V)seg Or Precagnc(V)seq and a fibration if and only ifC — f*D is a
fibration inFun(Agp e, V)seg OF Precadpc(V)seg. The adjunction

u: Seg, (V) = Precaty) : u”
induced by the natural transformatiomsandu* is a Quillen equivalence.

Proof This is immediate from Propositioh25 O

Now combining Corollaryt.22and Propositiors.11we get the following comparison
of “algebraic” homotopy theories:

Theorem 6.14 SupposeV is a left proper combinatorial Cartesian model category.
The natural transformatiom induces a functoSegun(V)[WF‘ulrJ — Alg .o VIW 1)) set
and this is an equivalence, wh&¥é-, denotes the weak equivalences in the model
structure orSeg (V). If moreover monomorphisms M are cofibrations, then we
also have an equivalenéaecat{/)[W, ]~ Alg .o VIW 1) set.

recal

The weak equivalences in SggV) are difficult to describe in general; however,
a morphismf: C — D between fibrant objects, i.e. Segal categories, is a weak
equivalence if and only if it is bijective on objects and adivise weak equivalence

— in fact, given the Segal conditions, it suffices forto give a weak equivalence
C(x,y) — D(fx, fy) for all objectsx,y in C. To obtain the correct homotopy theory
we clearly also need to invert the morphisms that are fullihfal and essentially
surjective in the appropriate sense:

Definition 6.15 Compoaosition with the projectiov — hV induces a functor

Segu(V) - Seg(hv).

This takes Segal categories to categories enriche¥ invile say a morphism between
Segal categories in Sgg(V) is weakly fully faithful and homotopically essentially
surjectiveif its image in Seg,,(hV) corresponds to a fully faithful and essentially
surjective functor of W -categories.
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This definition extends to give a notion of weak equivalemc8eg,,,(V), and similarly

in PrecatV/); we will refer to these aSegal equivalenceand denote the class of them
as SE (inboth Sgg,(V) and Precal()). There are three model structures on Pré&cat(
with the Segal equivalences as weak equivalences, nanggbydjective injective and
Reedymodel structures, constructed B0].

The Segal equivalences between Segal categories clearspond to the fully faith-
ful and essentially surjective functors between categbradgebras, so we get the
following:

Proposition 6.16 SupposéV is a left proper combinatorial Cartesian model category.
Then there is an equivalence

Seg(V)ISE ™1 = AlgealVIW ™ H)se{FFES™].
If moreover monomorphisms M are cofibrations, then there is an equivalence

Precat{/)[SE™] = Alg .(VIW1])sefFFES™].
Combining this with L3, Theorem 5.2.17] gives our comparison result:

Theorem 6.17 SupposeV is a left proper combinatorial Cartesian model category.
There is an equivalence ot -categories

Seg(V)[SE"Y] = cat/V ™.
If moreover monomorphisms M are cofibrations, then there is an equivalence

Precaty/)[SE~] = Cat/W .

Corollary 6.18 LetV be a left proper tractable Cartesian model category that is a
presheaf category such that the monomorphisms are the atiits. Then for all
n > 0 there are equivalences of -categories

Precall(V)[SE™Y] = Cavo[o\’x];l].
Proof We wish to apply Theorer@.17inductively. To do this we must check thatif
satisfies the given hypotheses, then so does a suitable singgure on Precat(). By
[30, Theorem 21.3.2], iV is a left proper tractable Cartesian model category then the
same is true of thReedymodel structure on Prec&t]. Moreover, by B0, Proposition
15.7.2] if V is a presheaf category such that the monomorphisms are fibeations,
then the injective and Reedy model structures on Prégatfincide, so the Reedy
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cofibrations are the monomorphisms, since these are clirlipjective cofibrations.
Finally Precat{) is also a presheaf category [80[ Proposition 12.7.6].

By induction it therefore follows that the Reedy model stuue on Prec&{fV) satisfies

the hypotheses of Theorel7 for all n. Moreover, since the monoidal structures
on both Precay() and Caﬁwfll are given by the Cartesian product, the equivalence
between them is automatically an equivalence of symmetdnaigal co-categories,
hence induces an equivalence T%e¥) =, Cal?’o[ov"’z;l] , etc. By induction we thus get

a sequence of equivalences

Precal(V)[SE %] ~ Caffecdt "WISE™] . cafet *VISET o .~ cafIW .
O

Example 6.19 If we takeV to be the category Sgtof simplicial sets, with the usual
model structure, we get an equivalence

Precal(Set)[SE™!] = Catuo ),

where the left-hand side is theo-category of the do, n)-categories of Pellissier-
Hirschowitz-Simpson and the right-hand side is thecategory of ¢o, n)-categories
defined by iteratedo-categorical enrichment.

Example 6.20 We would like to takeV to be the category Set of sets, equipped
with the trivial model structure, but of course this does satisfy the hypothesis
that cofibrations are monomorphisms. We therefore needrnsider instead a model
categoryM , Quillen equivalent to Set, that does satisfy the hypothe$éhe theorem.
For example, following30, §22.1] we can leM be an appropriate localization of the
Reedy model structure on Pref(a), or we can takéVl to be the Bousfield localization
of the usual model structure on Sewith respect to the morphism3A" — A0 for

all n > 2. We then get an equivalence

Precafl(Set)[SE™] = Precat(M)[SE™] = Ca’l} 1~ ca,

where the left-hand side is the-category of Tamsamanis-categories 33] and the
right-hand side is theo-category ofn-categories defined by iterated-categorical
enrichment.

7 Comparison with Iterated Segal Spaces

We saw in the previous section that the-category Cat. ) of (oo, n)-categories,
obtained by iterated enrichment, is equivalent to thatcated to the model category
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of n-fold Segal categories, which is another model for the homptheory of to, n)-
categories. Since this model is known to satisfy the axiohBaowick and Schommer-
Pries f], it follows that Cat. ) is equivalent to all the usual models foso(n)-
categories. However, this comparison was somewhat irdi@uar goal in this section
is to give a more direct comparison between Caf and another established model
of (o0, n)-categories, namely the iterated Segal spaces of Bardjjck [

We will deduce this comparison from a slightly more genesslit: we will prove that

if X is anabsolute distributorin the sense ofJ0], then categorical algebras i are
equivalent to Segal spaces i, and complete categorical algebras are equivalent to
complete Segal spaces. We begin with a brief review of thematf distributor:

Definition 7.1 A distributor consists of aro-categoryX together with a full subcat-
egoryY such that:

(1) Theoo-categoriesX andYy are presentable.

(2) The full subcategory is closed under small limits and colimits 9.

(3) If X — Y is a morphism inX such thatY € Y, then the pullback functor
‘zi/y — DC/X preserves colimits.

(4) Let O denote the full subcategory of Fukt, X) spanned by those morphisms
f: X — Y such thatY € Y, and letw: O — Y be the functor given by
evaluation at 1€ Al. SinceX admits pullbacks, the evaluation-at-1 functor
Fun(Al, X) — X is a Cartesian fibration, hence soris Let y: Y — cﬁﬁi be
a functor that classifies. Theny preserves small limits.

Definition 7.2 An absolute distributotis a presentablec-categoryX such that the
unique colimit-preserving functo§ — X that sends« to the final object is fully
faithful, and8 C X is a distributor.

Now we can recall the definition of a Segal space in an absdistgbutor:

Definition 7.3 SupposeC is an co-category with finite limits. Acategory objecin
C is a simplicial object: A°P? — € such that for eacim the map

Fn—>F1 XFg " XFoFl
induced by the inclusionsi,i + 1} < [n] and {i} — [n] is an equivalence.

Definition 7.4 Let X be an absolute distributor. Begal spacén X is a category
objectF: A°? — X such that=([0]) isin 8§ C X.
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Our goal is now to prove the following:

Theorem 7.5 SupposéX is an absolute distributor. There is an equivalence

Alg.(X) = Seg(X),

given by sending axgp -algebraC to the left Kan extensiom €' of the composite
AP S s

alongm: A — A%, where the second map (which ser(@, ..., S)) € X to
S x --- X §) comes from a Cartesian structure in the sens@fffpefinition 2.4.1.1].

For the proof we need some more technical results:

Proposition 7.6 ([20, Corollary 1.2.5]) SupposéJ C X is a distributor. LeK be

a small simplicial set, and l&t. p — Q be a natural transformation between functors
p,q: K — X. If g is a colimit diagram iy anda = @|k is Cartesian, them is
Cartesian if and only ip is a colimit diagram.

Lemma 7.7 Suppos€eX is an absolute distributor. Then for every space S, the
map
x: FuniX; X) — X)x

that sends a functdf: X — X to its colimit is an equivalence a% -categories.

Proof Let¢&: X — X be the constant functor at the final objece § C X. SinceX
is a space, a functdf: X — X sends every morphism iK to an equivalence i,
and so the unique natural transformatien— ¢ is Cartesian.

Write £: X> — X for a colimit diagram extending. Then~y factors as
Fun(X, X) ~ Fun(X, X) ¢ 1, Fun(XD,f)C)/g 22, X x;

whereg, is given by evaluation at the cone point. The funepergives an equivalence
between FurX,X), and the full subcategory; of Fun(XD,DC)/E spanned by the
colimit diagrams. On the other hand, the restrictionpgfto the full subcategong,
spanned by the Cartesian natural transformations i®also clearly an equivalence.
By Proposition7.6the subcategorie§; and £, coincide, and so the compositg is
indeed an equivalence. ]
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Proposition 7.8 Let O be anocc-category, and leE: O — § be a functor; write
w: O — O for the left fibration associated . Supposéc is an absolute distributor.
Then left Kan extension along gives an equivalence

Fun©f, X) = Fun@©, X) e.

Proof By [13, Proposition A.1.5] thex-category Funfg, X) is equivalent to the
oo-category of sections of the Cartesian fibration— O whose fibre atX € O is
FunF(X),X). Since X is an absolute distributor, by Lemnya7 the co-category

& is equivalent ovelO to the total space’ of the Cartesian fibration associated to
the functor sendin to X /r(xy. Then &’ is the pullback along= of the Cartesian
fibration Fun@A\',X) — X given by evaluation at 1, so we have an equivalence
between thexo-category Fup(0, &') of sections and the fibre of Fud(x A, X) ~
Fun@Al, Fun(©, X)) — Fun(©,X) at F. This is clearly equivalent to Fufi( X) ks
which completes the proof. ]

Proposition 7.9 Let S be a space, and let. Agp — A% be the usual projection. Let
m: Fun@d, X) — Fun(A°, X) be the functor given by left Kan extension along
Then a functoF: A — X is aAL-monoid if and only ifmF is a Segal space.

Proof It is clear thatm F([0]) is equivalent toS. We must thus show that the Segal
morphism

mF(n) — mF([1]) xs- - xsmF(A]) = (mF)5°
is an equivalence if and only F is a AQ-monoid. Sincer is a coCartesian fibration,
we have an equivalence F([n]) ~ colim.cg«nin F(€). It thus suffices to show that
(mF)[Sn?g is also a colimit of this diagram if and only F is a Ag’-monoid. There is a
natural transformation"Y)> — Fun(Al, X) that sends € S to F(¢) — ¢
andoo to (mF)[Sn‘]eg—> s<(+1) | SinceX is an absolute distributor, by Propositi@r6
the colimit is m F)ﬁﬁg if and only if this natural transformation is Cartesian. &in
s<(1) is a space, this is equivalent to the square

F(&) — (mF)py?

| |

é- Sx (n+1)

being a pullback square for al, so we are reduced to showing that the fibre of
(7r!F)[Sn‘]eg — <D at ¢ is F(¢) if and only if F is a A2P-monoid. Since limits
commute, if¢ is (s, . . ., Sn) this fibre is the iterated fibre product

(MFAD .50 X @FoODs) X @FloDe, o (MFADE 18-
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But using Propositio7.6again it is clear that the natural mab$x,y) — (mF[1])xy)
andx ~ F(X) — (mF)x are equivalences for ak,y € S. Thus the mag-(§) —
(7r;F)[SrE’g5 is equivalent to the natural map

F(&) — F(s0,s1) x -+ x F(sh-1, %)

By definition this is an equivalence for gl A if and only if F is a Ag”-monoid,
which completes the proof. O

Definition 7.10 Leti: x — A°P denote the inclusion of the object [0]. Then compo-
sition withi gives a functoi*: Seg(X) — 8 with left and right adjoints, andi., given
respectively by left and right Kan extension. Observe tlyaddfinition AS® — A is

the left fibration associated igX € Segf).

Corollary 7.11 Let S be a space, and let. Agp — A° denote the canonical
projection. By Propositior?.8the functor

m: Fun@Ag’, X) — FunA®, X) ;.
given by left Kan extension is an equivalence.

Under this equivalence, the full subcategbtgn Agp(DC) of Agp—monoids corresponds
to the full subcategory oFun(A°P, X) ;s spanned by the Segal spacéssuch that
Yo ~ S and the map¥. — i,.Sis given by the adjunction uni. — i,i*Y. ~i,S.

Proof Itis clear thatr, takes Morlgp(DC) into the full subcategory of Fuf\®®, X)/i.s
spanned by simplicial spaceéé with Yy ~ S and the mapY. — i..S given by the
adjunction unitY. — i.i*Y ~ i..S. The result therefore follows by Propositi@®. O

Corollary 7.12 Let S be a space, and let: AP — A° denote the canonical
projection. The functorr Fun(Agp, X) — Fun(A°P, X) given by left Kan extension
alongr gives an equivalence of the full subcategbtgn Agp(DC) of Agp—monoids with
the subcategorpeg(X)s of Segal spaces withth spaces and morphisms that are the
identity on theOth space.

Proof of Theorem 7.5 If V is an co-category with finite products, pulling back the
monoid fibration Mony) — Opd? of [13, Remark 3.6.3] along&?{g’ gives a Cartesian
fibration Mon.s(V) with an equivalence

Alg Cat(V) l} M Oncat(v)
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over 8. Taking left Kan extensions along the projectioh§® — A for all S€ § we
get (using Propositioi.9) a commutative square

Monca((X) Seg(X)

A

By [13 LemmaA.1.6]itis clear that @y : Seg(() — 8 is a Cartesian fibration, and the
functor ® preserves Cartesian morphisms by Proposifidh It thus suffices to prove
that for eachS € § the functor on fibres Moggp(DC) — Seg(()s is an equivalence,
which is the content of Corollary.12 O

P

Our goal is now to deduce that the equivalence of Thedatérimduces an equivalence
between complete categorical algebras and complete Segas We will first review
the definition of the latter:

Definition 7.13 Write Gpd@) for the full subcategory of Se§) spanned by the
groupoid objectsi.e. the simplicial objectX such that for every partitiom] = SUS
whereSN S consists of a single element, the diagram

X([n) —— X(9

J l

X(S) — X(SN S)

is a pullback square. LeX be an absolute distributor, and l&t XX — 8 denote the
right adjoint to the inclusior§ — X. The inclusion Gpd) — Segf) — Seg(X)
admits a right adjoint: Seg(() — Gpd@), which is the composite of the functor
A Segl) — Segf) induced byA, and.: Segf) — Gpd@). We say a Segal space
F: A° — X is completdf the groupoid objectF is constant.

Remark 7.14 By [13, Lemma 5.1.14], a Segal spaEeis complete if and only if the
map
() WF[0] — «F[1]

is an equivalence.
Definition 7.15 Let E" denote the Segal spaég{0,...,n}. If X is an absolute

distributor we also writeE" for E" regarded as a Segal spacelinvia the inclusion
S — X.
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Proposition 7.16 SupposéX is an absolute distributor. Then a Segal sgada X is
complete if and only if it is local with respect to the morphig® — E°.

Proof It is clear thatF is local with respect t&E* — E°, considered as a morphism
in Seg(X), if and only if the Segal spac&F in § is local with respect t&* — E°,
considered as a morphism in S&g(On the other hand; is complete if and only if
AF is complete, so it suffices to prove this for Segal spacés iithis case is part of
[26, Proposition 6.4]. O

Definition 7.17 Let CSS[) denote the full subcategory of S8)(spanned by the
complete Segal spaces; by Propositiad6 this is the localization of Seff) with
respect to the morphisi! — E°.

Theorem 7.18 Let X be an absolute distributor. The equivalensig .(X) —
Seg(X) induces an equivalend@att, = CSS(X).

Proof It is clear thatE}} € Alg.,(X) corresponds t&" € Seg(() under this equiva-
lence. Both sides are therefore the localization with resseE® — E°. O

Definition 7.19 By [20, Corollary 1.3.4], ifX is an absolute distributor, then CSJ(
is also an absolute distributor. We therefore have absalistebutors CSYX) of
n-fold complete Segal spaciesX.

Applying Theoren7.18inductively, we get:
Corollary 7.20 Let X be an absolute distributor. Th@a{wm) ~ CSI(X).

In particular, takingX to be theoc-category§ of spaces, we obtain the desired
comparison with iterated Segal spaces:

Corollary 7.21 There is an equivalend@aj ny ~ CSS\(8).
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