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Rectification of enriched∞-categories

RUNE HAUGSENG

We prove a rectification theorem for enriched∞-categories: IfV is a nice
monoidal model category, we show that the homotopy theory of∞-categories
enriched inV is equivalent to the familiar homotopy theory of categoriesstrictly
enriched inV . It follows, for example, that∞-categories enriched in spectra or
chain complexes are equivalent to spectral categories and dg-categories. A similar
method gives a comparison result for enriched Segal categories, which implies that
the homotopy theories ofn-categories and (∞, n)-categories defined by iterated
∞-categorical enrichment are equivalent to those of more familiar versions of
these objects. In the latter case we also include a direct comparison with complete
n-fold Segal spaces. Along the way we prove a comparison result for fibrewise
simplicial localizations potentially of independent use.

18D2, 55U35; 18D50, 55P48

1 Introduction

In [13], David Gepner and I set up a general theory of “weakly enriched categories”
— more precisely, we introduced a notion of∞-categoriesenrichedin a monoidal∞-
category, and constructed an∞-category of these objects where the equivalences are
the natural analogue of fully faithful and essentially surjective functors in this context.
In this paper we are interested in the situation where the monoidal ∞-category we
enrich in can be described by a monoidal model category — thisapplies to many, if not
most, interesting examples of monoidal∞-categories. IfV is a model category, then
inverting the weak equivalencesW gives an∞-categoryV[W−1]; if V is a monoidal
model category, thenV[W−1] inherits a monoidal structure, so our theory produces
an∞-category ofV[W−1]-enriched∞-categories. On the other hand, there is also
often a model structure on ordinaryV -enriched categories (cf. [19, 6, 32, 24]) where
the weak equivalences are the so-calledDK-equivalences, namely the functors that
areweakly fully faithful(i.e. given by weak equivalences inV on morphism objects),
and essentially surjective (up to homotopy). Our main goal in this paper is to prove a
rectification theorem in this setting:

http://arxiv.org/abs/1312.3881v3
http://www.ams.org/mathscinet/search/mscdoc.html?code=18D2, 55U35,(18D50, 55P48)
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Theorem 1.1 If V is a nice monoidal model category, then the homotopy theory of
∞-categories enriched inV[W−1] is equivalent to the homotopy theory of ordinary
V -enriched categories with respect to the DK-equivalences.

In particular,V[W−1]-enriched∞-categories can be rectified toV -categories: every
V[W−1]-enriched∞-category is equivalent to one coming from a category enriched in
V . We will state and prove a precise version of this result in §5. The precise meaning
of “nice” required applies, for example, to the category of chain complexes over a ring
with the usual projective model structure, and certain model structures on symmetric
spectra. We can therefore conclude that the∞-category of spectral categories is
equivalent to that of spectral∞-categories, and the∞-category of dg-categories to
that of∞-categories enriched in the derived∞-category of abelian groups.

If V is a nice Cartesian model category, i.e. a monoidal model category with respect
to the Cartesian product, then the theory ofV -enriched Segal categories, as defined
by Lurie [20] and Simpson [30], gives an alternative notion of “weaklyV -enriched
categories”. Using a similar proof strategy we also prove a comparison result in this
setting:

Theorem 1.2 If V is a nice Cartesian model category, then the homotopy theoryof
∞-categories enriched inV[W−1] is equivalent to the homotopy theory ofV -enriched
Segal categories.

We will prove a precise version of this theorem in §6. From this we can conclude that
the homotopy theories ofn-categories and (∞,n)-categories constructed in [13, §6.1]
using iterated enrichment are equivalent to those constructed as iterated Segal cate-
gories, starting with sets or simplicial sets, respectively. These are due to Tamsamani
and Pellissier-Hirschowitz-Simpson, and are constructedas model categories in [30].

Our last main result, which we will prove in §7, is a more direct comparison with
(∞,n)-categories, generalizing that between∞-categories enriched in spaces and
Segal spaces in [13, §4.4]:

Theorem 1.3 The homotopy theory of(∞,n)-categories obtained by iterated∞-
categorical enrichment is equivalent to that of completen-fold Segal spaces.

We now outline the proof of Theorem1.1 and the organization of the paper. In
[13] we defined enriched∞-categories in a monoidal∞-categoryV as “many-object
associative algebras” inV, or more precisely as algebras for a “many-object associative
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operad”∆op
X , whereX is a space. In §2we briefly review this definition and the context

in which it takes places, namely the theory of non-symmetric∞-operads.

The first step in the proof of our rectification theorem is to show that forX a set andV
a nice monoidal model category, the∞-category Alg∆op

X
(V[W−1]) of ∆op

X -algebras in

V[W−1] is equivalent to the∞-category obtained by inverting the weakly fully faithful
functors in the category CatX(V) of V -categories with a fixed set of objectsX. To
see this, we first (in §3) review Lurie’s rectification theorem for associative algebras
(Theorem 4.1.4.4 of [21]) and observe that it generalizes to associative algebras in
certain non-symmetric monoidal model categories.

Next, we wish to combine these equivalences to an equivalence of ∞-categories
where the sets of objects are allowed to vary. In [13] we combined the∞-categories
Alg∆

op
X

(V) for all spacesX to an∞-category Algcat(V) of categorical algebras. Here,
we consider the∞-category Algcat(V)Set of categorical algebras withsetsof objects.
We will prove that ifV is a nice monoidal model category, then Algcat(V[W−1])Set is
equivalent to the∞-category obtained from the category Cat(V) of V -categories by
inverting those morphisms that are weakly fully faithful and bijective on sets of objects.
To see this we need a technical result about∞-categorical localizations of fibrations
of categories, which we prove in §4.

The “correct”∞-category ofV-∞-categories is not Algcat(V), but rather the∞-
category obtained from this by inverting the fully faithfuland essentially surjective
functors. One of the main results of [13] was that this is equivalent to the full subcat-
egory CatV∞ of Algcat(V) spanned by thoseV-∞-categories that arecompletein the
sense that their space of objects is equivalent to their classifying space of equivalences.
We also showed, in [13, Theorem 5.2.17], that inverting the fully faithful and essen-
tially surjective morphisms in Algcat(V) is equivalent to inverting them in Algcat(V)Set.
Since the DK-equivalences in Cat(V), if V is a nice monoidal model category, corre-
spond to the fully faithful and essentially surjective functors in Algcat(V[W−1])Set, we
conclude that the∞-category obtained from Cat(V) by inverting the DK-equivalences
is equivalent to CatV[W−1]

∞ . We will give the details of the proof we have just sketched
in §5, after the technical preliminaries of §3 and §4. We then prove the comparison
with Segal categories using a similar proof in §6 and the comparison withn-fold Segal
spaces in §7.

1.1 Notation

Much of this paper is based on work of Lurie in [19, 21]; we have generally kept his
notation and terminology. In particular, by an∞-categorywe mean a quasicategory,
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i.e. a simplicial set satisfying certain horn-filling properties. However, in the few cases
where the notation of [13] differs from that of Lurie we have kept that of the latter.
Here are some hopefully useful reminders:

• Generic categories are generally denoted by single capitalbold-face letters
(A,B,C) and generic∞-categories by single caligraphic letters (A,B,C). Spe-
cific categories and∞-categories both get names in the normal text font: thus
the category of smallV -categories is denoted Cat(V) and the∞-category of
smallV-∞-categories is denoted CatV

∞ .

• ∆ is the simplicial indexing category, i.e. the category withobjects the non-
empty ordered sets [n] = {0,1, . . . ,n} and order-preserving maps as mor-
phisms.

• A model category istractable if it is combinatorial and there exists a set of
generating cofibrations that consists of morphisms betweencofibrant objects.

• Set∆ is the category of simplicial sets, and Set+
∆

is the category ofmarked
simplicial sets, i.e. simplicial sets equipped with a collection of 1-simplicies
including the degenerate ones.

• If C is an∞-category, we writeιC for the interior or underlying spaceof C,
i.e. the largest subspace ofC that is a Kan complex.

• If f : C→ D is left adjoint to a functorg: D→ C, we will refer to the adjunction
as f ⊣ g.

• S is the∞-category of spaces (in the sense of homotopy types or∞-groupoids),
and Cat∞ is the∞-category of∞-categories.

• If C is a model category, we writeCcof for the full subcategory ofC spanned
by the cofibrant objects.

1.2 Acknowledgements

This paper is based on part of my Ph.D. thesis. I thank Haynes Miller, for being a
great Ph.D. advisor in general; Clark Barwick, for several very helpful conversations,
particularly regarding the material in §4; Chris Schommer-Pries, for the proof of
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categories in general. I also thank the American-Scandinavian Foundation and the
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2 Brief Review of Non-Symmetric∞-Operads and Enriched
∞-Categories

To orient the reader, we begin with a brief review of the non-symmetric version of
Lurie’s ∞-operads and the definition of enriched∞-categories. We focus on the
essential ideas and do not give complete technical details of definitions or results; for
a more detailed introduction we refer the reader to [13, §2].

The starting point for the theory of non-symmetric∞-operads is thecategory of
operatorsof a non-symmetric operad (originally introduced by May andThomason for
symmetric operads):

Definition 2.1 Let O be a coloured non-symmetric operad (or in other words amulti-
category). Itscategory of operatorsO⊗ has objects (possibly empty) lists (X1, . . . ,Xn)
of objects ofO, and a morphism (X1, . . . ,Xn) → (Y1, . . . ,Ym) is given by a mor-
phism φ : [m] → [n] in ∆ and for eachi = 1, . . . ,m a multimorphism inO from
(Xφ(i−1)+1, . . . ,Xφ(i)) to Yi .

There is an obvious projectionπ : O⊗ → ∆op, with the following properties:

(a) Recall that a morphismφ : [n] → [m] in ∆ is inert if it is the inclusion of
a subinterval, i.e. ifφ(i) = φ(0) + i for all i = 0, . . . ,n. For every inert
morphismφ : [n] → [m] and every objectX ∈ O⊗ with π(X) = [m], there
exists aπ -coCartesian morphismX→ φ!X overφ.

(b) Let ρi : [1] → [n] denote the inert morphism in∆ that sends 0 toi − 1 and 1
to i . The functorsO⊗

[n] → O⊗
[1] induced by the coCartesian morphisms overρi

combine to give an equivalence of categories

O⊗
[n]

∼
−→

n∏

i=1

O⊗
[1] .

(c) Given objectsX ∈ O⊗
[n] , Y ∈ O⊗

[m] , and a morphismφ : [m] → [n] in ∆, the
inert mapsY→ ρi,!Y induce an isomorphism

Homφ
O⊗(X,Y)

∼
−→

m∏

i=1

Homρi◦φ
O⊗ (X, ρi,!Y),

where HomφO⊗(X,Y) denotes the set of morphismsX → Y in O⊗ that map to
φ in ∆op.
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It is not hard to see that these three propertiescharacterizethe categories of operators
of coloured non-symmetric operads:

Proposition 2.2 Any functorπ : C→ ∆op that satisfies (a)–(c) determines a coloured
non-symmetric operad that hasC as its category of operators. Moreover, under this
identification morphisms of operads correspond precisely to functors over∆op that
preserve the coCartesian morphisms over the inert maps in∆op.

Properties (a)–(c) have precise analogues in the theory of∞-categories, and anon-
symmetric∞-operad is precisely a functor of∞-categoriesO → ∆op with these
properties. IfO andP are non-symmetric∞-operads in this sense, it is also easy to
define the∞-category ofO-algebrasin P:

Definition 2.3 The∞-category AlgO(P) of O-algebrasin P is the full subcategory
of the functor∞-category Fun∆op(O,P) of functors fromO to P over ∆op spanned
by those functors that preserve the coCartesian morphisms over inert maps in∆op.

The simple definition of the homotopically correct categoryof algebras is one of the
key advantages of the theory of∞-operads over operads enriched in topological spaces
or simplicial sets.

An important source of non-symmetric∞-operads are non-symmetric operads en-
riched in simplicial sets or topological spaces: ifO is a coloured non-symmetric
operad enriched in simplicial sets, all of whose mapping spaces are Kan complexes,
then its simplicial category of operators (defined completely analogously to the set-
based version discussed above) is fibrant, and its coherent nerve NO⊗ → ∆op is an
∞-operad; for operads enriched in topological spaces, we simply take the singular sim-
plicial sets of the mapping spaces first. For example, the associative operad just gives
the identity map∆op→ ∆op, which is easily seen to be equivalent to the∞-operad as-
sociated to anA∞ -operad. This should not be surprising: in the∞-categorical setting
it does not make sense to talk about “strict” associative algebras, the only meaningful
notion is that of an algebra associative up to coherent homotopies, and this notion is
already encoded in algebras for the associative∞-operad.

We can also recognize monoidal categories from the categoryof operators perspective:
they are precisely those categories of operatorsC → ∆op that are Grothendieck
opfibrations. Analogously we can define a monoidal∞-category to be a non-symmetric
∞-operad that is also a coCartesian fibration, but this can also be reformulated more
simply:
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Definition 2.4 A monoidal∞-categoryis a coCartesian fibrationV⊗ → ∆op such
that for each [n] ∈ ∆ the functorV⊗

[n] →
∏n

i=1 V
⊗
[1] induced by the coCartesian

morphisms over the inert mapsρi : [1] → [n] is an equivalence of∞-categories.

Using the correspondence between coCartesian fibrations and functors to the∞-
category Cat∞ of∞-categories, we get an equivalence between monoidal∞-categories
andassociative monoidsin Cat∞ :

Definition 2.5 Let C be an∞-category with products. Anassociative monoidin C

is a functorµ : ∆op→ C that satisfies theSegal condition: for any [n] ∈ ∆ the map
µ([n]) →

∏n
i=1µ([1]) induced by the mapsµ(ρi) is an equivalence.

There is also an equivalence between associative monoids inC and algebras for the as-
sociative∞-operad inC (equipped with the monoidal structure given by the Cartesian
product). In particular, we have:

Proposition 2.6 There are equivalences of∞-categories between associative algebras
in Cat∞ , associative monoids inCat∞ , and monoidal∞-categories.

What we have discussed so far is the non-symmetric variant of∞-operads. Lurie’s
original theory, developed in [21], concerns symmetric∞-operads. This has a com-
pletely analogous motivation, the only difference is that in the definition of the category
of operators the category∆op is replaced by the categoryΓop of pointed finite sets. In
the∞-categorical setting this leads to Lurie’s definitions of symmetric∞-operads and
symmetric monoidal∞-categories. As the non-symmetric theory is the one relevant
to the present paper, we refer the reader to [21] for more details and do not discuss this
further here.

Instead, we turn to a brief summary of the theory of enriched∞-categories as intro-
duced in [13]. Recall that ifV is a monoidal category, thenV -enriched categories with
a fixed setX of objects can be regarded as the algebras for a certain non-symmetric
coloured operadOX :

Definition 2.7 If X is a set, the multicategoryOX hasX×X as its set of objects, and
the multimorphism sets are defined by

OX((x0, y1), (x1, y2), . . . , (xn−1, yn); (y0, xn)) :=

{
∗, if yi = xi , i = 0, . . . ,n,

∅, otherwise.
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This suggests that ifV is a monoidal∞-category then we can defineV-enriched∞-
categories with set of objectsX to be algebras inV for (the non-symmetric∞-operad
associated to)OX . This is indeed a correct definition, but it turns out not to bethe
most convenient to work with — for instance, we get a much better-behaved theory
of enriched∞-categories if we allow them to havespacesof objects, which is more
easily accomplished with an alternative definition.

We therefore considergeneralized non-symmetric∞-operads— these are what we
obtain by relaxing condition (b) for a category of operatorsabove to allowO⊗

[0] to not
be just a point, and instead requireO⊗

[n] to be an iterated fibre product ofO⊗
[1] overO⊗

[0] .
(The objects that have such categories of operators in the setting of ordinary categories
have been studied under the namesfc-multicategoriesby Leinster andvirtual double
categoriesby Cruttwell and Shulman.) For each setX we can define such a category of
operators whose algebras in a monoidal category (i.e. functors over∆op that preserve
coCartesian morphisms over inert maps) are precisely enriched categories with set of
objectsX:

Definition 2.8 Let X be a set. The category∆op
X has objects lists (x0, . . . , xn) of

elementsxi ∈ X, and a unique morphism (x0, . . . , xn) → (xφ(0), . . . , xφ(m)) for each
mapφ : [m] → [n] in ∆.

There is an obvious projection∆op
X → ∆op, and if V is a monoidal category, then

∆
op
X -algebras in the category of operatorsV⊗ are preciselyV -enriched categories with

set of objectsX. This leads to our definition of enriched∞-categories:

Definition 2.9 If V⊗ → ∆op is a monoidal∞-category, then aV-enriched∞-
categorywith set of objectsX is an algebra for the generalized non-symmetric∞-
operad∆op

X in V⊗ .

The projection∆op
X → ∆op is the Grothendieck opfibration associated to the functor

∆op→ Set that sends [n] to X×(n+1) andφ : [m] → [n] in ∆ to the mapX×(n+1) →

X×(m+1) that takes (x0, . . . , xn) to (xφ(0), . . . , xφ(m)). This has an obvious generalization
where we letX be a space: we simply take the coCartesian fibration∆

op
X → ∆op of

the analogous functor∆op→ X that sends [n] to X×(n+1).

When X is a set, bothOX -algebras and∆op
X -algebras in a monoidal categoryV are

equivalent toV -categories withX as their set of objects. Similarly, algebras for the
non-symmetric∞-operadO⊗

X and the generalized non-symmetric∞-operad∆op
X are

equivalent, with the equivalence induced by a map of generalized∞-operads (this is
a special case of [13, Corollary 4.2.8]):
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Proposition 2.10 SupposeX is a set. There is an obvious functorνX from ∆
op
X to

O⊗
X that sends the list(x0, . . . , xn) to the list ((x0, x1), (x1, x2), . . . , (xn−1, xn)). If V

is a monoidal∞-category, then the functor fromAlgOX
(V) to Alg∆

op
X

(V) given by
composition withνX is an equivalence of∞-categories.

3 Rectifying Associative Algebras

In [21, §4.1.4] Lurie proves a rectification result for associative algebras: ifV is
a nice symmetric monoidal model category, then the∞-category of (∞-categorical)
associative algebras inV[W−1], i.e. the∞-category of algebras for the non-symmetric
∞-operad∆op, is equivalent to that associated to the model category of (strictly)
associative algebras inV , as constructed by Schwede and Shipley [29]. This is proved
by showing that both sides are equivalent to the∞-category of algebras for the free
associative algebra monad onV[W−1]. In this section we review this result, and
observe that it generalizes slightly to the setting of non-symmetric monoidal model
categories; we will apply this to enriched categories in §5.

3.1 Review of Monoidal Model Categories

In this subsection we briefly review the construction of a monoidal∞-category from
a monoidal model category; the full details can be found in [21, §4.1.3].

If V is a simplicial model category, then one way of constructingan ∞-category
from V is to regard the full subcategoryV◦ of fibrant-cofibrant objects as a simplicial
category. This is fibrant in the model structure on simplicial categories, and so its
coherent nerve NV◦ is an∞-category. However, this construction does not work well
with respect to monoidal structures. We will therefore instead use a more general, but
less explicit, construction, that does not requireV to have a simplicial enrichment:

Definition 3.1 Recall that there is a model structure (constructed in [19, §3.1.3])
on the category Set+

∆
of marked simplicial sets that is Quillen equivalent to the Joyal

model structure on Set∆ . In this model category all objects are cofibrant and the fibrant
objects are precisely those marked simplicial sets (X,S) whereX is a quasicategory and
S is the collection of equivalences inX. If C is an∞-category andW is a collection of
morphisms inC, then a fibrant replacement for the marked simplicial set (C,W) in this
model structure gives the universal∞-categoryC[W−1] obtained fromC by inverting
the morphisms inW.
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If V is a model category, andW is the class of weak equivalences inV , we can
therefore define the∞-categoryV[W−1] associated to the model category to be a
fibrant replacement for the marked simplicial set (NV,W) in this model structure on
Set+

∆
. Equivalently, we can restrict ourselves to cofibrant, fibrant, or fibrant-cofibrant

objects and the weak equivalences between them. To get monoidal structures on the
localization it is convenient to consider the cofibrant objects; since this gives an∞-
category equivalent toV[W−1] we will use this notation also in this case, despite the
slight ambiguity this introduces.

Definition 3.2 Let V be a model category equipped with a biclosed monoidal structure.
We say thatV is a monoidal model categoryif the unit of the monoidal structure is
cofibrant and the tensor product functor⊗ : V × V → V is a left Quillen bifunctor.

Remark 3.3 Let V be a model category equipped with a biclosed monoidal structure
whose unit is cofibrant. Iff : A→ B andg: A′ → B′ are morphisms inV , let f�g be
the induced morphism

A⊗ B′ ∐A⊗A′ B⊗ A′ → B⊗ B′;

this is thepushout-productof f and g. ThenV is a monoidal model category if and
only if f�g is a cofibration wheneverf and g are both cofibrations, and a trivial
cofibration if eitherf or g is also a weak equivalence.

Lurie shows in [21, Proposition 4.1.3.2] that the functor that takes a pair (C,W)
consisting of an∞-categoryC and a collection of morphismsW to the localization
C[W−1] preserves products. It follows that this functor preserves O-algebra structures
for any∞-operadO. If V is a monoidal model category with weak equivalencesW,
then (NVcof,W) is an associative algebra in the∞-category of such pairs, and so, since
a monoidal∞-category is the same thing as an algebra for the associative∞-operad
in Cat∞ , we obtain the following key special case of this result:

Proposition 3.4 ([21, Example 4.1.3.6]) Let V be a monoidal model category. Then
V[W−1] inherits the structure of a monoidal∞-category.

Remark 3.5 The requirement that the unit be cofibrant is often not taken as part
of the definition of a monoidal model category, as there are important examples of
model categories with monoidal structures where the unit isnot cofibrant, but the other
requirements for a monoidal model category as we have definedit are satisfied. We
therefore point out that the assumption thatV has a cofibrant unit is not essential
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for Proposition3.4 to hold. If we drop this assumption then (NV,W) is still a non-
unital associative algebra, and soV[W−1] inherits a non-unital monoidal∞-category
structure. It is easy to see that a cofibrant replacement for the unit of the monoidal
structure inV gives aquasi-unit in the sense of [21, Definition 5.4.3.5] — roughly
speaking, this is an objectI such thatX⊗ I ≃ X ≃ I⊗X for every objectX, but we are
not given coherent associativity data for combinations of multiple such equivalences. A
non-unital monoidal∞-category with a quasi-unit can be extended to a full monoidal
structure with this as unit in an essentially unique way by [21, Theorem 5.4.3.8],
and so a monoidal model category without a cofibrant unit still induces a monoidal
∞-category structure on its associated∞-category.

3.2 Model Categories of Associative Algebras

In this subsection we briefly recall the construction of a model structure on associative
algebras, due to Schwede and Shipley, and observe that it generalizes to non-symmetric
monoidal model categories satisfying an appropriate version of the monoid axiom. First
we recall an observation of Schwede and Shipley on model structures for algebras over
monads:

Definition 3.6 Let T be a monad on a model categoryC. We say thatT is an
admissiblemonad if there exists a model structure on the category Alg(T) of T -
algebras where a morphism is a weak equivalence or fibration if and only if the
underlying morphism inC is a weak equivalence or fibration.

Write FT : C ⇄ Alg(T) : UT for the associated adjunction. IfC is a combinatorial
model category with setsI andJ of generating cofibrations and trivial cofibrations, we
say thatT is combinatorially admissibleif it is admissible and the model structure on
Alg(T) is combinatorial withFT(I ) and FT(J) as sets of generating cofibrations and
trivial cofibrations.

Remark 3.7 Given a monadT on C, a model structure on Alg(T) where a morphism
is a weak equivalence or a fibration if and only if its underlying morphism inC is
one is unique if it exists. Clearly, the existence of such a model structure implies
certain restrictions onT — for example, it must preserve weak equivalences between
cofibrant objects — but we will not attempt to describe these here, as we will only need
the following admissibility criterion of Schwede and Shipley:

Theorem 3.8 (Schwede-Shipley, [29, Lemma 2.3]) SupposeC is a combinatorial
model category andT is a filtered-colimit-preserving monad onC, and letJ be a set
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of generating trivial cofibrations forC. If the underlying morphism inC of every
morphism in the weakly saturated class generated byFT(J) in Alg(T) is a weak
equivalence, thenT is combinatorially admissible.

Remark 3.9 Since weak equivalences inC are closed under retracts and transfinite
composites, the weakly saturated class generated byFT(J) will be contained in the
weak equivalences provided the pushout of any morphism inFT(J) along any morphism
in Alg(T) is a weak equivalence.

In [29], Schwede and Shipley analyze such pushouts in the case of associative algebras.
They show that the pushout is a transfinite composite of pushouts of certain maps, as
follows:

Theorem 3.10 (Schwede-Shipley [29, §6]) SupposeC is a combinatorial biclosed
monoidal model category. WriteAlg(C) for the category of associative algebra objects
of C and F : C ⇄ Alg(C) : U for the free algebra functor and forgetful functor. Let
f : X→ Y be a morphism inC andg: F(X)→ A be a morphism inAlg(C). If

F(X) F(Y)

A B

F(f )

g g′

f ′

is a pushout diagram inAlg(C), then there is a sequence of morphisms inC

A = B0
φ1−→ B1

φ2−→ B2 · · ·

such thatB = colimt Bt and φt is a pushout of(j�f )�n
�j , where j is the unique

morphism∅ → A.

Based on this result Schwede and Shipley give a condition — the monoid axiom
— for the hypothesis of Theorem3.8 to hold, when the monoidal structure on the
model categoryC is symmetric, which is true in most of the interesting examples.
However, in the next section we wish to consider associativealgebras in functor
cateogories Fun(X × X,V) (where X is a set), equipped with the non-symmetric
“matrix multiplication” tensor product, for which associative algebras are precisely
V -categories withX as their set of objects. As noted by Muro [23], the following
non-symmetric version of the monoid axiom applies in this context:
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Definition 3.11 SupposeC is a monoidal model category, and letU be the set of
morphisms inC of the form f1� · · ·�fn where eachfi is either a trivial cofibration
or of the form∅ → Xi for some cofibrantXi ∈ C, with at least onefi being a trivial
cofibration. We say thatC satisfies themonoid axiomif the weakly saturated classU
generated byU is contained in the weak equivalences inC.

Remark 3.12 Since the pushout-product (∅ → A)�f is just the tensor productA⊗ f
for any morphismf , the morphisms inU are all trivial cofibrations inC.

Remark 3.13 If C is symmetricmonoidal, then we can use the symmetry to move
all the morphisms of the form∅ → A in an element ofU to one side. Thus, since
the pushout product of trivial cofibrations inC is a trivial cofibration by Remark3.3,
in the symmetric case the monoid axiom is equivalent to the corresponding statement
whereU consists of morphisms of the formf ⊗ X with f a trivial cofibration andX a
cofibrant object ofC. This is the original form of the monoid axiom, due to Schwede
and Shipley.

Corollary 3.14 Let C be a combinatorial biclosed monoidal model category that
satisfies the monoid axiom. Then the free associative algebra monad onC is combina-
torially admissible.

Proof By Remark3.9 it suffices to show that iff : X → Y is a trivial cofibration in
C, g: F(X)→ A is a morphism in Alg(C), and

F(X) F(Y)

A B

F(f )

g g′

f ′

is a pushout diagram in Alg(C), then f ′ is a weak equivalence inC. SinceC satisfies
the monoid axiom, it suffices to show thatf ′ is contained in the weakly saturated class
U generated by the classU from Definition3.11.

By Theorem3.10, the morphismf ′ is a transfinite composite of pushouts of morphisms
of the form (j�f )�n

�j , where j is the unique morphism∅ → A, so to show thatf ′

is contained inU it suffices to observe that these morphisms are contained inU by
definition.

We will also need the following result of Schwede and Shipley:
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Corollary 3.15 Let C be a combinatorial biclosed monoidal model category that
satisfies the monoid axiom. Then the forgetful functorAlg(C)→ C preserves cofibrant
objects.

3.3 Rectifying Algebras

We now observe that Lurie’s rectification result for associative algebras also holds
for non-symmetric monoidal model categories. To state the result, we first make the
following definition:

Definition 3.16 Let C be a left proper tractable biclosed monoidal model category
that satisfies the monoid axiom. By Corollary3.15, the forgetful functor from as-
sociative algebras inC to C preserves cofibrant objects, so we have a natural func-
tor Alg(C)cof → Alg(Ccof . It is immediate from the construction of the monoidal
∞-category structure onC[W−1] in Proposition3.4, where W denotes the weak
equivalences inC, that there is a monoidal functorCcof → C[W−1], which induces
a functor of∞-categories Alg(Ccof) → Alg∆op(C[W−1]). The composite functor
Alg(C)cof → Alg∆op(C[W−1]) clearly takes weak equivalences of algebras to equiva-
lences, and so induces a functor

Alg(C)[Ŵ−1] → Alg∆op(C[W−1])

is an equivalence, wherêW denotes the weak equivalences in the model structure on
Alg(C).

Theorem 3.17 (Lurie) Let C be a left proper tractable biclosed monoidal model
category that satisfies the monoid axiom. Then the functor of∞-categories

Alg(C)[Ŵ−1] → Alg(C[W−1])

defined above is an equivalence.

The proof is exactly the same as the proof of [21, Theorem 4.1.4.4]; in particular, the
key technical result [21, Lemma 4.1.4.13] generalizes to this context:

Definition 3.18 SupposeC is a left proper tractable biclosed monoidal model category
that satisfies the monoid axiom. Then the forgetful functorU : Alg(C)→ C takes weak
equivalences to weak equivalences, by definition of the model structure on Alg(C).
The composite functor of∞-categories Alg(C) → C → C[W−1] thus takes the
morphisms inŴ to equivalences inC[W−1] and so factors through a unique functor
U∞ : Alg(C)[Ŵ−1] → C[W−1] — this is the functor of∞-categories associated to
the right Quillen functorU .
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Lemma 3.19 (Lurie) SupposeC is a left proper tractable biclosed monoidal model
category that satisfies the monoid axiom andI is a small category such thatNI
is sifted. Then the forgetful functorU∞ : Alg(C)[Ŵ−1] → C[W−1] preservesNI -
indexed colimits.

We omit the proof, as it is exactly the same as that of [21, Lemma 4.1.4.13]. We will
make use of Lemma3.19 in the case of enriched categories, for which we have the
following observation:

Lemma 3.20 If V is a left proper tractable biclosed monoidal model categorysatis-
fying the monoid axiom andX is a set, then there is a combinatorial model category
structure on the categoryCatX(V) such that a morphism is a fibration or weak equiva-
lence if and only if its image inFun(X × X,V) is. Moreover, ifI is a small category
such thatNI is sifted then the forgetful functor

CatX(V)[FF−1
X ] → Fun(X× X,V)[W−1

X ]

preservesNI -indexed colimits, whereWX denotes the class of natural transformations
that are weak equivalences objectwise.

Proof Recall that ifV is a biclosed monoidal category andX is a set then there is a
monoidal structure on Fun(X× X,V), given by

(F ⊗G)(x, y) =
∐

z∈X

F(x, z) ⊗G(z, y),

such that an associative algebra object in Fun(X×X,V) is precisely aV -category with
objectsX. By [23, Proposition 10.3], ifV is a monoidal model category satisfying
the monoid axiom, then so is Fun(X × X,V) equipped with this monoidal structure.
Applying Corollary3.14and Lemma3.19to Fun(X×X,V) then implies the result.

4 Fibrewise Localization

Suppose we have a functor of ordinary categoriesF : C→ Cat together with a collec-
tion WC of weak equivalences in each categoryF(C) that is preserved by the functors
F(f ). Then we have two ways to construct an∞-category overC where these weak
equivalences are inverted: On the one hand we can invert the weak equivalences in
each categoryF(C) to get a functorC → Cat∞ that sendsC to F(C)[W−1

C ], which
corresponds to a coCartesian fibrationE → C. On the other hand, ifE → C is a
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Grothendieck opfibration corresponding toF then there is a natural collectionW of
weak equivalences inE induced by those in the fibres, and we can invert these to get
an∞-categoryE[W−1]. Our main goal in this section is to prove that in this situation
the natural mapE[W−1] → E is an equivalence of∞-categories.

We will do this in two steps: in §4.1we show that the∞-categoryE here is a fibrant
replacement in the coCartesian model structure on (Set+

∆
)/NC for NE marked by the

edges inW, then in §4.2 we use an explicit model forE[W−1] to show that this,
equipped with a natural choice of marked edges, is also weakly equivalent to (NE,W).
In addition, we prove in §4.3 that when the weak equivalences in each categoryF(C)
come from a (combinatorial) model structure, then there is a(combinatorial) model
structure onE whose weak equivalences are the morphisms inW.

Remark 4.1 Fibrewise localization has also recently been studied by Hinich in [15].
His approach is quite different from ours, but allows him to prove a comparison
analogous to ours also in the more general case where the baseC is itself equipped
with a class of weak equivalences.

4.1 The Relative Nerve

Recall that arelative categoryis a categoryC equipped with a collection of “weak
equivalences”, i.e. a subcategoryW containing all objects and isomorphisms. Write
RelCat for the obvious category of relative categories; this has been studied as a model
for the theory of (∞,1)-categories by Barwick and Kan [4]. The usual nerve functor
from categories to simplicial sets extends to a functorL : RelCat→ Set+

∆
that sends

(C,W) to (NC,NW1). In [19, §3.1.3] Lurie constructs a model structure on Set+
∆

where a fibrant replacement forL(C,W) is precisely an∞-categorical localization of
C that inverts the morphisms inW (marked by the equivalences).

If C is a category, there is a model structure on (Set+
∆

)/NC where a fibrant object is a
coCartesian fibration marked by its coCartesian morphisms,constructed in [19, §3.1.3],
and in [19, §3.5.2] Lurie describes a right Quillen equivalence N+

C from the projective
model structure on Fun(C,Set+

∆
) to this model structure on (Set+

∆
)/NC . Given a functor

F : C→ RelCat we therefore have two reasonable ways of constructing a fibrant object
of (Set+

∆
)/NC :

(i) Find a fibrant replacementF for the functorLF : C → Set+
∆

, and then form
N+

C F .
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(ii) Construct a Grothendieck opfibrationE → C associated toF , regarded as
a functor to categories, and writeS for the collection of 1-simplices in NE
that correspond to composites of (fibrewise) weak equivalences and coCartesian
morphisms. Then find a fibrant replacement in (Set+

∆
)/NC for (NE,S)→ NC.

Our main goal in this subsection is to prove that these give weakly equivalent objects.
We begin by reviewing the definition of the functor N+

C :

Definition 4.2 Let C be a category. Given a functorF : C → Set∆ , we define NCF
to be the simplicial set characterized by the property that amorphism∆I → NCF ,
whereI is a partially ordered set, is determined by:

(1) a functorσ : I → C,

(2) for every non-empty subsetJ ⊆ I with maximal elementj , a mapτJ : ∆J →

F(σ(j)),

such that for all subsetsK ⊆ J ⊆ I with maximal elementsk ∈ K and j ∈ J, the
diagram

∆K F(σ(k))

∆J F(σ(j))

τK

τJ

commutes. This defines a functor NC : Fun(C,Set∆)→ (Set∆)/NC .

The functor NC has a left adjoint, which we denote

FC : (Set∆)/NC → Fun(C,Set∆).

Proposition 4.3 Let π : E→ C be a functor. ThenFCNE is isomorphic to the functor
Oπ : C→ Set∆ defined byC 7→ NE/C .

Proof We must show that there is a natural isomorphism Hom(NE,NC({)) ∼= Hom(Oπ, {);
we will do this by defining explicit natural transformations

φ : Hom(Oπ, {) → Hom(NE,NC({))

and
ψ : Hom(NE,NC({)) → Hom(Oπ, {)

that are inverse to each other.
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Given X : C → Set∆ and a natural transformationη : Oπ → X, defineφ(η) : NE →
NCX to be the morphism that sends a simplexσ : ∆I → NE (which we can identify
with a functorI → E) to the simplex of NCX determined by

• the composite functorI → E→ C,

• for J ⊆ I with maximal elementj , the composite

∆
J → NE/π(σ(j))

ηπ(σ(j))
−−−−→ X(π(σ(j))).

Conversely, given a mapG: NE → NCX of simplicial sets over NC, let ψ(G) be the
natural transformationOπ → X determined as follows: forC ∈ C, the morphism
ψ(G)C : NE/C → X(C) sends a simplexσ : ∆I → NE/C , where I has maximal
elementi , to the composite

∆
I τ
−→ X(πσ(i))

X(f )
−−→ X(C)

where

• τ is the I -simplex determined by the image underG of the I -simplexσ′ of NE
underlyingσ ,

• f is the morphismπ(σ(i))→ C in C from σ .

The remaining data inG◦σ′ implies that this defines a map of simplicial sets NE/C→

X(C), and it is also easy to see thatψ(G) is natural inC.

Both φ andψ are obviously natural inX, and expanding out the definitions we see
thatφψ = id andψφ = id, so we have the required natural isomorphism.

Definition 4.4 Let C be a category. Given a functorF : C→ Set+
∆

we define N+C F to
be the marked simplicial set (NCF,M) whereF is the underlying functorC → Set∆
of F , andM is the set of edges∆1→ NCF determined by

• a morphismf : C→ C′ in C,

• a vertexX ∈ F(C),

• a vertexX′ ∈ F(C′) and an edgeF(f )(X)→ X′ that is marked inF(C′).

This determines a functor N+C : Fun(C,Set+
∆

)→ (Set+
∆

)/NC .

The functor N+C has a left adjoint, which we denoteF+
C .

Corollary 4.5 Let π : E → C be a functor, and letM be a set of edges ofNE that
contains the degenerate edges. ThenF+

C (NE,M) is isomorphic to the functorOπ

defined byC 7→ (NE/C,MC), where MC is the collection of edges determined by
E→ E′ in E andπ(E)→ π(E′)→ C in C such thatπ(E′) ∼= C andE→ E′ is in M .
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Proof We must show that there is a natural isomorphism

Hom((NE,M),N+
C ({)) ∼= Hom(Oπ, {) .

Given X : C → Set+
∆

, with underlying functorX : C → Set∆ , and a morphism
G: NE→ NCX, it is immediate from the definitions thatG takes an edgeσ : E→ E′

of NE lying overC→ C′ in C to a marked edge of N+C X if and only if φ(G)C′ takesσ ,
regarded as an edge of NE/C′ , to a marked edge ofX(C′). Thus the natural isomorphism
Hom(NE,NCX) ∼= Hom(Oπ,X) of Proposition4.3 identifies Hom((NE,M),N+

C X),
regarded as a subset of Hom(NE,NCX), with Hom(Oπ,X), regarded as a subset of
Hom(Oπ,X).

Theorem 4.6 (Lurie, [19, Proposition 3.2.5.18])

(i) The adjunctionFC ⊣ NC is a Quillen equivalence between(Set∆)/NC equipped
with the covariant model structure andFun(C,Set∆) equipped with the projec-
tive model structure.

(ii) The adjunctionF+
C ⊣ N+

C is a Quillen equivalence between(Set+
∆

)/NC equipped
with the coCartesian model structure andFun(C,Set+

∆
) equipped with the pro-

jective model structure.

Remark 4.7 By [19, Lemma 3.2.5.17], the functorF+
C is naturally weakly equivalent

to the straightening functor defined in [19, §3.2.1], which takes a fibrant functor
C→ Set+

∆
to the associated coCartesian fibration.

Recall that ifC is an∞-category we writeC♮ for the marked simplicial set given by
C marked by the equivalences, and that ifE→ NC is a coCartesian fibration we write
E♮ for the object of (Set+

∆
)/NC given byE marked by the coCartesian morphisms.

Lemma 4.8 Let F : C → Cat be a functor. Writeπ : E → C for the Grothendieck
opfibration associated toF , so thatE has objects pairs(C ∈ C,X ∈ F(C)) and a
morphism (C,X) → (D,Y) in E is given by a morphismf : C → D in C and a
morphismF(f )(X)→ Y in F(D). Then:

(i) NC(NF)→ NC is isomorphic toNπ .

(ii) N+
C (NF♮)→ NC is isomorphic to(NE)♮ → NC.

Proof It is clear from the definition of NC that there is a natural isomorphism between
n-simplices of NC(NF) and n-simplices of NE, which proves (i). By definition, an
edge of N+C (NF♮) is marked if it is given byf : C → C′ in C, X ∈ F(C), and
F(f )(X) → X′ an isomorphism inF(C′). Under the identification with edges of NE,
such edges precisely correspond to the coCartesian edges. This proves (ii).
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Proposition 4.9 Given F : C → RelCat, the counit mapF+
C N+

CLF → LF is a weak
equivalence inFun(C,Set+

∆
).

Proof Since Fun(C,Set+
∆

) is equipped with the projective model structure, it suffices
to show that for allC ∈ C the morphismF+

C N+
C LF(C)→ LF(C) is a weak equivalence

in Set+
∆

. Let F0 be the underlying functorC→ Cat, and letE→ C be the canonical
Grothendieck opfibration associated toF0. Then by Lemma4.8 we can identify
N+

C NF♮0 with NE♮ , and so by Corollary4.5we can identifyF+
C N+

CNF♮0(C) with NE/C ,
marked by the setMC of coCartesian morphismsE→ E′ such thatπ(E′) = C.

The adjunctionF+
C ⊣ N+

C is a Quillen equivalence, so since NF♮0 is fibrant and every

object of (Set+
∆

)/NC is cofibrant, the counitF+
CN+

C NF♮0→ NF♮0 is a weak equivalence
in Fun(C,Set+

∆
). In particular, (NE/C,MC)→ NF0(C)♮ is a weak equivalence.

Let M′
C be the set of edges of NE/C corresponding to weak equivalences inF(C).

Then we have a pushout diagram

(NE/C,MC) NF0(C)♮

(NE/C,MC ∪M′
C) LF(C),

since both vertical maps are pushouts along
∐

f∈M′
C
∆1 →֒

∐
f∈M′

C
(∆1)♯ . As the model

structure on Set+
∆

is left proper, it follows that (NE/C,MC ∪M′
C)→ LF(C) is a weak

equivalence.

By Corollary4.5 we can identifyF+
CN+

C LF(C) with the simplicial set NE/C , marked
by the setM′′

C of morphismsE → E′ with π(E′) = C such that given a coCartesian
factorizationE → E → E′ the morphismE → E′ is a weak equivalence inLF(C).
The obvious map (NE/C,MC ∪ M′

C) → F+
C N+

CLF(C) is therefore marked anodyne,
since the edges inM′′

C are precisely the composites of edges inMC and M′
C . In

particular this is also a weak equivalence, and so by the 2-out-of-3 property the map
F+

CN+
C LF(C)→ LF(C) is a weak equivalence, as required.

Corollary 4.10 Given F : C → RelCat, let LF → F be a fibrant replacement in the
projective model structure onFun(C,Set+

∆
). Then N+

CLF → N+
C F is a coCartesian

equivalence in(Set+
∆

)/NC .

Proof The adjunctionF+
C ⊣ N+

C is a Quillen equivalence, so sinceF is fibrant and
every object of (Set+

∆
)/NC is cofibrant, the morphism N+C LF → N+

CF is a weak
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equivalence if and only if the adjunct morphismF+
CN+

C LF → F is a weak equivalence.
This follows by the 2-out-of-3 property, since in the commutative diagram

F
+
CN+

C LF LF

F

the morphismLF → F is a weak equivalence by assumption, andF
+
CN+

C LF → LF is
a weak equivalence by Proposition4.9.

Using Lemma4.8we can equivalently state this as:

Corollary 4.11 Given F : C → RelCat, supposeπ : E → C is a Grothendieck
opfibration corresponding to the underlying functorC → Cat. Let M be the set
of morphismsf : E → E′ in E such that given a coCartesian factorizationE →
π(f )!E→ E′ , the morphismπ(f )!E→ E′ is a weak equivalence inF(π(E′)). Then if
LF → F is a fibrant replacement inFun(C,Set+

∆
), there is a coCartesian equivalence

(NE,M)→ N+
C F .

4.2 The Hammock Localization

Consider a functorF : C → RelCat, and letπ : E → C be an opfibration associated
to the underlying functorC → Cat. Our main goal in this subsection is to prove that
inverting the collectionW of fibrewise weak equivalences inE gives a coCartesian
fibration E[W−1] → C. As a corollary, we will also see thatE[W−1] is the total space
of the coCartesian fibration associated to the functor obtained from F by inverting
the weak equivalences in the relative categoriesF(C). We will prove this result by
analyzing an explicit model forE[W−1] as a simplicial category, namely thehammock
localization. We begin by recalling the definition of this, specifically the version
defined in [7, §35], and its basic properties:

Definition 4.12 A zig-zag type Z= (Z+,Z−) consists of a decomposition{1, . . . ,n} =
Z+∐Z− . Thezig-zag categoryZZ is the category with objects zig-zag types and mor-
phismsZ → Z′ given by order-preserving morphismsf : {1, . . . ,n} → {1, . . . ,n′}
such thatf (Z+) ⊆ Z′

+ and f (Z−) ⊆ Z′
− . If Z is a zig-zag type, the associated zig-zag
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category|Z| is the category with objects 0, . . . ,n and

|Z|(i, j) =





∗, i ≤ j, k ∈ Z+ for k = i + 1, . . . , j,

∗, i ≥ j, k ∈ Z− for k = j + 1, . . . , i,

∅, otherwise.

This clearly gives a functor|{ | : ZZ → Cat. If n is an odd integer, we abbreviate

〈n〉 := ({2,4, . . . ,n− 1}, {1,3, . . . ,n})

and if n is an even integer we abbreviate

〈n〉 := ({1,3, . . . ,n− 1}, {2,4, . . . ,n}).

Definition 4.13 Suppose (C,W) is a relative category. Forx, y ∈ C andZ ∈ ZZ we
defineLWCZ(x, y) to be the subcategory of Fun(|Z|,C) whose objects are the functors
F : |Z| → C such thatF(0) = x, F(n) = y, andF(i → (i − 1)) is in W for all i ∈ Z− ,
and whose morphisms are the natural transformationsη : F → G such thatη0 = idx,
ηn = idy , andηi is in W for all i . We writeLWCZ(x, y) := NLWCZ(x, y).

This construction gives a functorZZop→ Cat; we letLWC(x, y)→ ZZ be the fibration
associated to it by the Grothendieck construction. Using concatenation of zig-zags we
get a strict 2-categoryLWC with the same objects asC and with mapping categories
LWC(x, y); taking nerves, this gives a simplicial categoryLWC whose mapping spaces
areLWC(x, y) := NLWC(x, y). This simplicial category is thehammock localization
of (C,W).

Theorem 4.14 (Dwyer-Kan) Let (C,W) be a relative category. Then:

(i) The diagram

W LWW

C LWC

is a homotopy pushout square in simplicial categories.

(ii) If LWW→ LWW is a fibrant replacement in simplicial categories, thenNLWW
is a Kan complex andNW→ NLWW is a weak equivalence of simplicial sets.
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Proof (i) follows by combining [7, Proposition 35.7], [8, Proposition 2.2], and [9,
§4.5] (observe that a cofibration in the model structure on simplicial categories with a
fixed set of objects described in [9, §7] is also a cofibration in the model structure on
simplicial categories).

To prove (ii), we first observe that it follows from [9, §9.1] thatLWW is a simplicial
groupoid. If LWW → LWW is a fibrant replacement in simplicial categories, then
NLWW is the nerve of a fibrant simplicial groupoid, hence a Kan complex by [10,
Theorem 3.3]. LetG denote the left adjoint to the nerve of simplicial groupoids,
as defined in [10, §3.1]; by [10, Theorem 3.3] the morphism NW → NLWW is a
weak equivalence if and only if the adjunctGNW→ LWW is a weak equivalence of
simplicial groupoids. This follows from [9, §5.5], since this implies that the mapping
spaces in both are the appropriate loop spaces of NW.

Corollary 4.15 Let (C,W) be a relative category. SupposeLWC→ LWC is a fibrant
replacement in the model category of simplicial categories. Then

L(C,W)→ NLWC♮

is a weak equivalence inSet+
∆

.

Proof We must show that for every∞-categoryD, the induced map

MapSet+
∆

(NLWC♮,D♮)→ MapSet+
∆

(L(C,W),D♮)

is a weak equivalence of simplicial sets. Observe that

MapSet+
∆

(L(C,W),D♮) ≃ MapCat∞(NC,D)×MapCat∞ (NW,D) MapCat∞(NW, ιD)

and MapCat∞(NW, ιD) ≃ MapS(NW, ιD) ≃ MapCat∞(NW,D), where NW → NW
denotes a fibrant replacement in the usual model structure onsimplicial sets, so this is
equivalent to requiring

NW NW

NC NLWC

to be a homotopy pushout square. Theorem4.14(i) implies that

NW NLWW

NC NLWC
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is a homotopy pushout square, since N is a right Quillen equivalence and all the
objects are fibrant. By Theorem4.14(ii) we also have that NW→ NLWW is a fibrant
replacement in the usual model structure on simplicial sets, so the result follows.

We now fix a functorF : C→ RelCat, and letπ : E→ C be a Grothendieck opfibration
associated to the underlying functorC → Cat. We say a morphismf : X → Y in E
lying over f : A→ B in C is aweak equivalenceif f is an isomorphism andf!X→ F
is a weak equivalence inF(B); write W for the subcategory ofE whose morphisms are
the weak equivalences. Our goal is to show that the nerve ofLWE→ C is (equivalent
to) a coCartesian fibration. To prove this we need a technicalhypothesis on the relative
categoriesF(C):

Definition 4.16 A relative category (C,W) satisfies thetwo-out-of-three propertyif
given morphismsr : A → B and s: B→ C such that two out ofr, s, s ◦ r are in W,
then so is the third.

Definition 4.17 We say that a relative categoryC = (C,W) is apartial model category
if C satisfies the two-out-of-three property andC admits athree-arrow calculus, i.e.
there exist subcategoriesU,V ⊆W such that

(i) for every zig-zagA′ u
←− A

f
−→ B in C with u ∈ U , there exists a functorial

zig-zag

A′ f ′
−→ B′ u′

←− B

with u′ ∈ U such thatu′f = f ′u andu′ is an isomorphism ifu is,

(ii) for every zig-zagX
g
−→ Y′ v

←− Y in C with v ∈ V , there exists a functorial zig-zag

X
v′
←− X′ g′

−→ Y

with v′ ∈ V such thatgv′ = vg′ andv′ is an isomorphism ifv is,

(iii) every mapw ∈ W admits a functorial factorizationw = vu with u ∈ U and
v ∈ V .

Remark 4.18 If M is a model category (with functorial factorizations), thenthe
relative category obtained by equippingM with the weak equivalences in the model
structure is a partial model category. Similarly, the relative categories obtained from
the full subcategoriesM cof of cofibrant objects,M fib of fibrant objects, andM◦ of
fibrant-cofibrant objects together with the weak equivalences between these objects are
all partial model categories. The term “partial model category” is taken from [3], but
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we use the more general definition of [7, 36.1] since the more restrictive definition of
Barwick and Kan does not include what is for us the key example, namelyM cof for M
a model category.

Theorem 4.19 (Dwyer-Kan) Suppose(C,W) is a partial model category. Then for
every pair of objectsX,Y ∈ C, the morphismLWC〈n〉(X,Y)→ LWC(X,Y) is a weak
equivalence of simplicial sets for alln≥ 3.

Proof For n = 3 this is [8, Proposition 6.2(i)]; the general case follows similarly.

Proposition 4.20 SupposeF : C → RelCat is a functor such thatF(C) is a partial
model category for eachC ∈ C. Let φ : A → B be a morphism inC, and let X
andY be objects ofEA andEB, respectively. WriteLWE(X,Y)φ for the subspace of
LWE(X,Y) overφ. The morphism

φ
∗
: LWEB(φ!X,Y)→ LWE(X,Y)φ

given by composition with a coCartesian morphismφ : X→ φ!X is a weak equivalence
of simplicial sets.

Proof It is easy to see thatE is also a partial model category. It therefore follows from
Theorem4.19that the mapsLWE〈4〉(X,Y)φ → LWE(X,Y)φ andLW(EB)〈4〉(φ!X,Y)→
LWEB(φ!X,Y) are weak equivalences. Since composition withφ gives a functor

φ
∗
: LB := LW(EB)〈4〉(φ!X,Y)→ LWE〈4〉(X,Y)φ =: L

it therefore suffices to prove that this gives a weak equivalence upon taking nerves.

We will prove this in two steps. LetL1 denote the full subcategory ofL spanned by
objects

X = X0
f1−→ X1

f2←− X2
f3−→ X3

f4←− X4 = Y

such thatXi ∈ EB for i ≥ 1 andfi lies over idB in C for i ≥ 2; thenφ
∗

factors as

LB
f
−→ L1 i

−→ L .

We will show that each of these functors induces a weak equivalence of nerves.

First we considerf : LB→ L1, given by composition withφ. Defineq: L1→ LB by
sending a zig-zag

X
g
−→ Z← Z′ → Y′ ← Y

in L1 to
φ!X

g′
−→ Z← Z′ → Y′ ← Y
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whereX
φ
−→ φ!X

g′
−→ Z is the coCartesian factorization ofg (which exists since the other

maps lie over idB). Then it is clear thatqf ≃ id and fq≃ id, so f is an equivalence of
categories.

Next we want to define a functorp: L → L1. Given a zig-zag

X
g
−→ Z′ ← Z

h
−→ Y′ ← Y

in L , this lies over

A→ C′ γ
←− C→ B′ β

←− B

whereγ andβ are isomorphisms, since weak equivalences inE map to isomorphisms
in C. Thus the coCartesian mapsZ′ → γ−1

! Z′ and B′ → β−1
! B′ are isomorphisms,

and our zig-zag is isomorphic to the zig-zag

X→ γ−1
! Z′ ← Z→ β−1

! Y′ ← Y.

To definep we may therefore assume thatβ andγ are identities, in which casep sends

X
f
−→ Z′ ← Z

g
−→ Y′ ← Y

lying over

A
α
−→ C

id
←− C

ψ
−→ B

id
←− B

to
X→ ψ!Z

′ ← ψ!Z→ Y′ ← Y

in L1; this is clearly functorial.

We wish to prove thatp gives an inverse toi after taking nerves. It is obvious that
p◦ i ≃ id, so it suffices to show thati ◦p is homotopic to the identity after taking nerves.
To see this we consider the natural transformationη : L → Fun([1],LWE〈6〉(x, y)φ) that
sends our zig-zag to the diagram

X Z′ Z ψ!Z ψ!Z Y′ Y

X Z′ Z′ ψ!Z′ ψ!Z Y′ Y,

id

id

id id id id id

After composing with the inclusionLWE〈6〉(x, y)φ → LWE(x, y)φ the functorη0 is
clearly linked to the inclusionL → LWE(x, y)φ by a sequence of natural transforma-
tions, and similarlyη1 is linked to the composite ofi ◦ p with this inclusion. Since
natural transformations give homotopies of the induced maps between nerves it follows
from Theorem4.19that the morphism on nerves induced byi ◦ p is homotopic to the
identity. This completes the proof.
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Theorem 4.21 SupposeF : C → RelCat is a functor such thatF(C) is a partial
model category for eachC ∈ C. There is an∞-categoryE[W−1] such thatL(E,W)→
E[W−1]♮ is a weak equivalence inSet+

∆
, andE[W−1] → NC is a coCartesian fibration.

Proof Let LWE → LWE → C denote a factorization ofLWE → C as a trivial
cofibration followed by a fibration in the model category of simplicial categories. Then
(NLWE)♮ is a fibrant replacement forL(E,W) in Set+

∆
. By [19, Proposition 2.4.4.3] to

prove that NLWE→ NC is equivalent to a coCartesian fibration it suffices to show that
for each morphismf : C→ D in C and eachX in EC we have a homotopy pullback
square of simplicial sets

LWE(f!X,Y) LWE(X,Y)

C(D,B) C(C,B)

f
∗

f ∗

for all B ∈ C andY ∈ EB, wheref : X → f!X denotes a coCartesian morphism inE
over f .

Since the inclusion of a point in a discrete simplicial set isa Kan fibration and the model
structure on simplicial sets is right proper, giveng: D→ B the fibres at{g} and{g◦f}
in this diagram are homotopy fibres. To see that the diagram isa homotopy pullback
square it thus suffices to show that composition withf induces a weak equivalence

LWE(f!X,Y)g→ LWE(X,Y)gf

for all g: D→ B. But by Proposition4.20, in the commutative diagram

LWEB((gf)!X,Y)

LWE(f!X,Y)g LWE(X,Y)gf

the diagonal morphisms are both weak equivalences, hence bythe 2-out-of-3 property
so is the horizontal morphism.

Corollary 4.22 SupposeF : C→ RelCatis a functor such thatF(C) is a partial model
category for eachC ∈ C. Let LF → F be a fibrant replacement inFun(C,Set+

∆
). Then

there is a weak equivalenceL(E,W)→ (NCF)♮ in Set+
∆

.
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Proof By Theorem4.21, there exists a coCartesian fibrationE[W−1] → NC with a
map

φ : L(E,W)→ E[W−1]♮

that is a weak equivalence in Set+
∆

. The mapφ is also a weak equivalence when
regarded as a morphism in the over-category model structureon (Set+

∆
)/NC♮ . Let

p! : (Set+
∆

)/NC♮ ⇄ (Set+
∆

)/NC♯ : p∗

be the adjunction wherep! is the identity on the underlying marked simplicial sets,
and p∗ forgets the marked edges that do not lie over isomorphisms inC. If we
equip (Set+

∆
)/NC♮ with the over-category model structure and (Set+

∆
)/NC♯ with the

coCartesian model structure, then this is a Quillen adjunction by [19, Proposition
B.2.9], since these functors clearly come from a map of categorical patterns. Since all
objects in (Set+

∆
)/NC♮ are cofibrant, the functorp! preserves weak equivalences, and

soφ is also a weak equivalence when regarded as a morphism of (Set+
∆

)/NC♯ .

Let M′ be the set of edges of NE corresponding to coCartesian morphisms inE, and
let E[W−1]+ denote the marked simplicial set obtained fromE[W−1]♮ by also marking
the morphisms in the image ofM′ . We have a pushout diagram

L(E,W) E[W−1]♮

(NE,NW1 ∪M′) E[W−1]+,

as both vertical maps are pushouts along
∐

f∈M′ ∆
1 →֒

∐
f∈M′(∆1)♯ . Since the model

structure on (Set+
∆

)/NC♯ is left proper, it follows that (NE,NW1∪M′)→ E[W−1]+ is
a weak equivalence.

Let E[W−1]∗ denoteE[W−1], marked by the coCartesian morphisms. These are
composites of equivalences and morphisms in the image ofM′ , so E[W−1]+ →
E[W−1]∗ is marked anodyne. Moreover, it follows as in the proof of Lemma4.8 that
NE marked by the composites of morphisms in NW1 and M′ is precisely N+C LF , so
(NE,NW1 ∪ M′) → N+

CLF is also marked anodyne. By the 2-out-of-3 property we
therefore have a weak equivalence N+

CLF → E[W−1]∗ . Thus E[W−1]∗ and N+CF
are both fibrant replacements for N+

C LF , and so are linked by a zig-zag of weak
equivalences between fibrant objects.

This implies that the underlying∞-categoriesE[W−1] and NCF are equivalent, and
so by the 2-out-of-3 property the map (NE,W) → (NCF)♮ is a weak equivalence in
Set+

∆
, as required.
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4.3 Total Space Model Structures

As before we consider a functorF : C → RelCat and letE → C be an opfibration
associated toF . Although not strictly necessary for the applications we are interested
in below, in this subsection we show that if the functorF is obtained from a suitable
functor from C to the category of combinatorial model categories, then therelative
category structure onE considered above also comes from a combinatorial model
category.

Definition 4.23 Let ModCatR be the category of model categories and right Quillen
functors. Aright Quillen presheafon a categoryC is a functorCop → ModCatR.
A right Quillen presheaf iscombinatorialif it factors through the full subcategory of
combinatorial model categories.

Definition 4.24 SupposeC is aκ-accessible category. A right Quillen presheaf onC
is κ-accessibleif for eachκ-filtered diagrami : I → C with colimit X, the category
F(X) is the limit of the categoriesF(i(α)), and the model structure onF(X) is induced
by those onF(i(α)) in the sense that a mapf : A→ B in F(X) is a (trivial) fibration
if and only if F(gα)(f ) is a (trivial) fibration inF(i(α)) for all α ∈ I , wheregα is the
canonical morphismi(α) → X. We say a right Quillen presheafF on an accessible
categoryC is accessibleif there exists a cardinalκ such thatC andF areκ-accessible.

Proposition 4.25 SupposeC is a complete and cocomplete category andF is a right
Quillen presheaf onC. Let π : E → C be the Grothendieck fibration corresponding
to F . Then there exists a model structure onE such that a morphismφ : X→ Y with
imagef : A→ B in C is

(W) a weak equivalence if and only iff is an isomorphism inC and the morphism
f!X→ Y is a weak equivalence inF(b).

(F) a fibration if and only ifX→ f ∗Y is a fibration inF(a).

(C) a cofibration if and only iff!X→ Y is a cofibration inF(b).

Moreover, ifC is a presentable category andF is an accessible and combinatorial right
Quillen presheaf, then this model structure onE is combinatorial.

Remark 4.26 If f : A→ B is an isomorphism inC, thenf ∗ = F(f ) is an isomorphism
of model categories with inversef! . Thus if φ : X → Y is a morphism inE such that
f = π(φ) is an isomorphism inC, then f!X → Y is a weak equivalence inEB if and
only if X→ f ∗Y is a weak equivalence inEA.
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Remark 4.27 This model category structure is a particular case of that constructed
by Roig [27] (and corrected by Stanculescu [31]), though he does not consider the
combinatorial case. Roig’s construction has also recentlybeen significantly generalized
by Harpaz and Prasma [14]. We include a proof for completeness.

Proof Limits in E are computed by first taking Cartesian pullbacks to the fibre over
the limit of the projection of the diagram toC, and then taking the limit in that fibre.
Since all the fibresEB have limits, it is therefore clear thatE has limits. Similarly,
since each functorφ∗ for φ in C has a left adjoint, and each of the fibresEB has all
colimits, it is clear thatE has colimits.

To show thatE is a model category we must now prove that the weak equivalences
satisfy the 2-out-of-3 property, and the cofibrations and trivial fibrations, as well as
the trivial cofibrations and fibrations, form weak factorization systems. We check the
2-out-of-3 property first: Suppose we have morphismsf : X→ Y andg: Y→ Z in E
lying over f : A→ B andg: B→ C in C. If two out of the three morphismsf , g and
gf are weak equivalences, it is clear thatf and g must be isomorphisms. Thusg! is
an isomorphism of model categories, andg! f!X→ g!Y is a weak equivalence inEC if
and only if f!X→ Y is a weak equivalence inEB. Combining this with the 2-out-of-3
property for weak equivalences inEC gives the 2-out-of-3 property forE.

We now prove that the cofibrations and trivial fibrations forma weak factorization
system:

(1) Any morphism has a factorization as a cofibration followed bya trivial fibration:
Given f : X → Y in E lying over f : a → b in C, choose a factorization
f!X→ Z→ Y of f!X→ Y as a cofibration followed by a trivial fibration inEb.
Then by definitionX→ Z is a cofibration andZ→ Y is a trivial fibration inE.

(2) A morphism that has the left lifting property with respect toall trivial fibrations
is a cofibration: Supposef : X → Y, lying over f : A → B in C, has the left
lifting property with respect to all trivial fibrations. Then in particular there
exists a lift in all diagrams

X X′

Y Y′

where X′ → Y′ is a trivial fibration in EB. By the universal property of
coCartesian morphisms, this clearly implies thatf!X → Y has the left lifting
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property with respect to trivial fibrations inEB, and so is a cofibration inEB.
Thus f is a cofibration.

(3) Cofibrations have the left lifting property with respect to trivial fibrations: Sup-
posef : X → Y, lying over f : A→ B in C, is a cofibration, andg: X′ → Y′ ,
lying over g: A′ → B′ , is a trivial fibration. Given a commutative diagram

X X′

Y Y′

α

f g

β

lying over

A A′

B B′

α

f g

β

we must show there exists a liftY→ X′ . Sinceg is a trivial fibration,g is an
isomorphism. Pulling back alongg−1 and pushing forward alonggα = βf and
β gives a diagram

X β!f!X (g−1)∗X′ X′

Y β!Y Y′ Y′

Hereβ!f!X→ β!Y is a cofibration inEB′ sincef!X → Y is a cofibration inEB

and β! is a left Quillen functor, and (g−1)∗X′ → (g−1)∗g∗Y = Y is a trivial
fibration inEB′ sinceX→ g∗Y is a trivial fibration inEAf ′ and (g−1)∗ is a right
Quillen functor. Thus there exists a liftβ!Y→ (g−1)∗X′ which gives the desired
lift Y→ X′ .

(4) A morphism that has the right lifting property with respect to all cofibrations is
a trivial fibration: Supposeg: X′ → Y′ , lying over g: A′ → B′ in C, has the
right lifting property with respect to all cofibrations. Then in particular there
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exists a lift in all diagrams

X X′

Y Y′

whereX → Y is a cofibration inEA′ . By the universal property of Cartesian
morphisms, this clearly implies thatX′ → g∗Y′ has the right lifting property
with respect to cofibrations inEA′ , and so is a trivial fibration inEA′ . On the
other hand, there exists a lift in the diagram

X′ X′

g!X′ Y′,

and projecting this down toC we see thatg must be an isomorphism. Thusg
is a trivial fibration inE.

The proof that trivial cofibrations and fibrations form a weakfactorization system is
dual to that for cofibrations and trivial fibrations, so we omit the details. This completes
the proof thatE is a model category.

Now suppose the right Quillen presheafF is combinatorial and accessible. It follows
from [22, Theorem 5.3.4] that the categoryE is accessible, and the functorπ is
accessible, thusE is a presentable category since we already proved that it hassmall
colimits.

Let κ be a cardinal such thatC is κ-accessible andEX is κ-accessible for eachκ-
compact objectX in C. For X ∈ C, let IX and JX be sets of generating cofibrations
and trivial cofibrations forEX . Let I and J be the unions ofIX and JX , respectively,
over allκ-compact objectsX ∈ C; then I andJ are sets.

Suppose a morphismf : X → Y, lying over f : A → B in C, has the right lifting
property with respect to the morphisms inJ; then X → f ∗Y is a fibration inEA: To
see this letK → C, α 7→ Aα , be aκ-filtered diagram ofκ-compact objects with
colimit A, and letγα : Aα → A be the canonical morphism. Thenγ∗αX→ γ∗αf ∗Y has
the right lifting property with respect to a set of generating trivial cofibrations inEAα ,
and hence this is a fibration inEAα . Since the right Quillen presheafF is κ-accessible,
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this implies thatX → f ∗Y is a fibration inEA. This meansf is a fibration inE, so J
is a set of generating trivial cofibrations.

Similarly, if f has the right lifting property with respect to the morphismsin I , then
X→ f ∗Y is a trivial fibration inEA. To find a set of generating cofibrations we consider
also the setI ′ of morphisms∅∅ → ∅C and∅C∐C → ∅C whereC is aκ-compact object
of C and∅C denotes the initial object ofEC . We claim that iff : X → Y in E, with
imagef : A→ B in C, has the right lifting property with respect to the morphisms in
I ′ , thenf is an isomorphism inC. To prove this it suffices to show that for every object
C ∈ C the mapf∗ : HomC(C,A′)→ HomC(C,B′) induced by composition withf is a
bijection; sinceC is κ-presentable it is enough to prove this forC a κ-compact object.
Since f has the right lifting property with respect to∅∅ → ∅C and every morphism
C→ B induces a morphism∅C → Y, there exists a lift in the diagram

∅ A

C B

f

for every mapC→ B; this shows thatf∗ is surjective. Moreover, given two morphisms
C→ A such that the compositesC→ B are equal, we get a lift in the diagram

C∐ C A

C B

f

since f has the right lifting property with respect to∅C∐C → ∅C ; thus the two
morphismsC→ A must be equal and sof∗ is injective. It follows that if a morphism
in E has the right lifting property with respect to the unionI ∐ I ′ then it is a trivial
fibration, soI ∐ I ′ is a set of generating cofibrations forE. HenceE is a combinatorial
model category.

Remark 4.28 Let F be a right Quillen presheaf on a categoryC, and letE → C
be an opfibration associated to the underlying functor to categories. WriteG for
the associated “left Quillen presheaf” obtained by passingto left adjoints, and let
Gcof : C → RelCat be the functor to relative categories obtained by restricting to
cofibrant objects. Then the full subcategoryEcof of cofibrant objects inE, with the
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model structure defined above, is the total space of the opfibration associated toGcof ,
and the weak equivalences inEcof are precisely those considered above.

5 Rectifying Enriched∞-Categories

Our goal in this section is to prove the main result of this paper: the homotopy theory
of categories enriched in a nice monoidal model categoryV (with respect to the DK-
equivalences) is equivalent to the homotopy theory of∞-categories enriched in the
monoidal∞-categoryV[W−1]. We will do this in three steps:

(1) We first apply the results of §3 to get an equivalence between the∞-category
obtained by inverting the weakly fully faithful morphisms in the category
CatX(V) of V -categories with a fixed set of objectsX and the∞-category
Alg∆

op
X

(V[W−1]) of ∆op
X -algebras.

(2) Next, using the results of §4, we see that this induces an equivalence between
the∞-category obtained by inverting those morphisms in the category Cat(V)
of small V -categories that are weakly fully faithful and bijective onobjects and
the∞-category Algcat(V[W−1])Set of categorical algebras inV[W−1] whose
spaces of objects are sets.

(3) Finally, from this we deduce that the∞-category obtained by inverting the DK-
equivalences in Cat(V) is equivalent to the∞-category CatV[W−1]

∞ of V[W−1]-
∞-categories.

For the first step, the map we wish to prove is an equivalence isdefined as follows:

Definition 5.1 SupposeV is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom, and letX be a set. The map of generalized∞-operads
νX : ∆op

X → O⊗
X defined in Proposition2.10gives an equivalence

CatX(V) ≃ AlgOX
(V)

∼
−→ Alg∆

op
X

(V).

As in Definition3.16the monoidal functorVcof → V[W−1] induces, since the forgetful
functor CatX(V) → Fun(X × X,V) preserves cofibrant objects by Corollary3.15, a
functor

CatX(V)cof → Alg∆
op
X

(V[W−1]).

Let FFX denote the class of morphisms in CatX(V)cof that are weakly fully faithful, i.e.
given by weak equivalences on all morphism objects. It is clear that these are taken to
equivalences in Alg∆op

X
(V[W−1]) by this functor, and so there is an induced functor

ηX : CatX(V)[FF−1
X ] → Alg∆

op
X

(V[W−1]).
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Moreover, it is clear that this is natural inX.

Proposition 5.2 SupposeV is a left proper tractable biclosed monoidal model cate-
gory satisfying the monoid axiom, and letX be a set. The natural map

ηX : CatX(V)[FF−1
X ] → Alg∆

op
X

(V[W−1])

is an equivalence.

Proof of Proposition 5.2 We apply [21, Corollary 4.7.4.16] as in the proof of [21,
Theorem 4.1.4.4]: We have a commutative diagram

CatX(V)[FF−1
X ] Alg∆

op
X

(V[W−1])

Fun(X× X,V[W−1]),

ηX

U V

whereU∞ is the functor of∞-categories associated to the forgetful functor

U : CatX(V)→ Fun(X× X,V),

which is a right Quillen functor, andV is given by restricting∆op
X -algebras to the fibre

(∆op
X )[1] ≃ X× X. Then we observe:

(a) The∞-category CatX(V)[FF−1
X ] is presentable by [21, Proposition 1.3.4.22],

and the∞-category Alg∆op
X

(V[W−1]) is presentable by [13, Corollary B.5.7]

sinceV[W−1] is presentable by [21, Proposition 1.3.4.22] and the induced tensor
product onV[W−1] preserves colimits in each variable by [21, Lemma 4.1.4.8].

(b) The functorV admits a left adjointG by [13, Theorem B.4.6].

(c) The functorU∞ also admits a left adjointF∞ since it arises from a right Quillen
functor.

(d) The functorV is conservative by [13, Lemma B.5.5] and preserves sifted colimits
by [13, Corollary B.5.4].

(e) The functorU∞ is conservative by the definition of the weak equivalences in
Alg(V), and preserves sifted colimits by Lemma3.20.

(f) The canonical mapV ◦G→ U∞ ◦ F∞ is an equivalence since both induce, on
the level of homotopy categories, the freeV -category monad

Φ 7→
∐

n≥0

∐

x0,...,xn∈X

Φ(x0, x1)⊗ · · · ⊗ Φ(xn−1, xn).

This is obvious forU∞ ◦F∞ and forV ◦G it follows by [13, Proposition B.4.9].
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The hypotheses of [21, Corollary 4.7.4.16] thus hold, which implies that the morphism
in question is an equivalence.

For the second step, let us first define the class of maps in Cat(V) that we will invert:

Definition 5.3 We say that a functorF : C → D of V -categories isweakly fully
faithful if for all objects X,Y ∈ C the morphismC(X,Y) → D(FX,FY) is a weak
equivalence inV . We denote the class of morphisms in Cat(V) that are weakly fully
faithful and given by bijections on sets of objects by FFB.

The mapηX : CatX(V)[FF−1
X ] → Alg∆

op
X

(V[W−1]) is natural in X, so it induces a

natural transformation of functors Set→ Set+
∆

. Applying Corollary4.22we therefore
get the required comparison of “pre-localized” homotopy theories:

Theorem 5.4 The natural transformationη induces a functor

Cat(V)[FFB−1] → Algcat(V[W−1])Set

and this is an equivalence.

Remark 5.5 Using Proposition4.25we can combine the (fibrewise) model structures
on CatX(V) to get a model structure on Cat(V). Explicitly, if V is a left proper tractable
biclosed monoidal model category satisfying the monoid axiom, then there is a model
structure on Cat(V) such that a morphismF : C → D is a weak equivalence if and
only if F is weakly fully faithful and a bijection on objects, and a fibration if and only
if C(x, y)→ D(Fx,Fy) is a fibration inV for all x, y ∈ obC. Thus Cat(V)[FFB−1] is
the∞-category associated to this model category.

The weakly fully faithful functors that are bijective on objects are clearly not the
right weak equivalences betweenV -categories — just as for ordinary categories the
equivalences are the functors that are fully faithful and essentially surjective, here they
should be the functors that are weakly fully faithful and essentially surjective up to
homotopy, in the following sense:

Definition 5.6 Let V be a monoidal model category. Then the projectionV → hV
to the homotopy category is a monoidal functor; this therefore induces a functor
Cat(V)→ Cat(hV). A functor of V -categories ishomotopically essentially surjective
if its image in Cat(hV) is essentially surjective, and aDK-equivalenceif it is weakly
fully faithful and homotopically essentially surjective (or equivalently if it induces an
equivalence of hV -categories). We write DK for the class of DK-equivalences in
Cat(V).
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The DK-equivalences in Cat(V) clearly correspond to the fully faithful and essen-
tially surjective functors in Algcat(V[W−1])Set, as defined in [13, §5.2]. Theorem5.4
therefore immediately implies the following:

Corollary 5.7 SupposeV is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. ThenCat(V)[DK−1] is equivalent to the localization of
Algcat(V[W−1])Set with respect to the fully faithful and essentially surjective functors.

Combining this with [13, Theorem 5.2.17] we get our main result:

Theorem 5.8 SupposeV is a left proper tractable biclosed monoidal model category
satisfying the monoid axiom. The functorη : Cat(V)[FFB−1] → Algcat(V[W−1])Set

induces an equivalence

Cat(V)[DK−1]
∼
−→ CatV[W−1]

∞ .

Proof By [13, Theorem 5.2.17], for any monoidal∞-categoryV the localization of
Algcat(V)Set at the fully faithful and essentially surjective functors is equivalent to the
corresponding localization of Algcat(V), which is CatV∞ by [13, Theorem 5.5.6]. The
result follows by combining this, in the case whereV is V[W−1], with Corollary 5.7.

Remark 5.9 Under the hypotheses of Theorem5.8 there is a model structure on the
category Cat(V) whose weak equivalences are the DK-equivalences — the construction
of Muro [24] requires slightly weaker hypotheses onV than our theorem. Thus we
have shown that CatV[W−1]

∞ is the∞-category associated to this model category. Other
general constructions of model structures on enriched categories are given in [19, 6, 32]
(see [6, §1] for a historical discussion).

Example 5.10 Thestable model structureon the category SpΣ of symmetric spectra,
as described in [18], satisfies the hypotheses of Theorem5.8. The associated monoidal
∞-category is the∞-category of spectra with the smash product monoidal structure.
Thus we have an equivalence

Cat(SpΣ)[DK−1]
∼
−→ CatSp

∞

between spectral categories and spectral∞-categories.

Example 5.11 The projective model structure on the category Ch≥0(ModR) of non-
negatively graded chain complexes of modules over a commutative ring R, as de-
scribed for example in [12], satisfies the hypotheses of Theorem5.8. The same
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is true of the projective model structure on the category Ch(ModR) of unbounded
chain complexes ofR-modules described in [17, §2.3]. The associated monoidal
∞-categories are the bounded and unbounded derived∞-categoriesD≥0

∞ (ModR) and
D∞(ModR) of R-modules, as described in [21, §1.3.2]. (These are equivalent to the
∞-categories Mod≥0

HR and ModHR of connective modules and all modules over the
Eilenberg-MacLane ring spectrum HR, respectively.) Thus we have equivalences

Cat(Ch≥0(ModR))[DK−1]
∼
−→ CatD

≥0
∞ (ModR)

∞ ≃ Cat
Mod≥0

HR
∞ ,

Cat(Ch(ModR))[DK−1]
∼
−→ CatD∞(ModR)

∞ ≃ CatModHR
∞ ,

between∞-categories of (two versions of) dg-categories and the appropriate corre-
sponding enriched∞-categories.

6 Comparison with Segal Categories

Segal categoriesare a model for the theory of (∞,1)-categories where composition
is only associative up to coherent homotopy, inspired by Segal’s model ofA∞ -spaces.
They first appeared in papers of Schwänzl and Vogt [28] and Dwyer, Kan, and
Smith [11], though not with this name; they were later rediscovered byHirschowitz and
Simpson [16], who used them as a model for (∞,n)-categories. A generalization to Se-
gal categories enriched in a Cartesian model category (i.e.a monoidal model category
where the tensor product is the Cartesian product) was first given by Pellissier [25],
further developed by Lurie [20], and finally extensively studied by Simpson [30]. In
this section we will show that, forV a nice Cartesian model category with weak equiv-
alencesW, the homotopy theory of Segal categories enriched inV is equivalent to
that of∞-categories enriched inV[W−1]. We will first carry out the comparison in
the case of a fixed set of objects, and then apply the results of§4 to prove the general
comparison.

Definition 6.1 A model category isCartesianif it is a monoidal model category with
respect to the Cartesian product. IfV is a Cartesian model category, aV -enriched
Segal category(or SegalV -category) with set of objectsS is a functorC : ∆op

S → V
such that for every object (x0, . . . , xn) of ∆op

S the Segal morphismC(x0, . . . , xn) →
C(x0, x1) × · · ·C(xn−1, xn) induced by the projections (x0, . . . , xn) → (xi , xi+1) is a
weak equivalence. We say the Segal categoryC is fibrant if the objectsC(x0, . . . , xn)
in V are fibrant for allx0, . . . , xn ∈ S, andstrictly unital if the objectsC(x) are final
objects inV for all x ∈ S.
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Remark 6.2 We can regardV -categories as those Segal categories where the Segal
morphisms areisomorphisms, rather than just weak equivalences.

We can describe fibrant Segal categories with a fixed setS of objects as the fibrant
objects in a Bousfield localization of the projective model structure on Fun(∆op

S ,V):

Definition 6.3 If X is an object of∆op
S , let iX : ∗ → ∆

op
S denote the functor with

image X, write i∗X : Fun(∆op
S ,V) → V for the functor given by composition with

iX , and let iX,! : V → Fun(∆op
S ,V) be its left adjoint, given by left Kan exten-

sion along iX . Then iX,! is a left Quillen functor with respect to the projective
model structure on Fun(∆op

S ,V). A functor C : ∆op
S → V is a fibrant Segal cate-

gory if and only if it is projectively fibrant and local with respect to the morphisms
i(x0,x1),!A

∐
· · ·

∐
i(xn−1,xn),!A → i(x0,...,xn),!A for all x0, . . . , xn in S and all A in a set

of objects that generatesV under colimits. IfV is a left proper combinatorial Carte-
sian model category, then we can define a model structure whose fibrant objects are
fibrant Segal categories by taking the left Bousfield localization of the projective model
structure on Fun(∆op

S ,V) with respect to these morphisms — this exists under these
hypotheses onV by a theorem of Smith (a proof can be found in [2, Theorem 4.7]).
We refer to this model structure as theSegal category model structure on functorsand
write Fun(∆op

S ,V)Seg for the category Fun(∆op
S ,V) equipped with this model structure.

To obtain a well-behaved model structure, it turns out to be better to consider only
strictly unital Segal categories. This leads to considering the category ofV -precategories:

Definition 6.4 Let V be a left proper combinatorial Cartesian model category. A
V -precategorywith set of objectsS is a functorC : ∆op

S → V such thatC(x) is a final
object for allx ∈ S. Write PrecatS(V) for the full subcategory of Fun(∆op

S ,V) spanned
by theV -precategories andu∗ : PrecatS(V)→ Fun(∆op

S ,V) for the inclusion. Thenu∗

has a left adjoint, which we denoteu! .

There is a model structure on PrecatS(V) analogous to that for Fun(∆op
S ,V) we de-

scribed above:

Proposition 6.5 (Simpson [30, Propostion 13.4.3])SupposeV is a left proper com-
binatorial Cartesian model category. There exists a (projective) model structure on
PrecatS(V) where a morphism is a weak equivalence or fibration if it levelwise is one
in V . The functoru∗ : PrecatS(V)→ Fun(∆op

S ,V) is a right Quillen functor.
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Definition 6.6 SupposeV is a left proper combinatorial Cartesian model category.
The (projective) Segal category model structure on precategories is the left Bousfield
localization of this (projective) model structure on PrecatS(V) with respect to the
morphismsu!(i(x0,x1),!A

∐
· · ·

∐
i(xn−1,xn),!A) → u! i(x0,...,xn),!A for all (x0, . . . , xn) in S

and allA in a set of objects that generatesV under colimits. We write PrecatS(V)Seg

for the category PrecatS(V) equipped with this model structure.

Under mild hypotheses these two model categories in the fixed-objects case are equiv-
alent:

Proposition 6.7 SupposeV is a left proper combinatorial Cartesian model category
where monomorphisms are cofibrations. Then the adjunctionu! ⊣ u∗ gives a Quillen
equivalence

Fun(∆op
S ,V)Seg⇄ PrecatS(V)Seg.

Proof It is obvious thatu∗ is a right Quillen functor, so this is a Quillen adjunction.
Sinceu∗ is fully faithful, the counitu!u∗F → F is an isomorphism in PrecatS(V) for
all F . By [30, Lemma 14.2.1] the functoru! only changes the values of a functor at
the constant sequences (x, . . . , x) for x ∈ S, in which caseu!F is given by forming the
pushout

F(x) ∗

F(x, . . . , x) u!F(x, . . . , x),

F(σ)

whereσ : (x) → (x, . . . , x) is the map over the unique maps: [0] → [n] in ∆op. If
d is any map [n] → [0] in ∆op, thends= id, henceF(σ) is a monomorphism. By
assumption it is therefore a cofibration, and so asV is left proper, the mapF(x, . . . , x)→
u!F(x, . . . , x) is a weak equivalence ifF(x) → ∗ is a weak equivalence. ThusF →
u∗u!F is a levelwise weak equivalence if the mapF(x)→ ∗ is a weak equivalence inV
for everyx ∈ S. Since every object of Fun(∆op

S ,V)Seg is weakly equivalent to one for
which this is true, it is clear that the Quillen adjunctionu! ⊣ u∗ gives an equivalence
of homotopy categories, and so is a Quillen equivalence.

Next, we will compare the∞-category associated to Fun(∆
op
S ,V)Segto Alg∆

op
S

(V[W−1]).

We know that the∞-category associated to the projective model structure on Fun(∆op
S ,V)



Rectification of enriched∞-categories 41

is equivalent to the∞-categorical functor category Fun(∆
op
S ,V[W−1]). The Bousfield-

localized model category Fun(∆
op
S ,V)Seg can therefore be identified with the full sub-

category of Fun(∆op
S ,V[W−1]) spanned by the objects that are local with respect to

certain maps. We can identify this with the∞-category of∆op
S -monoids:

Definition 6.8 Recall that if V is an∞-category with finite limits andM is a
generalized non-symmetric∞-operad, anM-monoid in V is a functor M → V

such that for every objectm ∈ M[n] , if m → mi ( i = 1, . . . ,n) are coCartesian
morphisms corresponding to the inert mapsρi : [1] → [n] in ∆, then the induced
morphismF(m)→ F(m1)×· · ·×F(mn) is an equivalence. We write MonM(V) for the
full subcategory of Fun(M,V) spanned by the monoids. There is a natural equivalence
MonM(V) ≃ AlgM(V) (by [13, Proposition 3.5.3]).

Definition 6.9 SupposeV is a presentable∞-category andM is a generalized non-
symmetric∞-operad. Form∈ M, write im : ∗ → M for the inclusion of this object,
and letim,! denote left Kan extension alongim. Then for any functorF : M→ V and
X ∈ V we have Map(im,!cX,F) ≃ Map(cX, i∗mF) ≃ MapV(X,F(m)), wherecX is the
functor ∗ → V with imageX.

Lemma 6.10 SupposeV is a presentable∞-category such that the Cartesian prod-
uct preserves colimits separately in each variable, andM is a small generalized
non-symmetric∞-operad. Then the∞-categoryMonM(V) is the localization of
Fun(M,V) with respect to the morphismsim1,!X∐ · · · ∐ imn,!X→ im,!X for all m∈M

with X ranging over a set of objects that generatesV under colimits.

Proof A functor F : M→ V is a monoid if and only if it is local with respect to these
morphisms.

Since MonM(V) is equivalent to AlgM(V), we have proved the following:

Proposition 6.11 SupposeV is a left proper combinatorial Cartesian model cate-
gory, and letWSeg,S denote the class of weak equivalences inFun(∆op

S ,V)Seg. Then
the natural mapαS: Fun(∆op

S ,V)[W−1
Seg,S] → Alg∆

op
S

(V[W−1]) is an equivalence. If
moreover monomorphisms inV are cofibrations, then we also have a natural equiva-
lencePrecatS(V)[W−1

Pre,X] → Alg∆
op
S

(V[W−1]) , whereWPre,X denotes the class of weak
equivalences inPrecatS(V)Seg.

Having dealt with the fixed-objects case, we will now allow the set of objects to vary:
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Definition 6.12 Let SegFun(V) denote the total space of the right Quillen presheaf
given by S 7→ Fun(∆op

S ,V)Seg and let Precat(V) denote the total space of the right
Quillen presheaf given byS 7→ PrecatS(V)Seg. The adjunctionu! ⊣ u∗ is natural and
so gives a natural transformation between these right Quillen presheaves.

Proposition 6.13 Let V be a left proper combinatorial Cartesian model category.
There exist combinatorial model structures on the categoriesSegFun(V) andPrecat(V)
where a morphismF : C → D is a weak equivalence if and only if the induced
morphism f on objects is a bijection andC → f ∗D is a weak equivalence in
Fun(∆op

obC,V)Seg or PrecatobC(V)Seg and a fibration if and only ifC → f ∗D is a
fibration in Fun(∆op

obC,V)Seg or PrecatobC(V)Seg. The adjunction

u! : SegFun(V) ⇆ Precat(V) : u∗

induced by the natural transformationsu! andu∗ is a Quillen equivalence.

Proof This is immediate from Proposition4.25.

Now combining Corollary4.22and Proposition6.11we get the following comparison
of “algebraic” homotopy theories:

Theorem 6.14 SupposeV is a left proper combinatorial Cartesian model category.
The natural transformationα induces a functorSegFun(V)[W−1

Fun] → Algcat(V[W−1])Set

and this is an equivalence, whereWFun denotes the weak equivalences in the model
structure onSegFun(V). If moreover monomorphisms inV are cofibrations, then we
also have an equivalencePrecat(V)[W−1

Precat] ≃ Algcat(V[W−1])Set.

The weak equivalences in SegFun(V) are difficult to describe in general; however,
a morphismf : C → D between fibrant objects, i.e. Segal categories, is a weak
equivalence if and only if it is bijective on objects and a levelwise weak equivalence
— in fact, given the Segal conditions, it suffices forf to give a weak equivalence
C(x, y) → D(fx, fy) for all objectsx, y in C. To obtain the correct homotopy theory
we clearly also need to invert the morphisms that are fully faithful and essentially
surjective in the appropriate sense:

Definition 6.15 Composition with the projectionV → hV induces a functor

SegFun(V)→ SegFun(hV).

This takes Segal categories to categories enriched in hV . We say a morphism between
Segal categories in SegFun(V) is weakly fully faithful and homotopically essentially
surjective if its image in SegFun(hV) corresponds to a fully faithful and essentially
surjective functor of hV -categories.
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This definition extends to give a notion of weak equivalence in SegFun(V), and similarly
in Precat(V); we will refer to these asSegal equivalences, and denote the class of them
as SE (in both SegFun(V) and Precat(V)). There are three model structures on Precat(V)
with the Segal equivalences as weak equivalences, namely theprojective, injective, and
Reedymodel structures, constructed in [30].

The Segal equivalences between Segal categories clearly correspond to the fully faith-
ful and essentially surjective functors between categorical algebras, so we get the
following:

Proposition 6.16 SupposeV is a left proper combinatorial Cartesian model category.
Then there is an equivalence

SegFun(V)[SE−1]
∼
−→ Algcat(V[W−1])Set[FFES−1].

If moreover monomorphisms inV are cofibrations, then there is an equivalence

Precat(V)[SE−1]
∼
−→ Algcat(V[W−1])Set[FFES−1].

Combining this with [13, Theorem 5.2.17] gives our comparison result:

Theorem 6.17 SupposeV is a left proper combinatorial Cartesian model category.
There is an equivalence of∞-categories

SegFun(V)[SE−1]
∼
−→ CatV[W−1]

∞ .

If moreover monomorphisms inV are cofibrations, then there is an equivalence

Precat(V)[SE−1]
∼
−→ CatV[W−1]

∞ .

Corollary 6.18 Let V be a left proper tractable Cartesian model category that is a
presheaf category such that the monomorphisms are the cofibrations. Then for all
n≥ 0 there are equivalences of∞-categories

Precatn(V)[SE−1]
∼
−→ CatV[W−1]

(∞,n) .

Proof We wish to apply Theorem6.17inductively. To do this we must check that ifV
satisfies the given hypotheses, then so does a suitable modelstructure on Precat(V). By
[30, Theorem 21.3.2], ifV is a left proper tractable Cartesian model category then the
same is true of theReedymodel structure on Precat(V). Moreover, by [30, Proposition
15.7.2] if V is a presheaf category such that the monomorphisms are the cofibrations,
then the injective and Reedy model structures on Precat(V) coincide, so the Reedy
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cofibrations are the monomorphisms, since these are clearlythe injective cofibrations.
Finally Precat(V) is also a presheaf category by [30, Proposition 12.7.6].

By induction it therefore follows that the Reedy model structure on Precatn(V) satisfies
the hypotheses of Theorem6.17 for all n. Moreover, since the monoidal structures
on both Precat(V) and CatV[W−1]

∞ are given by the Cartesian product, the equivalence
between them is automatically an equivalence of symmetric monoidal∞-categories,
hence induces an equivalence CatPrecat(V)

∞
∼
−→ CatV[W−1]

(∞,2) , etc. By induction we thus get
a sequence of equivalences

Precatn(V)[SE−1] ≃ CatPrecatn−1(V)[SE−1]
∞ ≃ CatPrecatn−2(V)[SE−1]

(∞,2) ≃ · · · ≃ CatV[W−1]
(∞,n) .

Example 6.19 If we takeV to be the category Set∆ of simplicial sets, with the usual
model structure, we get an equivalence

Precatn(Set∆)[SE−1]
∼
−→ Cat(∞,n),

where the left-hand side is the∞-category of the (∞,n)-categories of Pellissier-
Hirschowitz-Simpson and the right-hand side is the∞-category of (∞,n)-categories
defined by iterated∞-categorical enrichment.

Example 6.20 We would like to takeV to be the category Set of sets, equipped
with the trivial model structure, but of course this does notsatisfy the hypothesis
that cofibrations are monomorphisms. We therefore need to consider instead a model
categoryM , Quillen equivalent to Set, that does satisfy the hypotheses of the theorem.
For example, following [30, §22.1] we can letM be an appropriate localization of the
Reedy model structure on Precat2(∗), or we can takeM to be the Bousfield localization
of the usual model structure on Set∆ with respect to the morphisms∂∆n → ∆0 for
all n≥ 2. We then get an equivalence

Precatn(Set)[SE−1]
∼
−→ Precatn(M )[SE−1]

∼
−→ CatM [W−1]

(∞,n)
∼
−→ Catn,

where the left-hand side is the∞-category of Tamsamani’sn-categories [33] and the
right-hand side is the∞-category ofn-categories defined by iterated∞-categorical
enrichment.

7 Comparison with Iterated Segal Spaces

We saw in the previous section that the∞-category Cat(∞,n) of (∞,n)-categories,
obtained by iterated enrichment, is equivalent to that associated to the model category
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of n-fold Segal categories, which is another model for the homotopy theory of (∞,n)-
categories. Since this model is known to satisfy the axioms of Barwick and Schommer-
Pries [5], it follows that Cat(∞,n) is equivalent to all the usual models for (∞,n)-
categories. However, this comparison was somewhat indirect. Our goal in this section
is to give a more direct comparison between Cat(∞,n) and another established model
of (∞,n)-categories, namely the iterated Segal spaces of Barwick [1].

We will deduce this comparison from a slightly more general result: we will prove that
if X is anabsolute distributor, in the sense of [20], then categorical algebras inX are
equivalent to Segal spaces inX, and complete categorical algebras are equivalent to
complete Segal spaces. We begin with a brief review of the notion of distributor:

Definition 7.1 A distributor consists of an∞-categoryX together with a full subcat-
egoryY such that:

(1) The∞-categoriesX andY are presentable.

(2) The full subcategoryY is closed under small limits and colimits inX.

(3) If X → Y is a morphism inX such thatY ∈ Y, then the pullback functor
Y/Y → X/X preserves colimits.

(4) Let O denote the full subcategory of Fun(∆1,X) spanned by those morphisms
f : X → Y such thatY ∈ Y, and let π : O → Y be the functor given by
evaluation at 1∈ ∆1. SinceX admits pullbacks, the evaluation-at-1 functor
Fun(∆1,X) → X is a Cartesian fibration, hence so isπ . Let χ : Y → Ĉat

op
∞ be

a functor that classifiesπ . Thenχ preserves small limits.

Definition 7.2 An absolute distributoris a presentable∞-categoryX such that the
unique colimit-preserving functorS → X that sends∗ to the final object is fully
faithful, andS ⊆ X is a distributor.

Now we can recall the definition of a Segal space in an absolutedistributor:

Definition 7.3 SupposeC is an∞-category with finite limits. Acategory objectin
C is a simplicial objectF : ∆op→ C such that for eachn the map

Fn→ F1×F0 · · · ×F0 F1

induced by the inclusions{i, i + 1} →֒ [n] and {i} →֒ [n] is an equivalence.

Definition 7.4 Let X be an absolute distributor. ASegal spacein X is a category
objectF : ∆op→ X such thatF([0]) is in S ⊆ X.
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Our goal is now to prove the following:

Theorem 7.5 SupposeX is an absolute distributor. There is an equivalence

Algcat(X)
∼
−→ Seg(X),

given by sending a∆op
S -algebraC to the left Kan extensionπ!C

′ of the composite

C′ : ∆op
S

C
−→ X× → X

along π : ∆op
S → ∆op, where the second map (which sends(S1, . . . ,Sn) ∈ X×

[n] to
S1× · · · ×Sn) comes from a Cartesian structure in the sense of [21, Definition 2.4.1.1].

For the proof we need some more technical results:

Proposition 7.6 ([20, Corollary 1.2.5]) SupposeY ⊆ X is a distributor. LetK be
a small simplicial set, and letα : p→ q be a natural transformation between functors
p,q: K⊲ → X. If q is a colimit diagram inY andα = α|K is Cartesian, thenα is
Cartesian if and only ifp is a colimit diagram.

Lemma 7.7 SupposeX is an absolute distributor. Then for every spaceX ∈ S, the
map

γX : Fun(X,X)→ X/X

that sends a functorF : X→ X to its colimit is an equivalence of∞-categories.

Proof Let ξ : X→ X be the constant functor at the final object∗ ∈ S ⊆ X. SinceX
is a space, a functorF : X → X sends every morphism inX to an equivalence inX,
and so the unique natural transformationF → ξ is Cartesian.

Write ξ : X⊲ → X for a colimit diagram extendingξ . ThenγX factors as

Fun(X,X) ≃ Fun(X,X)/ξ
φ1−→ Fun(X⊲,X)/ξ

φ2−→ X/X,

whereφ2 is given by evaluation at the cone point. The functorφ1 gives an equivalence
between Fun(X,X)/ξ and the full subcategoryE1 of Fun(X⊲,X)/ξ spanned by the
colimit diagrams. On the other hand, the restriction ofφ2 to the full subcategoryE2

spanned by the Cartesian natural transformations toξ is also clearly an equivalence.
By Proposition7.6 the subcategoriesE1 andE2 coincide, and so the compositeγX is
indeed an equivalence.
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Proposition 7.8 Let O be an∞-category, and letF : O → S be a functor; write
π : OF → O for the left fibration associated toF . SupposeX is an absolute distributor.
Then left Kan extension alongπ gives an equivalence

Fun(OF,X)
∼
−→ Fun(O,X)/F .

Proof By [13, Proposition A.1.5] the∞-category Fun(OF,X) is equivalent to the
∞-category of sections of the Cartesian fibrationE → O whose fibre atX ∈ O is
Fun(F(X),X). SinceX is an absolute distributor, by Lemma7.7 the ∞-category
E is equivalent overO to the total spaceE′ of the Cartesian fibration associated to
the functor sendingX to X/F(X) . ThenE′ is the pullback alongF of the Cartesian
fibration Fun(∆1,X) → X given by evaluation at 1, so we have an equivalence
between the∞-category FunO(O,E′) of sections and the fibre of Fun(O ×∆1,X) ≃
Fun(∆1,Fun(O,X)) → Fun(O,X) at F . This is clearly equivalent to Fun(O,X)/F ,
which completes the proof.

Proposition 7.9 Let Sbe a space, and letπ : ∆op
S → ∆op be the usual projection. Let

π! : Fun(∆op
S ,X) → Fun(∆op,X) be the functor given by left Kan extension alongπ .

Then a functorF : ∆op
S → X is a∆

op
S -monoid if and only ifπ!F is a Segal space.

Proof It is clear thatπ!F([0]) is equivalent toS. We must thus show that the Segal
morphism

π!F([n]) → π!F([1]) ×S · · · ×Sπ!F([1]) =: (π!F)Seg
[n]

is an equivalence if and only ifF is a∆
op
S -monoid. Sinceπ is a coCartesian fibration,

we have an equivalenceπ!F([n]) ≃ colimξ∈S×(n+1) F(ξ). It thus suffices to show that

(π!F)Seg
[n] is also a colimit of this diagram if and only ifF is a∆

op
S -monoid. There is a

natural transformation (S×(n+1))⊲ → Fun(∆1,X) that sendsξ ∈ S×(n+1) to F(ξ) → ξ

and∞ to (π!F)Seg
[n] → S×(n+1) . SinceX is an absolute distributor, by Proposition7.6

the colimit is (π!F)Seg
[n] if and only if this natural transformation is Cartesian. Since

S×(n+1) is a space, this is equivalent to the square

F(ξ) (π!F)Seg
[n]

ξ S×(n+1)

being a pullback square for allξ , so we are reduced to showing that the fibre of
(π!F)Seg

[n] → S×(n+1) at ξ is F(ξ) if and only if F is a ∆
op
S -monoid. Since limits

commute, ifξ is (s0, . . . , sn) this fibre is the iterated fibre product

(π!F[1])(s0,s1) ×(π!F[0])(s1) · · · ×(π!F[0])(sn−1) (π!F[1])(sn−1,sn).
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But using Proposition7.6again it is clear that the natural mapsF(x, y)→ (π!F[1])(x,y)

and ∗ ≃ F(x) → (π!F)(x) are equivalences for allx, y ∈ S. Thus the mapF(ξ) →
(π!F)Seg

[n],ξ is equivalent to the natural map

F(ξ)→ F(s0, s1)× · · · × F(sn−1, sn).

By definition this is an equivalence for allξ ∈ ∆
op
S if and only if F is a∆

op
S -monoid,

which completes the proof.

Definition 7.10 Let i : ∗ → ∆op denote the inclusion of the object [0]. Then compo-
sition with i gives a functori∗ : Seg(X)→ S with left and right adjointsi! andi∗ , given
respectively by left and right Kan extension. Observe that by definition∆

op
X → ∆op is

the left fibration associated toi∗X ∈ Seg(S).

Corollary 7.11 Let S be a space, and letπ : ∆op
S → ∆op denote the canonical

projection. By Proposition7.8the functor

π! : Fun(∆op
S ,X)→ Fun(∆op,X)/i∗S

given by left Kan extension is an equivalence.

Under this equivalence, the full subcategoryMon∆op
S

(X) of ∆op
S -monoids corresponds

to the full subcategory ofFun(∆op,X)/i∗S spanned by the Segal spacesY• such that
Y0 ≃ S and the mapY• → i∗S is given by the adjunction unitY• → i∗i∗Y• ≃ i∗S.

Proof It is clear thatπ! takes Mon∆op
S

(X) into the full subcategory of Fun(∆op,X)/i∗S

spanned by simplicial spacesY• with Y0 ≃ S and the mapY• → i∗S given by the
adjunction unitY• → i∗i∗Y ≃ i∗S. The result therefore follows by Proposition7.9.

Corollary 7.12 Let S be a space, and letπ : ∆op
S → ∆op denote the canonical

projection. The functorπ! : Fun(∆op
S ,X) → Fun(∆op,X) given by left Kan extension

alongπ gives an equivalence of the full subcategoryMon∆op
S

(X) of ∆op
S -monoids with

the subcategorySeg(X)S of Segal spaces with0th spaceS and morphisms that are the
identity on the0th space.

Proof of Theorem 7.5 If V is an∞-category with finite products, pulling back the
monoid fibration Mon(V)→ Opdns

∞ of [13, Remark 3.6.3] along∆op
({) gives a Cartesian

fibration Moncat(V) with an equivalence

Algcat(V)
∼
−→ Moncat(V)
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overS. Taking left Kan extensions along the projections∆
op
S → ∆op for all S∈ S we

get (using Proposition7.9) a commutative square

Moncat(X) Seg(X)

S.

Φ

ev[0]

By [13, Lemma A.1.6] it is clear that ev[0] : Seg(X)→ S is a Cartesian fibration, and the
functorΦ preserves Cartesian morphisms by Proposition7.6. It thus suffices to prove
that for eachS ∈ S the functor on fibres Mon∆op

S
(X) → Seg(X)S is an equivalence,

which is the content of Corollary7.12.

Our goal is now to deduce that the equivalence of Theorem7.5induces an equivalence
between complete categorical algebras and complete Segal spaces. We will first review
the definition of the latter:

Definition 7.13 Write Gpd(S) for the full subcategory of Seg(S) spanned by the
groupoid objects, i.e. the simplicial objectsX such that for every partition [n] = S∪S′

whereS∩ S′ consists of a single element, the diagram

X([n]) X(S)

X(S′) X(S∩ S′)

is a pullback square. LetX be an absolute distributor, and letΛ : X → S denote the
right adjoint to the inclusionS →֒ X. The inclusion Gpd(S) →֒ Seg(S) →֒ Seg(X)
admits a right adjointι : Seg(X) → Gpd(S), which is the composite of the functor
Λ : Seg(X) → Seg(S) induced byΛ, andι : Seg(S) → Gpd(S). We say a Segal space
F : ∆op→ X is completeif the groupoid objectιF is constant.

Remark 7.14 By [13, Lemma 5.1.14], a Segal spaceF is complete if and only if the
map

ιF(s0) : ιF[0] → ιF[1]

is an equivalence.

Definition 7.15 Let En denote the Segal spacei∗{0, . . . ,n}. If X is an absolute
distributor we also writeEn for En regarded as a Segal space inX via the inclusion
S →֒ X.
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Proposition 7.16 SupposeX is an absolute distributor. Then a Segal spaceF in X is
complete if and only if it is local with respect to the morphism E1→ E0.

Proof It is clear thatF is local with respect toE1 → E0, considered as a morphism
in Seg(X), if and only if the Segal spaceΛF in S is local with respect toE1 → E0,
considered as a morphism in Seg(S). On the other hand,F is complete if and only if
ΛF is complete, so it suffices to prove this for Segal spaces inS. This case is part of
[26, Proposition 6.4].

Definition 7.17 Let CSS(X) denote the full subcategory of Seg(X) spanned by the
complete Segal spaces; by Proposition7.16 this is the localization of Seg(X) with
respect to the morphismE1→ E0.

Theorem 7.18 Let X be an absolute distributor. The equivalenceAlgcat(X)
∼
−→

Seg(X) induces an equivalenceCatX∞
∼
−→ CSS(X).

Proof It is clear thatEn
X
∈ Algcat(X) corresponds toEn ∈ Seg(X) under this equiva-

lence. Both sides are therefore the localization with respect to E1→ E0.

Definition 7.19 By [20, Corollary 1.3.4], ifX is an absolute distributor, then CSS(X)
is also an absolute distributor. We therefore have absolutedistributors CSSn(X) of
n-fold complete Segal spacesin X.

Applying Theorem7.18inductively, we get:

Corollary 7.20 Let X be an absolute distributor. ThenCatX(∞,n) ≃ CSSn(X).

In particular, takingX to be the∞-categoryS of spaces, we obtain the desired
comparison with iterated Segal spaces:

Corollary 7.21 There is an equivalenceCat(∞,n) ≃ CSSn(S).
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K -Theory 16 (1999) 51–99

Max-Planck-Institut f̈ur Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

haugseng@mpim-bonn.mpg.de

http://people.mpim-bonn.mpg.de/haugseng/

http://dx.doi.org/10.1090/conm/104
http://dx.doi.org/10.2140/agt.2011.11.1541
http://arxiv.org/abs/1201.1575
http://arxiv.org/abs/math/0308246
http://dx.doi.org/10.1090/S0002-9947-00-02653-2
http://dx.doi.org/10.1016/0022-4049(94)90074-4
http://dx.doi.org/10.1112/S002461150001220X
http://dx.doi.org/10.1007/s10485-009-9214-3
http://arxiv.org/abs/1208.6005
http://dx.doi.org/10.1023/A:1007747915317
mailto:haugseng@mpim-bonn.mpg.de
http://people.mpim-bonn.mpg.de/haugseng/

	1 Introduction
	1.1 Notation
	1.2 Acknowledgements

	2 Brief Review of Non-Symmetric -Operads and Enriched -Categories
	3 Rectifying Associative Algebras
	3.1 Review of Monoidal Model Categories
	3.2 Model Categories of Associative Algebras
	3.3 Rectifying Algebras

	4 Fibrewise Localization
	4.1 The Relative Nerve
	4.2 The Hammock Localization
	4.3 Total Space Model Structures

	5 Rectifying Enriched -Categories
	6 Comparison with Segal Categories
	7 Comparison with Iterated Segal Spaces
	Bibliography

