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Abstract

Connection, torsion and curvature are introduced for general (local) Leibniz algebroids.
Generalized Bismut connection on TM ⊕ ΛpT ∗M is an example leading to a scalar curvature
of the form R +H2 for a closed (p+ 2)-form H .
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1 Introduction

In this short note, we start to develop a general theory of connections, torsions and curvatures
for local Leibniz algebroids. Interesting Leibniz algebroids are, for instance, those related to
exceptional generalized geometries [11]. We believe that our constructions can be applied to a
wide class of closed form Leibniz algebroids, classified in [2]. In all these Leibniz algebroids we
have, in addition to the anchor controlling the Leibniz property in the second argument of the
Dorfman bracket, also the so called locality operator controlling the behavior of the bracket under
the multiplication of its first argument by a function. This locality operator can then be used to
define the appropriate notions of torsion and curvature.

Though the general theory is simple and transparent, explicit computations are quite tedious
even in the simplest examples. Hence, in this short note we present as an example only results
for the simplest Leibniz algebroid on TM ⊕ ΛpT ∗M equipped with the higher Dorfman bracket
and with the corresponding generalized metric (defined by an ordinary Riemannian metric g and
by an (p + 1)-form C). In this example, we generalize the (generalized) Bismut connection from
the case p = 1, whose significance in the context of generalized geometry was first understood and
investigated in [5]. Its properties were highlighted in [9], where its torsion was defined too. The
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calculations relating such metric connections with skew torsion to the Courant bracket go back to
cite [10, 8].

Of course, what we aim for are general definitions that in our example lead to the scalar
curvature of the form R+ (dC)2.

There is a vast and important literature on supergravity actions from the point of view of
(exceptional) generalized geometry and/or double field theory. It is far beyond the scope of this
short note to comment on all of these, even to cite them. Among these, it seems to us that [3, 4]
are, at least in some aspects, closest to our point of view and include an excellent overview of the
literature.

2 Local Leibniz algebroids

Let us recall the notion of a Leibniz (Loday) algebroid. A Leibniz algebroid is a triple (E, ρ, ◦),
where E

π→ M is a (smooth) vector bundle, ρ : E → TM is a vector bundle morphism, called the
anchor, and ◦ is an R-bilinear bracket on sections Γ(E) of E, satisfying the Leibniz rule

e ◦ (fe′) = f(e ◦ e′) + (ρ(e).f)e′ (1)

and the Leibniz identity
e ◦ (e′ ◦ e′′) = (e ◦ e′) ◦ e′′ + e′ ◦ (e ◦ e′′) (2)

for all e, e′, e′′ ∈ Γ(E) and f ∈ C∞(M).

From the consistency of the Leibniz rule and the Leibniz identity under the replacement e′′ 7→
fe′′, it follows that ρ(e ◦ e′) = [ρ(e), ρ(e′)]. Further, we have a natural ”differential” d

1 defined as
a R-linear map d : C∞(M) → Γ(E∗)

〈df, e〉 = ρ(e).f (3)

for all e ∈ Γ(E) and f ∈ C∞(M). Obviously d satisfies the usual Leibniz rule d(fg) = d(f)g+fd(g),
for f, g ∈ C∞(M).

Next, one can define a Lie derivative LE , corresponding to ◦. It will define a first order
differential operator on the tensor bundle T (E). It is defined in the lowest orders and extended as
a differential to all tensors. On functions, it just the derivative in the direction of ρ(e)

LE
e f = ρ(e).f (4)

for all e ∈ Γ(E) and f ∈ C∞(M) = Γ(T 0
0 (E)). On sections of E, it is the Leibniz bracket ◦ itself

LE
e e

′ = e ◦ e′ (5)

for all e ∈ Γ(E) and e′ ∈ Γ(E) = Γ(T 1
0 (E)). On sections of Γ(E∗)

〈LE
e α, e

′〉 = LE
e 〈α, e′〉 − 〈α,LE

e e
′〉 (6)

for all f ∈ C∞(M), e, e′ ∈ Γ(E) and α ∈ Γ(E∗) = Γ(T 0
1 (E)).

Note that one has to use the Leibniz rule in order to guarantee the proper tensorial behavior
on the right-hand side of the defining equations. For example, the right-hand side of (6) has to

1not to be confused with ordinary de Rham differential on M
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be C∞(M)-linear in e′, which is guaranteed by Leibniz rule. On the other hand, Leibniz identity
shows that e 7→ LE

e defines a bracket homomorphism

LE
e◦e′ = LE

e LE
e′ − LE

e′LE
e (7)

for all e, e′ ∈ Γ(E).

In general, one has no relation between (fe)◦e′ and e◦e′. As a consequence, e◦e′ can depend on
the values of the section e at every point of the manifold M . If this happens, we can’t restrict the
bracket to local sections, which is necessary in order to write it in some local frame components.
Hence, in the following we will restrict ourselves only to the so called local Lie algebroids, in
particular the bracket ◦ will be a bidifferential operator of degree one.

We say that the Leibniz algebroid (E, ρ, ◦) is a local one,2 if there exists L ∈ Γ(T 2
2 (E)), such

that
(fe) ◦ e′ = f(e ◦ e′)− (ρ(e′).f)e+ L(df, e, e′) (8)

where L is viewed as C∞(M)-trilinear map L : Γ(E∗)× Γ(E)× Γ(E) → Γ(E).

Obviously, L in its first argument is defined uniquely only on the subbundle Ann(ker ρ) ⊂ E∗,
the annulator of the kernel of the anchor, which is locally generated by sections of the form
df . Nevertheless, using the partition of unity we can define a scalar product on E∗ and extend
L trivially on the orthogonal complement to Ann(ker ρ). Also, the C∞(M)-trilinearity of L is
essential for the definition to be a consistent one.

As a direct consequence of the definition of a local Leibniz algebroid, we see that

ρ(L(df, e, e′)) = 0 (9)

i.e., L(df, e, e′) takes values in the subbundle ker ρ. Moreover, we can always choose an L satisfying
ρ(L(β, e, e′)) = 0 for all β ∈ Γ(E∗), e, e′ ∈ Γ(E), by extending it - as mentioned above - trivially
to ((Ann(ker ρ))⊥.

Example 2.1. Lie algebroid is simply a Leibniz algebroid with skew-symmetric bracket. Obviously
we can put L = 0 in this case.

Example 2.2. Courant algebroid is a Leibniz algebroid equipped with fiberwise metric 〈·, ·〉E
satisfying

〈e′, e ◦ e〉E =
1

2
ρ(e′).〈e, e〉E (10)

for all e, e′ ∈ Γ(E) and being invariant with respect to the Lie derivative induced by ◦, that is

ρ(e).〈e′, e′′〉E = 〈e ◦ e′, e′′〉E + 〈e′, e ◦ e′′〉E (11)

for all e, e′, e′′ ∈ Γ(E). Note that 〈·, ·〉E defines an isomorphism ψE : E → E∗. Using this
isomorphism, we can define yet another differential D : C∞(M) → E as D = ψ−1

E ◦ d. The first
axiom of a Courant algebroid can then be rewritten as

e ◦ e = 1

2
D〈e, e〉E (12)

This can be polarized to
e ◦ e′ = −e′ ◦ e+D〈e, e′〉E (13)

2cf. Definition 4.7 and Theorem 4.8 in [7]
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Hence,
(fe) ◦ e′ = f(e ◦ e′)− (ρ(e′).f)e + 〈e, e′〉EDf (14)

We thus get the condition on L to be

L(df, e, e′) = 〈e, e′〉Eψ−1
E (df) (15)

Therefore, in addition to the generic choice of L satisfying ρ(L(β, e, e′)) = 0 we also have an another
one L(β, e, e′) := 〈e, e′〉Eψ−1

E (β), which seems to be more natural in case of a Courant algebroid.

Example 2.3. Consider E = TM⊕ΛpT ∗M , with anchor ρ = prTM , the projection to the tangent
bundle TM , and bracket ◦ defined as

(x, ap) ◦ (y, bp) = ([x, y],Lxbp − iydap) (16)

for vector fields x, y ∈ X(M) and p-forms ap, bp ∈ Ωp(M). One can easily show that this is indeed
a Leibniz algebroid. It is neither a Lie nor a Courant algebroid. One finds that

(f(x, ap)) ◦ (y, bp) = f((x, ap) ◦ (y, bp))− (y.f)(x, ap) + (0, df ∧ 〈(x, ap), (y, bp)〉+) (17)

where 〈·, ·〉+ is an Ωp−1(M)-valued pairing on E, defined as

〈(x, ap), (y, bp)〉+ = ixbp + iyap (18)

The dual bundle is E∗ = T ∗M ⊕ ΛpTM , and the map d is then df = (df, 0). Let p1 : E∗ → T ∗M

be the projection onto the first factor. We find

L(df, e, e′) = (0, p1(df) ∧ 〈e, e′〉+) (19)

There is an obvious example of L satisfying ρL(β, e, e′) = 0. Namely,

L(β, e, e′) := (0, p1(β) ∧ 〈e, e′〉+) (20)

for all e, e′ ∈ Γ(E) and β ∈ Γ(E∗).

We have defined local Leibniz algebroids with the intention to be able write them in local
coordinates/bases. Assume therefore that we have a neighbourhood U with some local frame
(e1, . . . , ek) for E, and a set of local coordinates (y1, . . . , yn) on M . We can define the structure
functions of ◦ as

eα ◦ eβ = cλαβeλ (21)

The structure functions of ρ are defined by

ρ(eα) = ρkα∂k (22)

and finally those of L as
L(eσ, eα, eβ) = Lλσ

αβeλ (23)

If e = vαeα and e′ = wβeβ, we can write the bracket of e and e′ as

e ◦ e′ =
(
vαwβcλαβ + vαρkαw

λ
,k − wαρkαv

λ
,k + vα,kw

βρkµL
λµ

αβ

)
eλ (24)

To simplify the notation, we introduce the partial derivative along E directions, that is

f,α := ∂αf := ρkα∂kf =: ρkαf,k = (df)α (25)

The above coordinate expression is then rewritten as

e ◦ e′ =
(
vαwβcλαβ + vαwλ

,α − wα(vλ,α − vβ,µL
λµ

βα)
)
eλ (26)
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3 Linear connections on local Leibniz algebroids

3.1 Connection

A local Leibniz algebroid (E, ρ, ◦) is in particular a vector bundle with an anchor, a vector bundle
morphism ρ : E → TM . Hence, we can define a connection on it just mimicking the definition for
the case of a Lie algebroid [6]3.

Let (E, ρ) be an anchored vector bundle and V a vector bundle. We say that an R-bilinear
map ∇ : Γ(E)× Γ(V ) → Γ(V ) is a E-connection on V , if

1. ∇(fe, v) = f∇(e, v)

2. ∇(e, fv) = f∇(e, v) + (ρ(e).f)v

for all e ∈ Γ(E), v ∈ Γ(V ) and f ∈ C∞(M). We invoke the usual notation ∇e = ∇(e, ·), and call
∇e a covariant derivative along e. If E = V we say that ∇ is a (linear) connection on (E, ρ). We
say that an E-connection ∇ on V is induced by a TM -connection ∇′ on V if ∇e = ∇′

ρ(e).

Locally, in some frame (e1, . . . , ek), one can define Christoffel symbols by equation

∇eαeβ = Γλ
αβeλ (27)

These are of course not tensors, and for e = vαeα and e′ = wβeβ , we get

∇ee
′ = vα(wλ

,α + Γλ
αβw

β)eλ (28)

We also can denote the covariant derivative using the usual semicolon formalism

wλ
;α = wλ

α + Γλ
αβw

β (29)

Linear connections (covariant derivatives) can be extended to all tensors using standard formulas.
In lowest orders

∇ef := ρ(e).f, 〈∇eβ, e
′〉 := ∇e〈e′, β〉 − 〈β,∇ee

′〉 (30)

for e, e′ ∈ Γ(E), β ∈ Γ(E∗) and f ∈ C∞(M). On higher tensors on E, ∇ is extended as usual.

If we have at our disposal a fibre-wise metric gE on E, we say that the connection is metric
compatible if

ρ(e)gE(e
′, e′′) = gE(∇ee

′, e′′) + gE(e
′,∇ee

′′) (31)

3.2 Torsion operator

For a local Leibniz algebroid (E, ρ, ◦, L), one would like to define a torsion. Obviously, the naive
guess

T (e, e′) = ∇ee
′ −∇e′e− e ◦ e′ (32)

does not work in general, it is not C∞(M)-linear in e. Moreover, it is not antisymmetric in (e, e′).
This is a minor drawback when compared to non-tensoriality. Once the non-tensoriality is fixed,
the antisymmetrisation, if needed at all, is trivial.

3For a thorough discussion of connections on Courant algebroids see [1]
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Here is our proposal. Let ∇ be a linear connection on a local Leibniz algebroid (E, ρ, ◦, L) and
let eλ be some (local) frame of E and eλ the dual one. Then there is a well defined (not necessarily
antisymmetric) torsion operator T of the form

T (e, e′) = ∇ee
′ −∇e′e+ L(eλ,∇eλe, e

′)− e ◦ e′ (33)

A direct computation reveals that it is C∞(M)-linear in e and e′, and thus defines an element
T ∈ Γ(T 1

2 (E)).

Concerning the local expression for T , we define the components of T as

T (eα, eβ) = T λ
αβeλ (34)

One finds that
T λ

αβ = Γλ
αβ − Γλ

βα + Γσ
µαL

λµ
σβ − cλαβ (35)

Note that this definition in particular includes the case of Courant algebroids. For Courant
algebroids, there already exists definitions of torsion operator [9], [1]. The torsion introduced in
[9] is the following one

T ′(e, e′, e′′) = 〈∇ee
′ −∇e′e − {e, e′}, e′′〉E +

1

2
(〈∇e′′e, e

′〉E − 〈∇e′′e
′, e〉E) (36)

where {e, e′} is the antisymmetrized Dorfman bracket (the Courant bracket). A direct check shows
the relation T ′(e, e′, e′′) = 1

2 (〈T (e, e′), e′′〉E − 〈T (e′, e), e′′〉E), if one chooses L given by

L(β, e, e′) = 〈e, e′〉Eψ−1
E (β) (37)

Hence the torsion operator of [9] is a skew-symmetrized version of our torsion operator, with one
index lowered by 〈·, ·〉E . Note that the particular choice (37) of L was important in establishing
the relation. In [1], a Courant algebroid torsion is defined to be a 3-form C given by

C(e, e′, e′′) =
1

3
〈{e, e′}, e′′〉E − 1

2
〈∇ee

′ −∇e′e, e
′′〉E + cyclic(e, e′, e′′). (38)

For ∇ compatible with 〈·, ·〉E in the sense of (31), one can prove that in fact C = −T ′.

Another notion of the generalized torsion, which can be applied to Leibniz algebroids, was
introduced in [3, 4]. They defined it as difference of ”covariantized” Dorfman derivative and
ordinary Dorfman derivative. By Dorfman derivative they mean the Lie derivative LE with respect
to the first section. By ”covariantized” derivative they mean Lie derivative with partial derivatives
in coordinate expression replaced by covariant derivatives. We can relate this to our torsion in a
holonomic frame,

eα ◦ eβ = 0

in which case
(LE

e e
′)λ = vαwλ

,α − wα(vλ,α − vβ,µL
λµ

βα) (39)

for e = vαeα and e′ = wαeα. The covariantized Lie derivative is thus

(L∇
e e

′)λ = vαwλ
;α − wα(vλ;α − vβ ;µL

λµ
βα) (40)

Hence, according to the definition of [3, 4]

T (e, e′) = (L∇
e − LE

e )e
′ (41)
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Note that L∇
e e

′ can be rewritten as

L∇
e e

′ = ∇ee
′ −∇e′e+ L(eµ,∇eµe, e

′) (42)

Now it is obvious that (41) gives exactly the formula (33). Had we not assumed the holonomicity
of the frame, T (e, e′) in (41) would contain, compared with our definition, an additional vαwβcλαβ

term, and would not be a well-defined section of Γ(E) anymore.

Obviously, for induced connections, their torsion (33) doesn’t depend on choice of L.

3.3 Curvature operator

Here, we would like to define a curvature operator for connections on local Leibniz algebroids. As
for the torsion operator, the first naive guess would be

R(e, e′)e′′ = ∇e∇e′e
′′ −∇e′∇ee

′′ −∇e◦e′e
′′ (43)

for all e, e′, e′′ ∈ Γ(E). Due to the property of the anchor ρ(e ◦ e′) = [ρ(e), ρ(e′)], such an R(e, e′)
is C∞(M)-linear in e′′, i.e. a vector bundle morphism. As easily identified, the problem lies in
the C∞(M)-linearity in e (the C∞(M)-linearity in e′ is more or less obvious from the definitions).
Here is our proposal how to fix this:

Let (E, ρ, ◦, L) be a local Leibniz algebroid, such that ρ ◦L = 0. Let ∇ : E → D(E) be a linear
connection on E. The formula

R(e, e′)e′′ = ∇e∇e′e
′′ −∇e′∇ee

′′ +∇L(eα,∇eαe,e′)e
′′ −∇e◦e′e

′′ (44)

is C∞(M)-linear in e, e′, e′′ and thus defines an element R ∈ Γ(T 1
3 (E)). We call R the curvature

operator, or when viewed as a tensor, we call it R the Riemann tensor of the linear connection
∇. Note that the condition ρ ◦ L = 0 is essential in order not to destroy the tensoriality in e′′.
It is a straightforward check to see that the additional term ∇L(eα,∇eαe,e′)e

′′ indeed cancels the
nontensoriality in e. It preserves the tensoriality in e′ though.

In coordinates, one defines components of R as

R(eα, eβ)eµ = (Rλ
µαβ)eλ (45)

and one finds the explicit expression for those

Rλ
µαβ = Γλ

βµ,α − Γλ
αµ,β + Γλ

ακΓ
κ
βµ − Γλ

βκΓ
κ
αµ + Γδ

σαL
κσ

δβΓ
λ
κµ − cκαβΓ

λ
κµ (46)

Note that R(e, e′) is not necessarily skew-symmetric in (e, e′). Of course, we can always skew-
symmetrize it in (e, e′)

Ra(e, e
′)e′′ = {∇e∇e′ −∇e′∇e +

1

2
∇L(eα,∇eαe,e′) −

1

2
∇L(eα,∇eαe′,e) −∇{e,e′}}e′′ (47)

Ricci tensor is defined as usual

Ric(e, e′) = 〈eα, R(e, eα)e′〉

For a metric compatible connection we define the Ricci scalar in a standard way as

R = Ric(g−1eα, eα)

Let us note that for an induced connection, the term containing the operator L doesn’t con-
tribute to R at all and we have a more traditionally looking expression of the form

R(e, e′)e′′ = (∇ρ(e)∇ρ(e′) −∇ρ(e′)∇ρ(e) −∇[ρ(e),ρ(e′)])e
′′

7



4 Generalized Bismut connection

4.1 Connection

In [5] a generalized Bismut connection on the Courant algebroid of Example 2.2 was introduced.
Here, we generalize it to the case of Example 2.3. Hence, we consider the local Leibniz algebroid
E = TM ⊕ ΛpT ∗M with its higher Dorfman bracket and the map L chosen as4

L(β, e, e′) = (0, p1(β) ∧ 〈e, e′〉+) (48)

Such an L satisfies ρ◦L = 0. We define a generalized metric G and a connection ∇ compatible with
this metric. Let g be a metric onM and g̃ is a skew-symmetrized p-fold tensor product of g, defining
a fiberwise metric on ΛpTM . Also, let C ∈ Ωp+1(M) be a (p + 1)-form on M . With an abuse
of notation, we introduce the corresponding maps g : X(M) → Ω1(M), g̃−1 : Ωp(M) → X

p(M),
C : Xp(M) → Ω1(M). For instance,

C(q) = CiJq
Jdyj

with the transpose map CT : X(M) → Ωp(M) being an insertion of vector field into (p+ 1)-form
C: CT (x) = ixC for all x ∈ X(M). Then G is defined as

G =

(
1 C

0 1

)(
g 0
0 g̃−1

)(
1 0
CT 1

)
(49)

It maps X(M)⊕ Ωp(M) to Ω(M)⊕ X
p(M).

If ∇LC
x is the Levi-Civita connection on M and H := dC, then the generalized Bismut connec-

tion ∇ will be defined so that the covariant derivative ∇(x,ap) will not depend on the p-form ap,
which will be indicated as ∇(x,0). Hence, the generalized Bismut connection will be an induced

one. Before giving the definition, we introduce another, a bit simpler, connection ∇̂ related to ∇
as

∇(x,0) = eC∇̂(x,0)e
−C , (50)

where the map eC is defined as

eC(y, bp) := (y, bp − iyC) =

(
1 0

−CT 1

)(
y

bp

)
(51)

The expression for the connection ∇̂ is

∇̂(x,0) =

(
∇LC

x − 1
2g

−1H(x, g̃−1(⋆), ·)
− 1

2H(x, ⋆, ·) ∇LC
x

)
(52)

where ⋆ indicates places where components of the pair (y, bp) ∈ X(M)⊕Ωp(M) acted upon by the
covariant derivative are inserted. Explicitly, when acting on (y, 0) we have

∇̂(x,0)(y, 0) = (∇LC
x y,−1

2
H(x, y, ·))

and when acting on (0, bp) we obtain

∇̂(x,0)(0, bp) = (−1

2
g−1H(x, g̃−1(bp), ·),∇LC

x bp)

It is a rather straightforward check that the connection ∇̂ is compatible with the generalized
metric Ĝ := diag(g, g̃−1). Hence, as a consequence, the generalized Bismut connection ∇ is
compatible with the generalized metric G.

4Obviously, for the connection, the existence of the Dorfman bracket and locality are not necessary.
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4.2 Torsion operator

Here, we write down the result of a rather lengthy and tedious computation of the torsion operator
of the generalized Bismut connection ∇. We split the result into the vector field and p-form
components T1 and T2, respectively. However, let us start with formulas for the respective torsion
components T̂1 and T̂2 of the simpler connection ∇̂. We have

T̂1((x, ap), (y, bp)) =
1

2
g−1

(
H(y, g̃−1(ap), ·)−H(x, g̃−1(bp), ·)

)
(53)

for the fist one and

T̂2((x, ap), (y, bp)) = −3

2
H(x, y, ·)− 1

2
ek ∧ ig−1H(ek ,g̃−1(ap),·)bp (54)

for the second one. Here ek and ek are elements of some mutually dual frames of TM and T ∗M ,
respectively. To get a better understanding how the second form in this formula works, contract
it against a p-tuple of vector fields (z1, . . . , zp). The result will be

− 1

2
(ek ∧ ig−1H(ek,g̃−1(ap),·)bp)(z1, . . . , zp) = −

p∑

i=1

1

2
bp(z1, . . . , g

−1H(zi, g̃
−1(ap), ·), . . . , zp). (55)

Note, for p > 1, the torsion is not necessarily skew-symmetric in (e, e′).

The relation between the the hatted and unhatted torsions is5

T (e, e′) = eC(T̂ (e−Ce, e−Ce′) + (0, H(ρ(e), H(ρ(e′))). (56)

and we get

T1((x, ap), (y, bp)) =
1

2
g−1(H(y, g̃−1(ap + ixC), ·)−H(x, g̃−1(bp + iyC), ·)) (57)

and

T2((x, ap), (y, bp)) = −1

2
H(x, y, ·)− 1

2
ek ∧ ig−1H(ek ,g̃−1(ap+ixC),·)(bp + ixC)

− 1

2
ig−1(H(y,g̃−1(ap+ixC),·)−H(x,g̃−1(bp+iyC),·))C

(58)

We finish this subsection with the comment on p = 1 case. The generalized Bismut connection in
this case is same as the one in [5]. Also, our torsion is for p = 1 the same as the one of [9]. Since
the connection is an induced one, both natural choices for L have to give the same torsion. Our
choice (48) of L not only works for p > 1, as we have seen, its property ρ ◦ L = 0, also is essential
for our definition of curvature to work.

4.3 Curvature operator

Here, we give the result of calculation of the Ricci scalars of the connections ∇̂ and ∇, they will
turn out to be the same. We start with the simpler primed connection ∇̂. Again, we split the
result into the vector field and the p-form parts R̂1 and R̂2, respectively.

R̂1((x, ap), (y, bp))(z, cp) = RLC(x, y)z − 1

2
g−1((∇LC

x H)(y, g̃−1(cp), ·)− (∇LC
y H)(x, g̃−1(cp), ·))

+
1

4
g−1(H(x, g̃−1H(y, z, ·), ·)−H(y, g̃−1H(x, z, ·), ·)) (59)

5For the relation it is important that ∇̂e = ∇̂e−Ce, since ∇̂e depends only on the vector field part of e, and the
well known property of the Dorfman bracket e−C(eCe ◦ eCe′) = e ◦ e′ + (0, H(ρ(e), ρ(e′), .)).
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and

R̂2((x, ap), (y, bp)(z, cp) = RLC(x, y)cp −
1

2
(∇LC

x H)(y, z, ·) + 1

2
(∇LC

y H)(x, z, ·). (60)

For the Ricci tensor, the only component contributing nontrivially to the Ricci scalar is

R̂ic((x, 0), (z, 0)) = RicLC(x, z) +
1

4
H(x, g̃−1H(ek, z, ·), g−1(ek)) (61)

The scalar curvature is defined using the fiberwise metric Ĝ. We get

R̂ = RLC +
1

4
H(g−1(el), g̃−1H(ek, el, ·), g−1(ek)) = RLC +

1

4
gimgkng̃IJHmInHkiJ

= RLC +
(−1)p+1

4
HnmJH

nmJ

(62)

Again due to the fact that ∇̂e depends only on the vector field part of e it is easy to find the
following relations between primed and unprimed curvatures

R(e, e′)e′′ = eC{R̂(e−Ce, e−Ce′)e−Ce′′} (63)

Now we can compute the Ricci scalar R using the generalized metric G. From the above relation
in follows that

R = R̂ = RLC +
(−1)p+1

4
HnmJH

nmJ (64)

leading to the generalized Einstein-Hilbert action

S =

∫ √
g(RLC +

(−1)p+1

4
HnmJH

nmJ )
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