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1. Introduction

1.1. Every orientable hyperbolic 3-manifold is isometric to the quotient H3=�

of hyperbolic 3-space H3 by a discrete torsion-free subgroup � of the group of

orientation-preserving isometries of H3. �e latter group is isomorphic to the con-

nected group PGL2.C/, the real Lie group SL2.C/ modulo its centre. Generally,

a discrete subgroup of PGL2.C/ is called a Kleinian group.

Within �urston’s geometrization program and its subsequent treatment by

Perelman the class of hyperbolic 3-manifolds plays a fundamental role but is still

not well understood. In particular, understanding the �nite sheeted covers of a

hyperbolic 3-manifold is a di�cult task. �us, one is naturally led to ask how var-

ious algebraic or geometric invariants behave in (towers of) �nite-sheeted covers

(see e.g. [13]). Our object of concern will be the �rst Betti number in the case of

compact arithmetically de�ned hyperbolic 3-manifolds.

Recently there has been a lot of progress in the �eld of compact hyperbolic

3-manifolds. For instance Agol (see [1]) proposed a proof, based on work of

Wise, of the long standing virtual Haken conjecture stated by Waldhausen [30]

in 1968. In fact, it would follow from Agol’s work that the fundamental group

of a closed hyperbolic 3-manifold is large, which is a much stronger statement

(cf. Lackenby [13] for a survey of the various related conjectures). An easy con-

sequence is that every closed hyperbolic 3-manifold has a tower of �nite sheeted

covers with fast growing �rst Betti number.

Among hyperbolic 3-manifolds, the ones originating with arithmetically de-

�ned Kleinian groups form a class of special interest since there are various con-

nections with number theory. From the arithmetic point of view the congruence

covers, i.e. covers coming from (principal) congruence subgroups of the funda-

mental group, are particularly interesting. �e purpose of this article is to give

lower bounds for the �rst Betti number in congruence covers of (compact) arith-

metic hyperbolic 3-manifolds.

Investigating the �rst Betti number, it is quite natural to consider its growth rate

in a nested sequence ¹�iºi2N of �nite index (normal) subgroups �i � � (whose

intersection is the identity) for a given arithmetically de�ned Kleinian group �.

One de�nes the �rst Betti number gradient which is the limit of the ratio of the

�rst Betti number b1.�i / by the index Œ� W �i �. �is is a special case of a general

concept. Let � be a lattice in a semi-simple real Lie group G. If ¹�iºi2N is a

nested sequence of �nite index normal subgroups �i � � (whose intersection is

the identity) one can form the quotients

ǰ .�i / D dimHj .�i ;C/

Œ� W �i �
:



On the growth of the �rst Betti number 533

It is known by a result of Lück [14] that the ǰ .�i / converge to the j-th L2-Betti

number of �, that is, the limit limi ǰ .�i / exists for each j . �e limit is non-zero

if and only if the rank rkCG of G equals the rank rkCK of a maximal compact

subgroup K � G and j D 1
2

dim.G=K/. �ere are several works, notably by

De George and Wallach [6], Savin [23], and Rohlfs and Speh [22] among others,

in which one �nds precise results pertaining to the actual value of this limit in the

case where ı.G/ WD rkCG � rkCK D 0.

However, in the situation of arithmetically de�ned hyperbolic 3-manifolds, that

is, G is the group PGL2.C/ one has ı.G/ WD rkC PGL2.C/ � rkCK D 1, thus,

lim
i

ǰ .�i / D 0:

In particular, this assertion is valid for j D 1. As a consequence, the sequence of

�rst Betti numbers b1.�i / grows sub-linearly as a function of the index Œ� W �i �

whenever ¹�iºi2N is a decreasing sequence of �nite index normal1 subgroups in

an arithmetically de�ned group � � PGL2.C/. Recently there has been some

progress on improved upper bounds for the growth of Betti numbers, c.f. Cale-

gari and Emerton [4] and Clair and Whyte [5]. For congruence subgroups of

Bianchi groups there are also speci�c upper bound results by Finis, Grunewald,

and Tirao [8, �eorem. 1.6]. Our objective is to deduce lower bounds for the

growth of the �rst Betti number.

Our main result concerns a speci�c class (see below) of compact arithmetically

de�ned hyperbolic 3-manifolds which originate with orders in suitable division

quaternion algebras D de�ned over some number �eld E. Given an arithmetic

subgroup in the algebraic group SL1.D/ we show that there are a positive real

number � and a nested sequence ¹�iºi2N of �nite index congruence subgroups

�i � � (whose intersection is the identity) such that the �rst Betti number of the

compact hyperbolic 3-manifold H3=�i corresponding to �i satis�es the inequality

b1.�i / � �Œ� W �i �
1=2

for all indices i 2 N. One obtains a similar result in the case of Bianchi groups,

that is, the corresponding manifold is non-compact. It was observed that in the

case of Bianchi groups a similar result can be obtained by methods of base change

(see the remarks after �eorem 1.6 in [8]). In the non-compact case there are

also asymptotic lower bound results for cuspidal cohomology by Sengün and

Türkelli [25]. In Section 6 we make some comments on the Bianchi group case.

1 �e conclusion still holds if, for instance, the �i are not normal in � but �i is normal in

�1 for all i .
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Although some of our results hold in general, we emphasize that the focus of this

article lies on the compact case.

Our approach is a geometric one based on Lefschetz numbers. Using auto-

morphic forms and base change methods there are many non-vanishing results for

the �rst Betti number of arithmetic hyperbolic 3-manifolds (see e.g. [12] or [16]).

�ere are also geometric methods, based on the construction of cycles, which pro-

vide non-vanishing results (see [24] for a survey). However these results do not

provide asymptotic lower bounds. We also remark that there are related asymp-

totic questions for cohomology with non-trivial coe�cients. Here one varies the

system of coe�cients and leaves the group � �xed. For asymptotic lower bounds

in this situation we refer to [8].

In the following subsections, we precisely describe the class of hyperbolic

3-manifolds in question and give an exact formulation of the results obtained.

1.2. Arithmetically de�ned hyperbolic 3-manifolds. For the sake of conve-

nience we begin with the notion of an arithmetically de�ned Kleinian group.

A discrete subgroup � of PGL2.C/ is said to be arithmetically de�ned if there

exists an algebraic number �eld E=Q with exactly one complex place w, an ar-

bitrary (but possibly empty) set T of real places, an E-form G of the algebraic

E-group PGL2 =E such that G.Ev/ is a compact group for all v 2 T and an iso-

morphism PGL2.C/ �! G.Ew/, which maps � onto an arithmetic subgroup of

the group G.E/ of E-points naturally embedded into G.Ew/. �e corresponding

hyperbolic 3-manifolds H3=� fall naturally into two classes, according to whether

H3=� is compact or not2.

In the latter case, E=Q is an imaginary quadratic extension, the group G is the

split form PGL2 =E itself, and the setT is the empty set. �e groups in question are

the subgroups of PGL2.E/ which are commensurable with the group PGL2.OE /

where OE denotes the ring of integers in E. �ese are the groups already consid-

ered by L. Bianchi in 1892.

In the former case, given the algebraic number �eld E with exactly one com-

plex place, we consider an E-form G of PGL2 =E originating from a quaternion

division algebra D over E which rami�es at least at all real places v 2 T . Given

an order ƒ in D, any torsion-free subgroup � in the group SL1.D/ of elements

of reduced norm one in D, which is commensurable with SL1.ƒ/ gives rise to a

compact 3-manifold H3=�.

2 However, this quotient always has �nite volume.
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A torsion-free discrete subgroup in SL2.C/ projects isomorphically to a torsion

-free discrete group in PGL2.C/. �erefore we shall only consider arithmetically

de�ned groups in inner forms of SL2 =E.

1.3. �e main result. We are mainly concerned with arithmetically de�ned hy-

perbolic 3-manifolds and corresponding Kleinian groups which originate with or-

ders in division quaternion algebras de�ned over some algebraic number �eld E.

Before we state our main result, we give a description of the class of quaternion

algebras to which the main theorem applies. We suppose that the �eld E, has

exactly one complex place and an arbitrary (possibly empty) set T of real places.

Moreover, we assume that E contains a sub�eld F such that the degree of the ex-

tension E=F is two. �en F is a totally real extension �eld of Q. Let � denote the

non-trivial element in the cyclic Galois group Gal.E=F / of the extension E=F .

Let D denote a quaternion division algebra over E such that the �nite set of

places rami�ed in D contains the set T of real places of E. As a quaternion

division algebra, D is isomorphic to its opposite algebra, and the class of D in

the Brauer group Br.E/ of E is of order two. �us, the norm NE=F .D/, a central

simple algebra of degree 4 over F , has order 1 or 2 viewed as an element in the

Brauer group Br.F /. Recall that the unit element in the Brauer group is the class

of F or, equivalently, the class of all matrix algebras over F .

We distinguish the two cases:

(I) the class ŒNE=F .D/� has order 1 in Br.F /;

(II) the class ŒNE=F .D/� has order 2 in Br.F /.

In case (I), theF -algebra NE=F .D/ is isomorphic to the matrix algebraM4.F /,

that is, it splits. By a result of Albert and Riehm (cf. [11, (3.1)]), NE=F .D/ splits

if and only if there is an involution of the second kind on D which �xes F ele-

mentwise. Let � denote this involution of the second kind. By de�nition of this

notion, the restriction of � to the center of D is of order 2, hence �jE coincides

with � . As Albert has proved (cf. [11, (2.22)]), an involution of the second kind

on a quaternion algebra has a particular type. �ere exists a unique quaternion

F -subalgebraD0 � D such that D D D0 ˝F E and � is of the form � D 0 ˝ �

where 0 is the canonical involution (also called quaternion conjugation) on D0.

�e algebra D0 is uniquely determined by these conditions.

We will consider the involution IdD0
˝� onD D D0˝FE induced by the non-

trivial Galois automorphism � of the extension E=F . For the sake of simplicity

it will be denoted by the same letter � .

In case (II), the F -algebra NE=F .D/ of degree 4 is (up to isomorphism) of the

form M2.Q/, where Q is a quaternion division algebra over F .
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�eorem. Let F be a totally real algebraic number �eld, and letE be a quadratic
extension �eld of F so that E has exactly one complex place. Let � be an arith-
metic subgroup in the algebraic group SL1.D/ where D is a quaternion division
algebra over E which belongs to case (I). �en there are a positive number � > 0
and a nested sequence ¹�iºi2N of torsion-free, �nite index congruence subgroups
�i � � (whose intersection is the identity) such that the �rst Betti number of the
compact hyperbolic 3-manifold H3=�i corresponding to �i satis�es the inequality

b1.�i / � �Œ� W �i �
1=2

for all indices i 2 N. Further, �i is normal in �1 for all i 2 N.

We actually prove more than the existence of such sequences, we explicitly

construct them using principal congruence subgroups. �e proof of this result

relies on the following methodological approach. �e non-trivial Galois automor-

phism � of the extension E=F induces an orientation-reversing involution on the

hyperbolic 3-manifold H3=�, whenever � is �-stable. In the case the extension

E=F is unrami�ed over 2 one can determine the Lefschetz number L.�; �/ of the

induced homomorphism in the cohomology of H3=� where � is a suitable con-

gruence subgroup in SL1.D/. In the general case, one gets the analogous value as

a lower bound for L.�; �/. �is bound is given up to sign and some power of two

as

��2d �F .2/j dF j3=2�.D0/ � ŒK0 W K0.a/�;

where �F .2/ denotes the value of the zeta-function of F at 2, j dF j denotes the ab-

solute value of the discriminant of F , ŒK0 WK0.a/� denotes a global index attached

to the congruence subgroup of level a � OF , and

�.D0/ D
Y

p02Ramf .D0/

.NF=Q.p0/ � 1/

depends on the set of �nite places of F in which the quaternion division alge-

bra D0 rami�es. In turn, this bound can be used to give a lower bound for the

�rst Betti number of the hyperbolic 3-manifold in question (see �eorem 5.1 and

Corollary 5.3).

1.4. Outline. We outline the content of the paper. In Section 2, we give some

background material pertaining to quaternion algebras D de�ned over number

�elds and the corresponding algebraic groups SL1.D/ of reduced norm one el-

ements. In this and the subsequent section we work in the general case of an

arbitrary quadratic extension E=F of a totally real number �eld F . In Section 3,



On the growth of the �rst Betti number 537

we �rst outline the approach on which our result is based. �e Lefschetz number

of the orientation-reversing automorphism � of the manifold H3=� is equal to the

Euler characteristic of the space .H3=�/� of points in H3=� �xed under � . �e

latter space and its connected components, interpreted in the language of adele

groups, can be described in terms of non-abelian Galois cohomology, following

a general approach of Rohlfs (cf. [21]). �e Euler characteristics in question can

be calculated via an Euler–Poincaré measure. We compare this measure with the

Tamagawa measure, which allows us to determine the Euler characteristic as an

in�nite product of local factors indexed by the �nite places of the underlying �eld.

�eorem 3.14 gives then the �nal result for the Lefschetz number attached to � and

a congruence subgroup in SL1.D/. Section 4 contains some estimates for ratios

of subgroup indices which occur by passing from congruence subgroups over F

to such over E. Finally, in Section 5, we apply the previous result in the case of

arithmetically de�ned hyperbolic 3-manifolds and we obtain the main result as

indicated above. Some comments on how to obtain a similar result for Bianchi

groups can be found in Section 6. Moreover, there is an appendix in Section 7

where we stored some auxiliary, purely local results pertaining to non-abelian

Galois cohomology.

Notation

We write Z, Q, R, and C for the ring of integers, the �eld of rational numbers, the

�eld of real numbers, and the �eld of complex numbers respectively.

(1) Let K be an algebraic number �eld, i.e. a �nite extension of the �eld Q. �e

ring of algebraic integers ofK is denoted byOK . Let V.K/ denote the set of places

ofK. �e subsets of archimedean (resp. non-archimedean) places will be denoted

V1.K/ (resp. Vf .K/). Given a place v 2 V.K/ the completion of K with respect

to v is denoted Kv. For a �nite place v 2 Vf .K/ we write OK;v for the valuation

ring in Kv. �e symbol AK denotes the ring of adeles of K. We use the notation

AK;f for the ring �nite adeles of K.

(2) All group schemes considered are a�ne and of �nite type. Let k be a commu-

tative ring and H a group scheme over k. Given any commutative k-algebra R,

we write H.R/ for the group of R-rational points of H .

(3) We freely use the language of non-abelian Galois cohomology as de�ned by

Serre [26, I.§5]. WheneverH is a group on which the two element group acts by
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an automorphism called � , we will denote the action by upper left exponents, i.e.
�h. Recall that a 1-cocycle for � with values in H is an element h 2 H such that

h �h D 1. �e set of such 1-cocycles will be denoted by Z1.�;H/. Two cocycles

h; g 2 H are said to be equivalent, if there is some b 2 H such that b�1h �b D g.

�e �rst non-abelian cohomology set H 1.�;H/ of � with values in H is the set

of equivalence classes for this relation. In generalH 1.�;H/ is not a group, but it

is a pointed set where the class of the trivial cocycle 1H is the distinguished point.

2. Quaternion algebras and associated algebraic groups

2.1. �roughout the article F denotes a totally real algebraic number �eld and

E=F a quadratic extension of F . In Section 3 we impose no assumptions on E.

However, in Section 5 the �eld E will be assumed to have precisely one complex

place. We tried to consistently denote ideals in OF by Fraktur letters indexed by

zero (e.g. a0) whereas ideals in OE will have no subscript. Moreover, let D0 be a

quaternion algebra de�ned over F . Taking the tensor product with E, we obtain

the quaternion algebraD WD D0 ˝F E overE. We �x once and for all a maximal

OF -order ƒ0 in D0. Further, we obtain an OE -order ƒ WD ƒ0 ˝OF
OE in D.

Surprisingly, this is in general not a maximal order inD and it is valuable to keep

that in mind.

�e �nite set of places in V.F / rami�ed in D0 will be denoted by Ram.D0/.

As before, we write Ramf .D0/ (resp. Ram1.D0/) for the �nite (resp. in�nite)

places in Ram.D0/. We write r D j Ram1.D0/j for the number of real rami�ed

places and s D ŒF W Q� � r for the number of split places.

2.2. With the given data several group schemes are associated. Write GL1.ƒ0/

for the OF group scheme of units associated with ƒ0. �is means for a commu-

tative OF -algebra R we have GL1.ƒ0/.R/ WD .ƒ0 ˝OF
R/�. �e reduced norm

gives a morphism of group schemes

nrd W GL1.ƒ0/ �! Gm

into the multiplicative group de�ned over OF . �e kernel of the reduced norm

is a smooth OF group scheme denoted by G0 WD SL1.ƒ0/. Note that, taking the

base change to OE , we get the group SL1.ƒ/ D G0 �OF
OE . Finally, we apply

the (Weil) restriction of scalars and obtain another OF group scheme

G WD ResOE =OF
.G0 �OF

OE /:

Moreover, the scheme G is smooth over OF .
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2.3. Let � denote the generator of the Galois group Gal.E=F /. �e Galois

automorphism � induces an F -algebra automorphism IdD0
˝� W D ! D. For

simplicity we will denote this morphism again by � . Moreover, � induces an

automorphism of order two onG. We will still write � for this automorphism. One

should notice that � W G ! G is de�ned over OF . Note that the group G� �OF
F

of �-�xed points (over F ) is canonically isomorphic to G0 �OF
F . In general the

groups G� and G0 are not isomorphic over OF .

2.4. De�ne the real Lie group

G1 WD
Y

v2V1.F /

G.Fv/ D
Y

v2V1.E/

G0.Ev/;

which we call the Lie group attached to G. Moreover, we �x a �-stable maxi-

mal compact subgroup K1 � G1. Analogously, we de�ne the Lie group G0;1

attached to G0. We obtain

G0;1 Š SL2.R/
s � SL1.H/

r ;

where s denotes the number of real places of F whereD0 splits and r denotes the

number of real places rami�ed in D0. �e symbol H denotes Hamilton’s division

quaternion algebra over R.

Furthermore, we put

K0 WD
Y

v2Vf .F /

G0.OF;v/;

which is an open compact subgroup of the locally compact groupG0.AF;f /. Sim-

ilarly, the group

K WD
Y

v2Vf .F /

G.OF;v/

is open and compact in G.AF;f /.

2.5. Congruence subgroups. Let a0 � OF be a non-zero ideal. Let v 2 Vf .F /

be a �nite place. We obtain an open compact subgroupK0;v.a0/ inG0.Fv/ de�ned

by

K0;v.a0/ D ker
�

G0.OF;v/ �! G0.OF;v=a0OF;v/
�

:

We also de�ne

Kv.a0/ D ker
�

G.OF;v/ �! G.OF;v=a0OF;v/
�

;

which is an open compact subgroup of G.Fv/. Putting this together we obtain the

groups K0.a0/ D
Q

v2Vf .F /K0;v.a0/ and K.a0/ D
Q

v2Vf .F /Kv.a0/ which are

open compact in G0.AF;f / and G.AF;f / respectively.
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3. Lefschetz number of the Galois automorphism

3.1. In this section we will assume that the group scheme G has strong approx-

imation (cf. [29, �eorem 4.3]). �is is the case precisely when there is at least

one archimedean place v 2 V1.E/ of E which splits the quaternion algebra D.

Clearly, this always holds if E has a complex place.

3.2. Recall thatK1 denotes a �-stable maximal compact subgroup ofG1. �e

associated symmetric space

X D K1nG1

is equipped naturally with an automorphism induced by � . Let � � G.F / be a

torsion-free arithmetic subgroup. Such a group � acts properly and freely on X

from the right. �e group cohomologyH�.�;C/ is isomorphic to the cohomology

H�.X=�;C/ of the locally symmetric space X=�.

Assume further that � is �-stable, then � also induces an automorphism, again

denoted by � , of order two on the spaceX=�. �is automorphism induces maps in

the cohomology �q W H q.X=�;C/ ! H q.X=�;C/ in every degree q. We de�ne

the Lefschetz number of � as

L.�; �/ WD
1

X

qD0

.�1/q Tr.�q/:

Since torsion-free arithmetic groups are of type (FL), this is a �nite sum (of inte-

gers).

We will apply a method developed by J. Rohlfs to compute such Lefschetz

numbers (cf. [18], [19]). �e key observation is that the Lefschetz number of �

equals the Euler characteristic of the space .X=�/� of �-�xed points. Further,

Rohlfs gave a precise description of the set of �xed points in terms of non-abelian

Galois cohomology. We describe this �xed point decomposition in the adelic set-

ting (as introduced in [21]).

3.3. Let a0 � OF be a non-trivial proper ideal. We de�ne the (principal) con-

gruence subgroup of level a0 in G as

�.a0/ WD ker.G.OF / �! G.OF =a0//:

Similarly, we de�ne

�0.a0/ WD ker.G0.OF / �! G0.OF =a0//:
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We shall always assume that a0 was chosen su�ciently small such that these

groups are torsion-free. �is is the case, for instance, if a0 \ Z is not a prime

ideal of Z. One should also notice that �.a0/ D G.F / \ K.a0/ and �0.a0/ D
G0.F / \K0.a0/. We de�ne S.a0/ to be the double quotient space

S.a0/ WD K1K.a0/nG.AF /=G.F /:

Using strong approximation we obtain a canonical homeomorphism

X=�.a0/
'�! S.a0/:

Note that G.F / acts freely on the quotient space K1K.a0/nG.AF / precisely

when �.a0/ is torsion-free.

3.4. Decomposition of the �xed point space. We study the setS.a0/
� of �-�xed

points in the locally symmetric space S.a0/ with the method of Rohlfs (see [21]).

Suppose we are given an element a 2 G.AF / representing a �-�xed double coset

in S.a0/. �is means there are k 2 K1K.a0/ and  2 G.F / such that

�a D k�1a: (1)

�e elements k and  are uniquely determined by a since G.F / acts freely on

K1K.a0/nG.AF /. Moreover, from ��a D a one deduces the identities k �k D 1

and  � D 1. In other words, k (resp. ) de�nes a 1-cocycle in Z1.�;K1K.a0//

(resp. Z1.�; G.F //). If one replaces a by another representative a0 it is easily

seen that the resulting cocycles are equivalent. Consequently, a �-�xed point in

S.a0/ determines uniquely two cohomology classes: one inH 1.�;K1K.a0// and

one in H 1.�; G.F //. Moreover, equation (1) implies that these classes coincide,

when they are mapped to H 1.�; G.AF // via the canonical maps induced by the

respective embeddings. We de�ne

H
1.a0/ WD H 1.�;K1K.a0// �

H 1.�;G.AF //
H 1.�; G.F //

as the �bred product of these two cohomology sets. One can show that this is in

general a �nite set. To see this, one de�nes a surjective map ˛ W H 1.�; �.a0// !
H

1.a0/ and uses that the �rst set is �nite due to a result of Borel and Serre (cf.

Prop. 3.8 in [3]). However, we will determine the set H1.a0/ explicitly in 3.6, thus

we will not need this kind of general result. Summing up, we found a surjective

map

# W S.a0/
� �! H

1.a0/:



542 S. Kionke and J. Schwermer

Moreover, if we give the discrete topology on the �nite set H1.a0/, then this map

is continuous. �is means its �bres are open and closed in S.a0/
� . Hence the

result is a topologically disjoint decomposition of the �xed point set

S.a0/
� D

G

�2H1.a0/

#�1.�/: (2)

3.5. Structure of �xed point components. Rohlfs also gave a description of the

�bres occurring in (2) (cf. [21]). To describe them we need some more notation.

Let  2 Z1.�; G.F // be a cocycle. By twisting � with  we obtain another auto-

morphism � j on G �OF
F de�ned by � j WD int./ ı � . Here int./ denotes the

inner automorphism de�ned by  . �e group of � j �xed points is algebraic over

F and we denote it by G./. Clearly, if  2 Z1.�; G.OF //, the twisted automor-

phism is de�ned over OF and so is G./. Note that G.1/ D G� .

Moreover, if k 2 Z1.�;K1K.a0// is a cocycle we can again twist the action

of � on K1K.a0/. �e twisted action will be denoted � jk and its group of �xed

points is written .K1K.a0//.k/.

Finally, we are able to describe the �bres of # . Let � 2 H
1.a0/ be a class and

choose representing cocycles k 2 Z1.�;K1K.a0//,  2 Z1.�; G.F // and some

a 2 G.AF / such that (1) holds. In this case there is a homeomorphism

#�1.�/
'�! a�1.K1K.a0//.k/anG./.AF /=G./.F /

(cf. [21, 3.5]).

3.6. Determining H
1. �e description of the set of �-�xed points followed a

general pattern. In this subsection we start using speci�c properties of the involved

groups. Our �rst goal is to determine the set H1.a0/ for a given ideal a0 � OF .

We moved some of the purely local results we need to the appended Section 7,

since these results have a more technical �avour.

Let R be any commutative OF -algebra. Whenever we write H 1.�; G.R// D
¹1º we mean that H 1 consists of the trivial class only. Moreover, the element

�1 2 G.R/ is always a cocycle for � . We write H 1.�; G.R// D ¹˙1º to express

that H 1 consists of precisely two classes: the trivial class and a class represented

by the cocycle �1.

Lemma 3.1. Let v 2 Vf .F / be a �nite place, then H 1.�; G.Fv// D ¹1º.

Proof. Note that we have G.Fv/ D G0.Fv ˝F E/. We distinguish two cases with

respect to the splitting behaviour of v in E.
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First case. If v splits in E, then G.Fv/ Š G0.Fv/ � G0.Fv/, and � acts by

swapping the two components. Recall the following Lemma: let H be any group

and denote the automorphism swapping the two components inH �H by � , then

H 1.�;H �H/ D ¹1º. To see this, one realizes that a cocycle in H �H is a pair

.x; x�1/ with x 2 H arbitrary. However, .x; x�1/ D .1; x/�1.x; 1/ is a trivial

cocycle.

Second case. If v is not split, there is precisely one place w 2 Vf .E/ lying

over v and

G.Fv/ Š G0.Ew/ D SL1.D ˝E Ew/:

In this case � acts by the nontrivial Galois automorphism ofEw=Fv and the claim

follows from Hilbert’s �eorem 90 (cf. Corollary (29.4) in [11, p.393]).

Lemma 3.2. Let v 2 V1.F / be an in�nite place of F . If v 2 Ram1.D0/ and
there is a complex w 2 V1.E/ of E over v, then H 1.�; G.Fv// D ¹˙1º. In all
other casesH 1.�; G.Fv// D ¹1º.

Proof. Suppose there are two real places of E over v. �en, as in 3.1, we have

an isomorphism G.Fv/ Š G0.Fv/ � G0.Fv/ where � acts by swapping the two

components and the claim follows directly.

Suppose now that there is a complex placew 2 V1.E/ lying over v. By (29.2)

in [11, p.392] we have H 1.�;GL1.D0 ˝F Ew// D ¹1º and we get a short exact

sequence

1 �! G.Fv/ �! GL1.D0 ˝F Ew/
nrd��! C� �! 1:

Consider the induced long exact sequence of pointed sets (cf. (28.3) in [11])

1 �! G0.Fv/ �! GL1.D0 ˝F Fv/
nrd��! R� �! H 1.�; G.Fv// �! ¹1º:

If D0 ˝F Fv is split, then the reduced norm is surjective and the claim follows.

Otherwise, suppose v 2 Ram1.D0/ then the image of the reduced norm only

consists of the positive real numbers and consequently H 1.�; G.Fv// consists of

two elements. It is easy to check that 1 and �1 are not equivalent.

For an in�nite place v 2 V1.F / we denote the embedding F ! Fv by �v .

We say that an element x of F � is D0-positive, if for all v 2 Ram1.D0/ we

have �v.x/ > 0 in Fv Š R. �e multiplicative subgroup of F � consisting of

D0-positive elements is denoted F �
D0

. Similarly for E: an element x 2 E� is

calledD-positive, if �w.x/ > 0 for all w 2 Ram1.D/. We write E�
D for the group

of D-positive elements.

Let c denote the number of places v 2 Ram1.D0/ which are divided by a

complex place of E. �ere is an isomorphism .E�
D \ F /=F �

D0
Š .Z=2Z/c.
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Lemma 3.3. �ere is a bijection between H 1.�; G.F // and .E�
D \ F /=F �

D0
.

Proof. As before, we have H 1.�;GL1.D// D ¹1º (cf. (29.2) in [11]). By the

theorem of Hasse-Schilling-Maass on norms (see �eorem 4.1, p. 80 in [29] for

quaternion algebras or (33.15) in [17] for central simple algebras) the image of

the reduced norm map nrd W GL1.D/ ! E� is exactly E�
D . Similarly, we have

nrd.GL1.D0// D F �
D0

. Now, consider the exact sequence

1 �! G.F / �! GL1.D/
nrd��! E�

D �! 1:

As in the proof of Lemma 3.2 there is a long exact sequence

1 �! G0.F / �! GL1.D0/
nrd��! E�

D \ F �! H 1.�; G.F // �! ¹1º:

Corollary 3.4. �e canonical map H 1.�; G.F // ! H 1.�; G1/ is bijective.

Remark 3.5. �e canonical map H 1.�;K1/ ! H 1.�; G1/ is a bijection. �is

follows in general for connected semi-simple groups by an argument of Rohlfs

using the Cartan decomposition. �e reader may consult, for example, Lemma 1.4

in [19].

Lemma 3.6. Let v 2 Vf .F / be a �nite place. If v is unrami�ed in E, then
H 1.�; G.OF;v// D ¹1º. If v rami�es in E and lies over an odd prime number,
then H 1.�; G.OF;v// D ¹˙1º.

Proof. Let p0 be the prime ideal corresponding to v. In the case where p0 is split

in E, the claim follows as in Lemma 3.1 since G.OF;v/ Š G0.OF;v/ �G0.OF;v/.

�e other cases are treated in Corollary 7.2 and Lemma 7.4 in the appendix.

Corollary 3.7. �e canonical map H 1.�; G.F // ! H 1.�; G.AF // is bijective.
In particular, the projection H

1.a0/ ! H 1.�;K1K.a0// is a bijection for every
non-trivial proper ideal a0 � OF .

Proof. Notice that H 1.�; G.AF // D H 1.�; G1/ � H 1.�; G.AF;f //. It follows

from Lemma 3.1 and Lemma 3.6 that H 1.�; G.AF;f // D ¹1º. �us the result

follows from Corollary 3.4.

Let S be the set of �nite places v 2 Vf .F / which divide 2 and which are rami-

�ed in E. �is is the set of places where determining the localH 1 is di�cult (see

also Remark 7.6). We de�ne K.a0; 2/ WD
Q

v2S Kv.a0/. Moreover, let R be the
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set of �nite places v 2 Vf .F / which are rami�ed in E but which do not divide 2.

Given an ideal a0 � OF , we de�ne �.a0/ WD j¹v 2 R j v does not divide a0ºj.
As above, let c be the number of places v 2 Ram1.D0/ which are divided by a

complex place of E. We get the following corollary.

Corollary 3.8. For every non-trivial proper ideal a0 � OF the set H1.a0/ con-
sists of

2cC�.a0/jH 1.�;K.a0; 2//j
elements.

Proof. �e assertion follows from the bijection H
1.a0/ ! H 1.�;K1K.a0// to-

gether with Remark 3.5 and the local results Lemma 7.3 and Lemma 7.5 which

can be found in the appendix.

3.7. Euler characteristic of �xed point components. In this section we com-

pute the Euler characteristic of the �xed point components #�1.�/ de�ned in 3.4.

Let a0 � OF be a non-trivial ideal. We choose a class � 2 H
1.a0/ and a represen-

tative .k; / 2 Z1.�;K1K.a0// � Z1.�; G.F // together with a 2 G.AF / which

satis�es �a D k�1a . Since we still assume G to have strong approximation, we

can achieve that a 2 G1 and  2 �.a0/ (changing the chosen representative).

�en the group G./ of �xed points of the -twisted action is a group scheme

de�ned over OF .

Remark 3.9. For any  2 Z1.�; G.F // the �xed point group G./ and G0 are

isomorphic over F .

�is can be seen as follows. By Hilbert’s �eorem 90, H 1.�;GL1.D// D
¹1º. Moreover, the canonical map int� W H 1.�; G.F // ! H 1.�;AutF .G// fac-

tors through H 1.�;GL1.D// and thus is trivial. We deduce the existence of an

automorphism  W G �OF
F ! G �OF

F such that

int./ D  �1 ı � ı  ı ��1:

In other words,  is an isomorphism of G over F such that  ı � j D � ı  .

Recall that G0 Š G� over F .

We deduce that the �xed point components #�1.�/ are all associated to the

same group over F (cf. 3.5). An important consequence is that the sign of the

Euler characteristic �.#�1.�// is the same for all the components. �is can be

seen as follows. First note that Harder’s Gauß-Bonnet theorem (see [9]) implies

that we may use the Euler–Poincaré measure (in the sense of Serre) to compute the

Euler characteristic. Further, the sign of the Euler–Poincaré measure only depends

on the structure of the associated real Lie group (see Prop. 23 in [28]).
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�eorem 3.10. Let a0 � OF be a proper ideal (such that �.a0/ is torsion-free)
and let K0;1 be any maximal compact subgroup of G0;1. �en the Euler charac-
teristic of the double coset spaceK0;1K0.a0/nG0.AF /=G0.F / can be computed
using the following formulas

�.K0;1K0.a0/nG0.AF /=G0.F //

D .�1=2/r�F .�1/ŒK0 W K0.a0/�
Y

p02Ramf .D0/

.NF=Q.p0/ � 1/

D .�2/s.4�2/�ŒF WQ��F .2/j dF j3=2ŒK0 W K0.a0/�
Y

p02Ramf .D0/

.NF=Q.p0/ � 1/:

Here r denotes the number of real places of F rami�ed in D0 and s denotes the
number real places where D0 splits. Moreover, �F denotes the zeta function of
the number �eld F , dF denotes the discriminant of F and NF=Q.p0/ WD jOF =p0j
denotes the ideal norm.

Proof. Since F is totally real, the functional equation of the zeta function implies

�F .2/j dF j3=2.2�2/�ŒF WQ� D .�1/ŒF WQ��F .�1/:

So, the �rst equality is an immediate consequence of the second.

For simplicity we write

S0.a0/ WD K0;1K0.a0/nG0.AF /=G0.F /:

We will distinguish whether G0 has strong approximation or not. �is is not ab-

solutely necessary, but it stresses the di�erence of these two cases.

IfG0 has strong approximation, thenG0;1 is not compact and S0.a0/ is home-

omorphic to the locally symmetric space X0=�0.a0/, where X0 WD K0;1nG0;1.

�e Euler–Poincaré measure vol� (in the sense of Serre [28]) on G0;1 is given by

vol� D .�2/s.4�2/�ŒF WQ� volT ;

where volT denotes the Tamagawa measure onG0;1 as de�ned in [29, p.54] or [15,

p.242]. Using strong approximation and the assumption that �.a0/ (and hence

�0.a0/) is torsion-free, we �nd

�.S0.a0// D �.�0.a0// D vol�.G0;1=�0.a0//

D .�2/s.4�2/�ŒF WQ� volT .K0.a0/nG0.AF /=G0.F //

D .�2/s.4�2/�ŒF WQ� volT .K0.a0//
�1

D .�2/s.4�2/�ŒF WQ�ŒK0 W K0.a0/� volT .K0/
�1:
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Here we used that the Tamagawa number volT .G0.AF /=G0.F // is one (cf. [29,

2.3, p.71] or [15, �eorem 7.6.3]). It is known that

volT .K0/
�1 D �F .2/j dF j3=2

Y

p02Ramf .D0/

.NF=Q.p0/ � 1/;

the reader may consult Vignéras’ book [29, p.55].

Assume now, that G0;1 is compact, i.e. r D ŒF W Q�. In this case G0.AF / is a

�nite union

G0.AF / D
m

G

iD1

G0;1K0.a0/xiG0.F /

for some x1; : : : ; xm 2 G0.AF /. Note, that the assumption that �.a0/ is torsion-

free implies thatG0;1K0.a0/ acts freely onG0.AF /=G0.F /. Further, S0.a0/ con-

sists precisely of m points, so �.S0.a0// D m and we only have to compute this

number. As before,

m D volT .S0.a0//

D volT .G0;1/
�1 volT .K0.a0//

�1

D .4�2/�r ŒK0 W K0.a0/� volT .K0/
�1;

hence the claim follows.

Corollary 3.11. Let Kf � G0.AF;f / be an open compact subgroup, which has
the same invariant volume as K0.a0/, this means volT .Kf / D volT .K0.a0//. If,
moreover, K0;1Kf acts freely on G0.AF /=G0.F /, then the formulas of �eo-
rem 3.10 also hold for the Euler characteristic

�
�

K0;1Kf nG0.AF /=G0.F /
�

:

Proof. �e only two important assumptions onK0.a0/ that we used in the proof of

�eorem 3.10 is that K0;1K0.a0/ acts freely on G0.AF /=G0.F / and the formula

for the volume of K0.a0/ with respect to the Tamagawa measure.

3.8. �e Lefschetz number. In this section we �nally compute the Lefschetz

number L.�; �.a0// of � on the locally symmetric space X=�.a0/ Š S.a0/. Re-

call the following theorem

�eorem 3.12. If �.a0/ is torsion-free, then

L.�; �.a0// D �.S.a0/
� /:
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�is kind of Lefschetz �xed point principle has been observed by many peo-

ple. In the context of arithmetic groups this theorem is due to Rohlfs (see, for

instance, [19, Prop. 1.9]). �e theorem can be proven either by adapting the proof

of 1.9 in [19] or by an application of the main result in [10].

De�nition 3.13. We say that the extension E=F of number �elds is unrami�ed
over 2, if for every pair of �nite places v 2 Vf .F /, w 2 Vf .E/ with wjv and vj2
the extension Ew=Fv is unrami�ed.

To shorten the notation we de�ne

�.D0/ WD
Y

p02Ramf .D0/

.NF=Q.p0/ � 1/

and we write

d D ŒF W Q�:

�eorem 3.14. Suppose that G has strong approximation. Let a0 � OF be a
non-trivial ideal such that �.a0/ is torsion-free. �e sign of the Lefschetz number
L.�; �.a0// is .�1/s where s is the number of real places of F which split D0.
Moreover, the Lefschetz number can be bounded from below by

jL.�; �.a0//j � 2cC�.a0/�r�d��2d �F .2/j dF j3=2�.D0/ŒK0 W K0.a0/�:

If E=F is unrami�ed over 2, there is the exact formula

L.�; �.a0// D .�1/s2cC�.a0/�r�d��2d �F .2/j dF j3=2�.D0/ŒK0 W K0.a0/�:

�e numbers c and �.a0/ are de�ned as in Corollary 3.8.

Proof. �e Euler characteristic is additive for topologically disjoint unions, so

L.�; �.a0// D
X

�2H1.a0/

�.#�1.�//:

As pointed out in Remark 3.9 the sign of the Euler characteristic �.#�1.�// is

the same for all the components #�1.�/. �us, to obtain an estimate for the Lef-

schetz number, it su�ces to calculate �.#�1.�// for all � in some chosen subset

T � H
1.a0/. Let q W H1.a0/ ! H 1.�;K.a0; 2// denote the canonical map (the

de�nition ofK.a0; 2/ can be found in the paragraph preceding Corollary 3.8). De-

�ne

T WD ¹� 2 H
1.a0/ j q.�/ D 1º:
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From the de�nition of K.a0; 2/ it is clear that T D H
1.a0/ if E=F is unrami�ed

over 2. Let � 2 T and choose a representative .k1k; / 2 K1K.a0/ � G.F /

with a 2 G.AF / satisfying �a D k�1
1 k�1a . Using strong approximation, we

can choose  , k and a such that  2 G.F / \ K.a0/ D �.a0/, k 2 K.a0/ and

a 2 G1. �en G./ is de�ned over OF . Again Hilbert 90 yields an element

b 2 GL1.D/ such that  D b�1 �b. �e conjugation int.b/ with b de�nes an F -

isomorphism G./ �OF
F ! G0 �OF

F . De�ne Kf WD int.b/.K.a0/.k// which

is open compact in G0.AF;f / and de�neK 0
0;1 WD int.b/.a�1K1.k1/a/ which is

maximal compact in G0;1. Furthermore, int.b/ induces a homeomorphism

#�1.�/
'�! K 0

0;1Kf nG0.AF /=G0.F /:

Note, that K 0
0;1Kf acts freely on G0.AF /=G0.F / due to the assumption that

�.a0/ is torsion-free. Eventually, we have to check thatKf has the same invariant

volume as K0.a0/ to use Corollary 3.11.

How to compare these two volumes? Let v be any �nite place of F . Recall that

 D kv locally at the place v. By the choice of T and the local results Corollary 7.2

and Lemma 7.4, we �nd zv 2 G.OF;v/ such that  D ˙z�1
v

�zv. �erefore, conju-

gation with zv yields an isomorphism of topological groups int.zv/ W G./.Fv/ !
G0.Fv/ mapping Kv.a0/./ to K0;v.a0/. We compose this isomorphism with

int.b�1/ obtained before and get

int.zvb
�1/ W G0.Fv/ �! G0.Fv/:

�is automorphism transports Kf;v to K0;v.a0/ and one can verify that it is uni-

modular, using that it is the conjugation by some element in the larger group

GL1.D0 ˝ Fv/.

4. Estimates

4.1. Let a0 � OF be a non-trivial ideal. �e purpose of this section is to provide

simple estimates for the ratio ŒK0 W K0.a0/�=
p

ŒK W K.a0/�.

Using the smoothness of the scheme G0 we see that

ŒK0 W K0.a0/� D
Y

vja0

jG0.OF;v=a0OF;v/j;

and similarly smoothness of G yields

ŒK W K.a0/� D
Y

vja0

jG.OF;v=a0OF;v/j:
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We compare the terms jG0.OF;v=a0OF;v/j and jG.OF;v=a0OF;v/j, but we will

have to consider di�erent cases according to the splitting behaviour. We choose

some prime ideal p0 dividing a0 and take e to be maximal with the property pe
0ja0.

�e �nite place of F corresponding to p0 will be denoted v. De�ne

Q.v; a0/ D jG0.OF;v=a0OF;v/j
p

jG.OF;v=a0OF;v/j
:

Moreover, we write N.p0/ D jOF =p0j for the norm of the prime ideal.

4.2. Case: p0 splits in E . Suppose that p0 splits in E, then p0OE D PQ where

P and Q are distinct prime ideals in OE . In this case

G.OF;v=a0OF;v/ D G.OF =p
e
0/ D G0.OE=P

eQe/ Š G0.OF =p
e
0/ �G0.OF =p

e
0/:

Consequently, jG.OF;v=a0/j D jG0.OF;v=a0OF;v/j2 and henceQ.v; a0/ D 1.

4.3. Case: p0 is inert in E . Suppose that p0 is inert inE, this means p0OE D P

is a prime ideal in OE . In this case the local extension is unrami�ed. According

to Lemma 7.9 we get

Q.v; a0/
2 D .1� N.p0/

�2/.1C N.p0/
�2/�1

if D0 splits at p0, whereas,

Q.v; a0/
2 D .1C N.p0/

�1/.1� N.p0/
�1/�1

if D0 rami�es in v. Notice that in the latter caseQ.v; a0/ > 1.

4.4. Case: p0 is rami�ed in E . Assume that p0 is rami�ed in E. In this case

p0OE D P2 for some prime ideal P � OE . �e local extension is rami�ed and

we obtain (by Lemma 7.9)

Q.v; a0/
2 D

8

<

:

1 � N.p0/
�2 if D0 splits at v,

1C N.p0/
�1 if D0 rami�ed at v:

Notice that v 2 Ramf .D0/ implies Q.v; a0/ > 1.

4.5. Results. One can use these three cases to derive a formula for the quotient

ŒK0 W K0.a0/�=
p

ŒK W K.a0/�. However, this will not be important for our pur-

poses. We content ourselves with the following corollary.
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Corollary 4.1. Let a0 � OF be a non-trivial ideal, then

ŒK0 W K0.a0/�
p

ŒK W K.a0/�
� �F .2/

�1:

Suppose that all prime ideals dividing a0 are either split in E or are rami�ed in
D0, then

ŒK0 W K0.a0/�
p

ŒK W K.a0/�
� 1:

Proof. �e second assertion follows directly from what we have seen before. To

prove the �rst, we start with an estimation replacing all terms that are at least one

by terms which are smaller than one. One obtains

ŒK0 W K0.a0/�
2

ŒK W K.a0/�
D

Y

vja0

Q.v; a0/
2

�
Y

p0ja0
p0 inert

.1� N.p0/
�2/.1C N.p0/

�2/�1
Y

p0ja0

p0 rami�ed

.1� N.p0/
�2/

� �F .2/
�1

Y

p0ja0
p0 inert

.1C N.p0/
�2/�1

� �F .2/
�1

Y

p0

.1C N.p0/
�2 C N.p0/

�4 C : : : /�1 � �F .2/
�2:

5. Application to hyperbolic 3-manifolds

5.1. Assumptions. For this section we �x the following assumptions. As before

F is a totally real number �eld, and we de�ne d D ŒF W Q�. Choose once and

for all a real place v0 of F . Let E=F be a quadratic extension such that E has

precisely one complex place w0, further assume w0jv0. Moreover, let D0 be an

F quaternion division algebra such that V1.F / n ¹v0º � Ram1.D0/. �is means

D0 is rami�ed in every real place of F except possibly v0. �en D WD D0 ˝F E

satis�es Ram1.D/ D V1.E/n¹w0º. We will assume thatD is a division algebra.

�is assumption is implied by the previous assumptions if d D ŒF W Q� is at least

two.

�e number s of real places of F that splitD0 is s D 0 if v0 2 Ram1.D0/ and

otherwise s D 1. As always r D d � s and therefore the number c of places in

Ram1.D0/ that are divided by a complex place in E is exactly c D 1 � s.
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5.2. �e real Lie group G1 is isomorphic to

G1 Š SL2.C/ � SL1.H/
2.d�1/:

�e group scheme G has strong approximation, since the group G1 is not com-

pact. Given a non-trivial ideal a0 � OF , the group �.a0/ embeds discretely into

G1. �e assumption thatD is a division algebra implies that �.a0/ is cocompact

in G1 (cf. �eorem 8.2.3 in [15] or more general [2, �eorem 8.4] ). Moreover,

the projection G1 ! SL2.C/ is proper and open, thus �.a0/ projects isomorphi-

cally to a discrete cocompact subgroup of SL2.C/. Fix a maximal compact and

�-stable subgroup K1 � G1. �e symmetric space X WD K1nG1 is isomor-

phic to hyperbolic three space H3. Suppose that �.a0/ is torsion-free, then �.a0/

is a cocompact Kleinian group andX=�.a0/ Š H3=�.a0/ is a compact orientable

hyperbolic manifold.

5.3. A general remark. LetM be a closed connected smooth oriented manifold,

say of odd dimension dim.M/ D n D 2mC 1. Let � W M ! M be a smooth au-

tomorphism ofM of such that �2 D IdM . We consider the de Rham cohomology

of M with complex coe�cients and the non-degenerate Poincaré pairing

h�; �i W H j .M;C/�Hn�j .M;C/ �! C

for 0 � j � n. Let �j W H j .M;C/ ! H j .M;C/ denote the induced automor-

phism in the cohomology in degree j . For classes ˛ 2 H j .M;C/ and ˇ 2
Hn�j .M;C/ we have h�j .˛/; �n�j .ˇ/i D �h˛; ˇi, with � D 1 if � is orientation

preserving and � D �1 otherwise. LetH j .M;C/ D H
j
1 ˚H

j
�1 be the eigenspace

decomposition with respect to �j .

If � preserves orientation, thenH
j
1 ? H

n�j
�1 andH

j
�1 ? H

n�j
1 for all 0 � j �

n. Consequently, dim.H
j
1 / D dim.H

n�j
1 / and dim.H

j
�1/ D dim.H

n�j
�1 /. Under

the assumption that dim.M/ D n is odd, this implies that the Lefschetz number

L.�;M/ vanishes. In particular, we deduce: L.�;M/ ¤ 0 implies that � is not

orientation preserving.

Assume now that � changes the orientation. In this case H
j
1 ? H

n�j
1 and

H
j
�1 ? H

n�j
�1 and so dim.H

j
1 / D dim.H

n�j
�1 / and dim.H

j
�1/ D dim.H

n�j
1 /.

Consequently, the following formula gives the Lefschetz number of �

L.�;M/ D 2

m
X

j D0

.�1/j .dim.H
j
1 / � dim.H

j
�1//;

where m D .dim.M/ � 1/=2. Specializing to the case dim.M/ D 3 we obtain

L.�;M/ D 2 � 2 dim.H 1
1 /C 2 dim.H 1

�1/: (3)
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5.4. A lower bound for the �rst Betti number. We go back to the setting in-

troduced in 5.1. Let a0 � OF be a non-trivial ideal such that �.a0/ is torsion-free.

Recall that we de�ned

�.a0/ WD j¹p0 � OF j p0 prime ideal rami�ed in E and p0 − 2a0ºj:

�eorem 3.14 yields

jL.�;H3=�.a0//j � 21C�.a0/.2�/�2d�F .2/j dF j3=2�.D0/ŒK0 W K0.a0/�: (4)

Moreover, the Lefschetz number L.�;H3=�.a0// is negative if s D 1 and positive

otherwise. Clearly, the Lefschetz number is not zero and we deduce that � changes

the orientation on H3=�.a0/. We use this to estimate the size of the �rst Betti

number.

�eorem 5.1. In the notation introduced above

dim.H 1.�.a0/;C//

� 2�.a0/.2�/�2d �F .2/j dF j3=2�.D0/ŒK0 W K0.a0/�C .�1/sC1:

Proof. It follows from equation (3) that

.�1/s.1=2/jL.�; �.a0//j � 1 D dim.H 1
�1/ � dim.H 1

1 /

Multiply with .�1/s (the sign of the Lefschetz number), plug in the right hand

side of (4) and the claim follows.

Remark 5.2. �eorem 5.1 implies directly that the �rst Betti number may become

arbitrarily large as a0 varies, since the term ŒK0 W K0.a0/� is unbounded. Moreover,

only the term ŒK0 W K0.a0/� is responsible for the order of growth, since 2�.a0/ is

bounded by some number depending on the extension E=F .

Let

�.1/ WD G.OF / D SL1.ƒ/

be the norm one group of the order ƒ. For every non-trivial ideal a0 � OF , the

index Œ�.1/ W �.a0/� satis�es

Œ�.1/ W �.a0/� D ŒK W K.a0/�:

�is can be checked exploiting strong approximation of the group G.
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Corollary 5.3. For every non-trivial ideal a0 � OF such that �.a0/ is torsion-
free the following holds

dim.H 1.�.a0/;C//C .�1/s � 2�.a0/.2�/�2d j dF j3=2�.D0/Œ�.1/ W �.a0/�
1=2:

In particular, there is a positive real number �.F;D0/ such that

dim.H 1.�.a0/;C// � �.F;D0/Œ�.1/ W �.a0/�
1=2

for every ideal a0 with su�ciently large index Œ�.1/ W �.a0/�.

Proof. �e �rst statement follows readily from �eorem 5.1 together with the es-

timate in Corollary 4.1. �e second statement is obvious if s D 1, in this case

we may take �.F;D0/ D .2�/�2d j dF j3=2�.D0/. Note, that for s D 1 the result

holds for all a0. If s D 0, then we have to take the index Œ�.1/ W �.a0/� so large

that .2�/�2d j dF j3=2�.D0/ > Œ�.1/ W �.a0/�
�1=2.

5.5. Towards arbitrary groups. From the previous Corollary we readily deduce

the following weaker result, which in turn will imply the main theorem.

Corollary 5.4. �ere is a decreasing sequence �1 � �2 � �3 � : : : of nor-
mal torsion-free congruence subgroups of �nite index in �.1/ and a positive real
number � > 0 such that

T

i �i D ¹1º and

dimH 1.�i ;C/ � �Œ�.1/ W �i �
1=2

for all i .

Proof. Take any decreasing sequence a1 � a2 � a3 � : : : of ideals in OF

satisfying the assumptions of Corollary 5.3 and
T

i ai D ¹0º. Finally, de�ne

�i D �.ai /.

Main �eorem. Let F be a totally real algebraic number �eld and let E be a
quadratic extension �eld having precisely one complex place. LetD be a quater-
nion division algebra over E which is rami�ed in all real places of E. Assume
that D is of the form D Š D0 ˝F E for some quaternion algebraD0 over F .

Let � � SL1.D/ be an arithmetic group. �ere is a positive real number � > 0
and a decreasing nested sequence ¹�iº1

iD1 of torsion-free congruence subgroups
of �nite index in � satisfying

T

i �i D ¹1º such that

dimH 1.�i ;C/ � �Œ� W �i �
1=2

for all i . Further, for every i the group �i is normal in �1.
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Proof. According to Corollary 5.4 there is a real number �0 > 0 and a decreasing

sequence � 0
1 � � 0

2 � : : : of torsion-free, �nite index subgroups in �.1/ satisfying

the claimed properties with respect to �.1/.

De�ne �i WD � \� 0
i . �ese are �nite index subgroups in � due to the assump-

tion that � is arithmetic. Clearly the �i intersect trivially. Since �i also has �nite

index in � 0
i , we see dimH 1.�i ;C/ � dimH 1.� 0

i ;C/. De�ne ` WD Œ� W � \ �.1/�.

Further, the index satis�es

Œ� W �i � D Œ� W � \ �.1/�Œ� \ �.1/ W �i � � `Œ�.1/ W � 0
i �:

Finally, we conclude

dimH 1.�i ;C/ � dimH 1.� 0
i ;C/ � �0Œ�.1/ W � 0

i �
1=2 � �0`�1=2Œ� W �i �

1=2:

Since, � 0
i is normal in � 0

1 for all i , we see that �i is normal in �1. However, the

groups �i need not be normal in �.

6. �e case of Bianchi groups

6.1. In this section we make some comments on the classical case of Bianchi

groups, which are non-cocompact arithmetically de�ned subgroups of SL2.C/.

Let F D Q be the �eld of rational numbers and let E be an imaginary quadratic

number �eld. Moreover, let a � OE be a non-trivial ideal and de�ne the principal

congruence subgroup �.a/ WD ker.SL2.OE / ! SL2.OE=a// of level a. We also

use the notation �.1/ WD SL2.OE /.

6.2. It is easy to obtain a result for Bianchi groups which is similar to the main

theorem but with higher order of growth. Note that

Œ�.1/ W �.a/� D j SL2.OE=a/j D N.a/3
Y

pja

.1� N.p/�2/;

where N.a/ D jOE=aj. Assume that �.a/ is torsion-free and let ha denote the

number of cusps of �.a/. One can show that this number is given by

ha D hE j�E j�1 N.a/�1Œ�.1/ W �.a/�;

where hE is the ideal class number of E and �E the (�nite) group of units of OE .

�e group �.a/ acts freely and properly on hyperbolic three space

H3 Š SU.2/n SL2.C/
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and we obtain a non-compact hyperbolic manifold H3=�.a/. It follows from re-

duction theory that there is a compact manifold with boundary M � H3=�.a/

such that the embeddingM ! H3=�.a/ is a homotopy equivalence (cf. [2, 17.10]).

�e boundary @M of M is a topologically disjoint union of ha two-dimensional

tori. A general topological argument implies that the image of the restriction map

r1 W H 1.M;C/ �! H 1.@M;C/

is a maximal isotropic subspace ofH 1.@M;C/with respect to the non-degenerate

Poincaré pairing (see Lemme 11 in [27] or use the argument of the proof of VIII,

9.6 in [7]). We conclude that

dimH 1.�.a/;C/ � dim.Im.r1// D 1

2
dimH 1.@M;C/ D ha:

Summing up, it is easy to prove that

dimH 1.�.a/;C/ � hE j�E j�1�E .2/
�1=3Œ�.1/ W �.a/�2=3: (5)

Using the argument in the proof of the main theorem, one can obtain a similar

result for arbitrary arithmetic groups in SL2.E/.

�eorem 6.1. LetE be an imaginary quadratic number �eld and let � � SL2.E/

be an arithmetic group. �ere are a positive real number � > 0 and a decreasing
sequence ¹�iº1

iD1 (with trivial intersection) of torsion-free, �nite index subgroups
in � such that

dimH 1.�i ;C/ � �Œ� W �i �
2=3

for all i � 1. Moreover, the group �i is normal in �1 for every index i .

Remark 6.2. Using the upper bounds of Calegari and Emerton [4] it follows that

this is (in some cases) the correct asymptotic order of magnitude. Let p be a prime

number which splits in E and let p � OE be a prime ideal of OE dividing p. In

this case �eorem 3.4 of Calegari and Emerton [4] yields

dimH 1.�.pk/;C/ D O.p2k/

as k tends to in�nity. As we have seen Œ�.1/ W �.pk/� D p3k.1�p�2/, and together

with (5) it follows that

dimH 1.�.pk/;C/ � Œ�.1/ W �.pk/�2=3;

that is, both terms have the same order of magnitude as k goes to in�nity.
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6.3. �e Lefschetz number. Recall that the Lefschetz number formula obtained

in �eorem 3.14 was independent of the assumptions made later on in Section 5.

In particular, we may use it for Bianchi groups.

Let d be a squarefree integer and let E WD Q.
p
d/. Notice that we even do

not assume that d is negative in this paragraph. However, we assume that the

extension E=Q is unrami�ed over 2, this is the case precisely if d � 1 mod 4.

Letm � 3 be an integer and de�ne the ideal a D mOE . �ere is one split real place

of D0 D M2.Q/, i.e. s D 1. Moreover, there are no real rami�ed places of D0,

hence c D 0. Finally, we see that �.m/ D j¹p prime number W pjd and p − mºj.
We de�ne the congruence subgroup �.m/ WD �.a/ in SL2.OE /. We obtain the

following Corollary to �eorem 3.14.

Corollary 6.3. Let E D Q.
p
d/ be a quadratic number �eld for some squarefree

integer d � 1 mod 4. Let � be the non-trivial Galois automorphism of E=Q and
let m � 3 be an integer. �en

L.�; �.m// D �2
�.m/m3

12

Y

pjm

.1� p�2/

is the Lefschetz number of � in the cohomology of the principal congruence sub-
group �.m/ � SL2.OE /.

Proof. �is follows from �eorem 3.14 using �.2/ D �2=6.

�e Lefschetz number of the Galois automorphism acting on the full group

PSL2.OE / has been calculated by Rohlfs [20]. A formula for the Lefschetz num-

ber of � on congruence subgroups in SL2.OE / (without restrictions on d ) has

recently been announced by Sengün and Türkelli.

7. Appendix. Local calculations

7.1. In this appendix we gather those results for the non-abelian Galois coho-

mology sets H 1 which can be stated locally. In this section F denotes a �nite

extension of some p-adic �eld Qp where p is a prime number. We write o0 for

the valuation ring of F and we choose a uniformizer �0 2 o0 which generates

the prime ideal .�0/ D p0 � o0. �e residue class �eld o0=p0 will be denoted

k0. Moreover, let E=F be a quadratic extension. �e valuation ring of E will

be denoted by o, and let � be a generator of the prime ideal �o D p � o. �e

residue �eld ofE is denoted k. �e non-trivial Galois automorphism ofE=F will

be referred to as � .



558 S. Kionke and J. Schwermer

7.2. Let D0 be a quaternion algebra de�ned over F and let ƒ0 denote a maxi-

mal o0-order in D0. We get the quaternion algebra D WD D0 ˝F E over E with

the order ƒ D ƒ0 ˝o0
o. It is important to understand that this order need not be

a maximal o-order of D. One should further notice that D is always isomorphic

to the matrix algebraM2.E/, since every quadratic extension splits D0 (cf. �eo-

rem 1.3 in [29, p. 33]). Moreover, we de�ne the group schemes G0 and G over o0

just as in 2.2.

For every integer j � 1 we de�ne the open compact subgroup K.j / as the

kernel of the reduction map G.o0/ ! G.o0=p
j
0/. Further, we set K.0/ WD G.o0/.

�ese subgroups are �-stable, and we want to understand the cohomology sets

H 1.�;K.j //.

7.3. Basic observation. We want to determine the �rst non-abelian cohomology

H 1.�; G.o0//. In order to do this, we mimic the proof of (29.2) in [11], but we work

with rings instead of �elds. Let b 2 Z1.�;GL1.ƒ// be a cocycle. We de�ne the

�xed point space

U.b/ WD ¹x 2 ƒ j b �x D xº;

which clearly is a right ƒ0-module. It follows from the theory of Galois descent

that the canonical map

�b W U.b/˝o0
o �! ƒ

is injective and that the image is an o-lattice of �nite index in ƒ. �e o0-module

U.b/ is free and we deduce that U.b/ is of o0-rank four. As ƒ0 is a right prin-

cipal ideal ring (see (17.3) in [17]), we see that U.b/ is isomorphic to ƒ0 as right

ƒ0-module. We choose a generator g 2 U.b/, i.e. every x 2 U.b/ can be written

x D gy for some y 2 ƒ0.

Observe that, given two equivalent cocycles b; b0 with c 2 GL1.ƒ/ satisfying

b0 D c�1b �c, it follows that U.b/ D cU.b0/ and similarly Im.�b/ D c Im.�b0/.

�is means if such a relation is not possible, we can use the images of �b and �b0

to exclude that b and b0 are equivalent. �is setting will be used in the proofs of

the following results.

7.4. �e unrami�ed case. In this section we will assume that the extensionE=F

is unrami�ed.

SupposeD0 is a matrix algebra, then the order ƒ D ƒ0 ˝o0
o is maximal and

isomorphic to the full matrix algebra M2.o/ (cf. [17, (17.3)]). In particular, the

reduced norm nrd W ƒ ! o is onto.



On the growth of the �rst Betti number 559

On the other hand, if D0 is the unique quaternion division algebra over F ,

then ƒ D ƒ0 ˝o0
o is not maximal. More precisely, there is an isomorphism of

E algebras

D
'�! M2.E/

which maps the order ƒ to ¹
�

x y
�z w

�

j x; y; z; w 2 oº. �is means ƒ is an Eichler

order of level �o. However, the reduced norm nrd W ƒ ! o is again surjective.

Lemma 7.1. If E=F is unrami�ed, then

H 1.�;GL1.ƒ// D ¹1º:

Proof. First, choose � D �0. We want to show that �b is surjective. We �nd an

element � 2 o such that E D F.�/ and o D o0 ˚ �o0. Note that �� � � 6� 0

mod �0 since � C �0o … k0. Consequently, �� � � is a unit in o and we choose

u WD . �� � �/�1. Take any v 2 ƒ, then v1 D v C b �v and v2 D �v C b �� �v

are in U.b/. Finally, we conclude that v D ��uv1 � uv2 2 Im.�b/, so that �b is

surjective. �is means every element in ƒ can be written as gy for some y 2 ƒ.

We deduce that g is a unit in ƒ and b D g �g�1 since g 2 U.b/.

Corollary 7.2. If the extension E=F is unrami�ed, then

H 1.�; G.o0// D ¹1º:

Proof. Recall that G.o0/ D SL1.ƒ/ and that the reduced norm nrd W ƒ ! o is

surjective. Hence, there is a short exact sequence of groups with �-action

1 �! SL1.ƒ/ �! GL1.ƒ/
nrd��! o� �! 1:

In turn there is an induced long exact sequence of pointed sets

1 �! SL1.ƒ0/ �! GL1.ƒ0/
nrd��! o�

0 �! H 1.�; SL1.ƒ// �! 1:

Again, the reduced norm ƒ�
0 ! o�

0 is surjective. �is is clear, if D0 is a matrix

algebra. If D0 is the unique central division algebra of dimension four over F ,

then this follows from the fact that E is embedded in D0 as a maximal sub�eld

and so nrd.ƒ�
0 / � NE=F .o

�/ D o�
0 .

Lemma 7.3. Assume that the extension E=F is unrami�ed. In this case

H 1.�;K.j // D ¹1º

for every integer j � 0.
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Proof. �e statement for j D 0 was proven in Corollary 7.2. Let j � 1, the short

sequence of groups

1 �! K.j / �! G.o0/ �! G.o0=p
j
0/ �! 1

is exact, since the group scheme G is smooth over o0. Consider the induced long

exact sequence of pointed sets

G0.o0/
f�! G0.o0=p

j
0/ �! H 1.�;K.j // �! 1:

Note that the group scheme of �xed points G� is isomorphic to G0 over o0 since

E=F is unrami�ed. �e reduction map f is surjective and the claim follows.

7.5. �e rami�ed case. We assume that E=F is a rami�ed extension. Here the

situation becomes quite tedious. For the sake of simplicity we will assume later

on that p ¤ 2.

As before, if D0 is a matrix algebra, then ƒ D ƒ0 ˝o0
o is a maximal order

and isomorphic to the full matrix algebra M2.o/.

Assume now that D0 is the unique central division algebra of dimension 4

over F . Let W=F be the unrami�ed quadratic extension of F and let oW be its

valuation ring. �e unrami�ed extensionW of F is embedded into D0 as a max-

imal sub�eld such that D0 D W ˚ W! with !2 D �0. �e maximal order ƒ0

is ƒ0 D oW ˚ oW ! with respect to this decomposition (cf. Vignéras [29, Corol-

lary 1.7. p. 34]). We de�ne L WD W ˝F E, this is a �eld extension of degree

4 over F . Further, the extension L=E is unrami�ed, whereas L=W is a rami�ed

extension. Let oL be the valuation ring ofL, we have oL Š oW ˝o. Consequently,

the orderƒ D ƒ0 ˝o0
o is isomorphic to oL ˚ oL! with the appropriate multipli-

cation. One can check that there is precisely one proper right ideal I � ƒ strictly

containing �ƒ, namely I D �oL ˚ oL!. Moreover, one can verify by calculation

that this right ideal can not be generated by one element.

Lemma 7.4. Assume p ¤ 2. If E=F is a rami�ed extension, then

H 1.�; SL1.ƒ// D ¹˙1º:

Proof. Return to the setting of Section 7.3. We proceed in a similar fashion as in

the proof of Lemma 7.1 but we assume directly that b 2 Z1.�; SL1.ƒ//. Using the

assumption that p is odd, we may further assume �2 D u�0 for some unit u 2 o�
0 .

Note that o D o0 ˚ �o0 and �� D �� .
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Take an arbitrary v 2 ƒ, we claim that �v 2 Im.�b/. �e two elements

v1 D vCb �v and v2 D �v�b� �v are in U.b/. Clearly, 2�v D �v1 Cv2 and the

claim follows, since 2 is a unit in o0. Consequently, we have �ƒ � Im.�b/ � ƒ.

�e image of �b is a right ideal in ƒ. We distinguish three cases.

Case 1. Suppose Im.�b/ D ƒ, then the generator g 2 U.b/ is a unit in ƒ

and satis�es b D g �g�1. From nrd.b/ D 1 we deduce that nrd.g/ D � nrd.g/ 2
o�

0 . Multiplying g from the right with an element in ƒ�
0 having reduced norm

nrd.g/�1, we see that b represents the trivial class in H 1.�; SL1.ƒ//.

Case 2. Suppose Im.�b/ D �ƒ. �e generator g 2 U.b/ is of the form �h,

where h 2 ƒ�. From this we see the relation b D �h �h�1. As in case one

we can achieve that h has reduced norm 1 and so b represents the class of �1
in H 1.�; SL1.ƒ//. Using the last remark made in Section 7.3, it follows that the

cocycles 1 and �1 can not be equivalent (even over GL1.ƒ/).

Case 3. Suppose �ƒ ¨ Im.�b/ ¨ ƒ. We distinguish whether D0 is split or

not.

Suppose D0 Š M2.F / and choose an isomorphism ƒ Š M2.o/. In this case

we know that Im.�b/ is generated (as right ideal) by an element of the form aı

where a 2 GL2.o/ and

ı D
�

1 0

0 �

�

(cf. (17.7) [17]). It follows that the generator g 2 U.b/ is g D aıc for some

unit c 2 ƒ�. We get b � .aıc/ D aıc. Applying the reduced norm, we �nd
� .nrd.a/ nrd.c// D � nrd.a/ nrd.c/. �is implies nrd.ac/ 2 �o which is a contra-

diction to a and c being units.

Suppose thatD0 is a division algebra. Since U.b/ is generated by one element,

the same must be true for Im.�b/. However, as pointed out before, there is no such

right ideal in ƒ properly containing �ƒ.

Lemma 7.5. Let p ¤ 2 and let E=F be a rami�ed extension. For every j � 1

the �rst cohomology H 1.�;K.j // is trivial.

Proof. We claim that the mapH 1.�;K.1// ! H 1.�; G.o0// is trivial. To see this,

suppose that �1 is equivalent to a cocycle b 2 K.1/. Under this assumption there

is some c 2 SL1.ƒ/ such that �1 D c�1b �c. Considering this equation modulo

� , we get �c � �c mod � . Since � acts trivially on ƒ=�ƒ, we deduce c 2 �ƒ.

�is is a contradiction to the assumption that c is a unit, which proves the claim.

Finally, apply the argument of Lemma 7.3 using G� D G0, since p ¤ 2.
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Remark 7.6. Many results of this section can be deduced from Rohlfs general

treatment (see Satz 2.6 and Korollar 2.7 in [18]). Since most results follow directly

in the given situation we decided to provide independent proofs.

It seems to be a more di�cult task to give a general description ofH 1.�; G.o0//

in the rami�ed case when the residual characteristic is p D 2. One can not expect

a simple result like Lemma 7.5. �is follows from the work of Rohlfs, who de-

termined the cohomology sets for quadratic extensions of Q (cf. Table to Satz 4.1

in [18]). For the applications we have in mind it is su�cient to know that the

cohomology set H 1.�; G.o0// is �nite (see Korollar 2.5 in [18]).

7.6. �e orders of certain �nite groups. In this section we summarize some

results on the cardinalities of the involved �nite groups. �ese results are well-

known or can be obtained using well-known tricks. We simply gather these results

here. We keep the notation used throughout the appendix. In particular, F denotes

a �nite extension of somep-adic �eldQp andE is a quadratic extension �eld ofF .

We write N.p0/ for the cardinality of the residue class �eld k0 D o0=p0.

Lemma 7.7. For every positive integer e,

j SL2.o0=p
e
0/j D N.p0/

3e.1� N.p0/
�2/

Lemma 7.8. Let e be a positive integer and assumeD0 is a division algebra, then

jG0.o0=p
e
0/j D N.p0/

3e.1C N.p0/
�1/:

Moreover,

� if E=F is unrami�ed, then

jG.o0=p
e
0/j D N.p0/

6e.1 � N.p0/
�2/;

� if E=F is rami�ed, then

jG.o0=p
e
0/j D N.p0/

6e.1C N.p0/
�1/:

Proof. We only indicate the proof for the claim when E=F is unrami�ed. In this

case ƒ is an Eichler order of level �o, i.e.

ƒ Š
²�

x y

�z w

�

j x; y; z; w 2 o

³

:
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One counts the group of units j.ƒ=�ƒ/�j D jkj2.jkj�1/2 D N.p0/
8.1�N.p0/

�2/2

and (by the usual trick) one obtains j.ƒ=�eƒ/�j D N.p0/
8e.1 � N.p0/

�2/2. �e

reduced norm nrd W .ƒ=�eƒ/� ! .o=�eo/� is onto and so

j SL1.ƒ=�
eƒ/j D N.p0/

6e.1� N.p0/
�2/:

For a positive integer e, de�ne

Qe WD jG0.o0=p
e
0/j

p

jG.o0=p
e
0/j
:

With the help of Lemma 7.7 and Lemma 7.8 is easy to verify to following asser-

tions.

Lemma 7.9. (1) If E=F is unrami�ed and D0 is split, then

Q2
e D .1� N.p0/

�2/.1C N.p0/
�2/�1:

(2) If E=F is unrami�ed and D0 is a division algebra, then

Q2
e D .1C N.p0/

�1/.1� N.p0/
�1/�1:

(3) If E=F is rami�ed and D0 is split, then

Q2
e D 1 � N.p0/

�2:

(4) If E=F is rami�ed and D0 is a division algebra, then

Q2
e D 1C N.p0/

�1:
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