arXiv:1312.5675v2 [math.AG] 2 Apr 2014

STACKS OF UNIFORM CYCLIC COVERS OF CURVES
AND THEIR PICARD GROUPS

FLAVIA POMA, MATTIA TALPO, AND FABIO TONINI

ABSTRACT. We study the stacks 4., of uniform cyclic covers of degree between smooth curves of
genush andg and, forh >> g, present it as an open substack of a vector bundle over thersal Jacobian
stack of M,. We use this description to compute the integral Picard gfus;, 4., showing that it is
generated by tautological classesf g .

INTRODUCTION

Let k be a field andh, g, n be non negative integers with> 2. We denote bys,, , ,, the stack ovek
of triples(D — S,C — S, f) whereD — S is a smooth, geometrically connected gehwzirve,

C — Sis a smooth, geometrically connected gepusirve andf: D — (C'is a uniform cyclic cover
of degreen (see Sectiod for a definition of uniform cyclic covers). The aim of this maps to describe
the structure o3;, , ,, and compute its integral Picard group.

This work was inspired by the results in\J04] and [ ], where the authors compute the Picard
group of similar moduli problems, namely the stack of unifotyclic covers of projective spaces and
of triple covers of curves of genus zero respectively. Havdkie methods used here are different, as
we do not use a presentation Bf, ,,, as a quotient stack. Another source of inspiration and, ¢ty fa
the starting point of our computation in genus one was thesadal result of Mumford about the Picard
group of the stack\1 ; of elliptic curves (seell ] and also | D).

This paper was born as a study of double covers of genus ones;tinat is of the stacksy, ; » (which
also explains the use of the lett®8mwhich stands for 'bielliptic’). The main obstacle in geneiag the
results forg > 2 was the computation of the Picard group of the universalklaocof M, (see below
for a definition), since the methods we used for the same @nolih genus one fail in higher genera.
This last problem was solved iivi[/14], allowing the generalization for higher genera.

Let us also remark that the case= 2 is the most interesting from a “geometric” point of view, n
(in characteristic different from) uniform cyclic covers of degre2 are just covers of degrezand,
therefore 3;, , » is the stack of double covers between smooth curves of génandg.

Let us also remark that the case= 2 is the most interesting from a “geometric” point of view,
in this case (in characteristic different frajithe “uniform cyclic” condition is automatic, and our stack
coincides with the stack of double covers between smootveswf gener& andg.

The Picard group aoBj, o, was already computed /04, Theorem 5.1]. Here the authors introduce
moduli stacks of uniform cyclic covers of projective spaasnoted byHsm(r, n,d) for r,n,d > 0.

In the one dimensional case= 1 we haveHsm(1,n,d) = B, Whered,n, h are related by the
expression ) below. In this paper we provide an alternative method ferdbmputation of Pif;, o ,,
which extends to higher genera.

In[ } the author introduces moduli stacks of abelian covers ofes) which are related to our
stacksB;, 4., in the cyclic, totally ramified case. L@i, ., be the stack of tuplegD, C, f,o1,...,0;)
where(C, 01, ...,0,) is ar-pointed curve of genugandf: D — C is a uniform cyclic cover of de-
green whose ramification locus is the union of the sectiens . ., o,.. By forgetting the sections we ob-
tain a functor, .4, — By, g.n, Whered, g, h, n are related by the expressiat) below, which is &5,,4-
torsor. In | ;Theorem 3] is proved thai, ,,4 ,, which is denoted by ,,4(B(Z/nZ),(1),...,(1)),
has trivial rational Picard group fard > 0, which also implies the vanishing of the rational Picardugro
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of By, 1,»,- In this paper we recover this last result by explicitly désag the integral Picard group of
By, 1.7, but we can not directly deduce the resultfia)13 Theorem 3].
The main result of this paper is the following.

A. Theorem. Leth, g, n be non negative integers with> 2 and set

h+n(l—g)—1 B n(n —1)
Y p— sothath=1+n(g—1)+ 5

The stackBy, 4., is not empty if and only i € N. Assumel € N. The stack3;, , ,, is algebraic and of
finite type overk and, ifnd > 2g — 2 or chark { n, the forgetful functo3;, ;, , — M, is smooth and
surjective.

Letm: C — By 4, be the universal genug curve, f: D — C be the universal uniform cyclic
cover of degree and £ be the dual of the degrelepart of theu,,-equivariant sheaf,Op. The sheal
is invertible of degre@ overC and we have the following.

(1) If g = 0 we have

d

(1) d=2

PicB) 0. ~ {Z/2n(nd —1)Z generated by, (£ ® wfﬁ/Z) (i:;l&zeyen |
w Z/n(nd —1)Z  generated bydet 7. (£ ® wx ) if d is odd
(2) If g = 1thenPicBy, ; ,, is generated bytr.w, anddet 7L with relations
(mewr )t and det 7,.L if h=1, n=2, chark {6
(Tawr)® and (1,.L£)2 @ (Tawy) 2 if h=n =2, chark # 2
(mewr) 2 and (det 7, £)%"° @ (mow, )" (@ntd=2n) if nd > 2, chark { nd
As an abtract group we have
YARY/ if h=1, n=2, chark {3

Z./37. % 1./27. x 7./ 27 ifh=n=2
ZJ3Z x LJAZ x /2027 if nd > 2, 20 s even chark { nd
ZJ3Z x )27 x Z/AnZ i nd > 2, 20 s odd chark { nd
(3) Assume that is algebraically closed of characteristitand eithernd > 2g — 2 andg > 4 or
nd > 2g—1andg > 3 ornd > 2g andg > 2. ThenPicB}, 4 ,, is generated bylet 7w, d (L)
anddet 7. (£ ® w;) (see2.4for a defintion ofd, (—)) with the only relation
(det Tywr) 2" @ dp (£)" V) @ (det (L @ wy)) D
except forg = 2, for which we need to add the relatigdet m.w, )!°.
As an abstract group we have
Z]2nZ x ZJ10Z x Z  if g = 2 andn is odd
Z/nZ x ZJ10Z x Z  if g =2 andn is even
7.)2n7 x 7.2 if g > 2 andn is odd
7.)nZ x 7* if g > 2 andn is even

PiCBth ~

PiCB}hg’n ~

Whenh = n(g — 1) 4+ 1 (in particularg > 1), that isd = 0, uniform cyclic covers of degree
becomey,,-torsors. This case is not covered by the above theorempekaeh = g = 1 andn = 2
where Pid3; ; » is computed by an ad hoc variation of the methods used in higgreera and degrees.
Whend > 0 uniform cyclic covers are never étale and the stdgks ,, share a common description that
we are how going to explain.

Fix g > 0, d,n > 0 and assume charf n or g = 0 and, ifg = 1, chark { d. Setly g ,, for the stack
of triples (C — S, Q, s) whereC' is a smooth, geometrically connected curve of gepasd Q is a
degreed invertible sheaf with a sectione Q™ that is not identically zero on any of the geometric fibers
of C — S. The forgetful mag/,,,, — M, defines the (universal) genygscurver: C — Ug g
together with an invertible shedf of degreed onC and a sectior € L". The zero locu$y 4 ,, Of ¢ in
C is a degreend cover ofidy , ,, andBy, 4 ,,, Whered, h, g, n are related by the expressial) @bove, can
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be identified with the étale locus &, ,,, — Uy, ,, insideldy , ,, (seed.4). Sinceldy , , is smooth and
algebraic, the problem of computing B¢ , ,, splits in two parts: compute Pi¢; ,,, and describe the
complement of3;, ; , IN Uy g -

Denote byJacy 4 the stack of pairgC — S, Q) whereC' is a smooth, geometrically connected
genusg curve and@ is a degreel invertible sheaf orC. This is the so called universal Jacobian of
degreed on M. Assumend > 2g — 2. The forgetful functoity 4 ,, — Jacq, Mmakeddy 4, into the
complement of the zero section of a vector bundle of radk:- 1 — g over Jacy 4 (this description
is no longer true in general whend < 2g — 2 and this is why Theorem does not cover this case).
Whenn > 2 and sincend + 1 — g > 2 we can conclude that Pi¢; ,,, ~ PicJacq4. Wheng > 2
the group Pi¢7acy 4 has been computed in[V/14]. If g = 0 then PicTacqo ~ Z (see2.6). The case
g = 1is harder than the cage= 0 and our treatment differs from the methods used\itv] 4] for
g > 2. The result is that, iy = 1, then Pic7acg1 ~ Z/12 x Z (see2.9) and it has been obtained by
proving that the functo7ac,1 — M1 that mapsE, Q) to (Pic},, [Og]) is a trivial gerbe, that is
Jaca1 ~my, By, Ga, whereGy is a smooth affine group ovevt; 1, and by computing the group
of characters of7;. The geometric fibers aff; — M, ; are particular cases of Theta groups, first
defined by Mumford in his papei/] ] (see2.16).

The last part in the computation of B3 , ,, is the description of{; , ,, — By, 4., Topologically this
closed substack coincides with the discriminant lagug ,, of the covert, 4, — Ug 4.»- By Standard
theory of covers the locug, , ,, can be described as the zero locus of a section (the disenimgection)
of an invertible sheaf a¥,; , ,. The key point for the computation of P, ,,, is thatZ, , ,, is reduced
and, ifnd > 2g ornd > 2g — 1 andg > 3 ornd > 2g — 2 andg > 4, irreducible (see.2). In the
special casgg = 1, h = n = 2 (so thatd = 1 andnd = 2g) ad hoc methods show that, ;, is a
disjoint union of two irreducible components, allowing tt@mputation of Pid3, ; » (see3.2). Itis not
clear whetheiz, , ,, is irreducible for the remaining values bf g, n. The geometry of the lock, , ,, is
studied by reducing to the cagse= 1, showing that{; , ; ~ Hilbﬁl\Agﬁl/Mq (see section Notations) and

thatq,4,1 — Hilb%, . is the universal cover.

We remark that Theorerh is obtained by expressing A%, 4 », as quotient of Pi¢7acy 4 by a given
relation and this description holds more generally thahénhtypothesis of Theoref (seed.6for a pre-
cise statement). For instanceyit> 2 and chak { n the knowledge of the integral (resp. rational) Picard
group of Jac, 4 implies the knowledge of the integral (resp. rational) Riogroup ofB, , ,,. Unfortu-
nately if g > 2 both the integral and rational Picard groups/ic, , are known only in characteristic
0, although it seems reasonable to expect the same deseriptiall but finitely many characteristics.
See | , Remark 1.4] for a discussion on the subject.

The paper is organized as follows. In Sectibnve collect useful remarks and lemmas, while in
Section2 we study the Picard group of the univeral Jacohiaac, , over M, for g = 0 andg = 1
and explain the results fgr > 2 obtained in | ]. In Section3 we introduce the canonical covers
Ha,gn — Uqqg,n and describe their discriminant loci, while in Sectibwe introduce the stacks;, ; ,,
and compute their Picard groups.

Notations. Given a base schentg by the words “scheme” or “stack” we always mean scheme gksta
defined over this base scheme. Moreover by stacks we alwage meategory fibered in groupoids
which is a stack for the fppf topology. Létbe a stack.

A geometric point ofS is a map Spek — S, wherek is an algebraically closed field.

Given a sheaf of group&': (Sch/S)°P — (grps) we denote by7Y = Homs (G, G,,) the group of
characters of7 overS, i.e. group homomorphisncs — G,,,.

By a cover we mean an affine map—f—> S such thatf,, Oy is locally free of finite rank. Alternatively,

a cover is a finite, flat and finitely presented m’épi> S. The degree of is the rank off.Ox. The
discriminant section; € det(f.Ox) 2 of f is the determinant of the map

f*OX — f*OXv7 T — trf*(QX(.Z' . _)
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where tr denotes the trace map. The discriminant locyfsi®the zero locus i of s¢. The discriminant
section is stable under base change and the complementdistmaninant locus off is the étale locus
of finS.

A genusg curve overS is a representable (by algebraic spaces), flat, locallyefinpresented and
proper mapC — S of stacks whose geometric fibers are smooth and connectes genurves. Let
n: C — S be a genug curve. We say that an invertible sheabnC has degred < Z if the pullback
of £ on every geometric fiber of: C — S has degred. We denote by, the relative dualizing sheaf,
which is an invertible sheaf afi of degree2g — 2.

We denote by\, the stack of genug curves and by\M,, ; the stack of genug curves with a section.
The forgetful functorM, ; — M, is a genugy curve, called the universal genggurve of M. If it
is given a mas — My, the universal genugcurve ofS is the base chang® x , M,1 — S.

Let X be another stack anfl: X — S be a representable map. We denote by T);I}'Lb(or simply
Hilb% wheneversS is clear from the context) the stack ov&whose objects ove$ — S are closed
subschemeg& C X x s S such that the projectiod — S is a degreen cover. Whenf: X — Sisa
projective map of schemes then I-ﬁlps is the usual Hilbert scheme of points.

We denote by Hilg/s (or simply Hilb},, whenevessS is clear from the context) the stack ovewhose
objects overlS — S are closed subschemé€sC X' x s S which are flat, proper and finitely presented
over S, and such that for every geometric point> S, the fiberCs C A% is 0-dimensional of lenght.

We denote by Pig s (or simply Pic, wheneversS is clear from the context) the stack ov@mwhich
is the fppf sheafification of the funct¢Bch/S)°® — (setg that mapsS — S to the set PigY x5 S).

If f: X — Sis acurve, we also denote Q)LE’(I)I‘S (or simplyﬂd() the substack oEjp/S of classes
that are locally given by invertible sheaves having degrea the geometric fibers of. Givenn € 7Z

we will denote by[n]: Picy,s — Picy s (or [n]: Pic} s — Picy' if X is a curve overs) the

map induced by the multiplication by.

The formation of Hill§, 5, Picy s andﬂ@/s commute with arbitrary base change of the b&stn
particular, if X — S is a curve, the stacks Hﬁb/s andﬂ(;?\,/s for d € Z are smooth oves.

If X is an algebraic stack we will denote by | the topological space associated with

Almost all the stackst’ that we will introduce have a given map tof,, for some giverg, and
therefore have a given gengscurve over it, that, as remarked above, we will call the ursigkecurve
over (or of) X'. With abuse of notation we will usually denote them by the saymbolC for the total
space and for the structure map, thatis: C — X, but with the convention that this notation is fixed
and remains coherent inside the statement of a lemma, ptioppsheorem ... and its proof. The use
of different symbols for such curves seemed to us not pctichile the use of subscripts would have
encumbered the notation too much. Moreover this notatisugported by the idea that genpsurves
can be seen as restriction of the universal curve dvgy. Indeed, ifr: C — M, is the universal
curve andg: X — M, is a map,C can be seen as the functér: (Schy M,)®® — (setg which
maps a genug curve C' over a scheme' to the set of section€’(.S), while ¢ corresponds to a map
Schy X — Schy M. The universal curvé x ,, X — & of A’ then corresponds to the restriction of
the functorF' along the map Sogtiv — Sch/ M.

Acknowledgements. We would like to thank our advisor Angelo Vistoli for suggastthe problem and
for sharing his ideas.

We also thank Michele Bolognesi for directing us to Mumfergapers about abelian varieties, along
with Dajano Tossici, Matthieu Romagny, Nicola Pagani,dgit Viviani and Margarida Melo for useful
conversations.

1. PRELIMINARIES

In this section we collect some general results and reméaeksviill be useful in the next sections.
These results are well known, but for some of them we decidé@ttctude a proof for completeness and
lack of exhaustive references. In this section we consigec? as the base scheme.

1.1.Proposition. Let f: X — Y be a locally finitely presented map of algebraic stacksanddc —
‘H be a map of finitely presented quasi-coherent sheave®.dh# is flat over) thenq is injective on
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the geometric fibers of if and only if« is injective andCokerq is flat over). In this casen remains
injective after any base changé — ) from an algebraic stack.

Proof. Itis easy to see that taking atlaseg)odnd X’ we can reduce the problem to the case of schemes,
where it follows from | y Proposition 11.3.7]. a

1.2. REMARK. Let) be an algebraic stack arelbe a sheaf of groups ovéi. Then we have a natural
isomorphism

PicBy G ~ PicY & Hom(G, G,,)
Indeed, by descent, an invertible sheaf over@is given by a paif L, p) whereL is an invertible sheaf
over) andp € Hom(G, G,,,), which defines an action @ on £ given byp: G — G,,, ~ Aut(L).

In some proofs we will use dimension counting for algebraéclss. We recall here some properties
which are well known for schemes. We refer 1099, Chapter 11] for definitions and basics about
dimension theory for stacks.

1.3. REMARK. Let f: X — Y be a locally of finite type map of algebraic stacks.£lfe |X|,
n: Spedt — Y, wherek is a field, maps tof (§) andz € |X xy k| maps to¢ via the projection
then the number

dimg f = dim, (X xy k) € Z
does not depend omandzx. Indeed by standard arguments about fiber products one danedo the
case) = Speck and show that ifL /% is a field extension andf € |X x; L| maps to¢ € |X| then
dime (X xj, L) = dime X. Using the definition of dimension for stacks one can assuraeX is a
scheme. In this case the result is standard (see for insfairce 4 Tag 02FW]).

1.4. Definition. Givenn € Z, a locally of finite type mag': X — Y of algebraic stacks has (pure)
relative dimensiom if all (the irreducible components of all) the fibers have divsionn.

1.5. REMARK. If X is a quasi-compact algebraic stack there exists N and an atlas¥ — X’ of
pure relative dimension, whereX is a quasi-compact scheme. Indee®if X’ — X is an atlas from
a quasi-compact scheni€, by [ , Proposition 11.10] we have a decompositi§h= | |_, X,
such that, ifr € X, r = dim, P(= dim, P, ). Taking into account/| , Corollary 11.11] the
mapQ: X = | [_ A% " — & satisfieslim, Q = nforallz € X, i.e. it has pure relative dimension
n.

1.6.Proposition. Let f: X — Y be aflat and locally of finite type map of locally noetheriageddraic
stacks. Then

In particular if f has relative dimension € Z then
dimX =dim)Y +r

Moreover if) is locally of finite type over a field df, f has pure relative dimension € Z and )’
is an irreducible component @f then all irreducible components 97*1(3)’) dominate)’ and have
dimensiondim )’ + r.

Proof. We first prove 2) when X and) are schemes. ByJro66 Corollary 14.2.6] and since fibers
have the subspace topology one can assiirsarjective, of relative dimension € N and translate
2 indimX =dimY +n.By| ; Theorem 14.2.1] we havem(Ox ;) = dim(Of-1((2)),0) +
dim(Oy ¢(,)) for all z € X. Since for ally € ) we havemax,¢ ;-1 {dim(Of-1,) ,)} = n we get
the desired expression.

When f is a smooth atlas?) follows from definition ofdim ) V. We show that

(2) for schemes— (2) for algebraic spaces=- (2) for stacks

Both implications follows from the same proof. One conssdemnooth atlase¥’ — X andY — ),

choose a poiny € Y over f(£) andz € (X xy k(y)) mapping ta. Writing a diagram of all possible

fiber products the proof now consists in applyigygeveral times on various projections of this diagram.
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If f has relative dimension the expressionlim X = dim Y + r follows from (2) and the fact that
forall € [V| we havemaxgc y-1(,) {dim¢ f} = r. We now consider the last claim in the statement. We
can assumg irreducible. LetY’ be an irreducible component &f with generic point. Notice thatt”
contains an open substack &t In particulardimg X = dim¢ X”. Moreover sincef is openf(§) = n
is the generic point of. By (2) we havedim¢ X’ = dim,, ) + . Thus it suffices to show that £ is an
irreducible stack locally of finite type over a field Arand( is its generic point thedim; Z = dim Z.
First we can assumg& quasi-compact by taking an open substaclEaif the same dimension. Then by
1.5there exists an atlaB: Z — Z of pure relative dimension, so thatdim Z = dim Z + r. On the
other hand we have seen thatifs a generic point of thendim, Z = dim¢ Z + r. This tells us that
dim, Z does not depend on the choice of the generic point and thierddy [ , Corollay 10.6.4,
Example 10.7.1]dim, Z = dim {2} = dim Z, which impliesdim Z = dim. 2. O

1.7.Corollary. Let X be an irreducible stack of finite type over a field afdbe the zero locus of a
section of an invertible sheaf oti. If ) # Z C X then all irreducible components & have dimension
dim X — 1.

Proof. Let P: X — X be an atlas of pure relative dimensiofseel.5), Z’, Z' and X’ be irreducible
components o2, P~1(Z’) and X such thatZ’ C X'. Notice thatZ’ C X’ because otherwisB(Z’)
contains the generic point &f. SinceZ’ is an irreducible component of a section of an invertibleashe
on X’ we havedim Z’ = dim X’ — 1. On the other hand sinde has pure relative dimensionwe have
dim 7’ = dim Z’ 4+ r anddim X’ = dim X + r. a
1.8.Corollary. Letf: X — Y be a map of stacks locally of finite type over a field and asshatett

is a Deligne-Mumford stack. Thetim f(X') < dim X, wheref(X) is the reduced closed substack of
Y whose topological space & |X|).

Proof. WhenX and)’ are schemes the result is standard. We show how to reducis wage. We can
assume thaf is dominant so thaf (X') = ). By taking an atlas o} of pure relative dimension (see
1.5 we can assume that is a scheme. Moreover we can replady a scheme because étale atlases

do not change dimension. a

1.9.Proposition. Let X be a smooth and integral algebraic stack over a field.

e If h: V — X is a vector bundle of finite rank théit : PicX — Pic)V is an isomorphism.

e If Zis a closed substack &f of codimension greater thahthen the restriction mapicxX’ —
Pic(X — Z) is an isomorphism.

e Givently,sy,..., L., s, whereL; is an invertible sheaf o/’ with a non zero global sectios
whose zero locug(s;) is integral, then the restriction map induces an isomorphis

PicX/(L1, ..., L) ~ PidX — (Z(s1) U--- U Z(S,)))

Proof. Leto: X — V be the zero section. We must prove thatPi€_s PicX is injective. LetQ be
an invertible sheaf o in the kernel and define the shedf on the small smooth-étale site &fby

Fo(U) = 1504111 (Qn-1(), On—1())
The mapo induces a mag'y — 1s0,(0*Q, Oy) and it suffices to prove that it is an isomorphism.
This is a local question, so that we can assuthe= SpecD affine andV trivial. By standard inter-
section theory for schemeg is trivial and therefore the previous map on the global sestiis just
(D[z1,...,2zp])* ~ D*.

Let/ be an open substack &f. If Q is an invertible sheaf ot¥ then by | , Corollary 15.5]
there exists a coherent shefifon X' such thatF,, ~ Q. Then the sheaf = F"V is a reflexive sheaf
of rank1 and thus invertible and, ~ Q. This shows that Pi@" — Picl{ is surjective. We now use
the description of divisors given ir\[/04, Proof of Lemma 5.2]. Let be an invertible sheaf o’ such
that L, ~ Oy. It follows that there is a divisoD on X’ such thatZ ~ Ox(D) and the support oD
isin X —U. In particular if ¥ — U/ has codimension greater tharthenD = 0. For the last point the
sheaved; ~ Ox(Z(s;)) restrict toOy onU andL ~ L™ @ L7 wherem; is the multiplicity of D in
Z(s;) (computed on an atlas). O



1.10.Lemma. Letr: C — S be a genug curve over an algebraic stack anfl be a finitely presented
guasi-coherent sheaf af, flat overS. ThenR’ 7, F is locally free and satisfies base change for all
j € Nin the following cases.

(1) Fis an invertible sheaf o@ of degree0 such that{7] = 0 in ﬂcg/s. In this caser,F is an
invertible sheaf and the canonical map

i F — F

is an isomorphism.
(2) F = wy. The sheafr,w, has rankg andR! 7w, ~ Os. Moreover ifg = 1 the mapr*m,w, ~
wy is an isomorphism.
(3) Fis an invertible sheaf od of degreed > 2g — 2 or d < 0. In this casek 7. F = max{d +
1 —g,0} andrk R! 7, F = max{—d — 1+ g,0}.
(4) Fis supported on a closed substackCofshich is quasi-finite ove$. In this caseR! 7, F = 0.
In all of the above cases but the last one we have an isomaonphis

R, F ~ o (FY @ wy)”
Proof. By [ , 11, Definition 10 and Theorem 21] there is a canonical map
7, Hom(F, w,) — (R m]—")v

which is an isomorphism if Rr, F satisfies base change. In this cas& iand R 7, F are locally free
we get the last formula in the statement by dualizing the alisemorphism.
All the other claims follow by standard semicontinuity thems and Riemman-Roch. O

1.11.Lemma. Letr: C — S be a genug curve over an algebraic stack ar@be a degred invertible

sheaf onC with a sections € Q which is non zero on the geometric fibers. Then the zero I&GCo$

s in C is a degreed cover ofS. Whend = 1 this defines a section: S — C with an isomorphism
Oc(7) ~ Q sendingl to s. If in addition g = 1 then the mas — =, Q is an isomorphism.

Proof. By 1.1the sequence
0—Q ' —0—0z—0

is universally exact ovef and Z is flat overS. MoreoverZ — S is proper, finitely presented and, by
looking at the geometric fibers, quasi-finite. Byrp6G Theorem 8.11.1] we can conclude tiat— S
is a cover. By Riemman-Roch it has degree

Assumed = 1. The claim about the sectianfollows from standard arguments. The last claim follows
from the fact thatr, Q is invertible and satisfies base changelbi0ands € 7, @ is nowhere vanishing
by hypothesis. O

1.12. REMARK. Let 7: C — S be a genugy curve over an algebraic stack amd € Z. Then
[n]: Pic, ¢ — Pic;)s is a cover of degree?’ and it is étale ifn € O%. Indeed, since the prob-
lem is local onS, one can assume th&tis a noetherian scheme and tdat— S has a section. This
allows to reduce the problem to the case 0. Sinceﬂg/s — Sis flat and proper of relative dimen-
siong, by the local flatness criterionsfo66 Theorem 11.3.10] we can assume tHas the spectrum of
an algebraically closed field. In this case the result folidwom | , Proposition 7.1 and Theorem
7.2].

In particular all invertible sheaves @hof degree divisible by, are fppf locally (onS) an-th power
of an invertible sheaf og. Moreover(ﬂcg/s)[n] is a finite, flat and finitely presented group scheme

overS of degreen? and itiis étale ifv € OF.

2. THE UNIVERSAL JACOBIAN OF DEGREEJ OVER ./\/lg AND ITS PICARD GROUR

In this section we assume to work over a field of characternistr 0 and we fix a non negative integer
g (the genus) and an integéi(the degree).

2.1. Definition. We denote by7acq 4 the stack of pairgC, Q) whereC'is a curve of genug andQ is
an invertible sheaf ovef' of degreed. The stack7acy 4 is called theuniversal Jacobiarstack of degree

d over M,.
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The aim of this section is to describe the Picard grougat, ,. Wheng > 2 this has already been
donein| ]. We will deal with the remaining cases, that is genus zehare.

2.2. REMARK. The forgetful functor7acq, — M, is the composition of &,,-gerbeJacq, —
ﬂ(f}wg’l/Mq gnd the represeptable and smooth fun(n_oﬁﬁig/Mg — M. In particular Jacg 4 is @
smooth and integral algebraic stack.

2.3.Definition. LetC — Jacgy4 be the universal curve ovefacy 4. By construction, there exists an
invertible sheafC overC such that

c—1-¢
T

— Jacyy

for all schemed'. We call the sheaf theuniversal invertible sheabverC. Given a stack’ over Jac, 4
the universal invertible sheaf over the universal cuﬂvejacd’g Y of Y is the pull-back ofC via the map
C Xjacd,g y — C.

We now describe the result in[/14] about Pic7acy s Wwheng > 2.

2.4. REMARK. Letw: C — S be a genug curve. Given an invertible shedf onC one can define an
invertible sheafl(7) on S, called the determinant of cohomology Bt Whenr,7 and R 7T are
locally free one can simply séf, (7) ~ det 7,7 ® (det R' 7, 7) 1. We refer to | ] for the general
definition. In this paper we just use the fact that the fororatif d.(7) commutes with arbitrary base
changes.

Notice that from1.10it follows thatd, (w,) ~ det m.w, and that, if7 is an invertible sheaf 06 of
positive degree, thet, (7 ® w;) ~ det 7. (T ® wy).

2.5.Theorem. [ ] Assume that the ground field is algebraically closed of cbtaastic0 and that

g > 2andd > 0. Letr: C — Jacq4 be the universal curve and be the universal invertible sheaf
overC. ThenPicJacy 4 is freely generated byet m.wr, dr (L) anddet 7. (L ® wy), except forg = 2,

in which case there is a single relation given @it 7.w,)'°. Moreover for alln, k > 1 we have an
isomorphism

det m (L" ® wfr) ~ (det w*wﬂ)GkLGk’”Q“ ® dﬂ(ﬁ)*"k”r”("“)/? ® (det m (L ® wﬂ))nkﬂrn(n*l)/?

Proof. Taking into accoun®.4, everything follows from [ , Theorem A and 5.2, Notation 1.5,
Remark 5.3]. a

2.1. Genus zero caseln this subsection we consider= 0, while d is any integer. We will prove the
following:

2.6.Proposition. Letr: P — Jacyo be the universal curve and be the universal invertible sheaf
overP. If d is even therPic T acq is freely generated by = m.(L ® wﬁ/z) and we have an isomor-
phism

det 7, (L7 @ wh) ~ oM tnd=2k 10  for all . | € 7,
If d is odd therPic Jac, is freely generated b = det 7, (L ® wﬁdil)/z) and we have an isomor-
phism
det 7, (L7 @ wh) ~ Lomaxnd=2k L0 2 for all . | € 7

We will need the following lemma, whose proof is standard #mg omitted.
2.7.Lemma. The group(GL,)" is freely generated bylet: GLy — G,,, while (PGLy)" = 0

2.8. REMARK. Letw: P — S be a curve of genu8 over an algebraic stack ar@d be an invertible
sheaf orfP. If Q has degre®, by 1.10it follows that, Q is an invertible sheaf, it satisfies base change
and the mapr*7r,Q — Q is an isomorphism because it is so on the geometric fibers.
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If Q has degree, by 1.10it follows thatr, Q is a rank2 locally free sheaf, it satisfies base change and
the mapr*7,Q — Q is surjective because it is so on the geometric fibers. Inqodat we obtain an
isomorphismP — P(7.Q): the pullback of0p(,, 0)(1) is Q and therefore we get the Euler sequence

0 —w, ®Q —71"'mQ — Q9 —0
Proof of2.6. Since My ~ BPGLy, by 1.2and2.7 we obtain PicM; = 0. In particulardet w*(wfr) is
trivial for all £ € Z in PicJ acg .
Assumed even. Tensoring b\;oﬁlr/2 yields an isomorphisnyacqg — Jaco,o over Mgy. By 2.8
we see that the functot§aco g — By, G, mapping(P - S, Q) to (P, ¢.Q) and By, G,, —>

Jacp o mapping(P 45, T) to (P,q*T) are quasi-inverses of each other. Moreoveri®we have
PicBuy, G, ~ PicMy & Z ~ Z, generated by the invertible sheaf given by the (ue7) — 7.

The pullback of this sheaf vidacgo ~ Jaco o =~ B, Gy, is isomorphic taly, which therefore freely
generates Pidacq . By 2.8we havel ~ "Ly ® w;d/2 and, using projection formula,

k—nd/Q)

det mo (L™ @ wh) ~ det (L] ® m,(wk9/2)) ~ LT (n

Finally by 1.10we see that rk, (wh "%?) = max{nd — 2k + 1,0}.

Assume now thatl is odd. Tensoring by)frdflw we get an isomorphisnyacqg o — Jacio. By

2.8we see that the functotgac; o — B GL, mapping(P - S, Q) to ¢.Q and BGly — Jaci
mappingé to (P(£), Ope)(1)) are quasi-inverses of each other. Moreoved &we have Pic B Gb =~
7 generated by the invertible sheaf given by the rfile— det £. The pullback of this sheaf via

Jacqo ~ Jacip ~ BGLy is isomorphic toly. SetT = L ® wfrdfl)/Q, so thatfy = detn, 7.
Applying the determinant to the Euler sequenc@.Bassociated witll~ we get an isomorphism

wWe > T Ly R T 2
Writing £" ® w” in terms of 7 and £, and applying projection formula we obtain
det 7, (L7 @ wh) & det (LE@V/2 g (qrd=2k)) o pU=nd=D/2km (T o) ot o (d=2ky

By 1.10we have that rk, (779=2*) = max{nd — 2k + 1,0}. Thus it suffices to prove the expression
det 7, (T9) ~ ag@“)/? for ¢ > 0. Considering the Euler sequence2ii8 associated witly, replacing
wy by T Lo ® T2 and tensoring by ¢ we get an exact sequence

0— LTI ' S, TeT! — T — 0

The pushforwardr, of the above sequence fer> 0 is exact because'Rr, (7* Lo ® T4 1) = 0 thanks
to 1.10 Thus applyingr,, the determinant, the projection formula and using that.fk") = r 4 1 for
r > —1 we get an isomorphism

det 7, (T ~ Lo @ (det 7, (T9))? @ (det , (T971) 7!
It is now easy to check by induction thadt m, (79) ~ ﬁg@“)/?. O

2.2. Genus one caseln this subsection we considgr= 1 andd > 0. We will prove the following
Theorem.

2.9.Theorem. Letr: £ — Jacq,1 be the universal curve ovefac, 1, £ be the universal invertible
sheaf ove€ and assume 1 d. ThenPic Jacq ; is generated byt,w, anddet 7, £ with the only relation
(mewr)'2. Moreover we have an isomorphism

det T, (L @ W) ~ (det 1, L) @ (mpwy ) dFH=Dldn=2n=2/2 for p 5 0 | € 7

The starting point is the well known Theorem of Mumford, fageneralized by Fulton and Olsson.
(See| Jand | )

2.10. Theorem (Mumford, Fulton, Olsson) The Picard group ofM; ; is cyclic of order12 and it is
generated byr.w,, wherer: £ — M ; is the universal curve.
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We will proceed by showing thaf ac,,; is isomorphic to B, ; G4, for a certain group schent&;,
over M ;. In particular we will conclude that Pi€acq; ~ PicM;y 1 @ Hom(Gy, G,,) and we will
conclude the section by computing the group of charactera(Hg, G,,).

2.11.Lemma. Letw: £ — S be a genus one curve over an algebraic stack. Then the functor

E “ ﬂ(%/g

(6: T —ExsT)—— [Ogxsr(9)]

is an isomorphism. I§: S — £ is a section, then also the functor

£ Picy /s
(0: T —ExsT)r [Ogxsr(6d —o xsT)]

is an isomorphism that sendsto [O¢]

Proof. The last part of the statement follows from the first one. Vgt sthowing thaf is an fppf epi-
morphism. Lety € P_ic}g(T), whereT is anS-scheme. We can repla@éby S and assume the existence
of an invertible sheaf of degreel over& such thaty = [£]. By 1.10the shealQ = . L is invertible
and we can assume it is trivial. SinegL satisfies base change, the sectioof £ corresponding to
1 € m. L is always non-zero on the geometric fibersrofThus, byl.11, we get a section: S — &
with an isomorphisn©g¢ (1) ~ L, so that)(7) = x.

We now prove thaf2 is injective over arS-schemél’. Again we can replacé by S, so that, in par-
ticular, S is a scheme. Let, ¢’ € £(S) such thafOg (¢')] = [Og()]. By 1.10we have an isomorphism

05(5) N 05(5/) ¥ )

for some invertible shea® overS. Sincer,.O¢(6) andw.Og (') are freely generated by the respective
sectionsl by 1.11, applying~, we get an element € Q such thata(1) = 1 ® 7*z and that freely
generateX). Thus we obtain an isomorphiss(6) — Og(0") mappingl to 1 and therefore that
N O
2.12.Proposition. Let€ —— S be a genus one curve over an algebraic stack with a seetidinen we
have isomorphisms
det m, O (no) ~ o Og (o))" /2 " for n > 1
and
0*Og(0) ~ (Tywr)”
Moreover ifL is an invertible sheaf ovef of degree greater than zero ands another section (possibly
equal too) we have an isomorphism
det (L ® Og(7)) ~ det (L R Og (T — 0)) @ 0" L. ® 0" O (T)

Proof. In what follows we will usel.10and, in particular, the isomorphism, ~ 7*m.w, without
further comments. Notice that the first isomorphism in tteeshent follows from the last one with
T = o, induction and the isomorphism.Og(0) ~ Os (seel.1]).

Consider an invertible she&fon & of degree greater or equal than zero and a sectft€. Tensoring
by £ ® Og¢(7) the exact sequence éh

0 — Og(—0) — Og — 0,05 — 0
and applyingr, we get an exact sequence
0 — T (LRO(T—0)) — T (LROg(T)) — 0" (LR Og (7)) — R 1, (LR Og (1 —0)) — 0

If £L= Og andr = o, we obtain a surjection*Og(0) — R 7,0¢ ~ (m,w,)" which is therefore an
isomorphism. If£ has degree strictly greater th@nthe last term in the sequence is zero and taking the
determinant we get the last isomorphism. O
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2.13.Proposition. The functor

M Jacg
(E,o0) - (E,Og(do))

is an epimorphism in the fppf topology and it is a section efftinctor

Jacg My
(E,ﬁ)%——AA(EE%ﬁy[OED

Proof. The second part of the statement follows fr@m1 For the first one letE, L) € Jacq. By
1.12 fppf locally we can writel ~ 7 for some degreé invertible sheafl on E. By 2.11 F has a
sectiono such tha{7] = [Og(o)], which means thal™ (resp.£) andOg (o) (resp.Og(do)) are fppf
locally isomorphic. d

2.14.Lemma. Letp: X — Y be a map of stacks over a schesaith a sections: )y — X which
is an fppf epimorphism. Theki ~ By G where( is the sheaf of groups ovét defined by

G(T -5 ¥) = Ker(Autx (s(€)) —> Auty(ps(€)))

Givenn: T — X the associated>-torsor overT is the inverse image of the identity section of
Auty(p(n)) along the map

150,.(n, sp(n)) == 10, (p(n), ps(p(n))) =~ Aut(p(n))

Proof. Given¢: T' — )Y denote byX;, G¢ ands¢: T — A, the base change &f, G ands: ) — &
along¢ respectively. Givem: T — X denote byF'(n) the sheaf over Sgi" defined in the last part
of the statement. A direct check shows théty) ~ Isoy (1, 8p@y)) @and G =~ MX{(%). Since
n ands,, are fppf locally isomorphic, it follows thak'(n) is a G, -torsor. Thus we get a functor
X — By G. Since the base change of this functor along any morpHism- ) is an equivalence by
standard results, we obtain that it is globally an equiveden O

2.15.Definition. We define the group functat; over M, ; as the groug> obtained as ir2.14 with
respects to the maps defined2ri3

Let us describe the grou@,; more concretely.

2.16.Proposition. An element of7;(S B, M, 1) is apair (f,\) wheref: E — Eis a transla-
tion by an element i [d] and \: Og(0)? — Op(f(0))? is an isomorphism. Moreover we have an

exact sequence

(fiA) 1 f(o)
0 Gm Gy Eld] 0
Ho—— (id, p)

in the Zariski topology oBSchy M, 1, where€ — M, ; is the universal curve. In particula€; is
affine and of finite type ove¥1; ; and, ifp 1 d, it is smooth over\, ;.
Proof. By definition, an element of7 (S B, Mi,) is a pair(f,\) wheref: E — Eis an
isomorphism such thaf.: Picy, ¢ — Picj, ¢ is the identity and\: Op(0)? — Op(f(0))? is an
isomorphism. Taking into accouBt11, the conditionf, = id means that, for ali € £(7") andS-scheme
T we have

[Op:(f(6) = f(0))] = [Op (6 — 0)]
which implies thatf: E — FE'is a translation. The existence dfalso implies thatf (o) € E[d]. In
particular the sequence in the statement is well definedsinde .G,z ~ G,, g, it is exact in the

first two terms.
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It remains to prove thatz; — £[d] is a Zariski epimorphism. This will also imply th&t, is
locally a product ofG,,, and £[d], proving the last sentence in the statement. det £[d] and¢ be
the translation by, so thatt(c) = ¢. By 1.1Q the equalitylOp (6 — o)?] = 0 in Picj, ¢ implies that
Ogp(6 — 0)? ~ 7*Q, whereQ is an invertible sheaf oves. In particular, whereQ is trivial, we get an
isomorphism\: Og (o — t(0))? — O and therefore a paitt, \) € G4 overs. O

The groups obtained fror¥; as base change along geometric points %pé& M are par-

ticular cases of Theta groups, first defined by Mumford in laisgp | ]. With notation from this
paper we havély x v, , k = G(Og(dp)).
2.17.Corollary. We have an isomorphistiacy 1 ~ B, ; Ga.

By 1.2the last step in the computation of the Picard group/ak, ; is the study of the group of
characters HoitGG4, G,,,). For the remaining part of this subsection we assprmé.

2.18.Lemma. The map

€d

Gy x Gy G,
(z,y) - ayz~ty~!

is bilinear and factors through a mag;: £[d] x £[d] — G,,, where€ — M, ; is the universal
curve. Moreover the mag; induces an isomorphism

€ld] ~ Hom(&d], G)

Proof. The mapg, is well defined becausg(d] is abelian. Note thak,,, C G, is contained in the center.
In particular the maja, in the statement is well defined and we have

éa(wy,z) = wyzy a2 = wéq(y, 2)za 2T = éq(w, 2)éa(y, 2)
Finally é4(z,y) = éq4(y, z)~! andé, andey are therefore bilinear. Let be the induced mag[d] —
Hom(&[d], G,,). This is a map between flat and finite group schemes and we @k ¢hat it is an
isomorphism on the geometric points. Soebe an elliptic curve over an algebraically closed field. In
this caseF[d] ~ Z/dZ x Z/dZ and Hom E'[d], G,,,) ~ F[d] as abstract groups. The result then follows
from the fact that, is non-degenerate thanks td | , 81, Theorem 1]. a

2.19.Proposition. Let€ — M, ; be the universal curve. Then
Eld]Y = Hom(E[d], G,,) = 0
In particular the mapG, — G,,, induced by the inclusiofs,, — G is injective.

Proof. By 2.18we have Hon¢[d], G,,,) ~ £[d]. Therefore we have to prove that there are no sections
M1 — &[d] butthe zero one. By contradiction, assume we have a noneetioss : M; ; — £[d].

In particular, by base change, we have a secfiprfor all elliptic curvesE. Since&|[d] is étale and
separated ovet1; 1, there are no elliptic curveB' such thatix is zero. Moreover we can assume that
d is prime. Ifd = 2, let k be a field having an irreducible and separable polynomialk[z]| of degree

3 and consider the elliptic curve defined by the equatida= g(x). In this caseZ[2](k) = 0 by [ :
Group law algorithm 2.3] becaugehas no zeros ik and thereforéz = 0, which is a contradiction.

So we can assume thdtis an odd prime. Lek be a field having a degrekseparable extensioh
and an elliptic curvey. We are going to prove that; € E(k) is invariant under the involution aof,
that is thatyp, € F[2](k). This will end the proof becausg|d](k) N E[2](k) = 0.

We want to construct a new elliptic curv& over k with the following construction. Lef” be a
sheaf of sets over a scherfewith an involutioni: F* — F, let P — S be aZ/2Z-torsor and call
o: P — P the induced orde2 automorphism. We define a new functor by

Fpjg;i: (SchyS)P — (sety, Fp/s,;(T) ={z € F(T x P)| "z = i(z)}
Since: ando™ commute, it is easy to check thal 5 ; is a sheaf and that B’ — S'is any base change
thenFp/g; x 8" = Fpyg/s ;- Moreover, ifA: T — P x T'is a section it is easy to check that

FP/S,i(T) — F1(1j)7 z— A%z
12



is a bijection. In particular for any torsdr we get an isomorphism: Fp,g; x P — F' x P induced
by the diagonal sectio® — P x P. We now claim that if there exist € Fp/5,(S) andy € F(S)
such thatr(h*z) = h*y, whereh: P — S is the structure morphism, then it follows thay) = y.
Indeed by construction(h*x) = x, o*h*y = h*y and, sincer € Fp,g;(S), o*r = i(x). In particular
h*i(y) = h*y and by descent(y) = y.

We apply the previous construction wifh = FE, i the involution of £ and P = SpecL. SetE’ =
Fp/.i- The sheaft)” is a genus one curve afide E'(k) € E(L). ThusE' is an elliptic curve and, by
constructiony: E' x L — E x L preserves the neutral element, that is it is an isomorphfsghiptic
curves. Sincér anddr come from a global section o1, ; we should have (6z/« 1) = dEx 1., which
implies thati(0g) = 6 as shown above. O

2.20.Proposition. Consider the magsy — G,, = Z induced by the inclusioft,,, — Gg4. The
morphism
PicJacqy ~ PicMy1 & Gy — PicMy 1 @ Z ~Z/12Z & Z

sends the invertible sheaf Qfiacy; defined byJacy; > (E — S, L) — det T,L" to the element
(1 — nd(nd + 1)/2,n%d)

Proof. Notice that By, , G, is isomorphic to the stack’ of triples (E — S, o, Q) where(E, o) €
M 1 andQ is an invertible sheaf ove§. Consider the functor

Q
X Jacg

(E—7r—>S,a, Q) ' (E—W—>S’,OE(da)®7T*Q)

We claim that the functof2: Baty, G ~ & — Jacq1 ~ Bay,, Gq is naturally equivalent to the
mapp.: Ba,, Gm — By, Gqinduced by the inclusiofs,,, — Gg4. Given(E 75 8,0,0) € X,
the associate€,,-torsor is Isq (Q, Og), while Q(Isog(Q, Os)) is the subsheaf of

1074¢,, ((E; Op(do) @ 7°Q), (E, Op(do)))

of isomorphism( f, \) such thatf,: Pic, — Pic}, is the identity by2.14 In particular there is &,,-
equivariant map Isg(Q, Os) — Q(@S(Q, Og)) compatible with base changes and automorphisms
of Q. Recall thatl,(P) = (PxGq)/G,, for aG,,-torsor P and that, ifQ) is aG4-torsor,G,,,-equivariant
mapsP — (@ are in one to one corresponce witly-equivariant isomorphisns,.(P) — Q. Thus
given P, theG,,,-equivariant mag® —s Q(P) induces an isomorphisth, (P) — Q(P) of G4-torsors
and it is easy to check that this yields a natural isomorphism—s Q.

We can conclude that the map in the statement can be seenm@dlthack along): X — Jacq
on the Picard groups. The invertible sheaf defined in therstant is sent to

(E =5 S,0,0) — det 7, (Op(ndo) @ 1 Q") ~ (det 7, Op(ndo)) @ Q"4

Since the invertible shedf’, o, Q) — Q is the generator d&,, in Pic Bry, , Gy, the result follows
from 2.12 O

2.21.Proposition. The image of the mafy — G/, ~ Z induced by the inclusioft,,, — G is dZ.

Proof. Call a: Gy — G, ~ Z the map in the statement. B}20 applied ton = 1, we see that
dZ C Ima. Let E be an elliptic curve over an algebraically closed fieldy 2.18 it follows that there
existz,y € G4(k) such thaty = e4(z,y) = xyz~'y~!is a primitived-root of unity. If: G4 — G,,
is a morphism and we set= «a(v), we havel = ¢(w) = w", which implies that/ | r. O

Proof of theoren®.9. By 2.17we haveJacg; ~ B, , Gg and byl.2we can conclude that Pi€acy; ~
PicM; 1 @ GY. By 2.19and2.21we haveGy = dG), C Gy, and by2.20that

T = det mo L ® (mywy ) WH1/271
freely generate&’) . Again by2.20we have

det m, (L") ~ T % (W*wﬂ)lfnd(nd+1)/2
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Taking into account that,, ~ 7*m.w, and using projection formula, a direct computation conetud
the proof. a

3. CANONICAL COVERS AND THEIR DISCRIMINANT LOCI.

In this section we work over a field of characterigtic- 0 and we fix non negative integegsandd
and a positive integet.

3.1. Definition. We denote byV,, , (resp.Uy ) the stack of triples(p: C — S, Q,s) where
(p: C — 5,Q) € Jacqy ands is a section ofQ" (resp. that is not identically zero on any of the
geometric fibers op: C' — 5).

LetC — Uy 4, be the universal curve of; , , andL be its universal invertible sheaf. By definition,
L™ carries a section and we will call it thearked sectiomf £™.

If d > 0 we denote by, , ,, the zero locus of the marked section®f. By 1.11the mapH, 4, —
Ug g4 is a degreend cover and we will call it thecanonical coverof ¢, , ,. Moreover the closed im-
mersionHq 4, — C defines a functopy g, : Ua g — Hilb’}\ffq’l/Mg: an object(C, Q, s) is sent to
the zero locusZ(s) C C of s € Q™. Finally we denote by, , ,, the discriminant locus of the canonical
COVGI”H(Lg’n — ud,g,n of Z,{d,g,n.

The aim of this section is to understand the geometry of thekst/(, ,,, and 2, , ,. We will prove
the following.

3.2.Theorem. Assumel > 0. LetC — U, 4., be the universal curve &, ,, and £ be the universal
invertible sheaf ovet. ThenZ, , ,, # 0 if and only ifdn # 1 and in this caseZ, 4 ,, is flat and surjective
over M, and we have:

(1) Z44,n isthe zero locus ity 4, Of a section of the invertible sheaf
(det 7, (L" @ wy))? @ (det mowy) >
(2) ifpfnorg=0thenz,,, is geometrically reduced ovevt, and, in particular, reduced,;
(3) Z4,4,n isirreducible in the following cases: = 1; dn > 2g; dn = 2g andg > 3; dn = 2g — 1
andg > 4;
(4) If g = 1andp # 2 thenZ, is a disjoint union of two integral substacks#f ; », one of
which is the zero locus of a section of the invertible sheaf
det(m,L?) ® (m.L) 2

We start giving a more precise description of the stdeks ,,, proving in particular that they are
algebraic and explaining the relation with the Hilbert snledﬁilb%dg M,

3.3. REMARK. Assumend > 2g — 2. In this case, byL.10Q the stackVy , ,, is a vector bundle of rank
nd + 1 — g over Jacq 4 corresponding to the locally free sheaf(£"), wherer: C — Jacu, is the
universal curve and is the universal invertible sheaf ov€r Moreoverl{, g ,, is the complement of the
zero section oV g .

3.4. Propos-ition. If d > 0 the functorpgg1: Ugg1 — Hilbjlvlg’l/Mg is an equivalence. A quasi-
inverse is given by

Hilbj{/lg’l/Mg —— Ugga
(C,ZCC)—— (C,I4,1)
whereZy is the sheaf of ideals definirng.

Proof. Given an object/ C C € Hilbjlvlq 1/MQ(S), we have to prove th&t; is invertible overC. Since

HiIbdMq /M, 1S smooth overM,;, we can assume thatand therefore” are smooth over the base field.

By flatness ofZ, I is invertible on the fibers of — S and thereforelim,,,) Z7 ® k(p) = 1 for all
p € C, which implies that/; is invertible overC. The above discussion shows that the functor in the
statement is well defined. The fact that the functors areidmeerses of each other is standard. [
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3.5. Proposition. If (C, Q, s) € Uy 4., thens: Oc — Q™ is an isomorphism. Moreover the functor
Uo g — (P, | /pq, )] IS @pun-gerbe.

Proof. The first claim follows from the fact that a non zero sectioraalegree) invertible sheaf on
a proper curve over an algebraically closed field always ig¢e it. Denote by the functor in the
statement. Givea: T — (P_icOMg 1/Mq)[n] denote byy — T the base change &f alongé. In order
to prove thaty is ay,,-gerbe, we can assume thfas given by a curve: ¢ — T and the class of some
invertible sheaf’ onC. Sincen[£] = 0in Pic, the sheap. (L") is invertible byl.10and we can assume
that it is trivial. An object ofy(T') is a pair(Q, s) whereQ is an invertible sheaf over, s: Oc — Q"

is an isomorphism anf?] = [£]. Those data define an invertible shfaf= p,(£ ® Q') with an
isomorphismO; — T". SinceT is arbitrary we get a functqd — B u,, which is easily seen to be
an equivalence. O

3.6.Proposition. The map
Jacg g o, Jacdn. g
(07 Q) — (Cv Qn)
is the composition of a,,-gerbe followed by a surjective cover andpif n or g = 0, it is smooth.

Proof. Consider the diagram

Q

Jaca, T
h\} F jacdn,g
| !

. [n] - n
P_chl\/lg,l/Mg P_Kf/lvng/Mg

where the square diagram is Cartesian.1By2the map[n] and therefore the map — Jacgy 4 are
covers of degre@?? and they are étale if { n or g = 0. It remains to prove thak: Jacqgy — F
is a u, gerbe. An object ofF over a schemes is a triple (C, x, Q) where (C, Q) € Jacan4(5),
x € Pick () satisfying[n]y = [Q]. The maph sends(C, T) to (C, [T],T"). Lety — T be the base
change of: along a mag@” — F given by the datdq: C — T, x, Q). The objects inY(T") are pairs
(T, A) whereT is a degreel invertible sheaf or” with x = [7T] andA: 7" — Q is an isomorphism.
We can assumg = [7y] and, sincdn]y = [Q] meang[7;'] = [Q] so that7;* ~ Q ® ¢*R for some
invertible sheafR on T by 1.1Q that)(T") # 0. In this case)(T") is isomorphic to the category of
pairs (T, 1) whereT is a degred invertible sheaf with7] = 0 in PicX, andu: T° — O¢ is an
isomorphism. It follows tha)) — T is the base change of the mép,, ,, — (P_icOM%l/Mg)[n] along
the mapl” — (P_icOngl/Mq)[n] given by(C, [O¢]) and it is therefore @,,-gerbe (se&.5). O

3.7.Proposition. The stack/; , ,, is algebraic, flat and of finite type ove¥!,. Moreover the map

Md,g,n udn,g,l
(Ca Q, 3) — (C? Q", 8)

is flat, surjective and of finite type. df > 0 thenpg, 41 0 Q = pg 4., (S€€3.1f0r the notation) and, in
particular, Q1 (Z4,.41) = Zagn- If pnor g =0 thenQ is smooth and{y , ,, is smooth overt,,.

Proof. The equalitypg,, 4.10€2 = pg 4., follows from the fact that the base changeHaf, ;.1 — Uan g1
alongQisHg 4, — Uy g n- Since the magl is the base change dfacy ; — Jacqyy, 4 (S€€3.6) along
the magy, ;1 — Jacan, 4, by 3.6We can reduce the problem to the case 1, where all the claims
follow from 3.4and3.5. O

The remaining part of the section is dedicated to the proofleorem3.2 In particular in what
follows we assuméd > 0.
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Proof of theoren8.2, (1). SetH,,, = Spece . By definition Z, ,,, is the zero locus of a section of
(det «7)~2. We have an exact sequence®n
0—L"—0c— Oy,,, —0
Applying 7, we get an exact sequencel@g, ,,
ML =0—Oy,,, — 4 — R (L") — R 1,0 — 0=R'm.04,,
where the first and last vanishing follows frarlQ We also have
RI T (L") ~ 1 (L™ @ wyr)” and R m,0¢ ~ (mawy)"
again byl.10 We can now deduce the following formula for the determirant’
det .o/ ~ (det m, (L™ @ wy)) ! @ det mowy
so thatdet &7 2 is isomorphic to the invertible sheaf in the statement. O
3.8. REMARK. If Ris alocal ring,R — S is a flat map of rings and/ is an R-module then
ls(M ®r S) = 15(S/mprS)IrR(M)
where | denotes the length function.
The following Theorem is one of the crucial points of the wéhpaper.

3.9. Theorem. Assume: > 2. The discriminant locus of the universal degreeover oinij{Aq M,
is flat, surjective and geometrically integral ovét,. In particular it is integral. '

Proof. The problem is local oo, therefore we can replacet, by a noetherian scheméandAM, ;
by a genugy curve C overY. SetZ for the discriminant locus. By definitio# is the zero locus of a
section of an invertible sheaf over H@lpy Moreover this section is always non zero over a geometric
point of Y because curves over an algebraically closed field always/mhalstinct rational points. By
1.1 we can conclude thaf is flat overY. For the remaining part of the statement we can assume
Y = Speck, wherek is an algebraically closed field.

Let C’ be a non-empty open subset of a projective, integral andrigatig smooth curve ovek (we
will reduce to a calculation on a plane curve, that might hemgularities). Given indices# j < n we
denote byA; ;(C™) the effective Cartier divisor of”" given by

A (C™) = {(p1,...,pn) € C"" | pi = pj}

Let #(C't1) € ¢! be the zero locus of € Opms1 (Aqpi1(C™FY) + v 4 Ay pyyr (C7F1).
Notice that if C” C C’ is a non-empty open subset thef(C""*!) — ("™ is the restriction of
H(C™H) — ™. Indeed by definition we have

i Ai,n+1(cln+1) N (Cl/n % C/) _ Ai7n+1(clln+1) _— H(C/n+1) N (C/ln % C/) _ H(C/ln—i—l)

We claim thatH (C""*1) —s C'" is a degree: cover. Indeed, by discussion above, we can assume that
C' is projective: in this case the map(C'™ ') — C™ is flat thanks tal.1, proper, quasi-finite and
generically étale of degree. SetZ’ for the discriminant locus of{(C™™*!) in C'"* and P € C'" for

the generic point of\; »(C"™), which lies inZ’. We will show that (O p) = 2. We first show how to
conclude the proof from this fact. Whe# = C the coverH(C™*!) induces a map

f: O™ — Hilb2,

which factors through an isomorphisfi"C ~ Hilbg/k. In particular f is a cover andZ’ = f~1(2).

Moreover, topologicallyZ = f(A;2(C™)) and it coincides with the ramification locus §f In partic-
ular Z is non empty and irreducible. Since I—@lpC is smooth, to see thé is reduced we have to prove

that (O ¢(py) = 1. By 3.8and our assumption we have
2= I(OZ’,P) = |((’)vap/mf(p)(’)zlvp)l((’)Zj(p)) Z I(OZ,f(P))
and we can exclude the equality because otheryiséll be unramified inP, and by transitivity ofS,,,

also overf(P), which is not the case.
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We have to prove that®, p) = 2. Thanks to the above discussion we see that the@ipgp (and
therefore the numbef® p)) does not change is we take an open subsét’ofn particular we can
assume thaf” is a closed subscheme &f:

C' = SpecA whereA = k[z,y]/(f)
We haveC’" = SpecB, where

B = A®n = k[xlayla ce wrn,yn]/(f(xl?yl)? N af(xn,yn))
andP = (x9 — 21,92 — y1). By definition# (C™*1) is the spectrum of th&-algebra
D = Bla, B/(f(a, B), | | 1)) wherel; = (a — z;, 8 — y;)
J

We have to compute the discriminant locus of the cadver = D ® Bp over Bp and show that it has
length2. SinceC’ is generically smoothBp is a DVR. In particular we can assume ttfats generated
by 1 — z9 in Bp, so thatr; — z2 | y1 — y2 in Bp. Notice that

(@=x)-(a—x),(a—zp1) € I+ L1 = (w1 —21) (1 —x) €L [+ L1y

in Bla, 8]/(f(a, B)). Looking at the quotienB/P = A®("~1) we see thatz;, 1 —z1) - - - (x141— 1) ¢
Pforl > 1.Sol;---I; + I;;, is the trivial ideal inDp and applying the Chinese remainder theorem
inductively it follows that

DP = (DP/Illg) X Dp/Ig X oo X DP/In

SinceDp/I; ~ Bp, the discriminant locus oDp over Bp coincides with the discriminant locus of
E = (Dp/I, 1) over Bp, which is a cover of degre® sinceDp is a cover of degree of Bp. From
I I, = 0in E we get relations

o = (21 + B2)a — T2z ANd (21 — 22)B = (Y1 — Y2)o + T1Y2 — Y122

Sincex, — x5 dividesy; — y» in Bp, E' is generated by, o asBp-module. Moreover, sinc#' is a free
Bp-module of rank, 1, « is also aBp-basis ofE. Finally a direct computation shows that

tr(a) = x1 + o, tr(aQ) = (x1+ x2)2 — 2x179, det < ttrr((;)) ttrr((;é)) > = (x1 — x2)2

where tr= trg, p,,. The last determinant is the discriminant section of theecd/ B and therefore its

discriminant locus has length as claimed. O

Proof of theoren8.2, first sentence an®). By 3.7we havez,,, =0 <= Zg, 41 = 0 and, by3.9,
this happens if and only iin = 1. So assumén > 1. Again by3.7we can assume = 1. The result
then follows from3.4and3.9. O

We now deal with the problem of reducibility of the stacksg, ,,.

3.10.Lemma. Let k£ be an algebraically closed field and be a genus; curve overk. If Q is an
invertible sheaf of degre@with d > 2¢g — 2 andq € C(k) then the map

(3) HO(Q) — O® (OC,q/mgoC,q)

wherem, is the maximal ideal 0®c 4, has cokerneH(Q~! ® O¢(2¢) ® we) and it is surjective if
d > 2g.

Proof. Consider the exact sequence
0— Q®0c(-29) — Q — Q& (Ocq/miOcy) — 0
Since H(Q) ~ H(Q~! ® we) = 0 by degree reasons, applyind ke get an exact sequence
HY(Q) — Q® (Oc,/mgOc.q) — H'(Q® Oc(~2q)) = HY(Q! ® Oc(29) ® we) — 0

Finally, if d > 2g then H(Q~! ® O¢(2¢) ® we) = 0, again by degree reasons. O
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Proof of theorenB.2, (3). The casen = 1 follows from 3.4 and 3.9. So we focus on the casel >
2g — 2. We remark that the proof is a bit simpler if we have the stesrigequalitynd > 2¢, and the
intermediate cases require a finer inspection.

SetV = V44, andid = Uy 4. By 3.3V is a vector bundle ovef acq, andif is the complement of
the zero section. Consider the diagram

ijacdgC"C

| [

Yy —— Jacgy

where( is the universal curve ovefac, 4. Denote by~ the universal invertible sheaf ovér so that
Y corresponds tar, £". From [ , Section 16.7] there exists a locally free sh&abn C, the 2-th
bundle of principal parts of™, and a mapx: 7*7.(L™) — F such that for all algebraically closed
fields k and triples(C, Q, q) € C(k), whereq € C(k), we haveF ® k ~ Q" ® Oc,q/m2, wherem, is
the maximal ideal o®¢ , and

a®k: H(Q") = m*m (L) @ k — F @ k=~ Q" @ Oc/m?

is the restriction. Ifnd > 2¢g, by 3.10we can conclude that is surjective. In this case in what follows
setW = Jacgqy and) = (0. If nd < 2g we want to find an open substagk of Jacg,q over whicha
is surjective. Ifdn = 2g andg > 3 consider the map

B: Mg1 — Jacin,g, (C — S,0) — (C,0c(20) @ weys)
while if dn = 2g — 1 andg > 4 the map
B: Mg1 Xm, Mg1 — Jacgng, (C — S,0,7) — (C,0c(20 —7) ® weys)

In both cases denote hy’ the closed substack @f acs, , Whose topological space is the closure of
the image of3, Y = n=1()’) wheren: Jacqy — Jacqn 4 is the elevation to the-th power and
W=Jacqg— Y.

We will denote by—yy the restriction toyV. We want to prove thatvy, is surjective and we can
check this on the geometric points®fy,. Given(C, Q, q) € Cy(k), wherek is an algebraically closed
field, by 3.10the cokernel ofx ® k is H(T) whereT = Q" ® O¢(2q) ® we. Notice thatT has
degree—dn + 2g. Assume by contradiction H7) # 0. If dn = 2g thenT ~ O and therefore
n(C, Q) ~ B(C,q) which is not the case by construction¥f. Finally if dn = 2¢g — 1 then by1.11
there existsy € C such thatT ~ O¢(¢'), which meansi(C, Q) ~ 5(C,q,q¢’') and it is again not
possible by construction.

We want to prove thatZ, , )y is irreducible. Since/ acy , andC are integral and the vector bundle
associated with*m,. (L") ISV X 74¢ e the kernelZ of ayy is an integral closed substack(@f x 74 "
C)wy. Let Z be the image of via the projection(V x 74c,, C)w — Vw. We want to prove that
(Za,9.n)w = Z NU topologically. This will imply the irriducibility of(Z,., ,,)yv-

In what follows k& will be an arbitrary algebraically closed field. The objeofsZ(k) are tuples
(C,Q,q,5) € (V X7acq, C)w(k), whereq € C(k) ands € Q", such thatv,(s) > 2, wherew,
denotes the valuation ip. Thus the objects of Z N U/)(k) are triples(C, Q,s) € Uy (k) for which
there existsy € C(k) such thatv,(s) > 2. The result then follows from the following remark. If
(C,Q,s) € U(k) then the zero locug (s) C C of s is étale overk if and only if for all ¢ € C(k) the
rng Ocq/54(~ Oz(s),4) 1S €ither0 or k, that is if and only if for allg € C(k) we havev,(s) < 2.

If dn > 2g, so thatWW = Jacqy, then(Zq4,)w = Z44,, is irreducible as required. So assume
2g — 2 < dn < 2g andg > 2. Denote byf: U — Jacy 4 the structure map. Topologically we have

Zagm C (Zagn)w U FH(Y)

where the closure is taken inside If Z;,,, = U (which a posteriori will not be the case) there is

nothing to prove. Otherwise, sinc&; ,,, # 0, by 1.7 the equalityZ;,,, = (Z44,,)w follows from
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dim#/ — dim f~1()) > 2, which we are going to prove. Thanks 3¢5 the mapl/ N Jacgy —
Jacan, 4 has constant relative dimension. Moreomerl(y’) = Y and, byl.6, we get

dim — dim f~1(Y) = dim Jacgp g — dim )’
If dn = 2g setM = Mg, while if dn = 2g — 1 setM = My xa, Mgy1. Let us also write

§: Jacdny — ﬂcjl&g ./, for the natural map, angl = § o 3. SinceM andﬂt‘;{ﬁg /M, @re proper
over M, and they are Deligne-Mumford stacks we can concludeth&t) is closed and, by.8, that

dimy(M) < dim M
Sinced: Jacg,y — P_lcj@ M, is aG,,-gerbe we also havé ! (y(M)) = ), so that, byl.6,

g,1
dim Jacgpn g —dim Y’ = dimP_iCdM”g’l/Mg —dimy(M) > g+ dim M, — dim M

Sincedim M = 1 +dim M, if dn = 2g anddim M = 2 +dim M, if dn = 2¢g — 1 we get the desired
formula. O

Whendn < 2g — 2 itis not clear whetheg, , ,, is irreducible or not. The main technical issue here
is thatV; 4, — Jacq,q is NO longer a vector bundle atvy , ,, — Jacq, may not be surjective.
Whendn > 2g — 2 we have shown above that the st&gk, ,, is irreducible except in the following
casesy = land(d,n) = (1,2); g = 2and(d,n) € {(1,4),(2,2),(1,3)}; g = 3and(d,n) = (1,5).
In the remaining part of the section we work out the case 1, d = 1 andn = 2 (so thatdn = 2g). As
claimed in3.2 (4) we will see thatz, ; » is reducible. In the other cases just listed, it is again tezrc
whetherz, , ,, is irreducible or not.

3.11.Lemma. Assumep # 2. LetC — S be a curve over an algebraic stack with a sectioand
denote by the zero locus of € O¢(27) in C. Thenp: W — S is a degree2 cover. Moreoverr
factors trough)V and the induced map.0yy — Os istr,,0,, /2, wheretr denotes the trace map,
and its kernel is a square zero ideal.

Proof. The mapp: W — S is a degree cover thanks tdl.11 and the sectiorlS§ — C factors
through)V by definition of this last space. Denote By p.O)y — Os the induced map. Sincé1,
is reduced, we can assur§e= Speck, wherek is an algebraically closed field. In this case the result
follows because,. Oy = k[z]/(z?). O

Proof of theoren8.2, (4). If we denote by€ the universal curve oveM, ;, we are going to show that
there is aus-gerbeZ; 1 » — £[2]. Since this last group is a disjoint union of two irreducilsem-
ponents and gerbes are geometrically irreducible, we willctude thatZ; ; » is also a disjoint union
of two irreducible components. We will then study the comgranover the zero section @f{2] and
represent it as zero locus of a section of an invertible sheaf

Set& = C for the universal curve o#f; ;». The canonical covet o — Ui 12 Of U 12 has
degree2. By standard theory of double covers it is given by an inbéetisheaf7 overif; ;2 and a
sectionr € T2, so thatH; 1 » = SpeceZ wheres/ = Ouy 10 ® 7 1. By an easy local computation, the
discriminant section of the canonical cover coincides,agrt invertible element, with and therefore
Z11,2 is the zero locus of. SetZ = Z; ;2. We will use the symbol-z for base changes along
Z — Uy 12. For instancefz is the universal curve ovef with universal invertible sheaf z. Since
rz = 0we h<';1ve(7'271)2 = 0 in o/z. Therefore the projectionyz — Oz is a ring homomorphism
and thus induces a sectich — H z and therefore a section: Z — £z. This yields a unique map
Og, (1) — L% that sendd to s and therefore a sectiod € N = £% ® Og,(—7). Sinces’ is non
zero on the geometric fibers afz: £z — Z, by 1.11there exists another sectioth: Z — £z
and an isomorphisn®¢_, (7') ~ N sendingl to s’. Since the cove(?;12)z — Z is topologically
an homeomorphism, the sectionsnd 7’ coincide on the geometric fibers of. SinceZ is reduced
thanks t03.2, (2), we can conclude that = /. Moreover the induced isomorphis@_ (27) — £%
sendsl to s.

Define Z’ as the stack of tuple§F, G, 7, \) where E is a genus one curve ovéh, G is a degred
invertible sheaf ovel, 7 is a section ofF and\: G2 — Op is an isomorphism. Discussion above
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shows that we have a map — Z’ which sendg E, Q, s) to (E,G, 7, \) wheret is induced by the
sectionr: 2 — £z,G = Q® Og(—7) and the isomorphism is the base change of the isomorphism
Og,(21) — L%. Conversely we can define a may — Z by sending(E, G, 7,\) to (E, Q, s)
whereQ = G ® Og(7) ands is the image ofl. under the isomorphism

Op(27) ~ G2 @ Op(27) ~ Q2

By 3.11we see that the last functor is well defined and that the coitiposZ’ — 2 — Z'is
equivalent to the identity. Conversely the composit®n— Z’ — Z is equivalent to the identity
because the ma;_ (27) — L% sendsl to s.
We define the map
z 4 g2l
(E7g77~—7)\) (E7%7 [g])

where we identify€ with ﬂ(%//wl ) (see2.11), which is easily seen to bea-gerbe.

Now we prove that|[2] is a disjoint union of two irreducible components, one betmyzero section
M1 — E[2]. First of all, since€[2] is étale, the zero section is a connected componef2df So we
need to prove that the compleméitis irreducible as well. BulZ — M ; is an étale degregcover
and thus, ifH is not connected (and therefore irreducible being smoitshould have a section, which
is not the case thanks ®18and2.19

Sincep: 2’ — £[2] is auo-gerbe and thus has irreducible fibers, we can concludeZhat Z
is a disjoint union of two irreducible substack, one of whistg, = p~!(M; ;). We identify Z’ with
Z and we are going to writ&, as the zero locus of a section of the invertible sheaf in thestent.
So with an objectF, Q, s) € Z are associated a sectiérof E, base change af: Z — £z and an
isomorphismOg(27) — Q? sendingl to s, base change of the isomorphi€dg_ (27) — £%. The
objects ofZ, are the triples E, Q, s) € Z(.5) such thatQ andOp(7) differ by an invertible sheaf from
the bases, that is[Q] = [Og(7)] in P_ic}g/s. Since. is an invertible sheaf of degrdeon&, R = m,.L
is an invertible sheaf by.10and there exists a unique sectionif; ;2 — £ with an isomorphism
L~0¢(0)@m*Rby2.11

Let W be the zero locus iff of the sectionl € Og(20). The induced mapV — U, 1 2 is a degree
2 cover by3.11 Tensoring the exact sequence definifg by £2, we get an exact sequence

0 — RS 1T"R2Q0p(20) ~ L2 — Oy @ L2 — 0

wherea(z) = z ® 1. Applying 7, and taking into accourit. 10we get an exact sequence

0 — R =% n.L? — (O ® L2) — R (7" R?) — 0
of locally free sheaves ot ; 2. Note that the exact sequence &rsatisfies base change fog. Set
N = Cokel(r,.«). This is an invertible sheaf and applying the determinans@ethat it coincides with
the invertible sheaf in the statement. The section 7,.£? induces a section € N and we claim that

its zero locus is exactly,. This will conclude the proof. Let = (F 7, S,Q,s) € Uy 1,2. We will
denote by-, the base change along the corresponding fap- U 1 2. Forinstancel, = Q, f = 7
and, with abuse of notatios, = s. We have that, = 0 if and only if s, € Im(f.ay) C f.Q? if and
only if s € Im(a,,) € Q2. Sot,, = 0if and only if the square of the isomorphisth~ f*R, ® Og(ay)
sendss to a section of the form ® 1. We want to show that those are exactly the object8gfthat is
ty = 0ifand only if y € Z,.

If x € 2o, we have[Q] = [Og(ay)] = [Op(7)] in Picy g, which implieso, = 7 by 2.11 More-
over we have an isomorphisfiz(27) ~ Q2 sendingl to s. We can conclude observing that all the
isomorphismsD;(27) — Op(27) ® f*R? sendl to a section of the form ® .

Assume nowt, = 0, so thats € Q* corresponds to asectiar® 1 € f*R2 ® Op(20y). If z € f*R2
does not generate this sheaf, then the zero locus®©? inside £ cannot be a cover of, because it
will have non zero dimensional fibers, contradicting the that x € U/ 1 ». Sof*Rf< ~ Og, and the
zero locus ofs in E is the base change o C &, the zero locus of € O¢(20). Taking into account
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3.11 this shows thay € Z. It also implies that- = o, so that{Q ® Og(—7)] = 0in P_ic%/s. This
exactly means that € 2, as required. d

4. STACKS OF UNIFORM CYCLIC COVERS AND THEIRPICARD GROUPS

In this section we work over a field of characterigtic- 0 and we fix a non negative integgrand a
positive integemn with n > 2.

4.1. Definition. Let Y be a scheme. A uniform cyclic cover of degre®f Y isamapf: X — Y
together with an action of,, on X such that for ally € Y there exists an affine open neighborhood
U = SpecR of ¢, an element. € R and apu,-equivariant isomorphism df/-schemesf~(U) ~
SpecR[z]/(z™ — h), where the right hand side is given the action for whiegz = 1.

Unifor cyclic covers of degree form a stack that we denote B§C,,.

Notice that uniform cyclic covers of degreeare covers of degree and can be seen as a gener-
alization of double covers whem £ 2. The definition of uniform cyclic covers inA[/04] is slightly
different from our, because h1we do not require thdt is a non zero divisor. The reason is that this is
automatic for uniform cyclic covers between schemes smooth common base and that, avoiding this
restriction, uniform cyclic covers are stable by base cbkang

4.2. Definition. Let h be a natural number. We denote By ,,, the stack of tripleg D, C, f) where
D — Sis agenus curve,C — S is a genugy curve andf: D — C'is a uniform cyclic cover of
degreen.

We define the numbei(h, g,n) = 2%}3’1, sothath =1+ n(g—1) + @d(h,g, n).
The aim of this section is to descrilfi% , , and compute its Picard group, at least/fios> g. We start
by describing explicitly uniform cyclic covers.

4.3. REMARK. Let)), be the stack parametrizing paits, s) whereL is an invertible sheaf ande L.
There is an equivalengg, — UC,, that mapg L, s) € V,,(S) to
X = Spece/ —» Swhere = Os® L @@ LD
where,, acts on« via the given grading and the equivariant algebra struabare? is obtained as
follows: given0 < u, v, z < n such that: = « + n mod(n) the multiplication is
id ,
—u—v —z f
(LU L™ — L) ~ L — L o ?u+v<n
LUV~ L2PQLT =S L7 futov>n

A quasi inverse\: UC, —> ), is obtained as follows. Given a uniform cyclic cover X — S of
degreen, the groupu,, acts onf,Ox. The degred part of f,Ox is an invertible sheaf o8 and we set
L for its dual. Since the multiplicatiofi,Ox ® f,Ox — f.Ox is up-equivariant, we get a map from
L~™ to the degre@ part of f,Ox, which isOg. This yields a sectior € L.

4.4.Proposition. Leth be a natural number and sét= d(h, g,n). If d ¢ NthenB, ;, = 0. 1fd € N
the functor (sed.3for the notation)

d)h,g,n

Ud,g,n

(C,Ac(f))

is well defined and an open immersionhlt> n(g — 1) + 1 the image of), , ,, is the complement of
Z4.9m INUqg gn, Which is the étale locus of the canonical co¢f,, — Uggn. fh=n(g—1)+1
andg > 1 the image of}y, 4 ,, is the substack @f, ,,, of triples(C' — S, Q, s) such thatQ, .. ., on—1
are not trivial on the geometric fibers af — S.

Proof. Let (D, C, f) € By 4n(k), wherek is an algebrically closed field, and &, s) = Ac(f), So
that

Bh,g,n
(D,C, f)

fOp~0cdQ 'd---pQ D
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SinceD is integral and connected we g#in H(Q %) =0fori=1,...,n — 1. By Riemman-Roch
it follows thatdimy, H!'(Q~%) = ideg Q + g — 1 and therefore

dimy, HY(f.Op) =h =n(g — 1) + 1 + (deg Q)n(n — 1)/2

In particulardeg Q@ =€ Z. On the other hand cannot be zero sincB is smooth and therefordeg Q >
0. In conclusion we see thi, ,, = 0 if d ¢ N, and that)y, 4, is well defined ifd € N.

From now on we assuméc N. From4.3it follows thatzy, 4 ,, is fully faithful.

Given(C — S, Q,s) € Uy 4, We have to check under what conditions the total space ofritieru
cyclic coverD —; C associated witQ, s) (see4.3) is a smooth curve of genusoverS. It is easy to
see that everything follows from the caSe= Spedk, wherek is an algebraically closed field. Assume
d > 0. We have H(Q~%) = 0 for i > 0, which tells us thaD is connected and, by definition df that
dimy HY(Op) = h. The result then follows because the schemis regular if and only if the zero locus
of s € Q™ is étale ovetk. This can be checked locally using that R, mr) is a DVR andh € R then
R[z]/(z™ — h) is regular if and only ifh ¢ m3,.

Now assumel = 0. By 3.5the maps: Oc — Q™ is an isomorphism. In particulab — C
is a u,,-torsor and thereford is smooth. MoreoveD is connected if and only if Q%) = 0 for
i =1,...,n — 1, in which case has exactly gentsy definition ofd. SinceQ has degre® we have
that H(Q~%) # 0 if and only if 9 ~ O¢, which concludes the proof. O

4.5. Proposition. Let h be a natural number witkl = d(h,g,n) € N. ThenB, ,,, is a non empty
algebraic stack of finite type andiitd > 2g — 2 or p { n thenB,, , , — M, is smooth and surjective.

Proof. Let k£ be an algebraically closed field. We are going to prove fjat,, # 0 and, ifdn > 2g — 2
orp{ n, thatBy, ,,, — M, is surjective. All the other claims follow fror8.3, 3.7 and4.4

Assumed > 0. By 4.4we haveBy, ;,, = Ug gn — Za,4,n- MOreover by3.7 there is a surjective map
Udgn — Zd,gn — Una g1 — Znd,g,1- We can conclude thdsy, ,,, — M, is surjective because
is a genug curve overk andpy, . . ., pnq are distinct rational points thei, Oc(p1 + -+ - + pra), 1) €
(und,g,l - an,g,l)(k)-

Assumed = 0 and letC' be a genug curve overk. We havey > 1 because if = 0thenh =1—n <
0. By 4.4the fiber ofB, 4 , — M, overC € M,(k) is not empty if and only if Pi€' has an element
of ordern. If p t n this is always the case thankstd.2 If p | n we have to show that this holds when
C is general. We can assume= ¢ for some primey. If ¢ # p then PicC' has an element of order

by 1.12 Assumep = ¢q. By | | Theorem 2.3] wheit” is general there exists an invertible sheaf
7 onC of orderp. Since[p'~1]: Pic, — Pic, is surjective byl.12 there exist® € PicC such that
QPH ~ T. Itis easy to check thad has order exactlyl =n. O

The following result explains the relation between Big, ,, and PicT acys 1),

4.6. Proposition. Let h be a natural number such that = d(h,g,n) € Z andnd > 2g — 2 and
let 7: C — Jacy, be the universal curve and be the universal invertible sheaf @h Set also
T = (det m (L™ ® wr))? @ (det mowy) 2. Then the ma@By, ,,, — Jaca, induces a surjective
morphism
v (PiCjaCd7g)/<T> — PiCBh,g,n

If Z4 4. is integral thenry is an isomorphism. Ik = n = 2, g = 1 (so thatd = 1) andp # 2 then the
kernel ofy is generated byr, £)? ® (m.w,) 2.

If g = 0, with notations from2.6, then7 ~ £ it dis even, 7 ~ £0"V if d is odd.
lf g =1andp t dthenT ~ (detm,L)2" @ (muwy)™@+d=20) If ¢ > 2 andp = 0 thenT ~
(det mowy) "2 @ d (L)) © (det 7, (£ ® wy)) P,

Proof. Notice that we must hawé > 1, otherwisey = 0, d = 0 andh = 1 —n < —1. The stack7acq 4
is smooth and irreducible [&.2. MoreoverV, , , — Jacq, is a vector bundle of rankd 4-1 — g and
U 4.» is the complement of the zero sectionlp,, ,, by 3.3 Notice that rkV; ,,, = nd +1—-g > 2
using thatnd > max{2,2¢g — 1}. Thusl{, 4, is smooth and integral and, W9, we can conclude
that the mag{y,, — Jacq, induces an isomorphism on Picard groups. 8% and 4.5 we have

Bhgn =Uign — Zign # 0, while by 1.9and3.2the mapy is well defined, surjective and, B, ,, is
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integral, an isomorphism. The claim about the case n = 2, g = 1 andp # 2 follows again byl1.9
and3.2

The expressions foF in the last part of the statement follow by a direct compaotafrom 2.6, 2.9
and2.5respectively. a

(Proof of Theorenf, except the case &, ; 2). The first part of the statement follows frofrd and4.5.
By constructionZ is the universal invertible sheaf @¢hwith respect to the map;, ,,, — Jacag.
We first consider the case= 1 andh = n = 2. By 2.9 and4.6the group Pid, ; » is generated by
a = m L andf = m.w, with relations8a. = 23, 2a = 24 and125 = 0. Those relations are equivalent

to 65 = 0 and2a = 23, which yields Pid3y 1 » ~ Z /67 x 7 /2.

In all the other cases we have that > 2g — 2 and thatz, , ,, is integral by3.2. In particular the map
v defined in4.6is an isomorphism. Using.6the description of Pi;, , ,, with generators and relations
follows from 2.6for g = 0, 2.9for ¢ = 1 and2.5for g > 2.

We now deal with the description as abstract groups.gker0 the result is clear.

Consider now the cas@)( that isg = 1 andnd > 2. SetA = n(dn + d — 2n) and notice that
2 | A. The groupH = PicB}, ; is isomorphic taZ?/((0,12), (2n?, A)). The element0,4) has order
3in H. A direct check shows that the map H — 7Z/3Z given by¢(0,1) = 1 and¢(1,0) = «z,
wherez = 0 if 3 | n andx = A/n? otherwise, is well defined because| n implies3 | A. Since
#(0,4) = 1 we obtainH ~ Z/3Z x G whereG = H/{(0,4)). We haveG = Z?/((0,4), (2n?, A)).
If 4| AthenG ~ Z/4Z x Z/2nZ. So assumel = 2 mod(4). The mapy: G — Z/27 given
by ¥(u,v) = v is well defined. Moreovefn?, 1) has order2 in G and(n?,1) = 1. We obtain
G =17/27 x 72/{(0,4), (n?,1)). It is now easy to check that the last factor is cyclic of ortiet.

Consider now the cas8)(and setr = (1,0,0) € Z3. Then Pid3;, 4,» Is isomorphic to the group!
quotient ofZ? by the relationg —2n2,n(n + 1),n(n — 1)) and, ifg = 2, 10x. Setl = 10 if g = 2
and! = 0 otherwise. It is easy to see that) ~ Z/IZ. A direct computation shows that the map
v: H — 7 /IZ given by (u, v, z) = u+ v + z is well defined. Since)(x) = 1 we can conclude that
H ~ 7J1Z x G, whereG = H/x ~ 72 /{(n(n + 1),n(n — 1))). Setm for the great common divisor
of n(n+ 1) andn(n — 1). An easy computation shows that= n if n is even andn = 2n is n is odd.
Let o, 8 € Z such thatwn(n + 1) + Bn(n — 1) = m. Consider the map

o B
¢ = ( _n(n=1) n(n+l) ) : 22— 7°
By constructiony is an isomorphism becauget ¢ = 1. Moreoverg(n(n+1),n(n—1)) = (m,0) and
thereforeG ~ 72 /((m,0)) ~ Z/mZ x 7 as required. O

In the remaining part of this section we will deal with theea$3; ; ». As pointed out at the begin-
ning, this case is peculiar and needs a variation of the rdsthsed for higher genera. Nevertheless, the
steps in the computation of Pij ; » are very similar to the ones in the computation of Bjg ,, for
h > 0.

In what follows we considey = 1 and assume that { 6. We denote byM, » the universal curve
over.M; 1, which is the moduli stack of triple§¥, 1, 02) whereE is a genus one curve and, o, are

sections. The ma,yzﬁl,g — M 1 is the functor that forgets the second section.

4.7.Proposition. The functor

MLQ Jacp
(E,01,02) — (E,Op(02 — 01))

is an epimorphism in the fppf topology and it is a section efftimctor

Jaco,1 M
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Proof. The second part of the statement follows fr@m1 For the first one letE, Q) € Jacp1. We
can assume thdl has a sectiow;. Again by2.11, [Q] = [Og(o2 — 01)], for some sectiow, of E,
which means tha® andOg (o, — o1) are fppf locally isomorphic. O

4.8. Definition. We define the group functai, over MVLQ as the group’ obtained as ir2.14 with
respects to the maps defined4ir.

(E7UI ,02

4.9.Proposition. An element o0& (S ) MVLQ) is a pair (f,\) wheref: (E,01) — (E,01)
is a translation and\: Og(o3 — 01) — Og(f(o2) — f(01)) is an isomorphism. Moreover we have
an exact sequence

(f,A) = f(o1)
0 Gm Go £ 0
Ho—— (id, p)

in the Zariski topology oSch/ﬁ/leg, whereé — ﬂ/lvm is the universal curve. In particula& is
smooth overM 5.

Proof. By definition, an element of7y(S Bovoz), le,2) is a pair(f,\) wheref: E — FE'is an

isomorphism such that, : P_ic%/s — P_ic%/s is the identity and\: Og(os — 01) — Ogp(f(o2) —
f(o1)) is an isomorphism. As in the proof @16 f. = id means thaf is a translation. In particular
the sequence in the statement is well defined and, sif€g, g ~ G,,, it is exact in the first two terms.

It remains to prove thatry — £ is a Zariski epimorphism. This will also imply théf, is locally a
product ofG,,, and€ and therefore smooth. LéE, 01, 02,0) € £ andt be the translation by, so that
t(o1) = 4. Sincet is a translation we have

[OE(02 — 01)] = [Op(t(02) — t(01))] in Picy

which means that the sheaves differ from an invertible skeafing from the base thanks 010
So Zariski locally we get an isomorphisi: Og(os — 01) — Og(t(o2) — t(o1)) and therefore
(t,\) € Go(E,01.02)) is mapped tqE, 01, 09, 9). O

4.10.Lemma. Let X be a smooth algebraic stack L5 X be aG,,-torsor and be the invertible
sheaf ovetX’ corresponding to it. Then we have an exact sequence

Z £ Picx 25 Picy — 0
Proof. The stack) and the line bundl®” — X corresponding t& can be seen as the relative sheaves
1s0y (Ox, £) and Hom, (Ox, L)

on Sch' X’ respectively. Denote by: ) — X the structural morphism. The stagk is the open
substack ofy” whose complemen£ is the zero section Q' — X'. The stackZ is integral sinceY is
so and it is the zero locus of the universal sectiog*@. The result then follows from.9. O

In what follows we denote by the complement of the zero sectigr; | — le,g in le,g [2].

4.11.Proposition. The compositioB; 1o — Jacy1 — /\71,2 has image inF. The induced map
Bi,1,2 — F yields an isomorphism on Picard groups and factors &s,gtorsor By 12 — Br Gy
followed by the projectio® » Gy — F.

Proof. SetX = Br Gy. By 2.14and 4.7, we see that7acp; =~ B/’\Zm Gy. In particular X can be

seen as the closed substack Biico ; of pairs (F, Q) such that(Pic%;, [Og],[Q]) € F. By 4.4we
see that the forgetful ma; 1o — X is aG,,-torsor corresponding to the invertible sheaf£?),
wherer: £ — X is the universal curve and is the universal invertible sheaf over it. Notice thais
smooth because it is an open substack at 1, which is smooth thanks ®.2. In particular from4.10
the pull-back of3; 1 » — X induces an isomorphism

PicBy 12 ~ PicX /(m.(L?))
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Moreover from1.2, we have Pict = PicF & Gj. We are going to show thaty ~ Z and that the
component ofr.(£2) in PicX’ with respect toG generates this last group. This will imply that the
composition of pull-backs Pi& — PicX — PicB 1 2 is an isomorphism.

Taking into account.9, the inclusionG,, — Gy yields a mapy: Gj — G, ~ Z whose kernel is
the group of characters of the universal cubvef 7. If ¢: & — G issucha homomorphism, ! (1)
is a closed substack @f and, by checking on the geometric fibers, we see that theyopmagically
equal. Since is reduced we can conclude thais trivial and therefore that is injective. As in the
proof of 2.20 considering the functor

BrGm X
(E =5 S,01,09,Q) - (E,0p(c2 — 01) @ 7Q)

and the expression
[(Og(0s —01) ® W*Q)Q] ~ m(Op (202 — 201)) ® 0?

we see thatr, (£?) is sent to2 by the map Pi&t ~ PicF & Gy 99 picr @ Gy, — G, = Z.
In particular2Z C Im« and we need to prove that those groups are equal, or, equiyalthat o is
not an isomorphism. Assume by contradiction tha an isomorphism. This exactly means that the
mapG,, —> Gy has a section. Thus also the map — & has a section. Since this last map is a
G,,-torsor, we can rephrase this saying that the invertibl@fsbeer & corresponding td is trivial.
We are going to compute this sheaf and prove that it is naatriGiven(E - S, 01,09, 03) € £ and
denoted by : (F,01) — (E, 01) the translation by, so thatt(c1) = o3, the invertible sheak over

gcorresponding t@+y is given by the following calculation
1505 (Op (02 — 01), Op(t(02) — t(01)) = 1805 (Op(o2 + 03 — 01), Op(t(02)))
~ 1s04(m.Op (o2 + 03 — 01),0s) ~ m.Op(os + 03 — al)v
where we have used thatOg(t(o2)) ~ Og by 1.11 Using2.12twice we also have
T.0p(0y + 03 — 01)" = 01 Op(02) ® 01 Og(03) ® 050E(—02) ® Tew,
Given an elliptic curvely over an algebraically closed field with origin andp, € E[2] — {p1}, we

consider the object = (£ x E LR E,o1,00,A) € g(E) whereo; = p; xidg: E — E x E for
i =1,2andA: E — E x FE is the diagonal. Using isomorphism above, the pull-backdb E is
given by

010ExE(02) ® 010pxE(A) ® A*Opxp(—02) ® pry, wpr, ~ Op(p1 — p2)
which is not trivial. O

4.12.Proposition. We havePicF ~ Z/4Z, generated by the invertible sheafw,, wherer: £ — F
is the universal curve oveF.

Proof. Let k be the base field and st = SpecR, whereR = k[a,b]a with A = 4a® + 27b and
p: F — My, for the structure map, which is an étale degBeeover. Since char { 6, the map
U — M1 given by the general Weierstrass curve

W = Proj(R[z,vy, 2]/(f)) — U wheref = 4?2z — 23 — axzz* — b2®

is a G,,-torsor corresponding to a generaforof Pic M, ;, eitherp,w, or its dual, where: E—
My 1 is the universal curve. In particular the base chaWige- U x , ;, F — F is theG,,-torsor
corresponding to the pull-bagk IC and it coincides withV [2] minus the zero section. By[I86, Group
law algorithm 2.3]2-torsion points are obtained modding outgpgnd therefore we get

V ~ Spedka, b, z]a /(2> + azx + b)

In particularV is an open subscheme 4f = Speck[a, 2] and therefore Pit’ = 0. By 4.10we can
conclude that Pif is generated by = m,w,. This is because, it = p,w,, thenp*w’ ~ w.
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We want to prove that the orderof w in PicF is exactly4. Sincew’ has orderl2 in PicM; ; by
2.10 we have

Wt~ O = p.0F 2" @ pOF LGN Omy, = 12|3r = 4|r

Consider now the invertible she@fon F given by
T:(E -5 8,01,00) — 0505(02 — 01) @ 01 Op(01 — 02)

SinceOg(os — 01)? =~ q*q.(Op (02 — 01)?) by definition of F and1.10 we see thal 2 ~ O. On the
other hand, since; ando are disjoint, we have;Og(02) ~ 05O (01) ~ O and thereforel” ~ w?
thanks to2.12 In conclusion®r ~ 72 ~ w* and therefore = 4. O

(Proof of TheorenA, the case 0B, 12). By 4.4 L is a degred) invertible sheaf orC which is never
trivial on the geometric fibers af — B;,1,2. By Grauert we can conclude thatL = 0, so that
det 7, L is trivial. The result then follows from.11and4.12 O
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