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Abstract

Let R be a commutative ring. In this paper we study the behavior of Gorenstein homo-
logical dimensions of a homologically bounded R-complex under special base changes to
the rings Rx and R/xR, where x is a regular element in R. Our main results refine some
known formulae for the classical homological dimensions. In particular, we provide the
Gorenstein counterpart of a criterion for projectivity of finitely generated modules, due
to Vasconcelos.
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1. Introduction

Throughout this paper, R is a non-trivial commutative ring with a unit
element, and x is an element of R that is neither a zero-divisor nor invertible.
In [8] we investigated the relation between homological behavior of ring R
and those of rings Rx and R/xR. See, for instance, [8, 3.4, 3.7]. It is also
proved that for a complex of R-modules M , following equalities hold

fdR M = max{fdR/xR(R/xR⊗L
R M), fdRx Mx}. (1)

idR M = max{idR/xR(R/xR⊗L
R M), idRx Mx}. (2)

See [8, 3.2, 4.2] for detailed statements.
In this paper we prove the Gorenstein counterparts of (1) and (2). More
precisely, We prove that for every homologically bounded complex M over
coherent ring R, the following equality holds

GfdR M = max{GfdR M,GfdRx Mx} (3)
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where R denotes the factor ring R/(x) and M is a complex of R-module,
see section 3 for details. A similar formula holds for Gorenstein injective
dimensions when R is noetherian with dualizing complex, see (3.3).

In [9], Vasconcolos proved a criterion for projectivity of finitely generated
modules, i.e. it’s proved that (see [9, Theorem 1.6]) when M is a finitely
generated module over R and x is a non-zero divisor on both R and M , M
is projective over R if and only if M/xM is projective over R/x and Mx is
projective over Rx. It is therefore natural to ask whether the same criterion
for Gorenstein projectivity is true. In fact, when M is finitely generated
and R is noetherian, a very special case of the equation (3) gives affirmative
answer to this question, see (3).

2. Prerequisites

In this short section, we fix our notation and prove some easy lemmas
that will be used later. Throughout, R is a non-trivial commutative ring
with a unit element, and x is an element of R that is neither a zero-divisor
nor invertible. We sometimes write ‘R-complex’ in place of ‘a complex of
R-modules’. Complexes are graded homologically. Thus, an R-complex M
has the form

· · · →M`+1

∂M
`+1→ M`

∂M
`→ M`−1 → · · · .

Modules are considered to be complexes concentrated in degree zero. We
write ΣM for complex with

(ΣM)n = Mn−1 and ∂ΣM = −∂M .

The supremum and infimum of M are defined as follows:

sup(M) = sup{` ∈ Z|H`(M) 6= 0}
inf(M) = inf{` ∈ Z|H`(M) 6= 0},

with the usual conventions that one sets inf ∅ =∞ and sup ∅ = −∞.
The derived category is written D(R) and subscript “�” signifies the ho-

mological boundedness condition. Thus D�(R) denotes the full subcategory
of D(R) of homologically bounded complexes.

For each R- complex M , we set

M = R/xR⊗L
R M.

Note that M is an R/xR-complex and as an R-complex, it is quasi-isomorphic
to the mapping cone of the homothety morphism xM : M → M . We also
denote by R the ring R/xR.

Remark. Let M be a complex of R-modules. It follows from [8, 2.1]
that
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(i) H (M) and H(Mx) are bounded if and only if H(M) is bounded.

(ii) H(M) and H(Mx) are trivial if and only if H(W ) is trivial.

2.1. Auslander and Bass Classes Recall that a complex C ∈ Df
�(R) is

said to be semidualizing provided that the canonical map R→ RHomR(C,C)
is an isomorphism.

The Auslander category (see [1]) with respect to a semidualizing complex
C is the full subcategory AR(C) of D�(R) consisting of all R-complexes M
such that C⊗L

RM ∈ D�(R) and the canonical morphism M → RHomR(C,C⊗L
R

M) is an isomorphism.
Dually, the Bass category with respect to a semidualizing complex C is

the full subcategory BR(C) of D�(R) consisting of all R-complexes N such
that RHomR(C,N) ∈ D�(R) and the canonical morphism C⊗L

RRHomR(C,N)→
N is an isomorphism.

Let C be a semidualizing complex. For R-complexes M and N set

4C(M) = Cone(M −→ RHomR(C,C ⊗L
R M))

and
ΛC(N) = Cone(C ⊗L

R RHomR(C,N) −→ N).

It is clear that the following biimplications hold when M and N are
homologically bounded:

M ∈ AR(C)⇐⇒ C ⊗L
R M ∈ D�(R) ∧H(4C(M)) = 0

and

N ∈ BR(C)⇐⇒ RHomR(C,N) ∈ D�(R) ∧H(ΛC(N)) = 0.

Note also that for any semidualizing complex C,

fdR M ≤ ∞⇒M ∈ AR(C)

and
idR N ≤ ∞⇒ N ∈ BR(C)

(see [1, 4.4]).

Lemma 2.1. Let C be a semidualizing complex for R and ϕ : R → S
a ring homomorphism such that S belongs to AR(C). Then C ⊗L

R S is a
semidualizing complex for S.

Proof. See [2, 5.1]

Corollary 2.2. If C be a semidualizing complex for R, then C and Cx

are semidualizing for R and Rx, respectively. �
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Proposition 2.3. Let C be a semidualizing complex for R and suppose
that M is a homologically bounded complex of R-modules. Then

(i) M ∈ AR(C)⇐⇒M ∈ AR(C) ∧Mx ∈ ARx(Cx).

(ii) M ∈ BR(C)⇐⇒M ∈ BR(C) ∧Mx ∈ BRx(Cx).

Proof. We only prove (i). A dual argument proves (ii).

“⇐” Since H(M) and H(Mx) are bounded, (2) shows that H(M) is
bounded. Similarly, H(C ⊗L

R M) is also bounded. On the other hand,

H(∆C(M)) = H(∆C(M)) and H(∆CxMx) = H((∆CM)x) are both trivial
and so is H(∆CM) by (2). Therefore M ∈ AR(C).

“⇒” Follows from [1, 5.8].

Remark. Recall that a dualizing complex is a semidulazing complex
with finite injective dimension. It follows from (2.2) and [8, 4.2] that if D
is a dualizing complex for R, then Dx and D are dualizing for Rx and R,
respectively.

3. Main Results

It is well established that Gorenstein homological dimensions refines
many results in classical homological theory of modules. It is also believed
that any result in the classical theory has a Gorenstein counterpart. Our
main results are the Gorenstein counterpart of some formulae given in [8].

The literature on Gorenstein homological algebra are rich and exten-
sive. Thus, recollecting the basic definitions and facts (in this short paper)
seemed to us out of place. We quote here just what we need in establishing
our formulae. The reader is referred to the literature for more information.
See, for example [1], [4] and [7].

In [4] Christensen, Frankild and Holm showed that the Gorenstein in-
jective dimension GidR M of a homologically bounded complex M can be
computed by the following formula:

GidR M = sup{− supRHomR(U,M)− sup(U) |U ∈ I(R) ∧H(U) 6= 0},

and when R is coherent,

GfdR M = sup{sup(U ⊗L
R M)− supU |U ∈ I(R) ∧H(U) 6= 0},

where I(R) denotes the class of all R-complexes with finite injective dimen-
sion.
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Lemma 3.1. Let ϕ : R → S be a ring homomorphism of coherent rings
with fdR S <∞. Then, for any homologically bounded R-complex M ,

GfdS(S ⊗L
R M) ≤ GfdR M.

Proof. By assumption, the forgetful functor D(S) → D(R) gives an
embedding I(S) → I(R). For each S-complex U with finite injective di-
mension, we have

sup(U ⊗L
S (S ⊗L

R M))− sup(U) = sup(U ⊗L
R M)− sup(U).

Thus

GfdS(S ⊗L
R M) = sup{sup(U ⊗L

S (S ⊗L
R M))− sup(U)|U ∈ I(S) ∧H(U) 6= 0}

= sup{sup(U ⊗L
R M)− sup(U)|U ∈ I(S) ∧H(U) 6= 0}

≤ sup{sup(U ⊗L
R M)− sup(U)|U ∈ I(R) ∧H(U) 6= 0}

= GfdR M.

Where the inequality holds because U ranges over two different classes, one
of which is larger that the other.

Theorem 3.2. Let R be a coherent ring and M a homologically bounded
complex.Then

GfdR M = max{GfdR M,GfdRx Mx}.

If every flat R-module has finite projective dimension and M has with
finitely presented homologies, then

GpdR M = max{GpdR M,GpdRx
Mx}.

Proof. “≤” For each R-complex U we have

H(U ⊗L
R M) ∼= H(U ⊗L

R
M)

and
H(U ⊗L

R M)x ∼= H(Ux ⊗L
Rx

Mx).

Thus, it follows from [8, 2.2] that

sup(U ⊗L
R M)− sup(U) = max{sup(U ⊗L

R M)− 1, sup(U ⊗L
R M)x} − supU

= max{sup(U ⊗L
R
M)− 1− supU, sup(Ux)⊗L

Rx
Mx − supU}

≤ max{sup(U ⊗L
R
M)− supU, sup(Ux ⊗L

R Mx)− supUx}
≤ max{GfdR M,GfdRx Mx}.

The other inequality “≥” follows from (3.1).
For the last assertion, see [4, 3.8. (b)].
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Remark. Let R be a coherent ring and M be an R-module. When x is
a non-zero divisor on M , M and M/xM are indistinguishable in the derived
category D(R). Thus the previous theorem shows that M is a Gorenstein
flat R-module if and only of M/xM and Mx are Gorenstein flat modules
over the rings R and Rx respectively. Similarly one has a criterion for
Gorenstein projectivity of finitely presented modules. In particular, if M
is finitely generated and R is noetherian, then M is Gorenstein projective
if and only if M/xM and Mx are Gorenstein projective over R and Rx,
respectively. This is the Gorenstein counterpart of a result of Vasconcelos
[9, 1.6] where he proved the criterion for projectivity without assuming that
R is noetherian. It is therefore natural to ask about the validity of the
criterion (resp. the formula for Gfd and Gpd) without any condition on the
commutative ring R.

The following properties of Gorenstein injective dimension are used in
proof of the next theorem.

Remark. For a homologically bounded complex M over a noetherian
ring R with dualizing complex D, GidR M is finite if and only if M belongs
to BR(D). Also, if GidR M happens to be finite, then

GidR M = sup{depthRp − widthRp Mp|p ∈ Spec(R)},

See [4, Theorem 4.4] and [5, Theorem 2.2].

Theorem 3.3. Let R be a noetherian ring with dualizing complex D.
The following equality holds for any homologically bounded complex M :

GidR M = max{GidR M + 1,GidRx Mx}.

Proof. By (3), (2.1) and (2.3) we may assume that both side are finite.
To prove “≤”, choose a prime ideal p such that

GidR M = depthRp − widthRp Mp.

We divide into two cases.

Case I : If x does not belong to p, set q = px ∈ Spec(Rx). Then

GidR M = depthRp − widthRp Mp

= depth(Rx)q − width(Rx)q(Mx)q
≤ GidRx Mx.

Therefore, in this case, the desired inequality holds.
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Case II : If x ∈ p, then q = p/(x) ∈ Spec(R) and we have

GidR M = depthRp − widthRp Mp

= depthRq + 1− widthRq
(M)q

≤ GidR M + 1.

For the other inequality “≥”, choose q ∈ Spec(R) such that GidR M =
depthR(R)q−width(R)q

(M)q. There exists p ∈ Spec(R) such that p/(x) = q
and we have

GidR M = depthR(R)q − width(R)q
(M)q

= depthRp − 1− widthRp Mp

≤ GidR M − 1.

It remains to prove GidR M ≥ GidRx Mx. This can be proved in the exact
same manner as in [1, 6.2.13].

Remark. Restricted homological dimensions for complexes are defined
in [3]. Exactly the same argument as given in the proof of (3.2) shows that
the equality

R fdR M = max{R fdR M,R fdRx Mx}

hold for each homologically bounded complex M . Turning to the restricted
injective dimensions, it is natural to ask if they satisfy the same equality as
one given in (3.3). The method used in our proof of (3.3) needs a Chouinard-
type formula. But, to the best of authors’ knowledge, this formula only holds
under some restricting hypotheses (see [3, 5.12]).
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