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FORMAL FOURIER JACOBI EXPANSIONS

AND SPECIAL CYCLES OF CODIMENSION 2

MARTIN RAUM

Abstract. We prove that formal Fourier Jacobi expansions of degree 2 are Siegel
modular forms. As a corollary, we deduce modularity of the generating function of
special cycles of codimension 2, which were defined by Kudla. A second applica-
tion is the proof of termination of an algorithm to compute Fourier expansions of
arbitrary Siegel modular forms of degree 2. Combining both results enables us to
determine relations of special cycles in the second Chow group.

1. Introduction and statement of results

There is a close interplay between Siegel modular forms and Jacobi forms, which,
for example, was employed to prove the Saito-Kurokawa conjecture [And79, Maa79a,
Maa79b, Maa79c, Zag81]. This connection is founded on the Fourier Jacobi expansion
of Siegel modular forms, which can be turned into a formal notion. Formal Fourier
Jacobi expansions of degree 2 and weight k ∈ Z, in the simplest case, are formal series
with respect to q′ of the form

∑

0≤m∈Z

φm q
′m

such that:

(i) The φm are Jacobi forms of weight k and index m (cf. [EZ85] and Section 4 for
a definition).

(ii) The Fourier coefficients of φm satisfy c(φm;n, r) = c(φn;m, r).

A more precise definition will be given later.
Ibukiyama, Poor, and Yuen studied such expansions in [IPY12], and at the end of

the introduction they asked the question whether every Fourier Jacobi expansion is
convergent. Theorem 1.5 answers this question in the affirmative.

Theorem 1.1. Every formal Fourier Jacobi expansions of degree 2 and of any weight
converges, and hence is the Fourier Jacobi expansion of a Siegel modular form.

A more detailed statement is presented in Theorem 1.5.
The significance of formal Fourier Jacobi expansions stems from their relation to

families of certain algebraic cycles on Shimura varieties of orthogonal type. The study
of cycles, that is, subvarieties of varieties, is a prominent theme in algebraic geome-
try, pursued, e.g., in [Lec86, Fab90, Zha97]. Codimension r cycles on a variety X are
classified up to rational equivalence by the rth Chow group CHr(X)C, first studied
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in [Cho56]. In most cases, little is now about it. Using definite subspaces in indef-
inite quadratic spaces, Kudla produced cycles of arbitrary codimension on Shimura
varieties of orthogonal type, which he called “special cycles” [Kud97]. Special cycles
generalize interesting geometric configurations. For examples, CM points on modular
curves and Hirzebruch’s and Zagier’s curves TN on Hilbert modular surfaces [HZ76]
are included in this notion. As special cycles are related explicitly to geometry of
lattices, one hopes, they are easier to study than cycles that do not come with this
additional information. Kudla conjectured the following.

Conjecture 1.2. The generating function of special cycles of codimension r is a
Siegel modular form of degree r.

Theorem 1.3 (Borcherds [Bor99, Bor00]). Conjecture 1.2 is true for r = 1.

As our main application, we establish a further case.

Theorem 1.4. Conjecture 1.2 is true for r = 2.

A more specific description of this modularity result is contained in Theorem 1.6.
Our affirmation of Kudla’s prediction in the case r = 2 yields rich geometric in-

formation. It allows us to compute relations that were inaccessible before. Compare
this with results obtain in the 80’s by Kudla and Millson. They examined modularity
of generating functions of intersection numbers of special cycles, which, they found,
arise from (additive) theta lifts [KM86, KM87, KM90]. This way, they discovered
relations of such intersection numbers.

1.1. Siegel modular forms. We now discuss the theory of formal Fourier Jacobi
series in greater detail. Afterward, we turn our attention to implications for geometry.

In order to explain Theorem 1.5, which implies Theorem 1.6 and hence Theorem 1.4,
we need to make several definitions. For the time being, we restrict ourselves to the
case of integral weights. Fix k, l ∈ Z, and let ρ be a finite dimensional, unitary rep-
resentation of the symplectic group Sp2(Z) ⊂ Mat4(Z) with representation space Vρ.
Denote the lth symmetric power of the canonical representation of GL2(C) on C2 by
σl, and write Vl for its representation space. A (doubly vector valued) Siegel modular
forms is a holomorphic function Φ from the Siegel upper half space H(2) to Vl ⊗ Vρ
that is invariant under the modular transformations

(det k ⊗ σl)
−1(CZ +D) ρ(γ)−1Φ

(
(AZ +B)(CZ +D)−1

) (
γ = ( A B

C D ) ∈ Sp2(Z)
)
.

Every Siegel modular form Φ admits an absolutely convergent Fourier Jacobi expan-
sion

∑

0≤m∈Q

φm(τ, z) q
′m,

where φm ∈ Jk,m(σl ⊗ ρ) is a (doubly vector valued) Jacobi form (cf. [EZ85, Sko08,
IK11] and Section 4). Jacobi forms have likewise Fourier expansions

φm(τ, z) =
∑

0≤n∈Q, r∈Q

c(φm;n, r) q
nζr.

By modularity of Φ, their Fourier coefficients satisfy

c(φm;n, r) = (det k ⊗ σl)
−1(S) ρ−1(rot(S)) c(φn;m, r)(1.1)
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for all 0 ≤ m,n ∈ Q and all r ∈ Q, where

S = ( 0 1
1 0 ) ∈ GL2(Z) and rot(S) = ( S

S ) ∈ Sp2(Z).

Our main theorem can be considered as a converse.

Theorem 1.5. Let
∑

0≤m∈Q

φm(τ, z) q
′m

be a formal expansion in q′ with coefficients in Jk,m(σl ⊗ ρ), where k ∈ 1
2
Z and l ∈ Z.

If the Fourier coefficients of all φm satisfy (1.1) for all 0 ≤ m,n ∈ Q and all r ∈ Q,
then this series converges absolutely and defines a Siegel modular form.

The proof of Theorem 1.5, which is an unrefined version of Theorem 5.6, relies on
comparing dimensions and on a regularity result for meromorphic functions in two
variables. In the case of even weight k, we bound the asymptotic dimension of spaces
of formal Fourier Jacobi expansions as k → ∞. It equals the asymptotic dimension
of corresponding spaces of Siegel modular forms. In the proof of Theorem 5.6, we
fix a formal Fourier Jacobi expansion and multiply it with a space of classical Siegel
modular forms of sufficiently large weight. By a dimension argument, we find that the
resulting space of formal Fourier Jacobi expansions (of then higher weight) contains
at least one Siegel modular form. From this, we are able to deduce that the formal
Fourier Jacobi expansions which we started with represents a meromorphic Siegel
modular form. We then apply our regularity result (Theorem 6.1) to conclude that it
is a holomorphic Siegel modular form. For k ∈ 1

2
Z, we obtain an even weight Siegel

modular form by multiplication (or tensoring) with another suitable Siegel modular
form. This allows us to reduce the general case to the case of even weights.

The special case of l = 0 and trivial ρ was considered in [IPY12]. Ibukiyama,
Poor, and Yuen showed straightforwardly that dimensions of the space of formal
Fourier Jacobi expansions and the space of Siegel modular forms are equal. Their
technique, however, relies on very detailed knowledge of dimension formulas, which
is not available in the more general setting.

1.2. Special cycles. Zhang proved that the generating functions of special cycles,
as presented later, are formal Fourier Jacobi expansions [Zha09]. He pulled back
along embeddings of Shimura curves and employed Borcherds’s previous result. For
codimension 2 cycles, Theorem 1.5 implies modularity. In this manner, our approach
shows that Kudla’s modularity conjecture can be examined by combining a detailed
analysis of the codimension 1 case – already pursued by Borcherds – and rigidity
results for formal expansions of Siegel modular forms.

We give details on special cycles and their generating functions. Let L be a lattice
of signature (n, 2); Write L# for its dual. We consider Shirmura varieties XΓ of
orthogonal type associated to subgroups Γ of O(L) that act trivially on discL =
L# /L. By definition, we have

XΓ = Γ\Gr−(L ⊗ R),

where Gr− denotes the Grassmannian of maximal negative definite subspaces. Note
that for our choice of L, XΓ carries the structure of a complex, quasi projective
variety.
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Given a positive semi-definite, symmetric “moment matrix” 0 ≤ T ∈ MatTr (Q)
and µ ∈ discr L = (discL)r, there is a special cycle {Z(T, µ)} ∈ CH•(XΓ)C whose
codimension equals the rank of T , rk(T ). In Section 7, we give a precise definition.
Write ω∨ for the anti-canonical bundle onXΓ, and denote the canonical basis elements
of C[discr L] by eµ (µ ∈ discr L). We prove the following:

Theorem 1.6. Let Γ ⊂ O(L) be a subgroup that fixes discL. Then
∑

µ∈disc2 L
0≤T∈MatT2 (Q)

{Z(T, µ)} · {ω∨}2−rk(T ) exp
(
2πi trace(TZ)

)
eµ

is a vector valued Siegel modular form with coefficients in CH2(XΓ)C ⊗ C[disc2 L],
which has weight 1 + n

2
.

As explained in Section 1.1, there are two notions of vector valued Siegel modular
forms. In Theorem 1.6 we refer to the one that comes from representations of Sp2(Z)
(or its double cover). Note also that XΓ is not compact. Its Chow ring can be viewed
as the quotient CH•(YΓ)C /CH

•(∂YΓ), where YΓ denotes the toroidal compactification
of XΓ and ∂YΓ are the boundary components.

As an outcome of Theorem 1.6, we are able to prove the following statement, which
was shown by Zhang using adhoc methods [Zha09].

Corollary 1.7. The span of special cycles {Z(T, µ)} in CH2(XΓ)C is finite dimen-
sional.

1.3. Computing relations of special cycles. Let ρL,2 denote the type of the
generating function in Theorem 1.6. Its representation space is the group algebra
C
[
disc2 L

]
. Denote by Φµ (µ ∈ disc2 L) the components of a vector valued Siegel

modular form Φ of type ρL,2, and write c(Φµ;T ) for its T th Fourier coefficient.

Corollary 1.8. Suppose that b : MatT2 (Q) × disc2 L → C is a function with finite
support such that

∑

T,µ

b(T, µ) c(Φµ;T ) = 0

for every Siegel modular form of weight 1 + n
2

and type ρL,2. Then we have
∑

T,µ

b(T, µ) {Z(T, µ)} = 0 ∈ CH2(XΓ)C.

Explicit knowledge about Fourier coefficients of Siegel modular forms thus yields
results about relations in CH2(XΓ)C. This observation motivates our considerations
in Section 8. However, we warn the reader that relations computed in this way do
not necessarily exhaust all relations that hold for the {Z(T, µ)}, even thought this
is conceivable, if L satisfies some mild hypotheses. The computational investigation
of relations for r = 1, was resolved by the author in [Rau12], building on work of
Bruinier. According to [Bru12], if r = 1 and L splits off a hyperbolic plane and a
unimodular hyperbolic plane, all relations that hold for the {Z(T, µ)} (0 ≤ T ∈ Q,
µ ∈ discL) can be described by the analog of Corollary 1.8.

We prove correctness and termination of an algorithm to compute Fourier expan-
sions of Siegel modular forms of degree 2. It is very much inspired, and in a sense
that we make clear in a moment, generalizes ideas conveyed in [Poo11, IPY12].
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Theorem 1.9. There is an explicit, terminating algorithm that computes Fourier
expansions of Siegel modular forms of arbitrary weight and type.

The proof of this finding is very similar to the proof of Theorem 1.5. We employ
variants for truncated Fourier expansions of lemmas that entered the latter proof.

Combining the above and Corollary 1.8, we obtain

Corollary 1.10. There is an explicit, terminating algorithm that computes infinitely
many relations of special cycles {Z(T, µ)} ∈ CH2(XΓ)C.

In [Poo11, IPY12], Ibukiyama, Poor, and Yuen – following a suggestion by Armand
Brumer – hinted an algorithm to compute paramodular forms, which is very similar
to ours. But they were not able to prove that theirs terminates, except in four
cases. Since paramodular forms are Siegel modular forms for congruence subgroups
of Hecke type, our algorithm also applies to their problem after inducing the trivial
representation of this subgroup to Sp2(Z). In this sense, we resolve the question raised
at the end of the introduction of [IPY12], asking whether “the growth condition is
superfluous”. In practice, however, our algorithm will most certainly be slower than
Poor and Yuen’s, and proving that it terminates without employing induction of
representations would be useful.

1.4. Final remarks. In Theorem 1.5, we have also treated the case of vector valued
weight l 6= 0, which we have not yet made use of. We have included it into our
considerations, because of work by Bergström, Farber, and van der Geer [FvdG04a,
FvdG04b, BFvdG08]. They described a method that computes quiet efficiently Hecke
eigenvalues of Siegel modular forms for all k and l if ρ is trivial. These computation
rely on extensive precomputations, that would have to be redone if one wanted to
study Siegel modular forms for congruence subgroups other than those that they
examined. Our method then provides an alternative path to follow, which even yields
further information.

The paper is organized as follows. In Section 2, we briefly fix notation. Section 3
and Section 4 contain general discussions of Siegel modular forms and Jacobi forms.
The proof of Theorem 1.5 is contained in Section 5. Our main application is then
discussed in Section 7. We consider computations of Fourier expansion in the final
Section 8.

Acknowledgment: To be entered after the referee’s report is received.

2. Notation

We write In for the n×n identity matrix. The zero matrix of size n×m is denoted
by 0(n,m). If m = 1, we suppress the corresponding superscript. The module of
n × n matrices with entries in a ring R is denoted by Matn(R). We write · T for
transposition of matrices. The space of symmetric matrices of size n is denoted by
MatTn (R).

The group of affine transformations on Cn is denoted by Affn(C) ∼= GLn(C)⋉Cn.
It can be embedded into GLn+1(C) via

(γ, µ) 7→

(
γ µ

0(1,n) 1

)
.(2.1)
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Restrictions of representations of GL2(C) to Aff1(C) that appear in this paper are
taken with respect to this embedding. When referring to representations, we always
mean finite dimensional representations. The scalar representation of GLn(C) that
lets g act as det(g)k is denoted by det k. The lth symmetric power of the canonical
representation of GLn(C) (n ≥ 2) on Cn is denoted by σl.

Both GLn(C) and Affn(C) have connected double covers G̃Ln(C) and Ãffn(C). We

think of elements in GLn(C) as pairs (A, det(A)
1
2 ), where the second component is one

choice of root. The one dimensional representation of G̃Ln(C) which lets (A, det(A)
1
2 )

act as det
1
2 (A) is denoted by det

1
2 . We have Ãffn(C) ∼= G̃Ln(C)⋉Cn, and we will use

this isomorphism without further mentioning it. The above embedding of Affn(C)

into GLn+1(C) extends to an embedding of Ãffn(C) into G̃Ln+1(C).
Representations of discrete groups are assumed to have finite index kernels. This

applied in particular to representations of G̃Ln(Z) and S̃pg(Z).

3. Siegel modular forms

Let Jg =
(

0(g,g) −Ig

Ig 0(g,g)

)
. The full Siegel modular group of degree g is

Spg(Z) =
{
γ ∈ Mat2g(Z) : γTJgγ = Jg

}

with typical elements γ = ( A B
C D ) for A,B,C,D ∈ Matg(Z). One kind of elements

that we use frequently is

rot(U) =
(

U
(U−1)T

)

for U ∈ GLg(Z). The connected double cover S̃pg(Z) of Spg(Z) is the non trivial
central extension of Spg(C) by the cyclic group C2.

The full Siegel modular group acts on the Siegel upper half space of degree g

H(g) =
{
Z = X + iY ∈ Matg(C) : Y > 0

}

via

γZ = (AZ +B)(CZ +D)−1.

We obtain an action of S̃pg(Z) on H(g) by composing with the projection S̃pg(Z) ։
Spg(Z). In this paper, we will focus on the case g ≤ 2, and so we fix special notation

in both cases. We usually write τ for elements of H(1), and ( τ z
z τ ′ ) for elements of H(2).

Further, we set q = exp(2πi τ), ζ = exp(2πi z), and q′ = exp(2πi τ ′).

We can use the upper half space to find a concrete description of elements in S̃pg(Z).

Elements of S̃pg(Z) can and will be thought of as pairs
(
γ,

(
(CZ +D), det(CZ +D)

1
2

))
.

The first component is an element of Spg(Z), and the second component is a holo-

morphic map H(g) → G̃Lg(C), that we typically denote by ω.

Let σ be a representation of G̃Lg(C), the double cover of GLg(C), with representa-

tion space Vσ. Let ρ be a representation of S̃pg(Z) with representation space Vρ. The
Siegel slash action of weight σ and type ρ is defined as

(
Φ
∣∣
σ,ρ

(γ, ω)
)
(Z) = σ(ω(Z))−1ρ(γ)−1Φ(γZ)
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for all Φ : H(g) → Vσ ⊗ Vρ and all (γ, ω) ∈ S̃pg(Z).

Definition 3.1. Let σ be a representation of G̃Lg(C) with representation space Vσ,

and let ρ be a representation of S̃pg(Z) with representation space Vρ. A function Φ :

H(g) → Vσ⊗Vρ is called a Siegel modular form of weight σ and type ρ if Φ
∣∣
σ,ρ

(γ, ω) = Φ

for all (γ, ω) ∈ S̃pg(Z) and, in addition, if g = 1, Φ has Fourier expansion

Φ(τ) =
∑

0≤n∈Q

c(Φ;n) qn, c(Φ;n) ∈ Vσ ⊗ Vρ.

If Φ is meromorphic and satisfies Φ
∣∣
σ,ρ

(γ, ω) = Φ for all (γ, ω) ∈ S̃pg(Z), we call

it a meromorphic Siegel modular form.

We write M(g)(σ, ρ) for the space of Siegel modular forms of weight σ and type ρ.

Irreducible representations of G̃Lg(C) either factor through GLg(C), or they are

of the from det
1
2 ⊗ σ′, where σ′ factors through GLg(C). The meaning of det k with

k ∈ 1
2
Z thus becomes clear. The space of Siegel modular forms of degree 1 (i.e.,

elliptic modular forms) of weight detk, k ∈ 1
2
Z and type ρ is denoted by M

(1)
k (ρ). The

space degree 2 Siegel modular forms of weight detk ⊗σl, k ∈ 1
2
Z, l ∈ Z and type ρ

is denoted by M
(2)
k,l (ρ). If l = 0, we suppress it, and if ρ is trivial, we abbreviate

M
(1)
k (ρ) = M

(1)
k and M

(2)
k,l (ρ) = M

(2)
k,l .

Remark 3.2. Suppose that σ and ρ are irreducible. If σ factors through GLg(C), one
can show that for ρ’s which do not factor through Sp2(Z) we have M(g)(σ, ρ) = {0}.
On the other hand, we have M(g)(σ, ρ) = {0}, if ρ factors through Spg(Z) and σ does
not.

More concretely, this means that M
(2)
k,l (ρ) = {0}, if

(i) k ∈ Z and ρ does not factor through Sp2(Z), or
(ii) k ∈ 1

2
Z \ Z and ρ factors through Sp2(Z).

3.1. Structure theorems and dimension formulas. Let ρ be any (finite dimen-

sional) representation of Sp1(Z). By results of Mason and Marks,
⊕

k∈Z M
(1)
k (ρ) is a

free module over
⊕

k∈Z M
(1)
k of rank at most dim ρ [MM10]. Hence there is a polyno-

mial pg(ρ; t) with pg(ρ; 1) ≤ dim ρ such that

∑

k∈Z

dimM
(1)
k (ρ)tk =

pg(ρ; t)

(1− t4)(1− t6)
.(3.1)

Fix a representation σ of GL2(C) and a representation ρ of Sp2(Z) such that
σ(−I2) ⊗ ρ(−I4) is trivial. Then H(2) × (Vσ ⊗ Vρ) descends to a vector bundle

on Sp2(Z)\H
(2). We can compute the asymptotic dimension of M

(2)

detk ⊗σ
(ρ) using

Hirzebruch-Riemann-Roch and the Lefschetz fixed point theorem. We find that

M
(2)

detk ⊗ σ
(ρ) ≍ dim σ ⊗ ρ · dimM

(2)
k(3.2)

as k → ∞, k ∈ Z. We give some details for the convenience of the reader. Fix some
normal congruence subgroup Γ ⊂ Sp2(Z) such that there is a smooth compactification

X̃Γ of XΓ = Γ\H(2). Write XSp2(Z) for Sp2(Z)\H
(2), and X̃Sp2(Z) for (Sp2(Z) /Γ)\X̃Γ.

Fix a line bundle E on X̃Sp2(Z) of dimension d. The line bundle det is ample, so that
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Hi(X̃Γ, E ⊗ detk) = 0 for i 6= 0 and sufficiently large k. For such k, Hirzebruch-
Riemann-Roch gives

dimH0(X̃Γ, E ⊗ det k) =

∫

X̃Γ

ch(E) ch(det k) td(X̃Γ),

where ch(E) and ch(det k) are the Chern characters of E and det k, respectively, and

td(X̃Γ) is the Todd polynomial of X̃Γ. The ith degree of ch(det k) = ch(det)k has
asymptotic cik

i for some constant ci. Since det is positive, we have ci > 0. On the
other hand the lowest degree of ch(E) equals d, and the lowest degree of ch(XΓ) is 1.
Hence we have

dimH0(X̃Γ, E ⊗ det k) ≍ d

∫

XΓ

c3.

In order to pass to XSp2(Z), we use the Lefschetz fixed point theorem and the Koecher
principle. We have

dimH0
(
XSp2(Z), E ⊗ det k

)
= dimH0

(
X̃Sp2(Z), E ⊗ det k

)

=
1

#(Sp2(Z) /Γ)

∑

g∈Sp2(Z) /Γ

trace
(
g|H0(X̃Γ,E⊗det k)

)
.

Since trace
(
g|H0(X̃Γ,E⊗det k)

)
is bounded in k by by, roughly, the number of fixed points

of g, if g 6= 1, the stated asymptotic of dimensions follows when applying our consid-
erations to E = H(2) × (Vρ ⊗ Vσ).

4. Jacobi forms

Let

HJ = H(1) × C

be the Jacobi upper half space. The extended Jacobi group

ΓJ = SL2(Z)⋉ Z2 ×̃Z

has group law
(
γ, (λ, µ), κ

)
·
(
γ′, (λ′, µ′), κ′

)
=

(
γγ′, (λ, µ)γ′ + (λ′, µ′), κ + κ′ + λµ′ − µλ′

)
.

It can be viewed as a subgroup of Sp2(Z) via the embedding

(
( a b
c d ) , (λ, µ), κ

)
7→




a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1







1 0 0 µ
λ 1 µ κ
0 0 1 −λ
0 0 0 1


 .

We denote the double cover of ΓJ by Γ̃J. Its elements are pairs (γJ, ω) with γJ ∈ ΓJ

and ω : H(1) → G̃L1(C) a holomorphic square root of cτ + d.

The action of ΓJ (and thus Γ̃J) on HJ is given by

γJ(τ, z) =
(
γ, (λ, µ), κ

)
(τ, z) =

(
γτ,

z + λτ + µ

cτ + d

)
.
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For m ∈ Q and x ∈ C, we set em(x) = exp(2πimx). Given k ∈ 1
2
Z, m ∈ Q and a

representation ρ of Ãff1(C)× Γ̃J with representation space Vρ, there is a slash action

(
φ
∣∣J
k,m,ρ

(γJ, ω)
)
(τ, z)

= ω(cτ + d)−2k em
(−c(z + λτ + µ)2

cτ + d
+ 2λz + λ2τ + κ

)

ρ
(
(ω(τ), c(z + µ)− dλ), (γJ, ω)

)−1
φ(γJ(τ, z))

on functions φ : HJ → Vρ. We will often use representations of Γ̃J and Ãff1(C),

which we then consider as representations of Ãff1(C)×Γ̃J by tensoring with the trivial

representation of Γ̃J and Ãff1(C), respectively. Note that
∣∣
k,m,detk

′

⊗ρ
=

∣∣
k+k′,m,ρ

for

any k′ ∈ 1
2
Z.

Definition 4.1. Let ρ be a representation of Ãff1(C)×Γ̃J with representation space Vρ.
A holomorphic function φ : HJ → Vρ is called a Jacobi form of weight k, index m,
and type ρ if

(i) φ
∣∣J
k,m,ρ

(γJ, ω) = φ for all (γJ, ω) ∈ ΓJ.

(ii) φ(τ, ατ + β) is bounded (with respect to any norm on Vρ) as y → ∞ for all
α, β ∈ Q.

We denote the space of Jacobi forms of weight k, index m, and type ρ by Jk,m(ρ).
If ρ is trivial, we suppress it. Note that Jk,m = {0}, if m ∈ Q \ Z. Except for
Proposition 4.5, in this section, we restrict our attention to k ∈ Z.

The last component Z of ΓJ is central. Hence for irreducible representations ρ it
acts by scalars. We have the following connection between m and ρ.

Proposition 4.2. Let k ∈ Z, m ∈ Q. If ρ : Aff1(C) ⊗ ΓJ → GL(Vρ) is irreducible
and ρ

(
I2, (0, 0), 1

)
6= exp(2πim), then Jk,m(ρ) = {0}.

Proof. This follows when inspecting the definition of
∣∣J
k,m,ρ

. �

Jacobi forms have a Fourier expansion

φ(τ, z) =
∑

0≤n∈Q
r∈Q

c(φ;n, r) qnζr.

By Condition (i), c(φ;n, r) only depends on 4mn − r2 and r (mod (2mZ)). From
Condition (ii), one infers that c(φ;n, r) = 0, if 4mn − r2 < 0. This is actually
equivalent to Condition (ii). The vanishing order of φ ∈ Jk,l(ρ) is defined as

ordφ = min{n ∈ Q : c(φ;n, r) 6= 0}.

The spaces of Jacobi forms with vanishing order at least 0 ≤ d ∈ Q play a central
role in Section 5. Define

Jk,m(ρ)[d] =
{
φ ∈ Jk,m(ρ) : ordφ ≥ d

}
.(4.1)

The definitions of maps Dν that were given on page 29 of [EZ85] carry over to our
setting, if ρ is trivial on Aff1(C). Given a Jacobi form φ of even weight k, index m,
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and type ρ : ΓJ → GL(Vρ), set

D2ν(φ), :=
∑

0≤µ≤ν

(−1)µ (2ν)! (k + 2ν − µ− 2)!

µ! (2ν − 2µ)! (k + ν − 2)!

( ∂z
2πi

)2ν−2µ( ∂τ
2πi

)µ
φ,

and

D2ν+1(φ), :=
∑

0≤µ≤ν

(−1)µ (2ν + 1)! (k + 2ν − µ− 1)!

µ! (2ν + 1− 2µ)! (k + ν − 1)!

( ∂z
2πi

)2ν+1−2µ( ∂τ
2πi

)µ
φ.

Note that either D2ν(φ) or D2ν+1(φ) is zero depending on k and ρ. Combining the
above maps, we define D(k, ρ) for irreducible ρ.

D(k, ρ) =

{
D0 ⊕ · · · ⊕ D2⌊m⌋, if (−1)kρ(−I2) is trivial;

D1 ⊕ · · · ⊕ D2⌊m⌋−1, otherwise.
.

If ρ =
⊕

i ρi decomposes into irreducible components, then we set

D(k, ρ) =
⊕

i

D(k, ρi).

For irreducible ρ, it is not hard to see that the image of D(k, ρ) restricted to

Jk,m(ρ)[d] is contained in
⊕⌊m⌋

ν=0Mk+2ν(ρ)[d] or
⊕⌊m⌋−1

ν=0 Mk+2ν+1(ρ)[d].
The next theorem is mostly due to Eichler and Zagier [EZ85]. We simply adapt it

to the case of vector valued Jacobi forms.

Theorem 4.3. Let k ∈ Z, m ∈ Q, and suppose that ρ : Aff1(C) ⊗ ΓJ → GL(Vρ) is
trivial on Aff1(C). Then the map D(k, ρ) is injective.

Proof. We may restrict to the case of irreducible ρ. Further, we only treat the case
of trivial (−1)kρ(−I2). The proof in the other case works completely analogously.

Choose 0 < N ∈ Z such that ρ is trivial on (NZ)2 ×̃NZ ⊆ ΓJ. In particular, we
have Nm ∈ Z. Given any Jacobi form φ of weight k and type ρ : ΓJ → Vρ, odd
Taylor coefficients of φ vanish by assumption on (−1)kρ(−I2). This follows directly
from the Jacobi transformation law applied to −I2 ∈ SL2(Z).

Observe that D(k, ρ) injectively maps the set of all 2νth Taylor coefficient (0 ≤

ν ≤ ⌊m⌋) to
⊕⌊m⌋

ν=0Mk+2ν(ρ). If D(k, ρ)(φ) = 0, we find that the first 2⌊m⌋+1 ≥ 2m
Taylor coefficients of f ◦φ vanish for any linear functional f on Vρ. On the other
hand, z 7→ f ◦φ(τ, Nz) is a holomorphic elliptic function of index N2m ∈ Z. By
assumption it has at least N2(2⌊m⌋+ 2) zeros in the range z = α+ βτ , α, β ∈ [0, 1).
Consequently, f ◦φ = 0, and since f was any functional on Vρ, we have φ = 0. �

Consider the restriction of σl to Aff1(C) ⊂ GL2(C) (see Equation (2.1)) and denote
it by σl as well. For m ∈ Z, it was shown in [IK11] that

Jk,m(σl) ∼=

l⊕

i=0

Jk+i,m.

This isomorphism is induced by differential operators with constant coefficients as
stated on page 786 of [IK11]. Hence it generalized to arbitrary m ∈ Q and to any
representation ρ : ΓJ → GL(Vρ). We have

Jk,m(σl ⊗ ρ)[d] ∼=

l⊕

i=0

Jk+i,m(ρ)[d].
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Combining this with the statement of Theorem 4.3, we obtain

Corollary 4.4. Let k ∈ Z, m ∈ Q, and ρ : ΓJ → Vρ be an irreducible unitary
representation. Then there is an injective map

Jk,m(σl ⊗ ρ)[d] →֒
l⊕

i=0

{⊕⌊m⌋
ν=0Mk+i+2ν(ρ)[d], if (−1)k+iρ(−I2) is trivial;⊕⌊m⌋−1
ν=0 Mk+i+2ν+1(ρ)[d], otherwise.

We finish this section with a statement on the connection of Siegel modular forms
and Jacobi forms.

Proposition 4.5. Let Φ ∈ M
(2)
k,l (ρ), k ∈ 1

2
Z, l ∈ Z be a Siegel modular form, where

ρ is a unitary representation of Sp2(Z) (whose kernel has finite index). Then for all
m ∈ Q the function

φm(τ, z) =
∑

n,r∈Q

c(Φ;n, r,m) qnζr

is a Jacobi form of weight k, index m, and type σl ⊗ ρ.
In particular, we have a Fourier Jacobi expansion

∑

0≤m∈Q

φm(τ, z) q
′m.

Proof. This is a straight forward verification. �

5. Formal Fourier Jacobi expansions

Given a Siegel modular forms Φ ∈ M
(2)
k,l (ρ), there is a Fourier Jacobi expansion as

discussed at the end of the previous section. The notion of formal Fourier Jacobi
expansions mimics this.

Definition 5.1. Fix k ∈ 1
2
Z, l ∈ Z, and a unitary representation ρ of S̃p2(Z) (whose

kernel has finite index). Let

Φ =
∑

0≤m∈Q

φm q
′m ∈

⊕

m

Jk,m(ρ⊗ σl) q
′m.

We call Φ a formal Fourier Jacobi expansion of weight (k, l) and type ρ if

c(φm;n, r) = (det k ⊗ σl)
−1(S) ρ−1(rot(S)) c(φn;m, r)

for all n, r ∈ Q, where S = ( 0 1
1 0 ).

Denote the space of such expansions by FM
(2)
k,l (ρ).

Proposition 5.2. Suppose that Φ and Ψ are formal Fourier Jacobi expansions of
same weight and type. If φm = ψm for 0 ≤ m < m′ for some 0 < m′ ∈ Q, then
φm′ − ψm′ ∈ Jk,m′(ρ⊗ l)[m′].

Proof. For any 0 ≤ n < m′ and any r ∈ Z, we have

c(φm′ − ψm′ ;n, r) = c(φm′ ;n, r)− c(ψm′ ;n, r)

= (det k ⊗ σl)
−1(S) ρ−1(rot(S))

(
c(φn;m

′, r)− c(ψn;m
′, r)

)
= 0.

�

The idea of proof of the next theorem is very much inspired by [IPY12], and was
initially brought up by Akoi [Aok00].
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Theorem 5.3. We have

dimFM
(2)
k,l (ρ) ≤ dimM

(2)
k,l (ρ) +O(k2)

as k → ∞, k ∈ 2Z.

Corollary 5.4. There is 0 < k0 ∈ Z such that

dimFMk,l(ρ) < 2 dimMk,l(ρ)

for all k > k0.

Proof of Theorem 5.3. By Proposition 4.5 and 5.2, we have

FM
(2)
k,l (ρ) →֒

⊕

0≤m∈Q

Jk,m(σl ⊗ ρ)[m].

We are hence reduced to estimating the dimension of the right hand side. Corollary 4.4
says that there is a map

Jk,m(σl ⊗ ρ)[m] →֒
l⊕

i=0

Jk+i,m(ρ)[m].

Plug this into the previous equation. Then Equation (3.2) shows that it suffices to
treat the case l = 0.

By Proposition 4.2, we need to consider
⊕

0≤m0<1

⊕

0≤m∈m0+Z

Jk,m(σl ⊗ ρ(m0))[m]

where ρ =
⊕

m0
ρ(m0) and ρ(m0)

(
I2, (0, 0), 1

)
= exp(2πim0).

We consider the generating function of this series, and adapt the calculations pre-
sented in Section 4 of [IPY12]. The change of order of summation is justified because
all coefficients are positive.

∑

2 | k∈Z

∑

0≤m0<1

∞∑

m=0

m∑

ν=0

dimMk+2ν(ρ(m0))[m0 +m] tk

=
∑

0≤m0<1

∞∑

m=0

m∑

ν=0

( ∑

2 | k∈Z

dimMk+2ν−12m(ρ(m0))[m0] t
k+2ν−12m

)
t12m−2ν

≤

∑
0≤m0<1 pg(ρ(m0); t)

(1− t4)(1− t6)

∞∑

m=0

m∑

ν=0

t12m−2ν =
pg(ρ; t)

(1− t4)(1− t6)

∞∑

m=0

m∑

ν=0

t12m−2ν .

Here, ≤ means that every coefficient with respect to t on the left hand side is less
than or equal to the corresponding coefficient on the right hand side. The double
sum equals

∞∑

ν=0

∞∑

m=ν

t12m−2ν =
1

1− t12

∞∑

ν=0

t12ν−2ν =
1

(1− t10)(1− t12)
.

This proves the statement, since the generators of
⊕

2 | k M
(2)
k have weight 4, 6, 10,

and 12. �

Lemma 5.5. There is a vector valued Siegel modular form of

(i) odd weight
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(ii) half integral weight k 6∈ Z

whose components have no common zero.

Proof. We prove the second statement only. The first follows along the same lines.
Fix some Siegel modular form Φ of half integral weight k for some finite index

subgroup of S̃p2(Z). For example, any of the theta constants works [Fre91]. There is
0 < j ∈ Z, and a set {αi}1≤i≤j ⊂ Q such that the shifts Φ(Z + αi), 1 ≤ i ≤ j of Φ
have no zero in common. Each such shift is a Siegel modular form for some subgroup

Γi ⊆ S̃p2(Z). We obtain vector valued Siegel modular forms

Φi(Z) =
∑

γ∈Γi\S̃p2(Z)

Φ(Z + αi)
∣∣(2)
k
γ eγ

for the induced representations ρi = Ind
Sp2(Z)
Γi

(1) with representation space Vρi =

span
(
eγ : γ ∈ Γi\Sp2(Z)

)
. Then

(
Φi

)
1≤i≤j

is a vector valued Siegel modular form of

type
⊕

1≤i≤j ρi with the desired property. �

Theorem 5.6. For every k ∈ 1
2
Z, 0 ≤ l ∈ Z, and every unitary representation ρ of

S̃p2(Z) (whose kernel has finite index), we have FM
(2)
k,l (ρ) = M

(2)
k,l (ρ).

Proof. We first prove the case of k ∈ 2Z. By the remark after Definition 3.1, ρ factors
through Sp2(Z). Suppose that

Φ =
∑

0≤m∈Z

φm q
′m ∈ FM

(2)
k,l (ρ).

Choose k0 as in Corollary 5.4, and consider the space

M
(2)
k0

· Φ ⊆ FM
(2)
k+k0,l

(ρ).

By choice of k0, the intersection of M
(2)
k0

· Φ and M
(2)
k+k0,l

(ρ) is not empty. Pick some

Ψ ∈ M
(2)
k0

such that ΨΦ ∈ M
(2)
k+k0,l

(ρ). Next, apply Theorem 6.2 to find that Φ ∈
Mk,l(ρ).

Now, suppose that k ∈ 1
2
Z. Choose a Siegel modular form Ψ as in Lemma 5.5

such that Φ ⊗ Ψ has even weight. By the above, it is a Siegel modular form. Write
Ψi for the components of Ψ. The meromorphic Siegel modular form (ΦΨi) /Ψi is
independent of i, since (ΦΨi)Ψi′ = (ΦΨi′)Ψi for all i, i′. By choice, the components
of Ψ have no common zero. Therefore, (ΦΨi) /Ψi is holomorphic and posses a Fourier
Jacobi expansion. This expansions equals Φ, because multiplication by Ψi is injective
on formal Fourier Jacobi expansions. �

6. Regularity for meromorphic Siegel modular forms

In this section we prove regularity of meromorphic Siegel modular forms which,
in a sense made precise below, have a holomorphic Fourier-Jacobi expansion. Note
that all considerations are independent of Section 5, where we use Theorem 6.1 to
establish Theorem 5.6.

Theorem 6.1. Let Φ =
∑

0≤m∈Q φ q
′m ∈ FM

(2)
k,l (ρ) and Ψ =

∑
0≤m∈Q ψ q

′m ∈ M
(2)
k′ .

Suppose that ΦΨ ∈ M
(2)
k+k′,l(ρ). Then

∑
0≤m∈Q φ q

′m is convergent and Φ ∈ M
(2)
k .
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Proof. We show that Φ has no singularity on the boundary of the Satake compacti-
fication. By the Koecher principle, this implies the statement.

Write D = {x ∈ C : |x| < 1} and Ḋ = D \ {0}. We start be reducing our
considerations to a map Φ∗ : D3 → CP1. To achieve this, we use a special case
of the approach taken in [Bru04]. Let Γ ⊂ Sp2(Z) be a torsion free subgroup such
that the restriction of ρ to Γ is trivial. Set XΓ = Γ\H(2), and define YΓ as the Satake
compaktification of XΓ. Employing Hironaka’s theory to the boundary ∂XΓ ⊂ YΓ and

the divisor of Ψ, we find a resolution of singularities ỸΓ → YΓ. For all (τ0, z0) ∈ HJ,
this yields a holomorphic map D2 × Ḋ → H(2), whose image contains all Z =

( τ0 z0
z0 τ ′

)

with Im τ ′ > y′0 for some y′0 ∈ R. The components correspond to (τ, z) and q′. After
possibly shrinking the image and preimage, and after composing with a suitable
biholomorphic map on D2×Ḋ, we can assume that the pushforward of the derivative
with respect to the canonical coordinate on Ḋ ⊂ D2 × Ḋ is mapped to ∂q′ on H(2).
By abuse of notation we write q′ for the corresponding variable. Denote by E the
divisor {q′ = 0} ⊂ D2 ×D, which is the preimage of ∂XΓ ⊂ YΓ.

Since ΦΨ is a Siegel modular form, it extends from XΓ to YΓ, and so does Ψ.
Therefore the pullback Ψ∗ : D2× Ḋ → CP1 extends to D2 ×D. Its divisor , div(Ψ∗),
is normal crossing. It decomposes as div1(Ψ) + div2(Ψ), where div1(Ψ) is supported
on E, and div2(Ψ)+E is normal crossing. Write EJ for the intersection |div2(Ψ)|∩E,
where we mean by |div2(Ψ)| the support of div2(Ψ). By the above, EJ is smooth and
has codimension 1, if it is not empty.

Fix (τ0, z0) ∈ HJ \ EJ. There is a neighborhood UJ ⊆ HJ of (τ0, z0) and y′0 ∈ R
such that Ψ(Z) 6= 0 for all (τ, z) ∈ UJ and Im(τ ′) > Im(τ ′0). Therefore we have

∂mq′
∣∣
q′=0

(
(ΦΨ)∗ /Ψ∗

)
= (φm)

∗

as a convergent series. By the assumptions, (φm)
∗ extends to HJ. By applying to

the above equation linear functionals on the pullback of Vl ⊗ Vρ, by then restricting
to suitable smooth subvarieties of HJ, and by finally using Theorem 6.2, we establish
the statement. �

The remainder of this section is of purely function theoretic nature. The proof
of Theorem 6.2 builds up on Lemma 6.4 and 6.5, which summarize slightly involved
computations with polynomials whose coefficients are meromorphic functions.

In the proofs of the next theorem and lemmas, we will repeatedly use the Pochham-
mer symbol

(a)n =
n−1∏

i=0

(a− i),(6.1)

which is defined for a ∈ C and 0 ≤ n ∈ Z.

Theorem 6.2. Let f(x, y) be a function that is meromorphic in a neighborhood U of
x = y = 0 in C2. Assume the following:

(i) {(x, y) ∈ U : y = 0} is not a polar divisor of f .
(ii) No irreducible polar divisor of f has a branching point at x = y = 0.
(iii) For all 0 ≤ n ∈ Z, the function ∂ny

∣∣
y=0

f(x, y) admits a holomorphic continuation

to a neighborhood of x = 0.

Then f is holomorphic in x = y = 0.
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Proof. By the assumptions on f and the theory of meromorphic functions presented,
for example, in [Nis01] (following work of Oka), we express f in a sufficiently small
neighborhood of x = y = 0 as follows:

f(x, y) = f̃(x, y)

∑dP
i=0 Pi(x)y

i

∏nQ

j=1

(
Qj,1(x)y +Qj,0(x)

)1+mj
.(6.2)

We have 0 ≤ nQ, dP , mj ∈ Z (1 ≤ j ≤ nQ). Functions that appear on the right hand
side are holomorphic in some neighborhood of x = y = 0 or x = 0, respectively. They
satisfy f̃(0, 0) 6= 0, PdP (0) 6= 0, Pi(0) = 0 (0 ≤ i < dP ), Qj,1(0) 6= 0, Qj,0(0) = 0. We
can assume that for j 6= j′, −Qj,0 /Qj,1 6= −Qj′,0 /Qj′,1 as functions in a neighborhood

of x = 0. By dividing both sides by f̃ , we can and will assume without loss of
generality that f̃(x, y) = 1. Write P (x, y) =

∑
i Pi(x)y

i for the numerator of (6.2).
We may assume that the numerator and denominator in (6.2) are coprime, which
amounts to the assertion that for all 1 ≤ j ≤ nQ, we have P

(
x, −Qj,0(x) /Qj,1(x)

)
6=

0 as functions in a neighborhood of x = 0.
We will show by contradiction that nQ = 0, that is, f(x, y) = P (x, y) is holomorphic

in x = y = 0.
For convenience, we suppress the dependence on x. Furthermore, we use exponents

0 ≤ ej ∈ Z. Away from x = 0, we have

∂ny
∣∣
y=0

f( · , y)

=

dP∑

i=0

(
n

i

)
i!Pi ∂

n−i
y

∣∣
y=0

( nQ∏

j=1

(
Qj,1y +Qj,0

)−1−mj

)

=

dP∑

i=0

(
n

i

)
i!Pi

∑
∑

j ej=n−i

(
n− i

e1, e2, . . .

) nQ∏

j=1

(−1)ej(mj + ej)ej Q
ej
j,1Q

−1−mj−ej
j,0

=
( nQ∏

j=1

Q
−1−mj

j,0

) dP∑

i=0

Pi

∑
∑

j ej=n−i

(
mj + ej
mj

) nQ∏

j=1

(−Qj,1 /Qj,0)
ej .

Assuming nQ 6= 0, apply Lemma 6.4 and 6.5 to obtain a contradiction. �

Lemma 6.3. Let Hj(x) (1 ≤ j ≤ nH) be pairwise distinct meromorphic functions in
a neighborhood of x = 0. Then for all 0 < n ∈ Z, we have

∑
∑nH

j=1 ej=n

nH∏

j=1

H
ej
j =

nH∑

j=1

Hn+nH

j

∏

j′ 6=j

(Hj −Hj′)
−1,

where the exponents ej ∈ Z are nonnegative, for all j.

Proof. Compute the product

∏

j′ 6=j

(Hj −Hj′)
∑

∑nH
j=1 ej=n

nH∏

j=1

H
ej
j
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by repeatedly applying the formula

(Hj′ −Hj′′)
∑

∑nH
j=1 ej=n

H
ej
j = Hj′

∑
∑

j ej=n
ej′′=0

nH∏

j=1

H
ej
j −Hj′′

∑
∑

j ej=n
ej′=0

nH∏

j=1

H
ej
j . �

Lemma 6.4. Let Hj(x) (1 ≤ j ≤ nH) be pairwise distinct, nonzero meromorphic

functions in a neighborhood of 0. Fix a holomorphic function P (x, y) =
∑dP

i=0 Pi(x)y
i,

and suppose that P (x,Hj(x)
−1) 6= 0 as functions of x, for all 1 ≤ j ≤ nH . Given

nonnegative integers mj, we have

dP∑

i=0

Pi

∑
∑nH

j=1 ej=n

(
ej +mj

mj

)
H

ej
j =

nH∑

j=1

Hn
j Rj(H1, . . . , HnH

;n)

with rational functions Rj. Moreover, the Rj(H1(x), . . . , HnH
(x);n) (1 ≤ j ≤ nH)

are nonzero polynomials in n with coefficients that are meromorphic functions in x.

Proof. Write ∂j for the formal derivative with respect to Hj. Using Lemma 6.3, we
find

∑
∑nH

j=1 ej=n

(
ej +mj

mj

)
H

ej
j =

( nH∏

j=1

∂
mj

Hj

mj !

)( ∑
∑nH

j=1 ej=n

nH∏

j=1

H
ej+mj

j

)

=
( nH∏

j=1

∂
mj

Hj

mj !

)(( nH∏

j=1

H
mj

j

) nH∑

j=1

Hn+nH

j

∏

j′ 6=j

(Hj −Hj′)
−1
)
.

We plug this into the left hand side of the formula in the statement. Note that the
sum over i and the formal derivatives commute, since Pi, as a variable, is independent
of Hj.

( nH∏

j=1

∂
mj

Hj

mj!

)( nH∑

j=1

Hn
j

P (H−1
j )HnH

j

∏
j′ H

mj′

j′∏
j′ 6=j(Hj −Hj′)

)

=

nH∑

j=1

Hn
j

mj∑

l=0

(n)mj−lH
l−mj

j

∂lj
mj!

(
P (H−1

j )H
nH+mj

j

(∏

j′ 6=j

∂
mj′

j′

mj′!

H
mj′

j′

(Hj −Hj′)

))
.

This proves the first assertion of the lemma.
To prove that the Rj do not vanish as polynomials in n, we start by computing

∂
mj′

j′

mj′!

H
mj′

j′

(Hj −Hj′)
=

1

mj′ !

mj′∑

l=0

(
mj′

l

)
l!(mj′)mj′−lH

l
j′

(Hj −Hj′)1+l

=
1

(Hj −Hj′)
1+mj′

mj′∑

l=0

(
mj′

l

)
H l

j′(Hj −Hj′)
mj′−l =

H
mj′

j

(Hj −Hj′)
1+mj′

.

Therefore, we have

Rj(H1, . . . , HnH
;n) = nmjP (H−1

j )HnH

j

∏

j′ 6=j

H
mj′

j

(Hj −Hj′)
1+mj′

+O(nmj−1),

where Rj is a polynomial in n. It suffices to notice that the leading coefficient, the
coefficient of nmj , is nonzero as a function of x. This proves the second part. �
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Lemma 6.5. Let Hj(x) (1 ≤ j ≤ nH) be pairwise distinct, nonzero meromorphic
functions in a neighborhood of x = 0 whose pole order at x = 0 is at least 1. Further,
let Rj(x, n) (1 ≤ j ≤ nH) be polynomials in n whose coefficients are meromorphic
in x.

If for all 0 < n ∈ Z,

nH∑

j=1

Hn
j Rj(x, n)

is regular at x = 0, then Rj = 0 for all 1 ≤ j ≤ nH .

Proof. Set J = {1 ≤ j ≤ nJ : Rj 6= 0}. The statement is equivalent to J = ∅. We
assume that J is not empty.

Let oH = −minj∈J(ordx=0Hj) be the maximal pole order of Hj at x = 0, and
JH = {j ∈ J : −ordx=0Hj = oH} be the set of indices for which this maximum
is attained. Further, let dR = maxj∈JH(degnRj) be the maximal degree of Rj as a
polynomial in n, and let JR = {j ∈ JH : degnRj = dR}. By construction, J 6= ∅
implies JH 6= ∅, which implies JR 6= ∅. Write Rj,dR for the dRth coefficient of Rj . We
will establish the lemma by finding a contradiction.

Choose some 0 ≤ oR ∈ Z such that the coefficients of xoRRj(x, n) are holomorphic
in x = 0 for all 1 ≤ j ≤ n. We rewrite the regularity assumption:

nH∑

j=1

Hn
j Rj(x, n) = ndRx−noH−oR

nH∑

j=1

(xoHHj)
n(n−dRxoRRj(x, n)),

must be regular at x = 0. In other words, for all 0 ≤ l < nH , we have

nH∑

j=1

(xoHHj)
l
(
(xoHHj)

n(xoRRj,dR(x) +O((n+ l)−1))
)
≡ 0 (modxnoH+oR).

The Vandermon matrix ((xoHHj)
l)j,l is invertible as a matrix of meromorphic func-

tions. The 0th coefficient of (xoHHj)
n is nonzero for j ∈ JH ⊇ JR. By choosing n

large enough, we therefore see that

xoRRj,dR(x) ≡ O(n−1) (modxñ(n))

with ñ(n) → ∞ as n → ∞. This shows Rj,dR = 0 for all j ∈ JH . This contradicts
the choice of dR, and hence proves the lemma. �

7. Generating functions for special cycles on Shimura varieties

Let L be a lattice of signature (n, 2) with attached quadratic form qL. We adopt the
notation used in the introduction. That is, we denote the dual of L by L#, and write
discr L = (L# /L)r for powers of the attached discriminant form. Fix a subgroup Γ of
the orthogonal group O(L) that fixes the discriminant form discL pointwise. Write
Gr−(L ⊗ C) for the Grassmannian of 2-dimensional negative subspaces of L ⊗ C.
There are rational quadratic cycles on the Shimura variety XΓ = Γ\Gr−(L ⊗ R).
Given a tuple of vectors v = (v1, . . . , vr) in L ⊗Q, let

Z(v) = {W ∈ Gr−(L ⊗ R) : span(v) ⊥W}.

This cycle is non-trivial, if span(v) ⊆ L⊗Q is positive.
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Kudla defined so-called special cycles onXΓ [Kud97]. Associate to each v a moment
matrix qL(v) =

1
2
(〈vi, vj〉L)1≤i,j≤r, where 〈v, w〉L = qL(v + w)− qL(v)− qL(w). Given

a semi-positive definite matrix 0 ≤ T ∈ MatTr (Q) and λ ∈ discr L, set

Ω(T, µ) =
{
v ∈ µ+ Lr : T = qL(v)

}
.

The symmetries Γ act on Ω(T, µ), and there are finitely many orbits. Define

Z(T, µ) =
∑

v∈Γ\Ω(T,µ)

Z(v).

All cycles of this form descend to cycles on XΓ, which we also denote by Z(T, µ).
Writing rk(T ) for the rank of T , we find that Z(T, µ) is a rk(T )-cycle, whose class in

CHrk(T )(XΓ)C is denoted by {Z(T, µ)}.
Let ω∨ be the anti-canonical bundle onXΓ, and write {ω∨} for its class in CH1(XΓ)C.

Fix a linear functional on CHr(XΓ). Define the formal Fourier expansion

ΘΓ,f(Z) =
∑

µ∈discr L
0≤T∈MatTr (Q)

f
(
{Z(T, µ)} · {ω∨}r−rk(T )

)
exp

(
2πi trace(TZ)

)
eµ.(7.1)

Here, eµ is a canonical basis vector of the representation space C
[
discr L

]
of the Weil

representation of the double cover S̃pr(Z) of Spr(Z).
We now restrict to the case r = 2. In his thesis, Zhang [Zha09] proved that

ΘΓ,f(Z) is a formal Fourier Jacobi expansions of weight 1 + n
2
. This is essentially

Proposition 2.6 on page 22. Note that he does not make use of Condition 1 of his
Theorem 2.5 while proving this proposition.

Remark 7.1. The type of ΘΓ,f stated in [Zha09] is slightly incorrect. On page 20,
Zhang affirms that, in his notation,

F (T, λ) =
√
det(A)

n′+n√
det(A)

n′−n
F (AtraceTA, λA).

He argues that this holds if n′ is even. But actually, F (T, λ) is basis independent.
Consequently, the required invariance does not hold if 4 ∤n′, while n′ = 2 in our
application. This can be fixed easily, by considering the subrepresentation of the Weil
representation ρL,r (in Zhang’s notation), which comes with the matching sign.

Corollary 7.2. For any subgroup Γ ⊆ O(L) as above and every linear functional f
on the Chow group CH2(XΓ) the function ΘΓ,f is a vector valued Siegel modular form
of weight 1 + n

2
.

Proof. This follows when combining Zhang’s results and Theorem 5.6. �

Using this statement, we can reprove Theorem 3.1 of [Zha09].

Corollary 7.3. The space

span
(
{Z(T, µ)} : 0 < T ∈ MatT2 (Q), µ ∈ discr L

)
⊆ CH2(XΓ)C

is finite dimensional.

Proof. This follows from dimM
(2)
k (ρ) <∞, which holds for all k ∈ 1

2
Z and any unitary

representation ρ of S̃p2(Z). �
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8. Computing Siegel modular forms via Fourier Jacobi expansions

In this section, we assume that the base field for all modular forms is Q. All
statements concerning dimensions and Fourier expansions that we will make use of
hold for any sufficiently large field Q ⊆ K ⊆ C. If the reader wishes, he can adjust
Algorithm 8.5 accordingly.

We deal with truncated Fourier expansions of Jacobi forms, Siegel modular forms
and formal Fourier Jacobi expansions. We start be defining appropriate index sets.
Given 0 < B ∈ Z, set

I(2)(B), =
{
(n, r,m) ∈ Q3 : 0 ≤ m,n < B, 4nm− r2 ≥ 0

}

IJ(m;B) =
{
(n, r) ∈ Q2 : 0 ≤ n < B, 4nm− r2 ≥ 0

}
.

By abuse of notation, we denote the Fourier expansion map always by the same

symbol FEB. Given any representation ρ of S̃p2(Z) or ΓJ with representation space
Vρ, define

FEB : M
(1)
k (ρ) → V B

ρ , Φ 7−→
(
c(Φ;n)

)
0≤n<B

;

FEB : M
(2)
k,l (ρ) → (Vσl

⊗ Vρ)
I(2)(B), Φ 7−→

(
c(Φ;n, r,m)

)
(n,r,m)

;

FEB : Jk,m(σl ⊗ ρ) → (Vσl
⊗ Vρ)

IJ(m;B), φ 7−→
(
c(φ;n, r)

)
(n,r)

;

FEB : FM
(2)
k,l (ρ) →

⊕

0≤m<B

(Vσl
⊗ Vρ)

IJ(m;B), (φm)m 7−→
((
c(φm;n, r)

)
(n,r)

)
0≤m<B

.

There are truncation maps from V IJ(m;B′) to V IJ(m;B) if B′ ≥ B. When comparing
Fourier expansions that have different “precision”, we will freely apply them.

Proposition 8.1. Given 0 ≤ k ∈ 1
2
Z and a representation ρ of S̃p1(Z), the map

FEB : M
(1)
k (ρ) → V B

ρ is injective for B > k
12

+ 1.

Proof. Suppose that there is a modular form φ ∈ M
(1)
k (ρ) whose first l :=

⌊
k
12

⌋
+ 1

Fourier coefficients vanish. Then ∆−lφ, where ∆ is the discriminant form, is a non-
zero, holomorphic modular form of negative weight, which cannot be. �

Proposition 8.2. Given 0 ≤ k ∈ 1
2
Z, 0 < m ∈ Q, and a representation ρ of Γ̃J with

representation space Vρ, the map FEB : Jk,m(σl ⊗ ρ) →
(
Vσl

⊗ Vρ
)IJ(m;B)

is injective

for B > k+l+2⌊m⌋
12

+ 1.

Proof. The bijection

Jk,m(σl ⊗ ρ) ∼=

l⊕

i=0

Jk+i,m(ρ)

is induced by differential operators with constant coefficients. Hence it is compatible
with taking Fourier expansions. It is thus sufficient to treat the case l = 0.

We have

FEB
(
Jk,m(ρ)

)
→֒

{⊕⌊m⌋
ν=0FEB

(
M

(1)
k+2ν(ρ)

)
, if (−1)kρ(−I2) is trivial;⊕⌊m⌋−1

ν=0 FEB
(
M

(1)
k+2ν+1(ρ)

)
, otherwise.
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Elements of M
(1)
k+i(ρ), 0 ≤ i ≤ 2⌊m⌋ are uniquely determined by their first k+2⌊m⌋

12
+ 1

Fourier coefficients. This proves the proposition. �

Proposition 8.3. Let k ∈ 1
2
Z, l ∈ Z, and 0 < m ∈ Q. Further, let ρ be a represen-

tation of Γ̃J with representation space Vρ. Given 0 < B ∈ Z, fix families

(φm)0≤m<B, (ψm)0≤m<B ∈
⊕

0≤m<B

Jk,m(σl ⊗ ρ).

Suppose they satisfy FE k+l
10

+1(φm) = FE k+l
10

+1(ψm) for all 0 ≤ m ≤ k+l
10

and

c(φm;n, r) = (det k ⊗ σl)
−1(S) ρ−1(rot(S)) c(φn;m, r),

c(ψm;n, r) = (det k ⊗ σl)
−1(S) ρ−1(rot(S)) c(ψn;m, r),

for all 0 < n,m < B and all r ∈ Z. Then we have φm = ψm for all 0 ≤ m < B.

Proof. By Proposition 8.2, φm and ψm are determined by c(φm;n, r) and c(ψm;n, r)

with n ≤ k+l+2⌊m⌋
12

. For m ≤ k+l
10

, we have k+l+2m
12

< k+l
10

+ 1, and hence φm = ψm.
The rest of the proof is analog to the proof of Proposition 5.2. It suffices to

show that φm, m > k+l
10

is uniquely determined by all φm′ , m′ < m. Employing

Proposition 8.2, this follows from the inequality k+l+2m
12

< m, which holds exactly if

m > k+l
10

. �

Given k ∈ 1
2
Z, l ∈ Z, a unitary representation ρ of S̃p2(Z), and 0 < B ∈ Z, define

FM
(2)
k,l (ρ)B =

{
(φm)0≤m<B ∈

⊕

0≤m<B

FEB
(
Jk,m(σl ⊗ ρ)

)
:

c(φm;n, r) = (det k ⊗ σl)
−1(S) ρ−1(rot(S)) c(φn;m, r)

for all m,n < B and all r ∈ Z
}

.

Proposition 8.4. Given k ∈ 1
2
∈ Z, l ∈ Z, a unitary representation ρ of S̃p2(Z) with

representation space Vρ, and k+l
10

< B ≤ B′ ∈ Z the following inclusion holds.

FM
(2)
k,l (ρ)B′ ⊆ FM

(2)
k,l (ρ)B,

where we implicitly truncate elements of the space on the right hand side.

Proof. This follows from Proposition 8.3: Given the first k+l
10

Fourier Jacobi coefficient

of any element in FM
(2)
k,l (ρ)B or FM

(2)
k,l (ρ)B′ , all others are uniquely defined. �

Algorithm 8.5. Let 0 ≤ k ∈ 1
2
Z, 0 ≤ l ∈ Z, and let ρ be a unitary representa-

tion of S̃p2(Z). Given k+l
10

< B ∈ Z, the following algorithm computes the space

FEB
(
M

(2)
k,l (ρ)

)
.

(1) Compute FEB
(
Jk,m(σl ⊗ ρ)

)
for all 0 ≤ m < B.

(2) Compute FM
(2)
k,l (ρ)B.

(3) If dimFM
(2)
k,l (ρ)B = dimM

(2)
k,l (ρ), then we are done. Otherwise, increase B and go

back to Step 1.

After processing these steps, there is a one-to-one correspondence of elements Φ ∈

FEB
(
M

(2)
k,l (ρ)

)
and elements (φm) ∈ FM

(2)
k,l (ρ)B via c(Φ;n, r,m) = c(φm;n, r).
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Remarks 8.6. All steps except for the last on can be implemented based on the
current state of knowledge.

(1) Step 1 requires use of results in [IPY12] and [Rau12]. In the former paper an

explicit bijection of Jk,m(σl⊗ρ) and
⊕l

i=0 Jk+i,m(ρ) was given. In order to compute

FEB
(
Jk,m(ρ)

)
using the latter work, note that Jk,m(ρ) ∼= M

(1)

k− 1
2

(ρ̌m ⊗ ρ) (ρ̌m is

the dual of the Weil representation for the lattice (2m) – see [Rau12]) via theta
decomposition.

(2) Step 2 can be done by means of basic linear algebra.

(3) Step 3 requires computations of dimM
(2)
k,l (ρ). If ρ is trivial and k ≥ 4 (l = 0)

or k ≥ 5 (l > 0), this has been done by Tsushima [Tsu83]. To the author’s
knowledge, the case of non-trivial ρ has not yet been treated.

Proof. The algorithm terminates, because we have

FM
(2)
k,l (ρ) =

⋂

0<B∈Z

FM
(2)
k,l (ρ)B,

and dimFM
(2)
k,l (ρ)B is monotonically decreasing for sufficiently large B by Proposi-

tion 8.4.
Correctness of Algorithm 8.5 follows, because we have

FEB
(
M

(2)
k,l (ρ)

)
⊆ FM

(2)
k,l (ρ)B

for all 0 < B ∈ Z. If the dimension check in Step 3 succeeds, then equality holds. �
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