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Abstract

We present an explicit description, in terms of central simple al-

gebras, of a cup-product map which occurs in the statement of local

Tate duality for Galois modules of prime order p. Given cocycles f

and g, we construct a central simple algebra of dimension p2 whose

class in the Brauer group gives the cup-product f ∪ g. This algebra is

as small as possible.

Introduction

Let K be any field and let M be a GK-module of prime cardinality p, where p

is not equal to char(K). In this paper, we give an explicit description of the

following cup-product which occurs in the statement of local Tate duality:

∪ : H1(GK,M)×H1(GK,M
∨) −→ H2(GK, µp) ∼= Br(K)[p]. (1)

The main result is Theorem 1.6 where, given elements 0 6= f ∈ H1(GK,M)

and 0 6= g ∈ H1(GK,M
∨), we construct a central simple algebra D such that

1. The class of D in Br(K) is the class of the cup-product f ∪ g.

2. dimK(D) = p2. Therefore, D is a division algebra if and only if

f ∪ g 6= 0.
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In the prime order case, the usual construction gives a central simple algebra

which can have dimension as large as p4(p−1)4 in general. Our minimisation

of the dimension of the central simple algebra makes the cup-product (1)

more amenable to explicit computation.

1 The Artin-Wedderburn theorem and local

Tate duality

Let K be a field. We will consider K to be fixed throughout the paper and

will use the following notation:

Ks a fixed separable closure of K

GK the absolute Galois group of K, GK = Gal(Ks/K)

M a GK-module of cardinality p prime and not divisible by char(K)

µp the group of pth roots of unity in Ks

M∨ the Tate dual of M , M∨ = Hom(M,µp).
For elements f, g, ϕ, . . . of cohomology groups, we often employ the notation

f0, g0, ϕ0, . . . to refer to a choice of representative cocycles. From now on, we

fix 0 6= f ∈ H1(GK,M) and 0 6= g ∈ H1(GK,M
∨). In order to compute the

cup-product f ∪ g as a central simple algebra, we must replace GK with a

finite Galois group. The action of GK on M gives a map GK → Aut(M). Let

HM denote the kernel of this map and consider the inflation-restriction exact

sequence

0 // H1(GK/HM ,M) Inf // H1(GK,M) Res // H1(HM ,M)GK/HM

// H2(GK/HM ,M).

Observe that GK/HM injects into Aut(M), which has order p − 1. Hence,

GK/HM has order coprime to #M = p and

H1(GK/HM ,M) = H2(GK/HM ,M) = 0.
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Therefore, the restriction map gives an isomorphism

H1(GK,M) ∼= H1(HM ,M)GK/HM = HomGK
(HM ,M).

Let Nf denote the kernel of the restriction of f to HM . Then the isomorphism

above shows that Nf / GK. Because f 6= 0, the injective GK-homomorphism

HM/Nf →M induced by f is also surjective. So HM/Nf has order p. In the

same way, we define HM∨ and Ng.

Lemma 1.1. If Nf = Ng, then M and M∨ are isomorphic as GK-modules.

Proof. We have isomorphisms of GK-modules HM/Nf →M and HM∨/Ng →
M∨ induced by f and g respectively. So it suffices to show that HM/Nf =

HM∨/Ng. But HM/Nf is the unique Sylow p-subgroup of GK/Nf
∼= HM/Nfo

GK/HM and HM∨/Ng is also an order p subgroup of GK/Nf = GK/Ng.

Corollary 1.2. If Nf = Ng and p > 2, then f ∪ g = 0.

Proof. By the lemma above, we know that M and M∨ are isomorphic as

GK-modules. The cup-product map is anti-symmetric and p > 2 so anti-

symmetric implies alternating. Thus, it is enough to show that g = nf

for some n ∈ Z. The restriction map Res : H1(GK,M) → H1(HM ,M) =

Hom(HM ,M) is injective, so it suffices to show that Res(g) = nRes(f) for

some n ∈ Z. Now Res(f) and Res(g) both have kernel Nf , so they both

arise from isomorphisms HM/Nf →M . But M has order p, so any two such

isomorphisms differ by a scalar multiple.

Let N = Nf ∩Ng. Consider the inflation-restriction exact sequence

0 // H1(GK/N,M) Inf // H1(GK,M) Res // H1(N,M).

By definition of N , the element f is in the kernel of restriction to N . So f

comes from an element of H1(GK/N,M), which we will also call f . Similarly,
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g comes from an element ofH1(GK/N,M), which we will also call g. Now, the

properties of the cup-product mean that the following diagram commutes:

H1(GK,M)×H1(GK,M
∨) ∪ // H2(GK, µp)

H1(GK/N,M)×H1(GK/N,M
∨)

Inf

OO

Inf

OO

∪ // H2(GK/N, µp)

Inf

OO

Therefore, we can reduce to studying the cup-product

∪ : H1(GK/N,M)×H1(GK/N,M
∨) −→ H2(GK/N, µp). (2)

Let L = KN
s so that Gal(L/K) = GK/N . Thus, L/K is a finite Galois

extension of degree dividing p2(p − 1)2. Note that the action of GK on

M∨ = Hom(M,µp) is given by (s · φ)(m) = s · φ(s−1 ·m) for all s ∈ GK and

all m ∈M . Hence, µp is fixed by all elements in HM ∩HM∨ , so µp ⊂ L∗. We

have the following commutative diagram:

H2(GK, µp)
� � // H2(GK, K

∗
s )

∼= // Br(K)

H2(Gal(L/K), µp)

Inf

OO

// H2(Gal(L/K), L∗)
∼= // Br(L/K)

?�

OO

where Br(L/K) denotes the subgroup of Br(K) consisting of the classes of

central simple algebras over K which are split by L/K. The isomorphism

H2(Gal(L/K), L∗)→ Br(L/K) is induced by the map sending a 2-cocycle ϑ

to the central simple algebra Aϑ as defined below.

Definition 1.3. Let L/K be a finite Galois extension and let ϑ ∈ Z2(Gal(L/K), L∗)

be a 2-cocycle. Define the K-algebra Aϑ to be the left L-vector space with

basis {es}s∈Gal(L/K) and multiplication given by

esx = s(x)es ∀ s ∈ Gal(L/K), ∀ x ∈ L

eset = ϑ(s, t)est ∀ s, t ∈ Gal(L/K).
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Aϑ is a central simple algebra of dimension [L : K]2 over K. See, for example,

[3], where this is Theorem 29.12.

Definition 1.4. Let ϕ = f ∪ g. Fix representative cocycles f0, g0 for f, g

respectively. The formula given in the remark at the end of §2.4 of [2] tells

us that a representative 2-cocycle for ϕ is ϕ0 : Gal(L/K)×Gal(L/K)→ µp,

given by

ϕ0(s, t) = (s · g0(t))(f0(s)). (3)

Lemma 1.5. If Nf = Ng and p = 2, then f ∪ g corresponds to a quaternion

algebra generated by x, y such that K(x) ∼= K
Nf
s , x2 ∈ K∗, y2 = −1 and

yx = −xy. Consequently, f ∪ g = 0 if and only if −1 ∈ N
K

Nf
s /K

(K
Nf
s ).

Proof. This follows from the explicit construction of a central simple algebra

given above. By [1], Theorem 8.14, the quaternion algebra Aϕ0 is a division

ring if and only if y2 /∈ NK(x)/K(K(x)).

Having dealt with the case Nf = Ng for all p, henceforth we assume that

Nf 6= Ng. Below, we state the main result which will be proved in this paper.

Theorem 1.6. Write K
ker(f0)
s = K(α), K

ker(g0)
s = K(β) with TrK(α)/K(α) =

0 = TrK(β)/K(β). Let σ ∈ GK be such that σ fixes the normal closure of

K(β, µp) and σ(α) 6= α. Likewise, let ρ ∈ GK act trivially on the normal

closure of K(α, µp) but non-trivially on β. Let ζ = (g0(ρ))(f0(σ)) ∈ µp. Let

hij =
∑p−1

`=0 ζ
j`σ`(αi). Write ρj(β) =

∑p−1
i=0 mijβ

i for mij ∈ K
HM∨
s . Let D be

the left K(β)-vector space with basis {zj}0≤j≤p−1, where z satisfies the same

minimal polynomial over K as α, with multiplication

zβ =

p−1∑
i,j=0

cijβ
izj

where the matrix (cij)i,j = (h1jmij)i,j(hij)
−1
i,j . Then D is a central simple

algebra of dimension p2 over K which gives the class of f ∪ g in Br(K).
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Corollary 1.7. Suppose that p = 2. Then f ∪ g corresponds to a quaternion

algebra over K, generated by two elements x and y such that K(x) ∼= K
ker(g0)
s

and K(y) ∼= K
ker(f0)
s , with x2, y2 ∈ K and yx = −xy. Consequently, f ∪ g is

trivial if and only if x2 ∈ NK(y)/K(K(y)), if and only if y2 ∈ NK(x)/K(K(x)).

Proof. This follows immediately from the Theorem 1.6. The quaternion al-

gebra is a division ring if and only if x2 /∈ NK(y)/K(K(y)), if and only if

y2 /∈ NK(x)/K(K(x)) by [1], Theorem 8.14.

The algebra Aϕ0 has dimension at most p4(p − 1)4 over K. The Artin-

Wedderburn Theorem tells us that Aϕ0
∼= Mn(D) for some n ∈ N and some

division algebra D. The quantity
√

dimK(D) is called the index of Aϕ0 .

Lemma 1.8. K
ker(f0)
s /K and K

ker(g0)
s /K are degree p subextensions of L

which split Aϕ0.

Proof. First, note that ker(f0) is a subgroup of GK because f0 is a 1-cocycle.

Also, f0 defines an injection from the left cosets of ker(f0) in GK to M . This

injection is also a surjection because the restriction of f to HM surjects onto

M . Thus, K
ker(f0)
s /K is a degree p extension. Since N ⊂ Nf ⊂ ker(f0), we

have K
ker(f0)
s ⊂ L. The following diagram commutes:

H2(Gal(L/K), L∗)

Res
��

∼= // Br(L/K)

��

H2(Gal(L/K
ker(f0)
s ), L∗)

∼= // Br
(
L/K

ker(f0)
s

)
(4)

where the map Br(L/K)→ Br
(
L/K

ker(f0)
s

)
is induced by A 7→ A⊗KKker(f0)

s .

The restriction of f to ker(f0) is trivial in H1(ker(f0),M), and the cup-

product commutes with the restriction homomorphism. So we have

Res(f ∪ g) = Res(f) ∪ Res(g) = 0 ∪ Res(g) = 0.
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Therefore, diagram (4) shows that Aϕ0⊗KK
ker(f0)
s is trivial in Br(L/K

ker(f0)
s ).

In other words, K
ker(f0)
s splits Aϕ0 . The argument for K

ker(g0)
s is analogous.

Remark 1.9. If f0 is modified by a coboundary, the subgroup ker(f0) is conju-

gated by an element of GK. Thus, the embedding of K
ker(f0)
s in L is changed.

But the K-isomorphism class of the field K
ker(f0)
s only depends on f .

Corollary 1.10. Suppose that the class of Aϕ0 in Br(K) is non-trivial. Then

Aϕ0 is isomorphic to Mn(D), where D is a central division algebra over

K of dimension p2 and n = p−1[L : K]. Thus, the index of Aϕ0 is equal

to its period, p. Moreover, K
ker(f0)
s and K

ker(g0)
s embed into D as maximal

commutative subalgebras.

Proof. The index of Aϕ0 is the greatest common divisor of the degrees of

finite separable extensions which split Aϕ0 . The extension K
ker(f0)
s /K splits

Aϕ0 . Since K
ker(f0)
s /K has degree p, the index of Aϕ is p. Consequently,

Aϕ0
∼= Mn(D), where D is a central division algebra of dimension p2 over

K, and D has a maximal commutative subalgebra isomorphic to K
ker(f0)
s .

Likewise, K
ker(g0)
s also embeds into D as a maximal commutative subalgebra.

Moreover, Aϕ0 has K-dimension [L : K]2 = n2[D : K] = n2p2. Therefore,

n = p−1[L : K].

We want to compute D explicitly and relate its generators to the splitting

fields K
ker(f0)
s and K

ker(g0)
s . The proof of the Artin-Wedderburn Theorem

shows that D ∼= EndAϕ0
(S)opp for any minimal left ideal S. The same proof

also shows that a left ideal I of Aϕ0
∼= Mn(D) is minimal if and only if

dimK(I) = n[D : K].

Definition 1.11. Let θ =
∑

t∈Gal(L/K
ker(g0)
s )

et and let S be the left ideal of

Aϕ0 generated by θ.
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Proposition 1.12. We have S = {xesθ | x ∈ L, s ∈ R}, where R is a set

of left coset representatives for Gal(L/K
ker(g0)
s ) in Gal(L/K). Moreover, the

dimension of S as a K-vector space satisfies the following equality:

dimK(S) = [Kker(g0)
s : K][L : K] = p[L : K].

Proof. The elements {esθ}s∈Gal(L/K) span the left L-vector space S = Aϕ0θ.

For any s ∈ Gal(L/K), we have

esθ =
∑

t∈Gal(L/K
ker(g0)
s )

eset =
∑

t∈Gal(L/K
ker(g0)
s )

ϕ0(s, t)est =
∑

t∈Gal(L/K
ker(g0)
s )

est

where the last equality holds because ϕ0(s, t) = 1 for all t ∈ Gal(L/K
ker(g0)
s ),

by definition of ϕ0. In particular, if s ∈ Gal(L/K
ker(g0)
s ), we have esθ = θ.

So if R is a set of left coset representatives for Gal(L/K
ker(g0)
s ) in Gal(L/K),

the elements {esθ}s∈R span the left L-vector space S. In fact, these elements

form a left L-basis for S. To show linear independence, suppose that∑
s∈R

xsesθ = 0

for some coefficients xs ∈ L. Then we have

0 =
∑
s∈R

xsesθ =
∑
s∈R

xs
∑

t∈Gal(L/K
ker(g0)
s )

est =
∑

r∈Gal(L/K)

xrer.

But the elements {er}r∈Gal(L/K) form a left L-basis for Aϕ0 . Therefore, we

must have xs = 0 for all s ∈ R. Hence, the elements {esθ}s∈R form a left

L-basis for S, with |R| distinct elements. The cardinality of R is

|Gal(L/K)|
|Gal(L/K

ker(g0)
s )|

= [Kker(g0)
s : K] = p,

whereby the dimension of S as a K-vector space is p[L : K], as required.
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Corollary 1.13. If the class of Aϕ0 in Br(K) is non-trivial, then S is a

minimal left ideal of Aϕ0.

Proof. The proof of the Artin-Wedderburn Theorem shows that a left ideal

in Aϕ0 is minimal if and only if its dimension over K is equal to n[D : K],

where Aϕ0
∼= Mn(D). If the class of Aϕ0 in Br(K) is non-trivial, then we

have

[L : K]2 = dimK(Aϕ0) = n2[D : K] = n2p2.

Thus, a left ideal in Aϕ0 is minimal if and only if its dimension over K is

equal to np2 = p[L : K].

Corollary 1.14. If D 6= K, then D ∼= EndAϕ0
(S)opp.

Proof. By definition, the class of Aϕ0 in Br(K) is trivial if and only if D = K.

The proof of the Artin-Wedderburn Theorem shows that D ∼= EndAϕ0
(S)opp

for any minimal left ideal S of Aϕ0 . Thus, the result follows from Corollary

1.13.

Remark 1.15. If the class of Aϕ0 in Br(K) is trivial, then S is no longer a

minimal left ideal of Aϕ0 . But EndAϕ0
(S)opp is still a central simple algebra

over K of dimension p2 with the same class in Br(K) as Aϕ0 . We will prove

that D = EndAϕ0
(S)opp is as described in Theorem 1.6.

2 Computing the endomorphism ring

Let R be a set of left coset representatives for Gal(L/K
ker(g0)
s ) in Gal(L/K)

and let B = {xes | x ∈ L, s ∈ R}. Proposition 1.12 tells us that S = Aϕ0θ =

Bθ. We would like B to be a subalgebra of Aϕ0 , so we want to choose R so

that it is a subgroup of Gal(L/K).
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Lemma 2.1. Let ρ ∈ HM∨/Nbe such that its image generates HM∨/Ng. Then

R = {ρi}0≤i≤p−1 is a set of left coset representatives for Gal(L/K
ker(g0)
s ) in

Gal(L/K).

Proof. We have #R = [K
ker(g0)
s : K] = p. Thus, it is enough to show that

ρr ∈ Gal(L/K
ker(g0)
s ) = ker(g0)/N if and only if p divides r. But ρ ∈ HM∨/N

and Ng/N = HM∨/N ∩ ker(g0)/N . Hence, ρr ∈ ker(g0)/N if and only if

ρr ∈ Ng/N . But the image of ρ generates HM∨/Ng and [HM∨ : Ng] = p, so

ρr ∈ Ng/N if and only if p divides r.

From now on, we fix R = {ρi}0≤i≤p−1, so B is a subalgebra of Aϕ0 . We

want to compute EndAϕ0
(S)opp. We know that S is a principal left ideal

generated by θ, so any χ ∈ EndAϕ0
(S) is completely determined by χ(θ).

Since χ(θ) ∈ S = Bθ, we have χ(θ) = bθ for some b ∈ B. The question is,

which b can occur? In other words, for which b ∈ B does χ : θ 7→ bθ extend

to a well-defined element of EndAϕ0
(S)? The extension of χ to the whole of

S is given by

χ(cθ) = cχ(θ) ∀ c ∈ B.

This is well-defined because any element of S can be written as cθ for a

unique c ∈ B. But it may not be an Aϕ0-endomorphism. We see that χ gives

a well-defined element of EndAϕ0
(S) if and only if

χ(aθ) = aχ(θ) = abθ ∀ a ∈ Aϕ0 .

The point is, when we allow multiplication by the whole of Aϕ0 (rather

than just the subalgebra B), it is possible to have a1θ = a2θ with a1, a2 ∈ Aϕ0

and a1 6= a2. For χ to give a well-defined element of EndAϕ0
(S), we would

also need a1bθ = a2bθ in this case. Equivalently, χ extends to a well-defined

element of EndAϕ0
(S) if and only if

abθ = 0 for all a ∈ Aϕ0 such that aθ = 0.
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Clearly, it suffices for b to commute with θ =
∑

t∈Gal(L/K
ker(g0)
s )

et. Hence, it

suffices for b to commute with et for every t ∈ Gal(L/K
ker(g0)
s ). The multi-

plication on EndAϕ0
(S) is the opposite of the multiplication on B inherited

from Aϕ0 . Therefore, we can view EndAϕ0
(S)opp as a subalgebra of B. We

will make this identification from now on. Thus, we have

B ⊃ EndAϕ0
(S)opp ⊃ {b ∈ B

∣∣ etb = bet ∀t ∈ Gal(L/Kker(g0)
s )}. (5)

Remark 2.2. In fact, a careful analysis of the left-annihilator of θ may be used

to show that the rightmost inclusion is an equality. We omit the details of

this rather involved calculation and instead demonstrate the equality simply

by finding enough elements in the right-hand side and comparing dimensions.

The rightmost inclusion in (5) leads us to ask the following question.

Which elements of B commute with et for all t ∈ Gal(L/K
ker(g0)
s )? Recall

that

B = {xeρi | x ∈ L, 0 ≤ i ≤ p− 1},

where ρ ∈ HM∨/N ≤ GK/N = Gal(L/K) is such that its image generates

HM∨/Ng. Therefore, there is an obvious subalgebra of B whose elements

commute with et for every t ∈ Gal(L/K
ker(g0)
s ); namely the field K

ker(g0)
s .

This is by definition of the multiplication in Aϕ0 ; recall that

esx = s(x)es ∀s ∈ Gal(L/K), ∀x ∈ L.

Thus, x ∈ L commutes with es if and only if s(x) = x.

Lemma 2.3. EndAϕ0
(S)opp is generated as a K-algebra by the elements of

K
ker(g0)
s and any element d ∈ EndAϕ0

(S)opp \Kker(g0)
s .

Proof. We know that the algebra EndAϕ0
(S)opp has dimension p2 over K.

Let T = 〈Kker(g0)
s , d〉 be the subalgebra of EndAϕ0

(S)opp generated over K by

K
ker(g0)
s and d, where d ∈ EndAϕ0

(S)opp \Kker(g0)
s . Then,

K ⊂ Kker(g0)
s ( T ⊂ EndAϕ0

(S)opp.
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First, suppose that EndAϕ0
(S)opp is a division ring. Then T is also a division

ring and we can view EndAϕ0
(S)opp as a left T -vector space. We have

p2 = dimK EndAϕ0
(S)opp = (dimT EndAϕ0

(S)opp)(dimK T ).

But dimK T > [K
ker(g0)
s : K] = p, whereby dimK T = p2 and therefore

EndAϕ0
(S)opp = T.

Now suppose that EndAϕ0
(S)opp is not a division ring. Since EndAϕ0

(S)opp

is a central simple algebra of dimension p2 over K, the Artin-Wedderburn

Theorem tells us that EndAϕ0
(S)opp ∼= Mp(K). In other words, EndAϕ0

(S)opp

is isomorphic to EndK(V ), where V is a K-vector space of dimension p. Note

that V is a faithful T -module. Moreover,

dim
K

ker(g0)
s

V =
dimK V

[K
ker(g0)
s : K]

= 1.

Therefore, V is a simple K
ker(g0)
s -module, and hence a simple T -module. So

T has a non-zero faithful simple module, whereby the Jacobson radical of T

is zero. Therefore, T is a semisimple K-algebra, since T is finite-dimensional

over K. Now the Artin-Wedderburn Theorem tells us that T ∼= Mm(E) for

some division ring E over K and some m ∈ N. Furthermore, any nonzero

simple module for Mm(E) is isomorphic to the left ideal I of Mm(E) consist-

ing of matrices with all entries zero except in the first column. In particular,

p = dimK V = dimK I = m[E : K].

If m = 1 and [E : K] = p then T ∼= E and we get a contradiction because

K
ker(g0)
s is a proper subalgebra of T of dimension p over K. Therefore, we

must have m = p and E = K, whereby T ∼= Mp(K). So T = EndAϕ0
(S)opp,

as required.

Proposition 2.4. EndAϕ0
(S)opp contains a maximal commutative subalgebra

isomorphic to K
ker(f0)
s .
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Proof. Let T = Aϕ0ϑ with ϑ =
∑

t∈Gal(L/K
ker(f0)
s )

et. A similar argument to

that of Proposition 1.12 shows that dimK(T ) = p[L : K] = dimK(S). Aϕ0

is a central simple algebra, so any two Aϕ0-modules with the same finite

dimension are isomorphic. Hence, T is isomorphic to S as an Aϕ0-module.

In analogy with Lemma 2.1, choose R = {σi}0≤i≤p−1 where σ ∈ HM/N

is such that its image generates HM/Nf . Replacing S by T and following

the arguments leading up to Lemma 2.3, we find K
ker(f0)
s as a subalgebra of

EndAϕ0
(T )opp ∼= EndAϕ0

(S)opp.

Previously, we found K
ker(g0)
s as a maximal commutative subalgebra of

EndAϕ0
(S)opp, because the elements of K

ker(g0)
s commute with et for all t ∈

Gal(L/K
ker(g0)
s ). In view of Proposition 2.4 above, we see that EndAϕ0

(S)opp

contains a maximal commutative subalgebra isomorphic to K
ker(f0)
s . There-

fore, if these two subalgebras are distinct, then together they generate the

whole of EndAϕ0
(S)opp. In this case, in Lemma 2.3 we could choose d ∈

EndAϕ0
(S)opp \Kker(g0)

s such that K(d) ∼= K
ker(f0)
s .

3 Finding generators

In light of (5) and Lemma 2.3, we seek an element d ∈ B \Kker(g0)
s such that

d commutes with et for all t ∈ Gal(L/K
ker(g0)
s ). Recall that

B = {xeρi | x ∈ L, 0 ≤ i ≤ p− 1} ⊂ Aϕ0 ,

where ρ ∈ HM∨/N ≤ GK/N = Gal(L/K) is such that its image generates

HM∨/Ng. Thus, we can write d in the form

d =

p−1∑
i=0

aieρi with ai ∈ L. (6)

We want to find suitable coefficients ai. We will determine the precise con-

ditions on the ai which must be satisfied if d is to commute with et for all

t ∈ Gal(L/K
ker(g0)
s ).
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Lemma 3.1. We have NfNg/N = HMHM∨/N and therefore

HM ∩Ng

N
∼=
HM

Nf

and
HM∨ ∩Nf

N
∼=
HM∨

Ng

.

Proof. Clearly, NfNg/N ≤ HMHM∨/N , so it remains to show the reverse

inclusion. We will show that HM/N ≤ NfNg/N ; the argument for HM∨/N

is identical. Observe that GK/Nf
∼= HM/Nf o GK/HM , where HM/Nf

∼= M

has order p and GK/HM ↪→ Aut(M) has order prime to p. Thus, any non-

trivial normal subgroup of GK/Nf contains HM/Nf . Since Ng / GK, the

subgroup NfNg/Nf is normal in GK/Nf and NfNg/Nf is non-trivial since

we are assuming that Nf 6= Ng. Therefore, HM/Nf ≤ NfNg/Nf and hence

HM/N ≤ NfNg/N , as required. The last part follows by observing that

HM ∩Ng

N
∼=
Nf (HM ∩Ng)

Nf

=
NfNg

Nf

∩ HM

Nf

and noting thatNfNg/N = HMHM∨/N implies thatNfNg/Nf = HMHM∨/Nf .

Lemma 3.2. We have

Gal(L/Kker(g0)
s ) =

ker(g0)

N
∼=
HM ∩Ng

N
o

ker(g0) ∩ ker(f0)

N
.

Proof. Clearly, HM∩Ng

N
∩ ker(g0)∩ker(f0)

N
= 0. It remains to show that(HM ∩Ng

N

)(ker(g0) ∩ ker(f0)

N

)
=

ker(g0)

N
.

Lemma 3.1 shows that HM∩Ng

N
∼= HM

Nf
. The cocycle f0 gives an isomorphism

HM

Nf
→ M . So, if s ∈ ker(g0), there exists some h ∈ HM ∩ Ng such that

f0(h) = f0(s). But then s = hh−1s and h−1s ∈ ker(g0) ∩ ker(f0).
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We require that

p−1∑
i=0

aieρi = d = esde
−1
s =

p−1∑
i=0

s(ai)eseρie
−1
s .

for all s ∈ Gal(L/K
ker(g0)
s ) = ker(g0)/N . Lemma 3.2 allows us to look sepa-

rately at conjugation by elements in (HM ∩Ng)/N and (ker(f0)∩ker(g0))/N .

First, we look at conjugation by et for t ∈ (ker(f0) ∩ ker(g0))/N .

Lemma 3.3. For all t ∈ (ker(f0) ∩ ker(g0))/N , we have eteρie
−1
t = etρit−1 .

Proof. If either s or t is in (ker(f0) ∩ ker(g0))/N , then (3) gives

ϕ0(s, t) = (s · g0(t))(f0(s)) = 1

and hence eset = est. Thus, for all t ∈ (ker(f0) ∩ ker(g0))/N , we have e−1t =

et−1 and eteρie
−1
t = eteρiet−1 = etρit−1 .

Lemma 3.1 shows that (HM ∩Ng)/N ∼= HM/Nf is a cyclic group of order

p. Let σ be a generator of (HM ∩ Ng)/N . Lemma 3.1 allows us to assume

that ρ ∈ (Nf ∩HM∨)/N , which we will do from now on. In particular, σ and

ρ act trivially on both M and M∨. Now we consider conjugation by eσ.

Lemma 3.4. We have eσeρie
−1
σ = ζ ieρi, where ζ = g(ρ)(f(σ)) ∈ Ks is a

primitive pth root of unity.

Proof. Recall that σ ∈ (HM ∩Ng)/N , so g(σ) = 0. Hence, (3) gives

ϕ0(t, σ
i) = 1 ∀t ∈ GK/N,∀i ∈ Z.

In particular, e−1σ = eσ−1 and we have

eσeρie
−1
σ = eσeρieσ−1 = eσϕ0(ρ

i, σ−1)eρiσ−1 = eσeρiσ−1 = ϕ0(σ, ρ
iσ−1)eρi .
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The last line holds because σ and ρ commute in GK/N , since their com-

mutator is in the intersection of the normal subgroups (Ng ∩ HM)/N and

(Nf ∩HM∨)/N , which is trivial. Now,

ϕ0(σ, ρ
iσ−1) = (σ · g0(ρiσ−1))(f0(σ))

= (σ · g0(ρi))(f0(σ)) since g0(σ
−1) = 0

= g(ρi)(f(σ)) since σ acts trivially on M∨

= (g(ρ)(f(σ)))i since g gives a homomorphism on HM∨ .

Therefore, it suffices to show that ζ = g(ρ)(f(σ)) is a primitive pth root of

unity. We know that f induces an isomorphism HM/Nf−̃→M and f(σ)

generates M as an abelian group. Likewise, g induces an isomorphism

HM∨/Ng−̃→M∨ and g(ρ) generates M∨ = Hom(M,µp) as an abelian group.

Thus, ζ = g(ρ)(f(σ)) generates µp as an abelian group.

Combining the results of Lemmas 3.3 and 3.4, we see that d =
∑p−1

i=0 aieρi

commutes with et for all t ∈ Gal(L/K
ker(g0)
s ) if and only if

• σ(ai) = ζ−iai ∀ 0 ≤ i ≤ p− 1, and

• if t ∈ (ker(f0) ∩ ker(g0))/N is such that tρt−1 = ρ`, then

t(ai) = a`i ∀ 0 ≤ i ≤ p− 1.

Proposition 3.5. Let α ∈ Kker(f0)
s be such that K

ker(f0)
s = K(α). For each

0 ≤ i ≤ p − 1, let ai =
∑p−1

j=0 ζ
ijσj(α). Then d =

∑p−1
i=0 aieρi commutes with

et for all t ∈ Gal(L/K
ker(g0)
s ).

Proof. In order to show that σ(ai) = ζ−iai, it suffices to show that σ fixes

ζ ∈ µp. But σ acts trivially on both M and M∨ = Hom(M,µp), so σ must

also act trivially on µp. Now, let t ∈ (ker(f0) ∩ ker(g0))/N and suppose that
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tρt−1 = ρ`. It suffices to show that t(ai) = a`i. We have

t(ai) =

p−1∑
j=0

t(ζ)ijtσj(α) =

p−1∑
j=0

t(ζ)ij(tσt−1)jt(α)

=

p−1∑
j=0

t(ζ)ij(tσt−1)j(α) since t fixes α ∈ Kker(f0)
s .

Suppose that t acts as multiplication by k on M . Then t acts as multiplica-

tion by k` on µp. We have isomorphisms of GK-modules HM/Nf
∼= M and

HM∨/Ng
∼= M∨ induced by f and g respectively. Hence,

t(ai) =

p−1∑
j=0

t(ζ)ij(tσt−1)j(α) =

p−1∑
j=0

ζ ijk`σjk(α)

=

p−1∑
j=0

t(ζ)ij`σj(α) = a`i

as required.

So we have demonstrated a candidate for d. It remains to check that

this element is not in K
ker(g0)
s . It suffices to show that some ai with i ≥ 1 is

nonzero.

Proposition 3.6. Let α be such that K
ker(f0)
s = K(α) and Tr

K
ker(f0)
s /K

(α) =

0. Then there exists i ≥ 1 with ai =
∑p−1

j=0 ζ
ijσj(α) nonzero. Consequently,

d =
∑p−1

i=0 aieρi is not in L.

Proof. Let V denote the Vandermonde matrix (ζ ij)0≤i,j≤p−1. Then ai is the

ith row of V (α, σ(α), . . . , σp−1(α))T . Also,

det(V ) =
∏

0≤i<j≤p−1

(ζj − ζ i) 6= 0.
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Thus, V (α, σ(α), . . . , σp−1(α))T is nonzero, so it has at least one nonzero row.

In other words, at least one of the ai’s is nonzero. But

a0 = α + σ(α) + · · ·+ σp−1(α) = Tr
K

ker(f0)
s /K

(α) = 0.

Hence, there exists i ≥ 1 with ai 6= 0, as required.

Since we assumed from the start that the characteristic of K is not p, we

can always arrange that Tr
K

ker(f0)
s /K

(α) = 0, by subtracting p−1 Tr
K

ker(f0)
s /K

(α)

from α. Thus, by Lemma 2.3 EndAϕ0
(S)opp is generated as a K-algebra by

d together with the elements of K
ker(g0)
s .

4 A minimal polynomial

Our next aim is to show that the K-subalgebra of EndAϕ0
(S)opp generated

by d is isomorphic to K(α) = K
ker(f0)
s . We will do this by showing that d and

pα satisfy the same minimal polynomial over K. Let σ be a generator for

(Ng∩HM)/N and let ρ be a generator for (Nf∩HM∨)/N . Recall that α ∈ L is

such that K
ker(f0)
s = K(α) and Tr

K
ker(f0)
s /K

(α) = 0. We have d =
∑p−1

i=0 aieρi ,

where ai =
∑p−1

j=0 ζ
ijσj(α) and ζ = ϕ0(σ, ρ) = g(ρ)(f(σ)). Similarly, let β be

such that K
ker(g0)
s = K(β) and Tr

K
ker(g0)
s /K

(β) = 0. Let bi =
∑p−1

j=0 ζ
ijρj(β).

In the proof of Proposition 3.6, we showed that ai 6= 0 for some i ≥ 1. The

same argument shows that bm 6= 0 for some m ≥ 1. Choose such a bm and

denote it by B. We would like to define a polynomial with roots BkdB−k

for 0 ≤ k ≤ p − 1. We show that BkdB−k commutes with B`dB−` for every

k, ` ∈ Z, so that P (X) =
∏p−1

k=0 (X − BkdB−k) is the desired polynomial.

First, we prove two auxiliary lemmas.

Lemma 4.1. For all k ∈ Z, we have

BkdB−k =

p−1∑
i=0

ζ ikmaieρi =

p−1∑
i=0

σ−km(ai)eρi ,
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where B = bm =
∑p−1

j=0 ζ
mjρj(β) 6= 0.

Proof. We have

BkdB−k =Bk
p−1∑
i=0

aieρiB−k =

p−1∑
i=0

aiBkeρiB−k =

p−1∑
i=0

aiBkρi(B−k)eρi

=

p−1∑
i=0

aiBkζ ikmB−keρi =

p−1∑
i=0

ζ ikmaieρi =

p−1∑
i=0

σ−km(ai)eρi .

Lemma 4.2. For all i, j, k ∈ Z, we have eρiσ
k(aj)eρj = σk(aj)eρi+j .

Proof. Since ρ ∈ (Nf ∩ HM∨)/N , clearly ρ fixes σk(aj) =
∑p−1

`=0 ζ
j`σ`+k(α).

Moreover, f(ρ) = 0 and so (3) gives ϕ0(ρ
i, ρj) = 1 for all i, j ∈ Z. Hence,

eρiσ
k(aj)eρj = ρiσk(aj)eρieρj = σk(aj)ϕ0(ρ

i, ρj)eρi+j = σk(aj)eρi+j .

Corollary 4.3. For all k, ` ∈ Z, BkdB−k commutes with B`dB−`.

Proof. By Lemma 4.1, we have

BkdB−kB`dB−` =
∑

0≤i,j≤p−1

σ−km(ai)eρiσ
−`m(aj)eρj .

By Lemma 4.2, this is equal to∑
0≤i,j≤p−1

σ−km(ai)σ
−`m(aj)eρi+j = B`dB−`BkdB−k.

Proposition 4.4. Let P (X) =
∏p−1

k=0 (X − BkdB−k). Then the coefficients

of P lie in K.
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Since K is the centre of Aϕ0 , it suffices to show that the coefficients of

P commute with every element of Aϕ0 . As a K-algebra, Aϕ0 is generated

by the elements of L and {es}s∈Gal(L/K). We prove Proposition 4.4 in three

steps.

Lemma 4.5. The coefficients of P commute with x for every x ∈ L.

Proof. We know that ρ generates (Nf∩HM∨)/N ∼= HM∨/Ng
∼= M∨, which has

cardinality p. Therefore, [L : L〈ρ〉] = p and L = L〈ρ〉(x) for any x ∈ L \ L〈ρ〉.
Since B = bm for some 1 ≤ m ≤ p−1, we have ρ(B) = ζ−mB 6= B. Therefore,

L = L〈ρ〉(B). Observe that conjugation by B permutes the roots of P . For

any x ∈ L〈ρ〉, we have xdx−1 = d, since ρi(x) = x for such x. Hence,

conjugation by x ∈ L〈ρ〉 fixes the roots of P . Therefore, conjugation by any

element of L fixes the coefficients of P .

Lemma 4.6. The coefficients of P commute with et for all t in Gal(L/K
ker(g0)
s ).

Proof. By construction, d commutes with et for all t ∈ Gal(L/K
ker(g0)
s ). Sup-

pose t ∈ Gal(L/K
ker(g0)
s ) is such that t acts as multiplication by k on M and

t acts as multiplication by ` on M∨. Then tσt−1 = σk, because f induces an

isomorphism of GK-modules HM/Nf
∼= M . Similarly, tρt−1 = ρ`. By defini-

tion of the action on M∨ = Hom(M,µp), we have t(ζ) = ζk`. Therefore,

etBe−1t = t(B) =

p−1∑
j=0

t(ζ)mj(tρt−1)jt(β) =

p−1∑
j=0

ζmjk`ρj`t(β)

=

p−1∑
j=0

ζmjkρjt(β) =

p−1∑
j=0

ζmjkρj(β)

because β ∈ Kker(g0)
s and t ∈ Gal(L/K

ker(g0)
s ). Hence,

etBdB−1e−1t = t(B)dt(B)−1 = t(B)

p−1∑
i=0

aieρit(B)−1 =

p−1∑
i=0

t(B)aiρ
i(t(B))−1eρi

=

p−1∑
i=0

t(B)(ζ−ikmt(B))−1aieρi =

p−1∑
i=0

ζ ikmaieρi = BkdB−k
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by Lemma 4.1. Thus, we see that conjugation by et for t ∈ Gal(L/K
ker(g0)
s )

permutes the roots of P . Consequently, the coefficients of P commute with

et for all t ∈ Gal(L/K
ker(g0)
s ).

Lemma 4.7. The coefficients of P commute with et for every t in Gal(L/K).

Proof. By Lemma 4.6, the coefficients of P commute with et for all t ∈
Gal(L/K

ker(g0)
s ). Thus, it suffices to prove that the coefficients of P commute

with et for all t in some set R of left coset representatives for Gal(L/K
ker(g0)
s )

in Gal(L/K). By Lemma 2.1, R can be taken to be {ρi}0≤i≤p−1. Since

f(ρ) = 0, (3) gives ϕ(ρi, t) = 1 for all t ∈ GK/N and all i ∈ Z. Hence,

eρi = eiρ and it suffices to show that the coefficients of P commute with eρ.

By Lemma 4.1,

eρBkdB−ke−1ρ = eρ

p−1∑
i=0

ζ ikmaieρie
−1
ρ =

p−1∑
i=0

ζ ikmeρaieρie
−1
ρ (7)

because ζ is fixed by ρ ∈ (Nf ∩HM∨)/N . By Lemma 4.2, we have

p−1∑
i=0

ζ ikmeρaieρie
−1
ρ =

p−1∑
i=0

ζ ikmaieρi+1e−1ρ . (8)

We have ρ ∈ (Nf ∩ HM∨)/N ⊂ ker(f0)/N , whereby for all j ∈ Z and all

s ∈ GK/N we have ϕ0(ρ
j, s) = (ρj · g0(s))(f0(ρj)) = 1. Hence, eρ−1 = e−1ρ and

eρi+1eρ−1 = ϕ0(ρ
i+1, ρ−1)eρi = eρi .

Therefore, equations (7) and (8) give eρBkdB−ke−1ρ = BkdB−k for all 0 ≤ k ≤
p− 1. Hence, the coefficients of P commute with eρ.

Combining Lemma 4.5 and Lemma 4.7, we see that the coefficients of P

lie in the centre of Aϕ0 , which is K. Thus, we have proved Proposition 4.4.
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Definition 4.8. Let Q(X) be the minimal polynomial of pα over K, Q(X) =∏p−1
i=0 (X − σi(pα)).

We will show that P = Q and thus conclude that P is irreducible and

K(d) ∼= K(α).

Definition 4.9. We define R(X, Y ) =
∏p−1

k=0 (X −
∑p−1

i=0 σ
k(ai)Y

i).

Lemma 4.10. We have P (X) = R(X, eρ) and Q(X) = R(X, 1).

Proof. Since ρ ∈ (Nf∩HM∨)/N , we have f0(ρ) = 0 and ϕ0(ρ
i, ρj) = 1 ∀i, j ∈

Z. Therefore, eiρ = eρi ∀i ∈ Z. Thus, the equality P (X) = R(X, eρ) follows

from Lemma 4.1. Regarding the second claim, we have

R(X, 1) =

p−1∏
k=0

(X −
p−1∑
i=0

σk(ai)) =

p−1∏
k=0

(X − σk
(p−1∑
i=0

ai

)
).

Observe that

p−1∑
i=0

ai =

p−1∑
i=0

p−1∑
j=0

ζ ijσj(α) =

p−1∑
j=0

σj(α)

p−1∑
i=0

ζ ij = pα

because
∑p−1

i=0 ζ
ij = 0 unless j = 0. This completes the proof that R(X, 1) =

Q(X).

Proposition 4.11. We have P (X) = Q(X).

Proof. WriteR(X, Y ) =
∑p−1

i=0

∑N
j=0 cijX

iY j, whereN = (p−1)2 and cij ∈ L.

Then

R(X, Y ) =

p−1∑
i=0

X i

p−1∑
k=0

∑
j≡k (mod p)

cijY
j

where the innermost sum runs over 0 ≤ j ≤ N. Therefore,

P (X) = R(X, eρ) =

p−1∑
i=0

X i

p−1∑
k=0

ekρ
∑

j≡k (mod p)

cij
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because ρ has order p in Gal(L/K), so epρ = 1. Hence, the coefficient of X i

is
∑p−1

k=0 e
k
ρ

∑
j≡k (mod p) cij. By Lemma 4.4, the coefficients of P lie in K.

Therefore, ∑
j≡k (mod p)

cij = 0, unless k=0.

Whereby

R(X, Y ) =

p−1∑
i=0

X i
∑

j≡0 (mod p)

cijY
j. (9)

Since epρ = 1, (9) gives P (X) = R(X, eρ) = R(X, 1) = Q(X).

Corollary 4.12. P is the minimal polynomial of d over K and K(d) ∼=
K(α) = K

ker(f0)
s .

Proof. Proposition 4.11 shows that d and pα are roots of the same polynomial

over K. This polynomial is irreducible because it is the minimal polynomial

of pα. The characteristic of K is not p, so p is invertible and K(d) ∼= K(pα) =

K(α).

5 The multiplication rule

Recall that α ∈ Ks is such that K
ker(f0)
s = K(α) and Tr

K
ker(f0)
s /K

(α) = 0.

Similarly, β ∈ Ks is such that K
ker(g0)
s = K(β) and Tr

K
ker(g0)
s /K

(β) = 0.

Definition 5.1. Let

z = p−1d = p−1
p−1∑
i=0

aieρi ,

where ai =
∑p−1

j=0 ζ
ijσj(α). Thus, by Proposition 4.11, the minimal polyno-

mial of z over K is the same as that of α.

Lemma 2.3 along with the work done in Section 3 tells us that EndAϕ0
(S)opp

is generated as a K-algebra by β and z. The elements βizj for 0 ≤ i, j ≤ p−1
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form a basis for EndAϕ0
(S)opp as a K-vector space. To specify the multipli-

cation on EndAϕ0
(S)opp, it is enough to specify structure constants cij ∈ K

such that

zβ =
∑

0≤i,j≤p−1

cijβ
izj.

Lemma 5.2. For all 0 ≤ j ≤ p− 1, we have

zj = p−1
p−1∑
k=0

hjkeρk

where hjk =
∑p−1

`=0 ζ
k`σ`(αj) ∈ L〈ρ〉 = K

Nf∩HM∨
s .

Proof. It is easily seen that h0k = 0 for all 1 ≤ k ≤ p− 1 and h00 = p. Thus,

the statement holds for j = 0. The statement for j = 1 follows immediately

from the definition of z, upon observing that h1k = ak for all 0 ≤ k ≤ p− 1.

We proceed by induction on j. Suppose that

zm = p−1
p−1∑
k=0

hmkeρk

for some 0 ≤ m ≤ p− 2. Then,

zm+1 = zmz =
(
p−1

p−1∑
k=0

hmkeρk
)(
p−1

p−1∑
i=0

aieρi
)

= p−2
p−1∑
i,k=0

hmkaieρk+i by Lemma 4.2

= p−2
p−1∑
n,k=0

hmkan−keρn .

Hence, it suffices to prove that

p−1∑
k=0

hmkan−k = ph(m+1)n.
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We have
p−1∑
k=0

hmkan−k =

p−1∑
k,`,j=0

ζk`σ`(αm)ζ(n−k)jσj(α) =

p−1∑
`,j=0

ζnjσ`(αm)σj(α)

p−1∑
k=0

ζk(`−j).

Now observe that
∑p−1

k=0 ζ
k(`−j) equals zero when ` 6= j, and equals p when

` = j. This concludes the proof.

We want to find structure constants cij ∈ K for 0 ≤ i, j ≤ p−1 such that

zβ =
∑

0≤i,j≤p−1

cijβ
izj. (10)

By the definition of z,

zβ = p−1
p−1∑
i=0

aieρiβ = p−1
p−1∑
i=0

aiρ
i(β)eρi . (11)

Using Lemma 5.2, we expand the right-hand side of (10) as

p−1∑
i,j=0

cijβ
izj = p−1

p−1∑
i,j=0

cijβ
i

p−1∑
k=0

hjkeρk . (12)

Hence, equating (11) and (12), we obtain for every 0 ≤ k ≤ p− 1

akρ
k(β) =

p−1∑
i,j=0

cijβ
ihjk. (13)

Recall that ker(g0) ∩HM∨ = Ng / GK. So K
Ng
s = K

HM∨
s (β) is Galois over K

and we write

ρk(β) =

p−1∑
i=0

mikβ
i (14)

for mik ∈ K
HM∨
s ⊂ L〈ρ〉. We know that L/L〈ρ〉 has degree p and is generated

by β. Thus, the elements 1, β, . . . βp−1 form a basis for L as a vector space

over L〈ρ〉. Therefore, combining (13) and (14) gives

akmik =

p−1∑
j=0

cijhjk (15)
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for all 0 ≤ i, k ≤ p− 1.

Definition 5.3. We define three p-by-p matrices X, Y and Z.

X = (akmik)i,k, Y = (cik)i,k, Z = (hik)i,k.

In all three cases, the indices i and k run from 0 to p− 1.

In terms of these matrices, (15) becomes X = Y Z, where Y is to be

found. We know that such a Y exists and is unique because the elements

βizj for 0 ≤ i, j ≤ p− 1 form a basis for EndAϕ0
(S)opp.

Lemma 5.4. The matrix Z is invertible. Thus, Y = XZ−1.

Proof. Suppose for contradiction that Z is not invertible. Then Z has a non-

trivial kernel and there exists a nonzero matrix T such that TZ = 0. But

then (Y + T )Z = Y Z = X. This contradicts the fact that Y is unique.

Therefore, EndAϕ0
(S)opp has a basis {βizj}0≤i,j≤p−1 as a K-vector space,

where z satisfies the same minimal polynomial over K as α, and the multi-

plication satisfies

zβ =

p−1∑
i,j=0

cijβ
izj

where (cij)i,j = XZ−1 for X and Z as defined in Definition 5.3. Thus,

D = EndAϕ0
(S)opp is as described in Theorem 1.6.

6 An example

We apply Theorem 1.6 to the case KHM
s = K(µp). In this case, any 1-cocycle

f0 which represents a non-trivial element f ∈ H1(GK,M) has K
ker(f0)
s =

K(α) where αp ∈ K. Since KHM
s = K(µp), the action of GK on M∨ is trivial.

Thus, H1(GK,M
∨) = Hom(GK,M

∨) and any non-trivial g ∈ Hom(GK,M
∨)
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corresponds to a degree p Galois extension K
ker(g)
s /K. Let K

ker(g)
s = Ks(β)

with TrK(β)/K(β) = 0. Let σ ∈ GK be such that σ fixes K(β, µp) and

σ(α)/α = ζp for some primitive pth root of unity ζp. Choose ρ ∈ GK such

that ρ fixes K(α, µp) and (g(ρ))(f0(σ)) = ζp. We calculate

hij =

p−1∑
`=0

ζj`σ`(αi) =

p−1∑
`=0

ζ(i+j)`αi.

Hence, hij = 0 unless i + j ≡ 0 (mod p). Write ρj(β) =
∑p−1

i=0 mijβ
i for

mij ∈ K. An easy matrix calculation shows that

(h1jmij)i,j(hij)
−1
i,j =


0 m0(p−1) 0 . . . 0

0 m1(p−1) 0 . . . 0
...

...
. . .

...

0 m(p−1)(p−1) 0 . . . 0

.
Now Theorem 1.6 tells us that the class of f ∪ g in Br(K) is given by the

algebra D with K-basis {βizj}0≤i,j≤p−1, where zp = αp ∈ K, and we have

zβz−1 =

p−1∑
i=0

mi(p−1)β
i = ρ−1(β).

So in this case D is a cyclic algebra of dimension p2 over K.
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