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SUBGROUPS GENERATED BY RATIONAL
FUNCTIONS IN FINITE FIELDS

DOMINGO GOMEZ-PEREZ AND IGOR E. SHPARLINSKI

ABSTRACT. For a large prime p, a rational function ¢ € F,(X)
over the finite field IF, of p elements, and integers v and H > 1,
we obtain a lower bound on the number consecutive values ¥(z),
r=u+1,...,u+ H that belong to a given multiplicative subgroup
of F}.

1. INTRODUCTION

For a prime p, let F, denote the finite field with p elements, which
we always assume to be represented by the set {0,...,p — 1}.
Given a rational function
f(X)
W(X) = T € F(X)
where f,g € F,[X] are relatively prime polynomials, and an ‘interest-
ing’ set S C IF,, it is natural to ask how the value set

P(S)={Y(x) : z €S8, g(z)#0}
is distributed. For instance, given another ‘interesting’ set T, our goal
is to obtain nontrivial bounds on the size of the intersection

Ny(8,T) =# W(S)NT).

In particular, we are interested in the cases when Ny(S,7T) achieves
the trivial upper bound

Ny(S,T) < min{#8, #T}.

Typical examples of such sets S and T are given by intervals Z of
consecutive integers and multiplicative subgroups G of F;. For large
intervals and subgroups, a standard application of bounds of exponen-
tial and multiplicative character sums leads to asymptotic formulas for

the relevant values of Ny (S, T), see [7, 11, 19]. Thus only the case of
small intervals and groups is of interest.
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For a polynomial f € F,[X] and two intervals Z = {u+1,...,u+H}
and J ={v+1,...,v+ H} of H consecutive integers, various bounds
on the cardinality of the intersection f(Z) N J are given in [7, [11].
To present some of these results, for positive integers d, k and H, we
denote by Jy,(H) the number of solutions to the system of equations

14 | 2 14 v J—
x1+...+$k—xk+1+...+$2ka V—l,...,d’

in positive integers xy,...,x9, < H. Then by [II, Theorem 1], for
any f € Fy[X]| of degree d > 2 and two intervals Z and J of H < p
consecutive integers, we have

NH(Z, J) < H(H/p)/*r®re) 4 pri=ta=n/2s(d)rolt),

as H — oo, where k(d) is the smallest integer x such that for k > k
there exists a constant C(d, k) depending only on k and d and such
that
Jd,k(H) < C(d, k)H2k—d(d+1)/2+o(l)

holds as H — oo, see also [7] for some improvements and results for
related problems. In [7, [I1] the bounds of Wooley [22, 23] are used that
give the presently best known estimates on k(d) (at least for a large
d), see also [24] for further progress in estimating x(d).

It is easy to see that the argument of the proof of [11, Theorem 1]
allows to consider intervals of Z and J of different lengths as well and
for intervals

IT={u+1,...,u+ H} and J={v+1,...,0+K}
with 1 < H, K < p it leads to the bound
Nf(Ia j) S Hl—l—o(l) ((K/p>1/2n(d) + (K/Hd)l/m@(d))’

see also a more general result of Kerr [I5, Theorem 3.1] that applies
to multivariate polynomials and to congruences modulo a composite
number.

Furthermore, let K, (H) be the smallest K for which there are in-
tervals Z ={u+1,...,u+ H} and J = {v+1,...,v+ K} for which
Ny(Z,J) = #I. That is, K,(H) is the length of the shortest interval,
which may contain H consecutive values of ¢ € F,(X) of degree d.

Defining £*(d) in the same way as x(d), however with respect to the
more precise bound

Jd,k(H) S C(d, k)HZR—d(d—l-l)/Z

(that is, without o(1) in the exponent) we can easily derive that for
any polynomial f € F,[X] of degree d,

(1) Ky(H) = O(H").
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To see that the bound () is optimal it is enough to take f(X) = X4
and u = 0. Note that the proof of (Il) depends only on the existence
of k*(d) rather than on its specific bounds. However, we recall that
Wooley [22], Theorem 1.2] shows that for some constant &(d, k) > 0
depending only on d and k£ we have

Jd,k(H) ~ G(d, k)H2k—d(d+1)/2

for any fixed d > 3 and k > d*>+d+1. In particular, k*(d) < d*+d+1.

Here we concentrate on estimating Ny (Z,G) for an interval Z of H
consecutive integers and a multiplicative subgroup G C Fj of order
T. This question has been mentioned in [1I, Section 4] as an open
problem.

We remark that for linear polynomials f the result of [4, Corollary 34|
have a natural interpretation as a lower bound on the order of a sub-
group G C Ty for which N¢(Z,G) = #Z. In particular, we infer from [4)
Corollary 34] that for any linear polynomials f(X) = aX + b € F,[X]

and fixed integer v = 1,2, ..., for an interval Z of H < p/*"*~1 consec-
utive integers and a subgroup G, the equality N;(Z,G) = #Z implies
#g Z HV+O(1).

We also remark that the results of [5, Section 5] have a similar in-
terpretation for the identity N;(Z,G) = #Z with linear polynomials,
however apply to almost all primes p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2] gives a nontrivial
bound on the intersection of an interval centered at 0, that is, of the
form Z = {0,£1,...,£H} and a co-set aG (with a € F;) of a multi-
plicative group G C F}, provided that H < p'~° and #G > go(e), for
some constant go(¢) depending only on an arbitrary € > 0.

We note that several bounds on # (f(G) NG) for a multiplicative
subgroup G C Ty are given in [19], but they apply only to polynomials
f defined over Z and are not uniform with respect to the height (that
is, the size of the coefficients) of f. Thus the question of estimating
N¢(G,G) remains open. On the other hand, a number of results about
points on curves and algebraic varieties with coordinates from small
subgroups, in particular, in relation to the Poonen Conjecture, have
been given in [6] &, @, 10} 17, 18, 20} 21].

We recall that the notations U = O(V), U < V and V > U are all
equivalent to the statement that the inequality |U| < ¢V holds with
some constant ¢ > 0. Throughout the paper, any implied constants in
these symbols may occasionally depend, where obvious, on d = deg f
and e = deg g, but are absolute otherwise.
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2. PREPARATIONS

2.1. Absolute irreducibility of some polynomials. As usual, we
use IF, to denote the algebraic closure of F, and X,Y to denote inde-
terminate variables. We also use F,(X), F,(Y), F,(X,Y) to denote the
corresponding fields of rational functions over F,,.
We recall that the degree of a rational function in the variables XY
s(X)Y) -
F(X)Y)= F,(X,Y d(s(X,Y),t(X,Y)) =1
( Y ) t(X,Y) S p( ’ )7 gC (‘S( ) )7 ( ) )) )
is deg F' = max{deg s, degt}. B
It is also known that if R(X) € F,(X) is an rational function then

(2) deg(Ro F') = deg Rdeg F,

where o denotes the composition.
We use the following result of Bodin [I, Theorem 5.3] adapted to our
purposes.

Lemma 1. Let s(X,Y),t(X,Y) € F,[X,Y] be polynomials such that
there does not exist a rational function R(X) € F,(X) with deg R > 1
and a bivariate rational function G(X,Y) € F,[X,Y] such that,
s(X,Y)
F(X)Y) = HXY) R(G(X,Y)).
The number of elements \ such that the polynomial s(X,Y ) —M(X,Y)
is reducible over F,[X,Y] is at most (deg F)2.

We say that a rational function f € F,(X) is a perfect power of an-
other rational function if and only if f(X) = (¢g(X))™ for some rational
function g(X) € F,(X) and integer n > 2. Because F, is algebraic
closed field, it is trivial to see that if f(X) is a perfect power, then

af(X) is also a perfect power for any a € F,. We need the following
easy technical lemma.

Lemma 2. Let Pi(X),Q1(X) € F,[X], P(Y), Q2(Y) € F,[Y] by rela-

tively prime polynomials. Then the following bivariate polynomial
rP(X)Q2(Y) — sQ1(X) (YY), 1,s€ an

1s not divisible by any univariate polynomial.

Proof. Suppose that this polynomial was divisible by an univariate

polynomial d(X). Take a € T, any root of the polynomial d and
substitute it getting,

PP0)Qu(Y) — s PAY) =0 = Qu(y) = Q)

rP ()
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Here, we have two different possibilities:

o If P (a) =0, then Q;(a) =0, and we get a contradiction,
e In other case, ged(Q2(Y), P2(Y)) # 1, contradicting our hy-
pothesis.

This comment finishes the proof. O
Now, we prove the following result about irreducibility.

Lemma 3. Given relatively prime polynomials f,g € F,[X] and if a
rational function f(X)/g(X) € F,(X) of degree D > 2 is not a perfect
power then f(X)g(Y) — Af(Y)g(X) is reducible over F,[X,Y] for at
most 4D?* values of \ € F;.

Proof. First we describe the idea of the proof. Our aim is to show
that the condition of Lemma [I] holds for the polynomial f(X)g(Y) —
Af(Y)g(X). Indeed, we show that if

" F(X)g(Y)

X)f(Y
g(X)f(Y)
with a rational function R € F,(X) of degree deg R > 2 and a bivariate

rational function G(X,Y) € F,(X,Y), then there exists another R €
F,(X) and G(X,Y) € F,(X,Y)

00 (o))"

for an appropiate integer m > 2. Comparing coefficients, it is easy to
arrive at the conclusion that f(X)/g(X) is a perfect power.
Without loss of generality, we suppose R(0) = 0. So, indeed we have

X Hf:2(X — ;)
HT:l(X —85)
Writing G(X,Y) = G1(X,Y)/G2(X,Y) in its lowest terms and by
hypothesis, we have that the fraction on the right of this inequality,
FX)(Y)  GalX,¥)"
gXfY) Ga(X,Y)N—m
CGLX ) [T (GA(X,Y) = ri(Ga(X,Y)
[T (Gi(X,Y) = 5;G2(X,Y)) ’

= R(G(X,Y)),

R(X)=a

where
N = max{k,m}
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is in its lowest terms. This means that G1(X,Y) = P;(X)P(Y) and
Ga(X,Y) = Sfl(Pl(X)P2(Y) —Q1(X)Q2(Y)), where Pr, P, Q1,Qq are
divisors of f or g. Because ged(G1(X,Y),G2(X,Y)) = 1, we have that
ged(P1(X), Q1(X)) = ged(P(Y), Q2(Y)) = 1.
Lemma [2 implies that m = k as otherwise G(X,Y") is divisible by
an univariate polynomial. This implies,
f(X)g(Y) _ aGl(Xu Y) HZZ2(G1(X7 Y) - TZG?(Xu Y))
9(X)f(Y) [[[Z(GiX,Y) = 5;Go(X,Y))

Now, suppose that there exists another value

s€{ro, .. T, 82, Sm}s s#0,s;.
Then, the following polynomial
G1(X,Y) = sGo(X,Y) = (1 — ss7 )P (X) Po(Y) + 571 Q1 (X) QoY)

is divisible by an univariate polynomial which contradicts Lemma [l
So, this means that R(X) can be written in the following form,

0= ()

and this concludes the proof. O

Notice that the condition that f(X)/g(X) is not a perfect power of a
polynomial is necessary, indeed if f(X) = (h(X))" and g(X) = 1 with
F(X), h(X) € F,[X] then f(X)— A" f(Y) is divisible by h(X) — A(Y)
for any A € F,,.

2.2. Integral points on affine curves. We need the following es-
timate of Bombieri and Pila [2] on the number of integral points on
polynomial curves.

Lemma 4. Let C be a plane absolutely irreducible curve of degree n > 2
and let H > exp(n®). Then the number of integral points on C inside
of the square [0, H] x [0, H] is at most H'/" exp(12y/nlog H loglog H).

2.3. Small values of linear functions. We need a result about small
values of residues modulo p of several linear functions. Such a result
has been derived in [I12] Lemma 3.2] from the Dirichlet pigeon-hole
principle. Here use a slightly more precise and explicit form of this
result which is derived in [13] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric
lattices.

Let by, ..., b, be r linearly independent vectors in R®. The set

L=A{z :z=cbi+...4+¢b,, c,...,c, €Z}
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is called an r-dimensional lattice in R® with a basis {by,...,b,}.
To each lattice £ one can naturally associate its volume

vol £ = (det (B'B))"?,

where B is the s X r matrix whose columns are formed by the vectors
by, ..., b, and B! is the transposition of B. It is well known that vol £
does not depend on the choice of the basis {by, ..., b,}, we refer to [14]
for a background on lattices.

For a vector u, let

allee = max{ful, ..., Jus]}
denote its infinity norm of u = (uy,...,us) € R®.
The famous Minkowski theorem, see [14, Theorem 5.3.6], gives an

upper bound on the size of the shortest nonzero vector in any r-
dimensional lattice £ in terms of its volume.

Lemma 5. For any r-dimensional lattice L we have
min {||z]|e: z € £\ {0}} < (vol £)"/".

For an integer a we use (a), to denote the smallest by absolute value
residue of a modulo p, that is

(), = min |a — kp|.

The following result is essentially contained in [13] Theorem 2]. We
include here a short proof.

Lemma 6. For any real numbers Vi, ..., Vs with
p>Vi,...,Vi>1 and Vi Vy>pt

and integers by, . .., bs, there exists an integer v with ged(v,p) = 1 such
that

<bﬂ)>p§‘/i, izl,...,S.

Proof. Without loss of the generality, we can take b; = 1. We introduce
the following notation,

(4) v-IIv
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and consider the lattice £ generated by the columns of the following
matrix

BV/V, 0 ... 0 pVV.
be—1V/Vi 0 o PV Vi 0
B = : : : : :
WV/Ve  pV/Ve ... 0 0
V/Vi 0 ... 0 0

Clearly the volume of L is

J

V 1V
1L = — _:Vs—l 8—1<V8
VO Vljlj[QV' p =

by (@) and the conditions on the size of the product V; ... V. Consider
a nonzero vector with the minimum infinity norm inside £. By the
definition of £, this vector is a linear combination of the columns of B
with integer coefficients, that is, it can be written in the following way

eV (c1by + cop)V (c1bs 4+ csp)V

e, —— e, Cs E L.

< ‘/,1 5 ‘/2 ; ) ‘/; ) C1, ,Cs €

By Lemma[5jland the bound on the volume of £, the following inequality

holds,
clV (Clbg + czp)V (Clbs -+ csp)V
~— 7 T 1<V
max { V,l ‘/.2 V.S >

From here, it is trivial to check that if we choose v = ¢;, then
[ <Ubi>p:<clbi>p§‘/iu i:2,...,s,
which finishes the proof. O

9 g e e ey

3. MAIN RESuULTS

Theorem 7. Let ¥(X) = f(X)/g(X) where f,g € F,[X] relatively
prime polynomials of degree d and e respectively with d +e > 1. We
define
¢ = min{d, e}, m = max{d, e}
and set
k=(l+1)(tm—0C+m’+m) and s =2ml+2m — (°.

Assume that 1) is not a perfect power of another rational function over

F,. Then for any interval T of H consecutive integers and a subgroup
G of F, of order T', we have

Nw(.’z, g) < (1 + pr—’ﬂ)HT-i-O(l)Tl/Z’
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where
9 1 k 1
= — = — =
25’ P= a9 2(0+m)’

and the implied constant depends on d and e.

Proof. Clearly we can assume that
) H < /o)

for some constant ¢ > 0 which may depend on d and e as otherwise
one easily verifies that H?p~ > 1 and

Hp+‘rp—19 > H1/2’
and hence the desired bound is weaker than the trivial estimate
Ny(Z,G) < min{H, T} < H'*T"2,
Making the transformation X — X + u, we can assume that 7 =
{1,....,H}. Let 1 <2y < ... <z, < H beall r = Ny(Z,G) values of
x € T with ¥(x) € G.

Let A be the set of exceptional values of A € F, described in Lemma/[3]
We see that there are only at most 4m?r pairs (x;,z;), 1 <i,j <r, for
which ¥(x;)/¢(z;) € A. Indeed, if z; is fixed, then ¢ (z;) can take at
most 4m? values of the form A\ (z;), with A € A,

Furthermore, each value A)(x;) can be taken by v (z;) for at most
D possible values of i =1, ..., 7.

We now assume that r > 8m? as otherwise there is nothing to prove.
Therefore, there is A € G \ A such that

(6) U(x) = Mp(y)  (mod p)

for at least

r? —4m3r _ r?
>
(7) T - 2T
pairs (z,y) with z,y € {1,..., H}.
Let o
FX)g(Y) = Af(V)g(X) =D by XYY
=0 7=0
Let

H={(,7) : 4,j=0,...,m, i+j>1,min{i, j} </}

Clearly the noncostant terms b; ; X'Y7 of f(X)g(Y) — Af(Y)g(X) are
supported only on the subscripts (i,7) € H. We have

#H=2m+1)(l+1)—((+1)>*—-1=s

We now apply Lemma [6] with s = #H and the vector (bi7j)(ij)eﬂ.
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We also define the quantities U and V; ;, (4, j) € H by the relations
‘/;,jHi+j = U7 (Zuj) S Hv

H ‘/;,j _ 2ps—1.

(i,§)eM
By Lemma [0l there is an integer v with ged(v, p) = 1 such that
(bijv), < Vi

thus

for every (i,7) € H.

We have
m L ¢ ¢
SN+ =2> Y (i+4) =D (i+7)
(4,5)EH i=0 j=0 i=0 j=0
= e+ 1) ‘ e+ 1)
:2; (C+1)i+ 5 —;<(£+1)z+ 5
(+1)m(m+1) Ll+1)(m+1)
=2 +
2 2
1) e+ "
2 2
Certainly it is easy to evaluate V;; and VZ(J’\), (1,7) € H explicitly,
however it is enough for us to note that we have
USHF = 2p*~ 1.
Hence
(8) U= 21/3p1_1/8Hk/8.

We also assume that the constant ¢ in (5] is small enough so the con-
dition

max {Vi,j,‘/;(;\)} —UH ' <p

(1,5)EH ’
is satisfied.

Let F(X,Y) € Z[X] and G(X,Y) € Z[X] be polynomials with co-

efficients in the interval [—p/2, p/2], obtained by reducing v f(X)g(Y)
and vAf(Y)g(X) modulo p, respectively. Clearly (@) implies

(9) F(a,y) = G(z,y)  (mod p).

Furthermore, since for z,y € {1,..., H}, we see from () and the trivial
estimate on the constant coefficients (that is, |F'(0)[,|G(0)| < p/2) that

|F(l’,y) - G([lf,y)| << U+p < pl—l/sHk/s —I—p’
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which together with (9)) implies that
(10) Fl,y) = G, y) + zp

for some integer z < p~ Y H*/* 1.

Clearly, for any integer z the reducibility of F(X,Y) — G(X,Y) —
pz over C implies the reducibility of F(X,Y) — G(X,Y) over F,, or
equaivalently f(X)g(Y) — Af(Y)g(X) over F,, which is impossible be-
cause A € A.

Because F(X,Y) — G(X,Y) — pz € C[X,Y] is irreducible over C
and has degree d, we derive from Lemma [ that for every z the equa-
tion (I0) has at most H/(@+e)+o(1) solutions. Thus the congruence ()
has at most O (H'/(*T9)e() (p=1/s 7%/ 4 1)) solutions. This, together
with (7)), yields the inequality

2

r
7 < HV/(@d+e)to(1) (p—l/sHk/s + 1) ’

and concludes the proof. O

Clearly, in the case when e = 0, that is, ¢ = f is a polynomial of
degree d > 2, the bound of Theorem [7] takes form

Ny(Z,G) < (1 4 H@D/Ap=1/Ad) pt/2dtepl/2,

4. COMMENTS

Clearly Theorem [7] also provides a bound for the case where rational
function ¢ = ¢*, with ¢ € F,(X). This comes from the fact that

(r) e G = () € Go,

where G is a multiplicative subgroup of T, of order bounded by sT.
However the resulting bound depends now on the degrees of the poly-
nomials associated with ¢ rather than that of .

Another consequence from Theorem [7 is the following: given an
interval Z and a subgroup G € [y, satisfying Ny (Z,G) = #Z then

#G > min{(#I)¥ 2o (H1)1 -2 2r+e(l)20

where the implied constant depends only on d and e. However, we
believe that this bound is very unlikely to be tight.
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