SUBGROUPS GENERATED BY RATIONAL FUNCTIONS IN FINITE FIELDS

DOMINGO GÓMEZ-PÉREZ AND IGOR E. SHPARLINSKI

Abstract

For a large prime p, a rational function $\psi \in \mathbb{F}_{p}(X)$ over the finite field \mathbb{F}_{p} of p elements, and integers u and $H \geq 1$, we obtain a lower bound on the number consecutive values $\psi(x)$, $x=u+1, \ldots, u+H$ that belong to a given multiplicative subgroup of \mathbb{F}_{p}^{*}.

1. Introduction

For a prime p, let \mathbb{F}_{p} denote the finite field with p elements, which we always assume to be represented by the set $\{0, \ldots, p-1\}$.

Given a rational function

$$
\psi(X)=\frac{f(X)}{g(X)} \in \mathbb{F}_{p}(X)
$$

where $f, g \in \mathbb{F}_{p}[X]$ are relatively prime polynomials, and an 'interesting' set $\mathcal{S} \subseteq \mathbb{F}_{p}$, it is natural to ask how the value set

$$
\psi(\mathcal{S})=\{\psi(x): x \in \mathcal{S}, g(x) \neq 0\}
$$

is distributed. For instance, given another 'interesting' set \mathcal{T}, our goal is to obtain nontrivial bounds on the size of the intersection

$$
N_{\psi}(\mathcal{S}, \mathcal{T})=\#(\psi(\mathcal{S}) \cap \mathcal{T})
$$

In particular, we are interested in the cases when $N_{\psi}(\mathcal{S}, \mathcal{T})$ achieves the trivial upper bound

$$
N_{\psi}(\mathcal{S}, \mathcal{T}) \leq \min \{\# \mathcal{S}, \# \mathcal{T}\}
$$

Typical examples of such sets \mathcal{S} and \mathcal{T} are given by intervals \mathcal{I} of consecutive integers and multiplicative subgroups \mathcal{G} of \mathbb{F}_{p}^{*}. For large intervals and subgroups, a standard application of bounds of exponential and multiplicative character sums leads to asymptotic formulas for the relevant values of $N_{\psi}(\mathcal{S}, \mathcal{T})$, see [7, 11, 19]. Thus only the case of small intervals and groups is of interest.

[^0]For a polynomial $f \in \mathbb{F}_{p}[X]$ and two intervals $\mathcal{I}=\{u+1, \ldots, u+H\}$ and $\mathcal{J}=\{v+1, \ldots, v+H\}$ of H consecutive integers, various bounds on the cardinality of the intersection $f(\mathcal{I}) \cap \mathcal{J}$ are given in [7, 11]. To present some of these results, for positive integers d, k and H, we denote by $J_{d, k}(H)$ the number of solutions to the system of equations

$$
x_{1}^{\nu}+\ldots+x_{k}^{\nu}=x_{k+1}^{\nu}+\ldots+x_{2 k}^{\nu}, \quad \nu=1, \ldots, d
$$

in positive integers $x_{1}, \ldots, x_{2 k} \leq H$. Then by [11, Theorem 1], for any $f \in \mathbb{F}_{p}[X]$ of degree $d \geq 2$ and two intervals \mathcal{I} and \mathcal{J} of $H<p$ consecutive integers, we have

$$
N_{f}(\mathcal{I}, \mathcal{J}) \leq H(H / p)^{1 / 2 \kappa(d)+o(1)}+H^{1-(d-1) / 2 \kappa(d)+o(1)}
$$

as $H \rightarrow \infty$, where $\kappa(d)$ is the smallest integer κ such that for $k \geq \kappa$ there exists a constant $C(d, k)$ depending only on k and d and such that

$$
J_{d, k}(H) \leq C(d, k) H^{2 k-d(d+1) / 2+o(1)}
$$

holds as $H \rightarrow \infty$, see also [7] for some improvements and results for related problems. In [7, 11] the bounds of Wooley [22, 23] are used that give the presently best known estimates on $\kappa(d)$ (at least for a large $d)$, see also [24] for further progress in estimating $\kappa(d)$.

It is easy to see that the argument of the proof of [11, Theorem 1] allows to consider intervals of \mathcal{I} and \mathcal{J} of different lengths as well and for intervals

$$
\mathcal{I}=\{u+1, \ldots, u+H\} \quad \text { and } \quad \mathcal{J}=\{v+1, \ldots, v+K\}
$$

with $1 \leq H, K<p$ it leads to the bound

$$
N_{f}(\mathcal{I}, \mathcal{J}) \leq H^{1+o(1)}\left((K / p)^{1 / 2 \kappa(d)}+\left(K / H^{d}\right)^{1 / 2 \kappa(d)}\right),
$$

see also a more general result of Kerr [15, Theorem 3.1] that applies to multivariate polynomials and to congruences modulo a composite number.

Furthermore, let $K_{\psi}(H)$ be the smallest K for which there are intervals $\mathcal{I}=\{u+1, \ldots, u+H\}$ and $\mathcal{J}=\{v+1, \ldots, v+K\}$ for which $N_{\psi}(\mathcal{I}, \mathcal{J})=\# \mathcal{I}$. That is, $K_{\psi}(H)$ is the length of the shortest interval, which may contain H consecutive values of $\psi \in \mathbb{F}_{p}(X)$ of degree d.

Defining $\kappa^{*}(d)$ in the same way as $\kappa(d)$, however with respect to the more precise bound

$$
J_{d, k}(H) \leq C(d, k) H^{2 k-d(d+1) / 2}
$$

(that is, without $o(1)$ in the exponent) we can easily derive that for any polynomial $f \in \mathbb{F}_{p}[X]$ of degree d,

$$
\begin{equation*}
K_{f}(H)=O\left(H^{d}\right) \tag{1}
\end{equation*}
$$

To see that the bound (1) is optimal it is enough to take $f(X)=X^{d}$ and $u=0$. Note that the proof of (1) depends only on the existence of $\kappa^{*}(d)$ rather than on its specific bounds. However, we recall that Wooley [22, Theorem 1.2] shows that for some constant $\mathfrak{S}(d, k)>0$ depending only on d and k we have

$$
J_{d, k}(H) \sim \mathfrak{S}(d, k) H^{2 k-d(d+1) / 2}
$$

for any fixed $d \geq 3$ and $k \geq d^{2}+d+1$. In particular, $\kappa^{*}(d) \leq d^{2}+d+1$.
Here we concentrate on estimating $N_{\psi}(\mathcal{I}, \mathcal{G})$ for an interval \mathcal{I} of H consecutive integers and a multiplicative subgroup $\mathcal{G} \subseteq \mathbb{F}_{p}^{*}$ of order T. This question has been mentioned in [11, Section 4] as an open problem.

We remark that for linear polynomials f the result of [4, Corollary 34] have a natural interpretation as a lower bound on the order of a sub$\operatorname{group} \mathcal{G} \subseteq \mathbb{F}_{p}^{*}$ for which $N_{f}(\mathcal{I}, \mathcal{G})=\# \mathcal{I}$. In particular, we infer from [4, Corollary 34] that for any linear polynomials $f(X)=a X+b \in \mathbb{F}_{p}[X]$ and fixed integer $\nu=1,2, \ldots$, for an interval \mathcal{I} of $H \leq p^{1 /\left(\nu^{2}-1\right)}$ consecutive integers and a subgroup \mathcal{G}, the equality $N_{f}(\mathcal{I}, \mathcal{G})=\# \mathcal{I}$ implies $\# \mathcal{G} \geq H^{\nu+o(1)}$.

We also remark that the results of [5, Section 5] have a similar interpretation for the identity $N_{f}(\mathcal{I}, \mathcal{G})=\# \mathcal{I}$ with linear polynomials, however apply to almost all primes p (rather than to all primes).

Furthermore, a result of Bourgain [3, Theorem 2] gives a nontrivial bound on the intersection of an interval centered at 0 , that is, of the form $\mathcal{I}=\{0, \pm 1, \ldots, \pm H\}$ and a co-set $a \mathcal{G}$ (with $a \in \mathbb{F}_{p}^{*}$) of a multiplicative group $\mathcal{G} \subseteq \mathbb{F}_{p}^{*}$, provided that $H<p^{1-\varepsilon}$ and $\# \mathcal{G} \geq g_{0}(\varepsilon)$, for some constant $g_{0}(\varepsilon)$ depending only on an arbitrary $\varepsilon>0$.

We note that several bounds on $\#(f(\mathcal{G}) \cap \mathcal{G})$ for a multiplicative subgroup $\mathcal{G} \subseteq \mathbb{F}_{p}^{*}$ are given in [19], but they apply only to polynomials f defined over \mathbb{Z} and are not uniform with respect to the height (that is, the size of the coefficients) of f. Thus the question of estimating $N_{f}(\mathcal{G}, \mathcal{G})$ remains open. On the other hand, a number of results about points on curves and algebraic varieties with coordinates from small subgroups, in particular, in relation to the Poonen Conjecture, have been given in [6, 8, ,9, 10, 17, 18, 20, 21].

We recall that the notations $U=O(V), U \ll V$ and $V \gg U$ are all equivalent to the statement that the inequality $|U| \leq c V$ holds with some constant $c>0$. Throughout the paper, any implied constants in these symbols may occasionally depend, where obvious, on $d=\operatorname{deg} f$ and $e=\operatorname{deg} g$, but are absolute otherwise.

2. Preparations

2.1. Absolute irreducibility of some polynomials. As usual, we use $\overline{\mathbb{F}}_{p}$ to denote the algebraic closure of \mathbb{F}_{p} and X, Y to denote indeterminate variables. We also use $\overline{\mathbb{F}}_{p}(X), \overline{\mathbb{F}}_{p}(Y), \overline{\mathbb{F}}_{p}(X, Y)$ to denote the corresponding fields of rational functions over $\overline{\mathbb{F}}_{p}$.

We recall that the degree of a rational function in the variables X, Y

$$
F(X, Y)=\frac{s(X, Y)}{t(X, Y)} \in \overline{\mathbb{F}}_{p}(X, Y), \quad \operatorname{gcd}(s(X, Y), t(X, Y))=1,
$$

is $\operatorname{deg} F=\max \{\operatorname{deg} s, \operatorname{deg} t\}$.
It is also known that if $R(X) \in \overline{\mathbb{F}}_{p}(X)$ is an rational function then

$$
\begin{equation*}
\operatorname{deg}(R \circ F)=\operatorname{deg} R \operatorname{deg} F \tag{2}
\end{equation*}
$$

where \circ denotes the composition.
We use the following result of Bodin [1, Theorem 5.3] adapted to our purposes.
Lemma 1. Let $s(X, Y), t(X, Y) \in \mathbb{F}_{p}[X, Y]$ be polynomials such that there does not exist a rational function $R(X) \in \overline{\mathbb{F}}_{p}(X)$ with $\operatorname{deg} R>1$ and a bivariate rational function $G(X, Y) \in \overline{\mathbb{F}}_{p}[X, Y]$ such that,

$$
F(X, Y)=\frac{s(X, Y)}{t(X, Y)}=R(G(X, Y))
$$

The number of elements λ such that the polynomial $s(X, Y)-\lambda t(X, Y)$ is reducible over $\overline{\mathbb{F}}_{p}[X, Y]$ is at most $(\operatorname{deg} F)^{2}$.

We say that a rational function $f \in \overline{\mathbb{F}}_{p}(X)$ is a perfect power of another rational function if and only if $f(X)=(g(X))^{n}$ for some rational function $g(X) \in \overline{\mathbb{F}}_{p}(X)$ and integer $n \geq 2$. Because $\overline{\mathbb{F}}_{p}$ is algebraic closed field, it is trivial to see that if $f(X)$ is a perfect power, then $a f(X)$ is also a perfect power for any $a \in \overline{\mathbb{F}}_{p}$. We need the following easy technical lemma.

Lemma 2. Let $P_{1}(X), Q_{1}(X) \in \overline{\mathbb{F}}_{p}[X], P_{2}(Y), Q_{2}(Y) \in \overline{\mathbb{F}}_{p}[Y]$ by relatively prime polynomials. Then the following bivariate polynomial

$$
r P_{1}(X) Q_{2}(Y)-s Q_{1}(X) P_{2}(Y), \quad r, s \in \overline{\mathbb{F}}_{p}^{*}
$$

is not divisible by any univariate polynomial.
Proof. Suppose that this polynomial was divisible by an univariate polynomial $d(X)$. Take $\alpha \in \overline{\mathbb{F}}_{p}$ any root of the polynomial d and substitute it getting,

$$
r P_{1}(\alpha) Q_{2}(Y)-s Q_{1}(\alpha) P_{2}(Y)=0 \Longrightarrow Q_{2}(Y)=\frac{s Q_{1}(\alpha) P_{2}(Y)}{r P_{1}(\alpha)}
$$

Here, we have two different possibilities:

- If $r P_{1}(\alpha)=0$, then $Q_{1}(\alpha)=0$, and we get a contradiction,
- In other case, $\operatorname{gcd}\left(Q_{2}(Y), P_{2}(Y)\right) \neq 1$, contradicting our hypothesis.
This comment finishes the proof.
Now, we prove the following result about irreducibility.
Lemma 3. Given relatively prime polynomials $f, g \in \overline{\mathbb{F}}_{p}[X]$ and if a rational function $f(X) / g(X) \in \overline{\mathbb{F}}_{p}(X)$ of degree $D \geq 2$ is not a perfect power then $f(X) g(Y)-\lambda f(Y) g(X)$ is reducible over $\overline{\mathbb{F}}_{p}[X, Y]$ for at most $4 D^{2}$ values of $\lambda \in \overline{\mathbb{F}}_{p}^{*}$.

Proof. First we describe the idea of the proof. Our aim is to show that the condition of Lemma 1 holds for the polynomial $f(X) g(Y)-$ $\lambda f(Y) g(X)$. Indeed, we show that if

$$
\begin{equation*}
\frac{f(X) g(Y)}{g(X) f(Y)}=R(G(X, Y)) \tag{3}
\end{equation*}
$$

with a rational function $R \in \overline{\mathbb{F}}_{p}(X)$ of degree $\operatorname{deg} R \geq 2$ and a bivariate rational function $G(X, Y) \in \overline{\mathbb{F}}_{p}(X, Y)$, then there exists another $\widetilde{R} \in$ $\overline{\mathbb{F}}_{p}(X)$ and $\widetilde{G}(X, Y) \in \overline{\mathbb{F}}_{p}(X, Y)$

$$
\frac{f(X) g(Y)}{g(X) f(Y)}=(\widetilde{R}(\widetilde{G}(X, Y)))^{m}
$$

for an appropiate integer $m \geq 2$. Comparing coefficients, it is easy to arrive at the conclusion that $f(X) / g(X)$ is a perfect power.

Without loss of generality, we suppose $R(0)=0$. So, indeed we have

$$
R(X)=a \frac{X \prod_{i=2}^{k}\left(X-r_{i}\right)}{\prod_{j=1}^{m}\left(X-s_{j}\right)}
$$

Writing $G(X, Y)=G_{1}(X, Y) / G_{2}(X, Y)$ in its lowest terms and by hypothesis, we have that the fraction on the right of this inequality,

$$
\begin{aligned}
& \frac{f(X) g(Y)}{g(X) f(Y)}=a \frac{G_{2}(X, Y)^{N-k}}{G_{2}(X, Y)^{N-m}} \\
& \cdot \frac{G_{1}(X, Y) \prod_{i=2}^{k}\left(G_{1}(X, Y)-r_{i}\left(G_{2}(X, Y)\right)\right.}{\prod_{j=1}^{m}\left(G_{1}(X, Y)-s_{j} G_{2}(X, Y)\right)}
\end{aligned}
$$

where

$$
N=\max \{k, m\}
$$

is in its lowest terms. This means that $G_{1}(X, Y)=P_{1}(X) P_{2}(Y)$ and $G_{2}(X, Y)=s_{1}^{-1}\left(P_{1}(X) P_{2}(Y)-Q_{1}(X) Q_{2}(Y)\right)$, where $P_{1}, P_{2}, Q_{1}, Q_{2}$ are divisors of f or g. Because $\operatorname{gcd}\left(G_{1}(X, Y), G_{2}(X, Y)\right)=1$, we have that

$$
\operatorname{gcd}\left(P_{1}(X), Q_{1}(X)\right)=\operatorname{gcd}\left(P_{2}(Y), Q_{2}(Y)\right)=1
$$

Lemma 2 implies that $m=k$ as otherwise $G_{2}(X, Y)$ is divisible by an univariate polynomial. This implies,

$$
\frac{f(X) g(Y)}{g(X) f(Y)}=a \frac{G_{1}(X, Y) \prod_{i=2}^{m}\left(G_{1}(X, Y)-r_{i} G_{2}(X, Y)\right)}{\prod_{j=1}^{m}\left(G_{1}(X, Y)-s_{j} G_{2}(X, Y)\right)}
$$

Now, suppose that there exists another value

$$
s \in\left\{r_{2}, \ldots, r_{m}, s_{2}, \ldots, s_{m}\right\}, \quad s \neq 0, s_{1} .
$$

Then, the following polynomial

$$
G_{1}(X, Y)-s G_{2}(X, Y)=\left(1-s s_{1}^{-1}\right) P_{1}(X) P_{2}(Y)+s_{1}^{-1} Q_{1}(X) Q_{2}(Y)
$$

is divisible by an univariate polynomial which contradicts Lemma 2, So, this means that $R(X)$ can be written in the following form,

$$
R(X)=\left(\frac{X}{X-s_{1}}\right)^{m}
$$

and this concludes the proof.
Notice that the condition that $f(X) / g(X)$ is not a perfect power of a polynomial is necessary, indeed if $f(X)=(h(X))^{n}$ and $g(X)=1$ with $f(X), h(X) \in \overline{\mathbb{F}}_{p}[X]$ then $f(X)-\lambda^{n} f(Y)$ is divisible by $h(X)-\lambda h(Y)$ for any $\lambda \in \overline{\mathbb{F}}_{p}$.
2.2. Integral points on affine curves. We need the following estimate of Bombieri and Pila [2] on the number of integral points on polynomial curves.

Lemma 4. Let \mathcal{C} be a plane absolutely irreducible curve of degree $n \geq 2$ and let $H \geq \exp \left(n^{6}\right)$. Then the number of integral points on \mathcal{C} inside of the square $[0, H] \times[0, H]$ is at most $H^{1 / n} \exp (12 \sqrt{n \log H \log \log H})$.
2.3. Small values of linear functions. We need a result about small values of residues modulo p of several linear functions. Such a result has been derived in [12, Lemma 3.2] from the Dirichlet pigeon-hole principle. Here use a slightly more precise and explicit form of this result which is derived in [13] from the Minkowski theorem.

First we recall some standard notions of the theory of geometric lattices.

Let $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}$ be r linearly independent vectors in \mathbb{R}^{s}. The set

$$
\mathcal{L}=\left\{\mathbf{z}: \mathbf{z}=c_{1} \mathbf{b}_{1}+\ldots+c_{r} \mathbf{b}_{r}, \quad c_{1}, \ldots, c_{r} \in \mathbb{Z}\right\}
$$

is called an r-dimensional lattice in \mathbb{R}^{s} with a basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right\}$.
To each lattice \mathcal{L} one can naturally associate its volume

$$
\operatorname{vol} \mathcal{L}=\left(\operatorname{det}\left(B^{t} B\right)\right)^{1 / 2}
$$

where B is the $s \times r$ matrix whose columns are formed by the vectors $\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}$ and B^{t} is the transposition of B. It is well known that $\operatorname{vol} \mathcal{L}$ does not depend on the choice of the basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{r}\right\}$, we refer to [14] for a background on lattices.

For a vector \mathbf{u}, let

$$
\|\mathbf{u}\|_{\infty}=\max \left\{\left|u_{1}\right|, \ldots,\left|u_{s}\right|\right\}
$$

denote its infinity norm of $\mathbf{u}=\left(u_{1}, \ldots, u_{s}\right) \in \mathbb{R}^{s}$.
The famous Minkowski theorem, see [14, Theorem 5.3.6], gives an upper bound on the size of the shortest nonzero vector in any r dimensional lattice \mathcal{L} in terms of its volume.

Lemma 5. For any r-dimensional lattice \mathcal{L} we have

$$
\min \left\{\|\mathbf{z}\|_{\infty}: \mathbf{z} \in \mathcal{L} \backslash\{\mathbf{0}\}\right\} \leq(\operatorname{vol} \mathcal{L})^{1 / r} .
$$

For an integer a we use $\langle a\rangle_{p}$ to denote the smallest by absolute value residue of a modulo p, that is

$$
\langle a\rangle_{p}=\min _{k \in \mathbb{Z}}|a-k p| .
$$

The following result is essentially contained in [13, Theorem 2]. We include here a short proof.

Lemma 6. For any real numbers V_{1}, \ldots, V_{s} with

$$
p>V_{1}, \ldots, V_{s} \geq 1 \quad \text { and } \quad V_{1} \ldots V_{s}>p^{s-1}
$$

and integers b_{1}, \ldots, b_{s}, there exists an integer v with $\operatorname{gcd}(v, p)=1$ such that

$$
\left\langle b_{i} v\right\rangle_{p} \leq V_{i}, \quad i=1, \ldots, s
$$

Proof. Without loss of the generality, we can take $b_{1}=1$. We introduce the following notation,

$$
\begin{equation*}
V=\prod_{i=1}^{s} V_{i} \tag{4}
\end{equation*}
$$

and consider the lattice \mathcal{L} generated by the columns of the following matrix

$$
B=\left(\begin{array}{ccccc}
b_{s} V / V_{s} & 0 & \ldots & 0 & p V / V_{s} \\
b_{s-1} V / V_{s-1} & 0 & \ldots & p V / V_{s-1} & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
b_{2} V / V_{2} & p V / V_{2} & \ldots & 0 & 0 \\
V / V_{1} & 0 & \ldots & 0 & 0
\end{array}\right) .
$$

Clearly the volume of \mathcal{L} is

$$
\operatorname{vol} \mathcal{L}=\frac{V}{V_{1}} \prod_{j=2}^{s} \frac{p V}{V_{j}}=V^{s-1} p^{s-1} \leq V^{s}
$$

by (4) and the conditions on the size of the product $V_{1} \ldots V_{s}$. Consider a nonzero vector with the minimum infinity norm inside \mathcal{L}. By the definition of \mathcal{L}, this vector is a linear combination of the columns of B with integer coefficients, that is, it can be written in the following way

$$
\left(\frac{c_{1} V}{V_{1}}, \frac{\left(c_{1} b_{2}+c_{2} p\right) V}{V_{2}}, \ldots, \frac{\left(c_{1} b_{s}+c_{s} p\right) V}{V_{s}}\right), \quad c_{1}, \ldots, c_{s} \in \mathbb{Z} .
$$

By Lemma 5 and the bound on the volume of \mathcal{L}, the following inequality holds,

$$
\max \left\{\left|\frac{c_{1} V}{V_{1}}\right|,\left|\frac{\left(c_{1} b_{2}+c_{2} p\right) V}{V_{2}}\right|, \ldots,\left|\frac{\left(c_{1} b_{s}+c_{s} p\right) V}{V_{s}}\right|\right\} \leq V .
$$

From here, it is trivial to check that if we choose $v=c_{1}$, then

- $\langle v\rangle_{p}=\left\langle c_{1}\right\rangle_{p} \leq V_{1}$,
- $\left\langle v b_{i}\right\rangle_{p}=\left\langle c_{1} b_{i}\right\rangle_{p} \leq V_{i}, \quad i=2, \ldots, s$,
which finishes the proof.

3. Main Results

Theorem 7. Let $\psi(X)=f(X) / g(X)$ where $f, g \in \mathbb{F}_{p}[X]$ relatively prime polynomials of degree d and e respectively with $d+e \geq 1$. We define

$$
\ell=\min \{d, e\}, \quad m=\max \{d, e\}
$$

and set

$$
k=(\ell+1)\left(\ell m-\ell^{2}+m^{2}+m\right) \quad \text { and } \quad s=2 m \ell+2 m-\ell^{2} .
$$

Assume that ψ is not a perfect power of another rational function over $\overline{\mathbb{F}}_{p}$. Then for any interval \mathcal{I} of H consecutive integers and a subgroup \mathcal{G} of \mathbb{F}_{p}^{*} of order T, we have

$$
N_{\psi}(\mathcal{I}, \mathcal{G}) \ll\left(1+H^{\rho} p^{-\vartheta}\right) H^{\tau+o(1)} T^{1 / 2}
$$

where

$$
\vartheta=\frac{1}{2 s}, \quad \rho=\frac{k}{2 s}, \quad \tau=\frac{1}{2(\ell+m)},
$$

and the implied constant depends on d and e.
Proof. Clearly we can assume that

$$
\begin{equation*}
H \leq c p^{2 \vartheta /(2 \rho-1)} \tag{5}
\end{equation*}
$$

for some constant $c>0$ which may depend on d and e as otherwise one easily verifies that $H^{\rho} p^{-\vartheta} \geq 1$ and

$$
H^{\rho+\tau} p^{-\vartheta} \geq H^{1 / 2}
$$

and hence the desired bound is weaker than the trivial estimate

$$
N_{\psi}(\mathcal{I}, \mathcal{G}) \ll \min \{H, T\} \leq H^{1 / 2} T^{1 / 2}
$$

Making the transformation $X \mapsto X+u$, we can assume that $\mathcal{I}=$ $\{1, \ldots, H\}$. Let $1 \leq x_{1}<\ldots<x_{r} \leq H$ be all $r=N_{\psi}(\mathcal{I}, \mathcal{G})$ values of $x \in \mathcal{I}$ with $\psi(x) \in \mathcal{G}$.

Let Λ be the set of exceptional values of $\lambda \in \overline{\mathbb{F}}_{p}$ described in Lemma3, We see that there are only at most $4 m^{3} r$ pairs $\left(x_{i}, x_{j}\right), 1 \leq i, j \leq r$, for which $\psi\left(x_{i}\right) / \psi\left(x_{j}\right) \in \Lambda$. Indeed, if x_{j} is fixed, then $\psi\left(x_{i}\right)$ can take at most $4 m^{2}$ values of the form $\lambda \psi\left(x_{j}\right)$, with $\lambda \in \Lambda$,

Furthermore, each value $\lambda \psi\left(x_{j}\right)$ can be taken by $\psi\left(x_{i}\right)$ for at most D possible values of $i=1, \ldots, r$.

We now assume that $r>8 m^{3}$ as otherwise there is nothing to prove. Therefore, there is $\lambda \in \mathcal{G} \backslash \Lambda$ such that

$$
\begin{equation*}
\psi(x) \equiv \lambda \psi(y) \quad(\bmod p) \tag{6}
\end{equation*}
$$

for at least

$$
\begin{equation*}
\frac{r^{2}-4 m^{3} r}{T} \geq \frac{r^{2}}{2 T} \tag{7}
\end{equation*}
$$

pairs (x, y) with $x, y \in\{1, \ldots, H\}$.
Let

$$
f(X) g(Y)-\lambda f(Y) g(X)=\sum_{i=0}^{m} \sum_{j=0}^{m} b_{i, j} X^{i} Y^{j}
$$

Let

$$
\mathcal{H}=\{(i, j): i, j=0, \ldots, m, i+j \geq 1, \min \{i, j\} \leq \ell\}
$$

Clearly the noncostant terms $b_{i, j} X^{i} Y^{j}$ of $f(X) g(Y)-\lambda f(Y) g(X)$ are supported only on the subscripts $(i, j) \in \mathcal{H}$. We have

$$
\# \mathcal{H}=2(m+1)(\ell+1)-(\ell+1)^{2}-1=s
$$

We now apply Lemma 6 with $s=\# \mathcal{H}$ and the vector $\left(b_{i, j}\right)_{(i, j) \in \mathcal{H}}$.

We also define the quantities U and $V_{i, j},(i, j) \in \mathcal{H}$ by the relations

$$
V_{i, j} H^{i+j}=U, \quad(i, j) \in \mathcal{H}
$$

thus

$$
\prod_{(i, j) \in \mathcal{H}} V_{i, j}=2 p^{s-1} .
$$

By Lemma 6 there is an integer v with $\operatorname{gcd}(v, p)=1$ such that

$$
\left\langle b_{i, j} v\right\rangle_{p} \leq V_{i, j}
$$

for every $(i, j) \in \mathcal{H}$.
We have

$$
\begin{aligned}
& \sum_{(i, j) \in \mathcal{H}}(i+j)=2 \sum_{i=0}^{m} \sum_{j=0}^{\ell}(i+j)-\sum_{i=0}^{\ell} \sum_{j=0}^{\ell}(i+j) \\
& =2 \sum_{i=0}^{m}\left((\ell+1) i+\frac{\ell(\ell+1)}{2}\right)-\sum_{i=0}^{\ell}\left((\ell+1) i+\frac{\ell(\ell+1)}{2}\right) \\
& =2\left(\frac{(\ell+1) m(m+1)}{2}+\frac{\ell(\ell+1)(m+1)}{2}\right) \\
& \quad-\frac{\ell(\ell+1)^{2}}{2}-\frac{\ell(\ell+1)^{2}}{2}=k
\end{aligned}
$$

Certainly it is easy to evaluate $V_{i, j}$ and $V_{i, j}^{(\lambda)},(i, j) \in \mathcal{H}$ explicitly, however it is enough for us to note that we have

$$
U^{s} H^{k}=2 p^{s-1}
$$

Hence

$$
\begin{equation*}
U=2^{1 / 3} p^{1-1 / s} H^{k / s} \tag{8}
\end{equation*}
$$

We also assume that the constant c in (5) is small enough so the condition

$$
\max _{(i, j) \in \mathcal{H}}\left\{V_{i, j}, V_{i, j}^{(\lambda)}\right\}=U H^{-1}<p
$$

is satisfied.
Let $F(X, Y) \in \mathbb{Z}[X]$ and $G(X, Y) \in \mathbb{Z}[X]$ be polynomials with coefficients in the interval $[-p / 2, p / 2]$, obtained by reducing $v f(X) g(Y)$ and $v \lambda f(Y) g(X)$ modulo p, respectively. Clearly (6) implies

$$
\begin{equation*}
F(x, y) \equiv G(x, y) \quad(\bmod p) \tag{9}
\end{equation*}
$$

Furthermore, since for $x, y \in\{1, \ldots, H\}$, we see from (8) and the trivial estimate on the constant coefficients (that is, $|F(0)|,|G(0)| \leq p / 2)$ that

$$
|F(x, y)-G(x, y)| \ll U+p \ll p^{1-1 / s} H^{k / s}+p
$$

which together with (9) implies that

$$
\begin{equation*}
F(x, y)=G(x, y)+z p \tag{10}
\end{equation*}
$$

for some integer $z \ll p^{-1 / s} H^{k / s}+1$.
Clearly, for any integer z the reducibility of $F(X, Y)-G(X, Y)-$ $p z$ over \mathbb{C} implies the reducibility of $F(X, Y)-G(X, Y)$ over $\overline{\mathbb{F}}_{p}$, or equaivalently $f(X) g(Y)-\lambda f(Y) g(X)$ over $\overline{\mathbb{F}}_{p}$, which is impossible because $\lambda \notin \Lambda$.

Because $F(X, Y)-G(X, Y)-p z \in \mathbb{C}[X, Y]$ is irreducible over \mathbb{C} and has degree d, we derive from Lemma 4 that for every z the equation (10) has at most $H^{1 /(d+e)+o(1)}$ solutions. Thus the congruence (6) has at most $O\left(H^{1 /(d+e)+o(1)}\left(p^{-1 / s} H^{k / s}+1\right)\right)$ solutions. This, together with (7), yields the inequality

$$
\frac{r^{2}}{2 T} \ll H^{1 /(d+e)+o(1)}\left(p^{-1 / s} H^{k / s}+1\right)
$$

and concludes the proof.
Clearly, in the case when $e=0$, that is, $\psi=f$ is a polynomial of degree $d \geq 2$, the bound of Theorem 7 takes form

$$
N_{\psi}(\mathcal{I}, \mathcal{G}) \ll\left(1+H^{(d+1) / 4} p^{-1 / 4 d}\right) H^{1 / 2 d+o(1)} T^{1 / 2}
$$

4. Comments

Clearly Theorem 7 also provides a bound for the case where rational function $\psi=\varphi^{s}$, with $\varphi \in \overline{\mathbb{F}}_{p}(X)$. This comes from the fact that

$$
\psi(x) \in \mathcal{G} \Longrightarrow \varphi(x) \in \mathcal{G}_{0}
$$

where \mathcal{G}_{0} is a multiplicative subgroup of $\overline{\mathbb{F}}_{p}$ of order bounded by $s T$. However the resulting bound depends now on the degrees of the polynomials associated with φ rather than that of ψ.

Another consequence from Theorem 7 is the following: given an interval \mathcal{I} and a subgroup $\mathcal{G} \in \mathbb{F}_{p}^{*}$, satisfying $N_{\psi}(\mathcal{I}, \mathcal{G})=\# \mathcal{I}$ then

$$
\# \mathcal{G} \gg \min \left\{(\# \mathcal{I})^{2-2 \tau+o(1)},(\# \mathcal{I})^{1-2 \rho-2 \tau+o(1)} p^{2 \vartheta}\right\}
$$

where the implied constant depends only on d and e. However, we believe that this bound is very unlikely to be tight.

Acknowledgements

D. G-P. would like to thank Macquarie University for the support and hospitality during his stay in Australia.

During the preparation of this paper D. G-P. was supported by the Ministerio de Economia y Competitividad project TIN2011-27479-C0404 and I. S. by the Australian Research Council Grants DP130100237 and DP140100118.

References

[1] A. Bodin, 'Reducibility of rational functions in several variables', Israel J. Math., 164 (2008), 333-347.
[2] E. Bombieri and J. Pila, 'The number of integral points on arcs and ovals', Duke Math. J., 59 (1989), 337-357.
[3] J. Bourgain, 'On the distribution of the residues of small multiplicative subgroups of \mathbb{F}_{p} ', Israel J. Math., 172 (2009), 61-74.
[4] J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, 'On the hidden shifted power problem', SIAM J. Comp., 41 (2012), 1524-1557.
[5] J. Bourgain, M. Z. Garaev, S. V. Konyagin and I. E. Shparlinski, 'Multiplicative congruences with variables from short intervals', J. d'Analyse Math., (to appear).
[6] J. F. Burkhart, N. J. Calkin, S. Gao, J. C. Hyde-Volpe, K. James, H. Maharaj, S. Manber, J. Ruiz and E. Smith, 'Finite field elements of high order arising from modular curve', Designs, Codes and Cryptography, 51 (2009), 301-314.
[7] M.-C. Chang, J. Cilleruelo, M. Z. Garaev, J. Hernández, I. E. Shparlinski and A. Zumalacárregui, 'Points on curves in small boxes and applications', Preprint, 2011 (available from http://arxiv.org/abs/1111.1543).
[8] M.-C. Chang, 'Order of Gauss periods in large characteristic', Taiwanese J. Math., 17 (2013), 621-628.
[9] M.-C. Chang, 'Elements of large order in prime finite fields', Bull. Aust. Math. Soc., 88 (2013), 169-176.
[10] M.-C. Chang, B. Kerr, I. E. Shparlinski and U. Zannier, 'Elements of large order on varieties over prime finite fields', Preprint, 2013.
[11] J. Cilleruelo, M. Z. Garaev, A. Ostafe and I. E. Shparlinski, 'On the concentration of points of polynomial maps and applications', Math. Zeit., 272 (2012), 825-837.
[12] J. Cilleruelo, I. E. Shparlinski and A. Zumalacárregui, 'Isomorphism classes of elliptic curves over a finite field in some thin families', Math. Res. Letters, 19 (2012), 335-343.
[13] D. Gómez-Pérez and J. Gutierrez, 'On the linear complexity and lattice test of nonlinear pseudorandom number generators', Preprint, 2013
[14] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial optimization, Springer, Berlin, Germany, 1993.
[15] B. Kerr, 'Solutions to polynomial congruences in well shaped sets', Bull. Aust. Math. Soc., (to appear).
[16] D. Lorenzini, 'Reducibility of polynomials in two variables', J. Algebra, 156 (1993), 65-75.
[17] R. Popovych, 'Elements of high order in finite fields of the form $\mathbb{F}_{q}[x] / \Phi_{r}(x)$ ', Finite Fields Appl., 18 (2012), 700-710.
[18] R. Popovych, 'Elements of high order in finite fields of the form $\mathbb{F}_{q}[x] /\left(x^{m}-a\right)$ ', Finite Fields Appl., 19 (2013), 86-92.
[19] I. E. Shparlinski, 'Groups generated by iterations of polynomials over finite fields', Proc. Edinburgh Math. Soc., (to appear).
[20] J. F. Voloch, 'On the order of points on curves over finite fields', Integers, 7 (2007), Article A49, 4 pp.
[21] J. F. Voloch, 'Elements of high order on finite fields from elliptic curves', Bull. Aust. Math. Soc., 81 (2010), 425-429.
[22] T. D. Wooley, 'Vinogradov's mean value theorem via efficient congruencing', Ann. Math., 175 (2012), 1575-1627.
[23] T. D. Wooley, 'Vinogradov's mean value theorem via efficient congruencing, II', Duke Math. J., 162 (2013), 673-730.
[24] T. D. Wooley, 'Multigrade efficient congruencing and Vinogradov's mean value theorem', Preprint, 2011 (available from http://arxiv.org/abs/1310.8447).

Department of Mathematics, University of Cantabria, Santander 39005, Spain

E-mail address: domingo.gomez@unican.es
Department of Pure Mathematics, University of New South Wales, Sydney, NSW 2052, Australia

E-mail address: igor.shparlinski@unsw.edu.au

[^0]: Date: March 11, 2014.
 2010 Mathematics Subject Classification. 11D79, 11T06.
 Key words and phrases. polynomial congruences, finite fields.

