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Abstract

Given an elliptic curve E over a finite field Fq of q elements, we
say that an odd prime ℓ ∤ q is an Elkies prime for E if t2E − 4q is a
quadratic residue modulo ℓ, where tE = q+1−#E(Fq) and #E(Fq) is
the number of Fq-rational points on E. These primes are used in the
presently most efficient algorithm to compute #E(Fq). In particular,
the bound Lq(E) such that the product of all Elkies primes for E up
to Lq(E) exceeds 4q1/2 is a crucial parameter of this algorithm. We
show that there are infinitely many pairs (p,E) of primes p and curves
E over Fp with Lp(E) ≥ c log p log log log p for some absolute constant
c > 0, while a naive heuristic estimate suggests that Lp(E) ∼ log p.
This complements recent results of Galbraith and Satoh (2002), condi-
tional under the Generalised Riemann Hypothesis, and of Shparlinski
and Sutherland (2012), unconditional for almost all pairs (p,E).

1 Introduction

For an elliptic curve E over a finite field Fq of q elements we denote by #E(Fq)
the number of Fq-rational points on E and define the trace of Frobenius
tE = q + 1−#E(Fq); we refer to [1, 12] for a background on elliptic curves.
We say that an odd prime ℓ ∤ q is an Elkies prime for E if t2E − 4q is a
quadratic residue modulo ℓ; otherwise ℓ ∤ q is called an Atkin prime.
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These primes play a key role in the Schoof-Elkies-Atkin (SEA) algorithm,
see [1, Sections 17.2.2 and 17.2.5], and their distribution affects the perfor-
mance of this algorithm in a rather dramatic way. Thus, for an elliptic curve
E over Fq, we define Na(E;L) and Ne(E;L) as the numbers of Atkin and
Elkies primes ℓ ∈ [1, L], respectively. Obviously,

Na(E;L) +Ne(E;L) = π(L) +O (1) ,

where π(L) denotes the number of primes ℓ < L. Furthermore, for any
elliptic curve over a finite field, one expects about the same number of Atkin
and Elkies primes ℓ < L as L → ∞. That is, naive heuristic suggests that

Na(E;L) ∼ Ne(E;L) ∼
1

2
π(L), (1)

as L → ∞.
It has been noted by Galbraith and Satoh [10, Appendix A], that under

the Generalised Riemann Hypothesis (GRH), using the bound on sums of
quadratic characters over primes, one derives that (1) holds for L ≥ (log q)2+ε

for any fixed ε > 0 and a sufficiently large q.
The unconditional results are much weaker and essentially rely on our

knowledge of the distribution of primes in arithmetic progressions; see [5,
Section 5.9] or [8, Chapters 4 and 11]. However, for almost all pairs (p, E) of
primes p and elliptic curves E over Fp, Shparlinski and Sutherland [11] have
established the asymtotic formula (1) for L ≥ (log p)ε for any fixed ε > 0,
that is, starting from much smaller values of L that those implied by the
GRH. In particular, Let LE(p) be the set all Elkies primes for an elliptic
curve E over Fp. We see that the prime number theorem and the result
of [11] implies that for some function L(p) ∼ log p for almost all pairs (p, E)
we have

∏

ℓ∈LE(p)
3≤ℓ≤L(p)

ℓ > 4p1/2. (2)

Note that this condition is crucial for the SEA point counting algorithm,
see [1, Sections 17.2.2 and 17.2.5].

Here we show that this “almost all” result cannot be extended for all
primes and curves even for a slightly larger values of L(p). More precisely,
we show that there is an absolute constant c > 0 such that for any function
L(p) ≤ c log p log log log p the inequality (2) fails in a very strong sense for
infinitely many pairs (p, E).
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Theorem 1. There is a constant c > 0 so that for infinitely many pairs
(p, E) of primes p and curves E over Fp, and L ≤ c log p log log log p we have

∏

ℓ∈LE(p)
3≤ℓ≤L

ℓ = po(1).

We note that Galbraith and Satoh [10, Appendix A] have conjectured and
actually presented some arguments supporting a result of this kind. More-
over, under both the GRH and the conjecture that every positive integer
n ≡ 1 (mod 4) can be represented as n = 4p− t2 the argument of Galbraith
and Satoh [10, Appendix A] can be made rigorous and in fact under these
assumptions it allows to replace log p log log log p with log p log log p in The-
orem 1. Unfortunately, presently the required representation n = 4p − t2

is known to exist only for almost all n (see [2, 6]), which is not enough to
complete the argument (even under the GRH).

2 Preparations

We recall the notations U = O(V ), V = Ω(U), U ≪ V and V ≫ U ,
which are all equivalent to the statement that the inequality |U | ≤ c V holds
asymptotically, with some constant c > 0.

We always assume that ℓ and p run through the prime values.
For integers a and m ≥ 2, we use (a/m) to denote a Jacobi symbol of

a modulo m, see [5, Section 3.5]. We also use τ(k) and µ(k) to denote the
number of integer positive divisors and the Möbius function of k ≥ 1. It is
easy to see that for a square-free k we have

τ(k) = 2ω(k)

where ω(k) is the number of prime divisors of k.
Our main tools are bounds of multiplicative character sums.
The following estimate is a slight generalisation of [7, Lemma 2.2] and is

also given in [11].

Lemma 2. For any integers a and T ≥ 1 and a product m = ℓ1 . . . ℓs of
s ≥ 0 distinct odd primes ℓ1, . . . , ℓs with gcd(a,m) = 1 we have

∑

|t|≤T

(

t2 − a

m

)

≪ T/m+ Csm1/2 logm,
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for some absolute constant C ≥ 1.

We also need a slight extension of [5, Corollary 12.14]. In fact, we present
it in much wider generality and strength than is needed for our purpose.
First we note that for a square-free integer m and any integers u and v, we
have

gcd((u− v)2, m) = gcd(u− v,m). (3)

Hence, in the case of quadratic polynomials, the bound of [5, Theorem 12.10],
implies the following results”

Lemma 3. Assume that a square-free odd integer m ≥ 3 and an arbitrary
integer N ≥ 1 are such that all prime factors of m are at most N1/9. Then
for any two integers u, v we have

∣

∣

∣

∣

∣

N
∑

n=1

(

(n− u)(n− v)

m

)

∣

∣

∣

∣

∣

≤ 4N
(

gcd(u− v,m)m−1τ(m)r
2+2r

)1/r2r

,

where r is any positive integer with N r > m3.

Proof. As in the proof of [5, Corollary 12.14], we note that there is a factori-
sation

m = m1 . . . mr

with mj ≤ N4/9, j = 1, . . . , r. In particular, by [5, Theorem 12.10], recall-
ing (3), we see that for any j = 1, . . . , r we have

∣

∣

∣

∣

∣

N
∑

n=1

(

(n− u)(n− v)

m

)

∣

∣

∣

∣

∣

≤ 4N
(

gcd(u− v,mj)m
−1
j τ(mj)

r2+2r
)1/2r

.

Since m is square-free, we see that m1, . . . , mr are relatively prime. Using
the multiplicativity the divisor function, we obtain

r
∏

j=1

gcd(u− v,mj)m
−1
j τ(mj)

r2+2r = gcd(u− v,m)m−1τ(m)r
2+2r.

Therefore, for some j ∈ {1, . . . , r} we have

gcd(u− v,mj)m
−1
j τ(mj)

r2+2r ≤
(

gcd(u− v,m)m−1τ(m)r
2+2r

)1/r

and the result now follows.
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We remark that several more stronger and more general results of this
type have recently been given by Chang [3].

Furthermore, we also recall the following classical results of Deuring [4].

Lemma 4. For any prime p and an integer t with |t| ≤ 2q1/2, there is a
curve E over Fp with #E(Fp) = p+ 1− t.

3 Proof of Theorem 1

Let Q be a sufficiently large integer. We then set

L = ⌊0.3 logQ log log logQ⌋ , M =
⌊

logQ (log log logQ)−1⌋ , T =
⌊

Q1/2
⌋

.

Since, by the prime number theorem

∏

ℓ∈≤M

ℓ = Qo(1),

we see from Lemma 4 that it is enough to show that for any sufficiently large
Q, there is an integer t ∈ [1, T ] and a prime p ∈ [Q/2, Q] such that

(

t2 − 4p

ℓ

)

6= 1 (4)

for all primes ℓ ∈ [M,L].
Clearly, if the condition (4) is violated, then

∏

ℓ∈[M,L]

(

1−

(

t2 − 4p

ℓ

))

= 0.

Thus it is enough to show that the sum

W =
∑

1≤t≤T

∑

Q/2≤p≤Q

∏

ℓ∈[M,L]

(

1 +

(

t2 − 4p

ℓ

))

is positive, that is, that
W > 0 (5)

for the above choice of L, M and T , provided that Q is sufficiently large.
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Let M be the set of 2π(L)−π(M) square-free products (including the empty
product) composed out of primes ℓ ∈ [M,L], and let M∗ = M \ {1}. We
have

W =
∑

1≤t≤T

∑

Q/2≤p≤Q

µ(m)
∑

m∈M

(

t2 − 4p

m

)

.

Changing the order of summation and separating the term T (π(Q)−π(Q/2))
corresponding to m = 1, we derive

W = T (π(Q)− π(Q/2)) +
∑

m∈M∗

µ(m)S(m) (6)

where

S(m) =
∑

1≤t≤T

∑

Q/2≤p≤Q

(

t2 − 4p

m

)

.

Thus

|S(m)| ≤
∑

Q/2≤p≤Q

∣

∣

∣

∣

∣

∑

1≤t≤T

(

t2 − 4p

m

)

∣

∣

∣

∣

∣

.

For m ≤ T 1/4 we use Lemma 2 and note that

Cω(m) = τ(m)logC/ log 2 = mo(1),

so we obtain

S(m) ≪ π(Q)
(

T/m+ Csm1/2 logm
)

≪ π(Q)T/m.

Thus for the contribution from all such sums we derive

∑

m∈M∗

m≤T 1/4

|S(m)| ≪ π(Q)T
∑

m∈M∗

m≤T 1/4

1/m ≪ π(Q)T





∏

ℓ∈[M,L]

(

1 +
1

ℓ

)

− 1



 . (7)

Furthermore

log
∏

ℓ∈[M,L]

(

1 +
1

ℓ

)

=
∑

ℓ∈[M,L]

log

(

1 +
1

ℓ

)

≪
∑

ℓ∈[M,L]

1

ℓ
.
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By the Mertens theorem, see [5, Equation (2.15)],

∑

ℓ∈[M,L]

1

ℓ
= log

logL

logM
+O(1/ logM)

= log
log logQ+ log log log logQ+ log 0.3

log logQ− log log log logQ
+O(1/ logM)

= log

(

1 +O

(

log log log logQ

log logQ

))

+O(1/ logM)

≪
log log log logQ

log logQ
.

Therefore
∏

ℓ∈[M,L]

(

1 +
1

ℓ

)

= 1 +O

(

log log log logQ

log logQ

)

.

Inserting this bound in (7), we obtain

∑

m∈M∗

m≤T 1/4

|S(m)| ≪ π(Q)T
log log log logQ

log logQ
= o(π(Q)T ).

(8)

To estimate the sums S(m) for m > T 1/4, using the Cauchy inequality
and then extending the summation range over all integers n ≤ 4Q, we derive

|S(m)|2 = π(Q)
∑

Q/2≤p≤Q

∣

∣

∣

∣

∣

∑

1≤t≤T

(

t2 − 4p

m

)

∣

∣

∣

∣

∣

2

≤ π(Q)
∑

n≤4Q

∣

∣

∣

∣

∣

∑

1≤t≤T

(

t2 − n

m

)

∣

∣

∣

∣

∣

2

= π(Q)
∑

1≤s,t≤T

∑

n≤4Q

(

(s2 − n)(t2 − n)

m

)

.

If gcd(s2 − t2, m) > m1/2, we estimate the inner sum trivially as O(Q).
The total contribution from such pairs (s, t), is at most

∑

d|m

d>m1/2

∑

1≤s,t≤T
s2≡t2 (mod d)

1 ≤
∑

d|m

d>m1/2

T (T/d+ 1) 2ω(d)

≤ T
(

T/m1/2 + 1
)

τ(m)2,

(9)
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since for a square-free d, by the Chinese remainder theorem, any quadratic
congruence of the form s2 ≡ a (mod d), 1 ≤ s ≤ d, has at most 2ω(d)

solutions.
If gcd(s2 − t2, m) ≤ m1/2, we apply Lemma 3 to the inner sum, getting

∣

∣

∣

∣

∣

∑

n≤4Q

(

(s2 − n)(t2 − n)

m

)

∣

∣

∣

∣

∣

≤ 16Q
(

gcd(s2 − t2, m)m−1τ(m)r
2+2r

)1/r2r

≤ 16Q
(

m−1/2τ(m)r
2+2r

)1/r2r
(10)

for any positive integer r with

(4Q)r > m3. (11)

Therefore, combining (9) and (10), we obtain

S(m)2 ≪ π(Q)QT
(

T/m1/2 + 1
)

τ(m)2

+ π(Q)QT 2
(

m−1/2τ(m)r
2+2r

)1/r2r

.
(12)

Furthermore, for m ∈ M we have

τ(m) ≤ 2π(L) = exp

(

(log 2 + o(1))
logQ log log logQ

log logQ

)

. (13)

So if

r2 + r ≤ 0.01
log logQ

log log logQ
(14)

then for m > T 1/4 we have

τ(m)r
2+2r ≤ Q0.01 log 2+o(1) = T 0.01 log 2+o(1) ≤ m0.04 log 2+o(1) ≤ m1/6,

provided that Q is large enough. Hence,

m−1/2τ(m)r
2+2r ≤ m−1/3 ≤ T−1/12.

Furthermore, since (13) implies that τ(m) = T o(1) for m ∈ M, we see
that (12) implies that for m > T 1/4, for any r satisfying (11) and (14),
we have

S(m) ≪ QT 1−1/24r2r .
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Therefore,

∑

m∈M∗

m>T 1/4

|S(m)| ≪ 2π(L)QT 1−1/24r2r

≤ QT 1−1/24r2r exp

(

(log 2 + o(1))
logQ log log logQ

log logQ

)

.

In particular, if we set
r = ⌊log log logQ⌋

then

T 1/24r2r = exp

(

logQ

(log logQ)log 2+o(1)

)

.

Therefore,
∑

m∈M∗

m>T 1/4

|S(m)| ≪ QT 1−1/25r2r = o(π(Q)T ). (15)

It is also obvious that (14) is satisfied for the above choice of r. Furthermore,
the condition (11) is satisfied as well because

(4Q)r ≥ exp((1 + o(1)) logQ log log logQ)

and

max
m∈M

m = exp((1 + o(1))L) = exp((0.3 + o(1)) logQ log log logQ).

Substituting (8) and (15) in (6), we see that (5) holds, which concludes
the proof.
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