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SCHUBERT DECOMPOSITIONS FOR QUIVER GRASSMANNIANS
OF TREE MODULES

OLIVER LORSCHEID, WITH AN APPENDIX BY THORSTEN WEIST

ABSTRACT. Let Q be a quiver,M a representation ofQ with an ordered basisB andea dimen-
sion vector forQ. In this note we extend the methods of [7] to establish Schubert decompositions
of quiver Grassmannians Gre(M) into affine spaces to the ramified case, i.e. the canonical mor-
phismF : T→Q from the coefficient quiverT of M w.r.t. B is not necessarily unramified.

In particular, we determine the Euler characteristic of Gre(M) as the number ofextremal
successor closed subsets of T0, which extends the results of Cerulli Irelli ([4]) and Haupt([6])
(under certain additional assumptions onB).

INTRODUCTION

The recent interest in quiver Grassmannians stems from a formula of Caldero and Chapoton
([2]) that relates cluster variables of a quiverQ with the Euler characteristics of the quiver
Grassmannians of exceptional modules ofQ. Formulas for the Euler characteristics for a given
quiver yields a description of the associated cluster algebra in terms of generators and relations.
This opened a way to understand cluster algebras, which are defined by an infinite recursive
procedure, in terms of closed formulas—provided one knows the Euler characteristics of the
associated quiver Grassmannians.

Torus actions and cluster algebras associated with string algebras. While the classification
of all cluster algebras seems to be as much out of reach as a classification of wild algebras,
their is some hope to understand and classify cluster algebras that are associated with tame
algebras. A first step in this direction has been realized by Cerulli-Irelli ([4]) and Haupt ([6])
who established a formula for the Euler characteristics of quiver Grassmannians in the so-called
unramified case. These results sufficed to understand all cluster algebras associated path with
string algebras.

We review the method of Cerulli-Irelli and Haupt in brevity:following Ringel ([11]), every
exceptional representationM of a quiverQ has tree basisB, i.e. the coefficient quiverT =
Γ(M,B) is a tree. A subsetβ of T0 = B is successor closedif for all i ∈ β and all arrows
α : i→ j in T, also j ∈ β. A subsetβ of T0 = B is of type e= (ep)p∈Q0 if #β∩Mp = ep for all
p∈Q0.

If the canonical morphismF : T→Q is unramified, i.e. the morphism of the underlying CW-
complexes is locally injective, then one can define a (piecewise continuous) action of the torus
Gm on Gre(M) that has only finitely many fixed points. This yields the formula

χ
(
Gre(M)

)
= # {fixed points} = # {successor closedβ ⊂ T0 of typee} .

For other types of cluster algebras, the exceptional modules are in general not unramified
tree modules. This is, for instance, the case of cluster algebras associated with exceptional
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Dynkin quivers of types̃D andẼ, or, more general, for cluster algebras associated with clannish
algebras or exceptional tame algebras. Therefore other methods are required to treat ramified
tree modules.

Cluster algebras from marked surfaces.Fomin, Shapiro and Thurston explore in [5] the
connection between cluster algebras and marked surfaces. Namely to each surface with bound-
ary and finitely many marked points such that each boundary component contains at least one
marked point, one can associate a cluster algebra. In [5], itis shown that all cluster algebras
associated with quivers of extended Dynkin typesÃ andD̃ come from marked surfaces.

This connection with marked surfaces yields a description of the cluster variables in terms
of triangulations of the surface, which leads to a combinatorial description of the algebra. For
unpunctured surfaces, i.e. all marked points are containedin the boundary, Musiker, Schiffler
and Williams construct in [10] a basis for the associated cluster algebra.

Cluster algebras of punctured surfaces, which includes type D algebras, are more difficult to
treat since not all mutations of clusters come from flips of triangulations. For recent results in
this direction, see Qiu and Zhou’s paper [13]. However, these methods do not suffice yet for a
complete understanding of the associated cluster algebras.

Schubert decompositions and ramified tree modules.Caldero and Reineke ([3]) show that
Gre(M) is smooth projective ifM is exceptional. IfM is an equioriented string module, i.e. the
coefficient quiverT is an equioriented Dynkin quiver of typeAn, then Gre(M) has a continuous
torus action with finitely many fixed points, see [4]. Thus ifM is an exceptional equioriented
string module, then the Białynicki-Birula decomposition yields a decomposition of Gre(M) into
affine spaces, cf. [1, Thm. 4.3].

While a torus action with finitely many fixed points determines the Euler characteristic, a de-
composition of Gre(M) into affine spaces determines the (additive structure of the) cohomology
of Gre(M), which is a much stronger result. In particular, we re-obtain the Euler characteristic
as the number of affine spaces occurring in the decomposition. However, the class of excep-
tional equioriented string modules is very limited. In particular, most exceptional modules of
affine typeD are not of this kind.

In the author’s paper [7], we extend decompositions of Gre(M) into affine spaces to a larger
class of quiver Grassmannians by a different method. Namely, the choice of an ordered basis
B of M defines a decomposition of Gre(M) into Schubert cells, which are, in general, merely
closed subsets of affine spaces. In certain cases, however, these Schubert cells are affine spaces
themselves. The method of proof is to exhibit explicit presentations of Schubert cells in terms
of generators and relations.

One requirement of [7] is that the morphismF : T → Q is unramified. It is the purpose of
this note to extend the methods of [7] to ramifiedF : T → Q. In particular, this extends, under
the given additional assumptions, the formula of Cerulli-Irelli and Haupt to the ramified case.

As will be shown in the joint work [9] with Thorsten Weist, theresults of this text are indeed
applicable to all exceptional modules of affine typeD̃n, which yields combinatorial formulas
for the Euler characteristics of Gre(M).
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The main result of this text. An arrowα of T extremalif for every other arrowα′ with F(α′)=
F(α) eithers(α)< s(α′) or t(α′)< t(α). A subsetβ of T0 extremal successor closedif for every
i ∈ β and every extremal arrowα : i→ j in T, also j ∈ β.

Under certain additional assumptions onB, the quiver Grassmannian Gre(M) decomposes
into affine spaces (Theorem 4.1), and the parametrization ofthe non-empty Schubert cells yields
the formula

χ
(
Gre(M)

)
= # {extremal successor closedβ ⊂ T0 of typee}

(Corollary 4.4).

Content overview. To keep the technical complexity as low as possible, we restrict ourselves
in this text to tree modules over the complex numbers, thoughthe methods work in the more
general context of modules of tree extensions over arbitrary rings as considered in [7]. The
technique of proof in the ramified case is essentially the same as the one used in [7]. But since
the presentation of our results is different and simplified,we include all details.

This text is organized as follows. In Section 1, we review basic facts about quiver Grassman-
nians, their Schubert decompositions and tree modules. In Section 2, we describe generators
and relations for a Schubert cell, which are labeled byrelevant pairsandrelevant triples, respec-
tively. In Section 3, we introduceextremal successor closed subsets, polarizationsandmaximal
relevant pairs, and we establish preliminary facts. In Section 4, we state the main results and
conclude with several remarks and examples.

In Appendix A (by Thorsten Weist), we show how to establish polarizations for exceptional
modules along Schofield induction.

Acknowledgements. I would like to thank Dave Anderson, Giovanni Cerulli Irelli, Markus
Reineke, Cecı́lia Salgado and Jan Schroer for helpful discussions. I would like to thank Thorsten
Weist for including his ideas on polarizations as an appendix to this text.

1. SETUP

To start with, let us explain the notation and terminology that we use in this text. By a variety
we understand the space of complex points of an underlying scheme, and we broadly ignore the
schematic structure of quiver Grassmannians. For more details on the notions in this section,
see Sections 1 and 2 of [7].

1.1. Quiver Grassmannians. Let Q= (Q0,Q1,s, t) be a quiver,M =
(
{Mi}i∈Q0,{Mα}α∈Q1

)

a (complex) representation ofQ with dimension vectord= dimM ande≤ d another dimension
vector forQ. Thequiver GrassmannianGre(M) is the set of subrepresentationsN of M with
dimN = e. A basisB for M is the union

⋃
p∈Q0

Bp of basesBp for the vector spacesMp. An
ordered basis of Mis a basisB of M whose elementsb1, . . . ,bn are linearly ordered. The choice
of an ordered basis yields an inclusion

Gre(M) −→ ∏
p∈Q0

Gr(ep,dp),

that sendsN to (Np)p∈Q0, which endows Gre(M) with the structure of a projective variety.
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1.2. Schubert decompositions.A point of the Grassmannian Gr(e,d) is ane-dimensional sub-
spaceV of Cd. LetV be spanned by vectorsw1, . . . ,we∈ Cd. We writew= (wi, j)i=1...d, j=1...,e
for the matrix of all coordinates ofw1, . . . ,we. The Plücker coordinates

∆I (V) = det(wi, j)i∈I , j=1...,e

(whereI is a subset of{1, . . . ,d} of cardinalitye) define a point(∆I (V))I in P
(
ΛeCd

)
. For two

ordered subsetsI = {i1, . . . , ie} andJ = { j1, . . . , je} of {1, . . . ,d}, we defineI ≤ J if i l ≤ j l for
all l = 1. . . ,e. The Schubert cellCI (d) of Gr(e,d) is defined as the locally closed subvariety of
all subspacesV such that∆I (V) 6= 0 and∆J(V) = 0 for all J > I .

Given a quiverQ, a representationM with ordered basisB and a dimension vectore, we
say that a subsetβ of B is of type eif βp = β ∩Bp is of cardinalityep for everyp∈ Q0. For
d = dimM, the Schubert cellCβ(d) is defined as the locally closed subset∏p∈Q0

Cβp(dp) of

∏p∈Q0
Gr(ep,dp). TheSchubert cell CMβ is defined as the intersection ofCβ(d) with Gre(M)

inside∏p∈Q0
Cβp(dp). TheSchubert decomposition ofGre(M) (w.r.t. the ordered basisB) is

the decomposition

Gre(M) =
∐

β⊂B

of typee

CM
β

into locally closed subvarieties. Note that the Schubert cells CM
β are affine varieties, but that

they are, in general, not affine spaces. In particular, a Schubert cellCM
β might be empty. We say

that Gre(M) =
∐

CM
β is adecomposition into affine spacesif every Schubert cellCM

β is either
an affine space or empty.

1.3. Tree modules. Let M be a representation of a quiverQ with basisB. Letα : s→ t be an
arrow ofQ andb∈Bs. Then we have the equations

Mα(b) = ∑
b′∈Bt

λα,b,cc

with uniquely determined coefficientsλα,b,c ∈ C. The coefficient quiver of M w.r.t.B is the
quiverT = Γ(M,B) with vertex setT0 = B and with arrow set

T1 =
{
(α,b,c) ∈Q1×B×B

∣∣ b∈Bs(α),c∈Bt(α) andλα,b,c 6= 0
}
.

It comes together with a morphismF : T → Q that sendsb∈Bp to p and(α,b,c) to α, and
with a thin sincere representationN= N(M,B) of T with basisB and 1×1-matricesN(α,b,c) =
(λα,b,c). Note thatM is canonically isomorphic to the push-forwardF∗N (cf. [7, Section 4]).

The representationM is called atree moduleif there exists a basisB of M such that the
coefficient quiverT = Γ(M,B) is a tree. We call such a basis atree basis for M.

Note that ifT is a tree, then we can replace the basis elementsb by certain non-zero multiples
b′ such that allλα,b,c equal 1. We refer to this assumption by the expressionM = F∗T where
we identifyT, by abuse of notation, with its thin sincere representationwith basisT0 = B and
matrices(1). In this case,M andB are determined as the push-forward of this thin sincere
representation ofT alongF : T → Q. Note thatT is in general not determined byM: there
are examples of tree modulesM and basesB andB′ such thatΓ(M,B) and Γ(M,B′) are
non-isomorphic trees.
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2. PRESENTATIONS OFSCHUBERT CELLS

Let Q be a quiver andM a representation with ordered basisB and dimension vectord. Let
e be another dimension vector forQ andβ ⊂B of type e. In this section, we will describe
coordinates and relations for the Schubert cellCM

β of Gre(M).

2.1. Normal form for matrix representations. Let N be a point ofCM
β . ThenNp is a ep-

dimensional subspace ofMp for everyp∈ Q0 and has a basis(w j) j∈βp wherew j = (wi, j)i∈Bp

are column vectors inMp. If we definewi, j = 0 for i, j ∈B wheneverj ∈ β, or i ∈Bp and
j ∈Bq with p 6= q, then we obtain a matrixw= (wi, j)i, j∈B. We call such a matrixw a matrix
representation of N. Note thatN is determined by the matrix representationw, but there are in
general many different matrix representations ofN.

We say that a matrixw= (wi, j)i, j∈B in MatB×B is in β-normal formif

(i) wi,i = 1 for all i ∈ β,
(ii) wi, j = 0 for all i, j ∈ β with j 6= i,

(iii) wi, j = 0 for all i ∈B and j ∈ β with j < i,
(iv) wi, j = 0 for all i ∈B and j ∈B−β, and
(v) wi, j = 0 for all i ∈Bp and j ∈ βq with p 6= q.

Lemma 2.1. Every N∈ CM
β has a unique matrix representation w= (wi, j)i, j∈B in β-normal

form.

Proof. The uniqueness follows from the fact that a matrixw in β-normal form is in reduced
column echelon form by (i)–(iv). The vanishing of the Plücker coordinates∆J(Np) for J > βp
and the non-vanishing of∆βp(Np) implies that we find pivot elements in the rowsi ∈ βp for
eachp∈ Q0 for a matrix presentationw of N in reduced echelon form. This shows that there
is a matrix presentationw of N that satisfies (i)–(iv). SinceBp ⊂ Np, the matrixw is a block
matrix and satisfies (v). �

2.2. Defining equations. Lemma 2.1 identifiesCM
β with a subset of the affine matrix space

MatB×B. The following lemma determines defining equations (next toequations (i)–(v) from
Section 2.1) forCM

β , which shows thatCM
β is a closed subvariety of MatB×B.

Let T = Γ(M,B) be the coefficient quiver ofM w.r.t. B andF : T → Q the canonical mor-
phism. Recall thatT0 = B.

Lemma 2.2. A matrix w= (wi, j)i, j∈B in β-normal form is the matrix representation of a point
N of CM

β if and only if w satisfies for all arrowsα ∈ Q1 and all vertices s∈ F−1(s(α)) and

t ∈ F−1(t(α)) the equation

E(α, t,s) : ∑
α∈F−1(α)
with t(α)=t

ws(α),s = ∑
α∈F−1(α)

wt,t(α)ws(α),s.

If t ∈ β or s /∈ β, then E(α, t,s) is satisfied for any w inβ-normal form.

Proof. Given a matrixw = (wi, j)i, j∈B in β-normal form, we writewi for the column vector
(wi, j) j∈Bp wherep∈Q0 andi ∈Bp. The matrixw represents a pointN of Gre(M) if and only
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if for all α ∈Q1 and alls∈ βs(α), there areλk ∈ C for k∈ βt(α) such that

Mαws = ∑
k∈βt(α)

λkwk.

This means that for allt ∈ F−1(t(α)),

∑
α∈F−1(α)
with t(α)=t

ws(α),s =
[
Mαws

]
t equals ∑

k∈βt(α)

λkwt,k.

For t ∈ βt(α), we obtain that

∑
α∈F−1(α)
with t(α)=t

ws(α),s = ∑
k∈βt(α)

λkwt,k = ∑
k∈βt(α)

λkδt,k = λt

by (i) and (ii) forw in β-normal form. Therefore, we obtain for arbitraryt ∈ F−1(t(α)) that

∑
α∈F−1(α)
with t(α)=t

ws(α),s = ∑
k∈βt(α)

(
∑

α∈F−1(α)
with t(α)=k

ws(α),s

)
wt,k = ∑

α∈F−1(α)

wt,t(α)ws(α),s

as claimed. Ift ∈ β, then this equation is satisfied for allw in β-normal form by the definition
of theλk and sincewt,k = δt,k for t ∈ β. If s /∈ β, then all coefficientsws(α),s are 0, i.e. we obtain
the tautological equation 0= 0. This proves the latter claim of the lemma. �

2.3. Relevant pairs and relevant triples. A relevant pairis an element of the set

Rel2 = { (i, j) ∈ T0×T0 | F(i) = F( j) andi ≤ j }

and anrelevant tripleis an element of the set

Rel3 =

{
(α, t,s) ∈Q1×T0×T0

∣∣∣∣
There is anα′ : s′→ t ′ in T with F(α′) = α,
F(s′) = F(s), F(t ′) = F(t), s′ ≤ sandt ≤ t ′

}
.

Given a matrixw= (wi, j) in β-normal form, we say thatwi, j is aconstant coefficient (w.r.t.β)
if it appears in one of the equations (i)–(v) from Section 2.1, and otherwise we say thatwi, j is a
free coefficient (w.r.t.β), which is the case if and only if there is ap∈Q0 such thati ∈Bp−βp,
j ∈ βp andi < j. The significance of Rel2 is that if wi, j is not constant equal to 0 w.r.t.β (for
anyβ), then(i, j) is a relevant pair.

If we substitute for a givenβ all constant coefficientswi, j with i 6= j by 0, then we obtain
β-reduced form of E(α, t,s):

(1) ∑
α∈F−1(α) with
t(α)=t, s(α)≤s,

s(α)/∈β or s(α)=s

ws(α),s = ∑
α∈F−1(α) with
t<t(α), s(α)<s,
t(α)∈β, s(α)/∈β

wt,t(α)ws(α),s + ∑
α∈F−1(α) with
s(α)=s, t≤t(α),

t(α)∈β or t(α)=t

wt,t(α),

The significance of Rel3 is that if E(α, t,s) is a non-trivial equation in the coefficients of a
matrixw in β-normal form (for anyβ), then(α, t,s) is a relevant triple.

In the following, we will associate certain values with relevant pairs and relevant triples.
SinceT0 = B is linearly ordered, we can identify it order-preservativewith {1, . . . ,n}. We
define the root of a connected component ofT as its smallest vertex, and we denote byr(i)
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the root of the component that contains the vertexi. In particular, ifT is connected, then 1 is
the only root andr(i) = 1 for all i ∈ T0. Let d(i, j) denote the graph distance of two vertices
i, j ∈ T0. We define theroot distance of a relevant pair(i, j) as

δ(i, j) = max
{

d
(
i, r(i)

)
, d

(
j, r( j)

)}
.

We define thefibre length of a relevant pair(i, j) as

ǫ(i, j) = #
{

k∈ T0
∣∣ F(k) = F(i) andi ≤ k< j

}
.

We considerN×N×T0 with its lexicographical order, i.e.(i, j,k)< (i′, j ′,k′) if i < i′, or i = i′

and j < j ′, or i = i′, j = j ′ andk< k′. The inclusion

Ψ : Rel2 −→ N×N×T0
(i, j) 7−→

(
ǫ(i, j),δ(i, j), j

)

induces a linear order on Rel2, i.e.(i, j)< (i′, j ′) if Ψ(i, j)< Ψ(i′, j ′).
Let (α, t,s) be a relevant triple. We defineΨ(α, t,s) as the maximum ofΨ(smin ,s) and

Ψ(t, tmax) wheresmin is the smallest vertex that is the source of an arrowα ∈ F−1(α) with
t ≤ t(α) andtmax is the largest vertex that is the target of an arrowα ∈ F−1(α) with s(α)≤ s.

For a relevant triple(α, t,s) with t /∈ β ands∈ β, we defineΨβ(α, t,s) asΨ(i, j) where(i, j)
is the largest relevant pair that appears as an index in theβ-reduced form (1) ofE(α, t,s). Note
thatE(α, t,s) contains at least one non-trivial term by the definition of a relevant triple. Note
further that if there is an arrowα : s→ t in F−1(α) and every other arrowα′ ∈ F−1(α) satisfies
eithers< s(α′) or t(α′) < t, then the only non-trivial terms in (1) are the constant coefficients
ws,s andwt,t . Thus in this caseΨβ(α, t,s) = max{Ψ(s,s),Ψ(t, t)}.

Sincewi, j = 0 if j < i for w in β-normal form, we haveΨβ(α, t,s)≤ Ψ(α, t,s). In Section
3.4, we consider cases in whichΨβ(α, t,s) andΨ(α, t,s) are equal.

Example 2.3. A good example to illustrate the roles of relevant pairs, relevant triples and the
functionΨ is the following. LetM be the preinjective representation of the Kronecker quiver
Q = K(2) with dimension vector(3,4). Denote the two arrows ofQ by α andγ. Then there
exists an ordered basisB of M such that the coefficient quiverT = Γ(M,B) looks like

1 2 3

4 5 6 7

α γ α γ α γ

where we label the arrows by their image underF. We investigate the Schubert cellCM
β for

β = {3,6,7}. A matrixw= (wi, j)i, j∈B in β-normal form has the six free coefficientsw1,3, w2,3,
w4,6, w5,6, w4,7, w5,7, andw3,3 = w6,6 = w7,7 = 1. All other coefficients vanish. The non-trivial
equations on the free coefficients are labeled by the relevant triples(α,5,3), (α,4,3), (γ,5,3)
and(γ,4,3), and their respectiveβ-reduced forms are

w2,3 = w5,6, w1,3 = w4,6, w1,3 = w2,3w5,6+w5,7 and 0= w2,3w4,6+w4,7.
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It is easy to see that these equations can be solved successively in linear terms. We show how
these equations are organized by the ordering of Rel2 defined byΨ. The relevant pairs that
appear as indices of free coefficients are ordered as follows:

(5,6) < (2,3) < (4,6) < (1,3) < (5,7) < (4,7).

Ordered by size, we have

Ψβ(α,5,3) = (2,3), Ψβ(α,4,3) = (1,3), Ψβ(γ,5,3) = (5,7), Ψβ(γ,4,3) = (4,7),

which correspond to the indices of linear terms in each of thecorresponding equations. There-
fore, we find a unique solution inw2,3, w1,3, w5,7 andw4,7 for everyw5,6 andw4,6, which shows
thatCM

β is isomorphic toA2.

This demonstrates how the ordering of relevant pairs organizes the defining equations forCM
β

in a way that they are successively solvable in a linear term.In the following section, we will
develop criteria under which this example generalizes to other representationsM and ordered
basesB.

Remark 2.4. The definition ofΨ is based on heuristics with random examples of tree modules
with orderedF : T → Q. It is possible that different orders of Rel2 lead to analogues of Theo-
rem 4.1 that include quiver Grassmannians not covered in this text. Interesting variants might
include the graph distanced(i, j) of i and j as an ordering criterion; e.g. consider the ordering
of Rel2 given by the map̃Ψ : Rel2→ N×N→ T0 with Ψ̃(i, j) = (d(i, j),ǫ(i, j), j). This might
be of particular interest for exceptional modules that do not have an ordered tree basis such that
F : T→Q is ordered. See, however, Section 4.2 for some limiting examples.

3. PRELIMINARIES FOR THE MAIN THEOREM

In this section, we develop the terminology and establish preliminary facts to formulate and
prove the main theorem in Section 4. As before, we letQ be a quiver andM a representation
with ordered basisB and dimension vectord. Let e be another dimension vector forQ and
β ⊂B of typee. Let T = Γ(M,B) be the coefficient quiver ofM w.r.t. B andF : T → Q the
canonical morphism. We identify the linearly ordered setT0 = B with {1, . . . ,n}.

3.1. Extremal successor closed subsets.An arrowα : s→ t in T is calledextremal (w.r.t. F)
if all other arrowsα′ : s′→ t ′ with F(α′) = F(α) satisfy that eithers< s′ or t ′ < t. Note that if
F is ordered and unramified, then every arrow ofT is extremal.

Recall thatT0 =B, which allows us to considerβ as a subset ofT0. We say thatβ is extremal
successor closedif for all extremal arrowsα : s→ t of T, eithers /∈ β or t ∈ β. Note that ifF is
ordered and unramified, thenβ is extremal successor closed if and only ifβ is successor closed
in the sense of [4] and [6].

Lemma 3.1. If β is not extremal successor closed, then CM
β is empty.

Proof. We assume thatCM
β is non-empty and prove the lemma by contraposition. Letα : s→ t

be an extremal arrow inT andα = F(α). Let N ∈ CM
β have the matrix representationw in

β-normal form. Theβ-reduced form ofE(α, t,s) is

ws,s = wt,tws,s
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sinceα : s→ t is extremal and thus for every otherα′ : s′→ t ′ in F−1(α) eithers< s′ and thus
ws′,s = 0 or t ′ < t and thuswt ′,t = 0. Sincews,s = 1 if s∈ β (according to (i)) andwt,t = 0
if t /∈ β (according to (iv)), equationE(α, t,s) would be 1= 0 if s∈ β andt /∈ β. This is not
possible since we assumed thatCβ is non-empty. Therefores /∈ β or t ∈ β, which shows thatβ
is extremal successor closed. �

3.2. Ordered and ramified morphisms. The morphismF : T→Q is orderedif for all arrows
α : s→ t andα′ : s′→ t ′ of T with F(α) = F(α′), we haves≤ s′ if and only if t ≤ t ′.

Consider an arrowα ∈Q1 and a vertexi ∈ T0. Theramification index rα(i) at i in directionα
is the number of arrowsα∈ F−1(α) with source or targeti. If rα(i)> 1, we say thatF branches
at i in directionα and thatF ramifies above F(i). The morphismF : T → Q is unramifiedor
a winding if for all α ∈ Q1 and all i ∈ T0, we haverα(i) ≤ 1. In other words,F : T → Q is
unramified if and only if the associated map of CW-complexes is unramified.

Note thatF is strictly ordered (in the sense of [7, Section 4.2]) if and only if F is ordered and
unramified. From this viewpoint, we can say that we extend Theorem 4.2 of [7] from unramified
morphismsF : T→Q to ramifiedF in this text.

3.3. Polarizations. Let I = {i1, . . . , ir} be a finite ordered set withi1 < · · · < ir . A sorting of
I is a decompositionI = I<∐ I> such thatI< = {i1, . . . , is} and I> = {is+1, . . . , ir} for some
s∈ {1, . . . , r−1}. A polarization for a linear map Mα : Mp→Mq (between finite dimensional
complex vector spaces) are ordered basesBp andBq for Mp andMq, respectively, that admit
sortingsBp =B<

p,α∐B>
p,α andBq =B<

q,α∐B>
q,α such thatMα restricts to a surjectionB<

p,α∪

{0}։ B<
q,α∪{0} and its adjoint mapMad

α restricts to a surjectionB>
q,α∪{0}։ B>

p,α∪{0}.
We call these decompositions ofBp andBq asorting for Mα.

Let M be a representation ofQ. A polarization for M is an ordered basisB of M such that
Bp andBq are a polarization for every arrowα : p→ q in Q. In this case, we also say thatM
is polarized byB. An ordered polarization of Mis a polarizationB such that the canonical
morphismF : T→Q from the coefficient quiver is ordered.

In other words,M is polarized byB if and only if there are for all arrowsα : p→ q in Q
sortingsBp = B

<
p,α∐B

>
p,α andBq = B

<
q,α∐B

>
q,α such thatrα(i)≤ 1 for all i ∈B

<
p,α∐B

>
q,α

andrα(i) ≥ 1 for all i ∈B<
q,α∐B>

p,α. This means that the non-zero matrix coefficients ofMα

w.r.t. Bp andBq can be covered by an upper left submatrixM<
α and a lower right submatrix

M>
α whereM<

α has at most one non-zero entry in each column and at least one non-zero entry
in each row whileM>

α has at least one non-zero entry in each column and at most one non-zero
entry in each row.

The following figure illustrates the typical shape of a fibre of an arrowα : p→ q of Q in
the coefficient quiverT = Γ(M,B) whereB is an ordered polarization forM. We use the
convention that we order the vertices from left to right in growing order. The property thatB
is a polarization is visible by the number of arrows connecting to a vertex in the upper left /
lower left / upper right / lower right of the picture, and the property thatF : T→Q is ordered is
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visible from the fact that the arrows do not cross each other.

• • • • • • • • •

• • • • • • • • • •

Lemma 3.2. Let B be an ordered polarization for M. Letα : p→ q be an arrow in Q and
Bp = B<

p,α∐B>
p,α and Bq = B<

q,α ∐B>
q,α a sorting for Mα. Then every i inB<

q,α ∐B>
p,α

connects to a unique extremal arrow.

Proof. It is clear that every vertexi connects at most to one extremal arrow inF−1(α). SinceM
is polarized byB, we have that ifrα(i)≥ 1, thenrα( j) = 1 for all j such that there is an arrow
α : i→ j or α : j → i in F−1(α). In casei = s(α), this means thatα : i→ j0 is extremal where
j0 is minimal among the targets of arrows inF−1(α) with sourcei. In casei = t(α), this means
thatα : j0→ i is extremal wherej0 is maximal among the sources of arrows inF−1(α) with
targeti. This establishes the lemma. �

Remark 3.3. Ringel develops in [12] the notion of a radiation basis in order to exhibit dis-
tinguished tree bases for exceptional modules. By Proposition 3 of [12], a radiation basisB
is a polarization ofM (w.r.t. any ordering ofB). Examples of representations with radiation
basis are indecomposable representations of Dynkin quivers (with an exception forE8) and the
pull-back of preinjective or preprojective modules of the Kronecker quiverK(n) with n arrows
to its universal covering graph. Since the coefficient quiver of a pull-back is the same as the co-
efficient quiver of the original representation, it followsthat every preinjective or preprojective
representation of the Kronecker quiverK(n) is polarized by some ordered basis.

In Appendix A, we find a general strategy to establish polarizations of exceptional modules
along Schofield induction. In the joint forth-coming paper [9] with Thorsten Weist, we will
show that every exceptional representationM of a quiver of affine Dynkin typẽDn has a polar-
ization which yields a Schubert decomposition of Gre(M) into affine spaces.

3.4. Maximal relevant pairs. Letα ∈Q1. A relevant pair(i, j) is maximal forα if there exists
a relevant triple(α, t,s) such thatΨ(i, j) = Ψ(α, t,s).

Lemma 3.4. Assume that M is polarized byB and thatβ ⊂B is extremal successor closed.
Let (α, t,s) be a relevant triple with s∈ β and t /∈ β. Then one of the following holds true.

(i) There is an extremal arrowα′ : s′→ t in F−1(α) such that s′ /∈ β and

Ψβ(α, t,s) = Ψ(s′,s) = Ψ(α, t,s).

In this case, theβ-reduced form of E(α, t,s) is

ws′,s = − ∑
α∈F−1(α) with
t(α)=t, s(α)/∈β

ws(α),s + ∑
α∈F−1(α) with

s′<s(α)<s,
s(α)/∈β, t(α)∈β

wt,t(α)ws(α),s + ∑
α∈F−1(α)

with s(α)=s, and
t(α)∈β or t(α)=t

wt,t(α).

(ii) There is an extremal arrowα′ : s→ t ′ in F−1(α) such that t′ ∈ β and

Ψβ(α, t,s) = Ψ(t, t ′) = Ψ(α, t,s).
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In this case, theβ-reduced form of E(α, t,s) is

wt,t ′ = ∑
α∈F−1(α)

with t(α)=t, and
s(α)/∈β or s(α)=s

ws(α),s − ∑
α∈F−1(α) with

t<t(α)<t ′,
s(α)/∈β, t(α)∈β

wt,t(α)ws(α),s − ∑
α∈F−1(α) with
s(α)=s, t(α)∈β

wt,t(α).

Proof. Once we know that there is an extremal arrowα′ : s′→ t (or α′ : s→ t ′), it is clear that
s′ /∈ β (or t ∈ β), thatws′,s (or wt,t ′) is a free coefficient and that theβ-reduced form ofE(α, t,s)
looks as described in (i) (or (ii)).

If there are extremal arrowsα′ : s′→ t andα′′ : s→ t ′′, thens′ is minimal among the sources
of arrows inF−1(α) with targett, andt ′′ is maximal among the targets of arrows inF−1(α)
with sources. Clearly, we haveΨ(α, t,s) = max{Ψ(s′,s),Ψ(t, t ′′)}. By the definition of a
relevant triple, we haves′ ≤ s and t ≤ t ′′. Sinceβ is extremal successor closed,s′ /∈ β and
t ′′ ∈ β. In particular, this means thats′ 6= s and t 6= t ′′, and thusws′,s andwt,t ′′ are free co-
efficients. By the minimality ofs′ and the maximality oft ′′, every other free coefficientwi, j
in theβ-reduced form ofE(α, t,s) must satisfyǫ(i, j) < max{ǫ(s′,s),ǫ(t, t ′′)}. Therefore also
Ψβ(α, t,s) = max{Ψ(s′,s),Ψ(t, t ′′)}, which establishes the proposition in the case that boths
andt connect to extremal arrows in the fibre ofα.

Let p = s(α) andq= t(α). Let Bp = B<
p,α∐B>

p,α andBq = B<
q,α∐B>

q,α be sortings for
Mα. If s is not the source of any extremal arrow in the fibre ofα, then Lemma 3.2 implies that
s∈B<

p,α. By the definition of a relevant triple, there is an arrowα ∈ F−1(α) with s(α) ≤ s
andt(α) ≤ t. This implies thatt ∈B<

q,α and, by Lemma 3.2, that there is an extremal arrow
α′ : s′→ t. Sinceβ is extremely successor closed,s′ /∈ β andws,s′ is a free coefficient.

We claim that in this situationΨβ(α, t,s) = Ψ(s′,s) = Ψ(α, t,s). Sinceα′ is extremal, all
s′′ ∈ F−1(p) appearing in an index of theβ-reduced form ofE(α, t,s) must lie betweens′ and
s. This means thatǫ(s′,s) is larger thanǫ(s′,s′′) andǫ(s′′,s) if s′′ is different from boths and
s′. Similarly, the largest relevant pair(t ′′, t ′) with F(t ′′) = F(t ′) = q satisfiest ′′ = t and thatt ′

is maximal among the targets of arrows inF−1(α) whose source is less or equal tos. Since
t, t ′ ∈B<

q,α, we haveǫ(t, t ′)≤ ǫ(s′,s). Equality can only hold if everys′′ betweens′ ands is the

source of precisely one arrow inF−1(α). But then there would be such a unique arrow with
sources, which is necessarily extremal. Since this contradicts theassumption that there is no
extremal arrow with sources in F−1( alpha), we see thatΨ(s′,s) > Ψ(t, t ′). This shows that
Ψβ(α, t,s) = Ψ(s′,s) = Ψ(α, t,s) = Ψ(α, t,s), which means that (i) is satisfied.

If t is not the target of any extremal arrow in the fibre ofα, then we conclude analogously to
the previous case that there is an extremal arrowα′ : s→ t ′ with t ′ ∈ β such thatΨβ(α, t,s) =
Ψ(t, t ′). Thus in this case, (ii) is satisfied. �

Lemma 3.5. Letα ∈Q1 and(i, j) ∈ Rel2. Assume that M is polarized byB.

(i) If F (i) = s(α), then there is at most oneα : i → t in F−1(α) such thatΨ(i, j) =
Ψ(α, t, j).

(ii) If F ( j) = t(α), then there is at most oneα : s→ j in F−1(α) such thatΨ(i, j) =
Ψ(α, i,s).

Proof. We prove (i). If there is only one arrowα in F−1(α) with sourcei, then (i) is clear.
Assume that there are two different arrowsα : i→ t andα′ : i→ t ′ in F−1(α) with t ′ < t. Since
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M is polarized, we haverα(k)≤ 1 for all k≥ i andrα(l)≥ 1 for all l ≥ t ′. This means that there
is an arrowα′′ : j → t ′′ and thatǫ(t ′, t ′′)> ǫ(t, t ′′)≥ ǫ(i, j). An equalityǫ(t, t ′′) = ǫ(i, j) is only
possible ift is maximal among the targets of arrows inF−1(α) with sourcei.

This shows (i). The proof of (ii) is analogous. �

Corollary 3.6. Assume that M is polarized byB and thatβ ⊂B is extremal successor closed.
Letα∈Q1. If (i, j) is maximal forα, then there is a unique(α, t,s)∈Rel3 such thatΨβ(α, t,s)=
Ψ(i, j) = Ψ(α, t,s). If (i, j) is not maximal forα, then there is no relevant triple(α, t,s) with
Ψ(i, j) = Ψ(α, t,s).

Proof. This is an immediate consequence of Lemmas 3.4 and 3.5. �

4. SCHUBERT DECOMPOSITIONS FOR TREE MODULES

Theorem 4.1. Let M be a representation of Q andB an ordered polarization for M. Let ebe
a dimension vector for Q. Assume that every(i, j) ∈ Rel2 is maximal for at most oneα ∈ Q1.
Then

Gre(M) =
∐

β⊂B

of type e

CM
β

is a decomposition into affine spaces. Moreover, CM
β is not empty if and only ifβ is extremal

successor closed.

Proof. By Lemma 3.1,CM
β is empty ifβ is not extremal successor closed. Letβ be extremal

successor closed. The theorem is proven once we have shown thatCM
β is an affine space,

As before, we identifyT0 order-preservative with{1, . . . ,n}. Forψ ∈ N×N×T0, we denote
by CM

β (ψ) the solution space of all coefficientswi, j with Ψ(i, j) ≤ ψ in all equationsE(α, t,s)

where(α, t,s) is a relevant triple withΨβ(α, t,s)< ψ. We show by induction overψ ∈Ψ(Rel2)
thatCM

β (ψ) is an affine space. SinceΨ(Rel2) is finite, this implies thatCM
β is an affine space as

required.
As base case, considerψ = Ψ(n,n). By Lemma 2.2, only those relevant triples(α, t,s) with

t /∈ β ands∈ β lead to non-trivial equationsE(α, t,s). For such a relevant triple,Ψβ(α, t,s)≤ ψ
if and only if E(α, t,s) does not contain any free coefficient and thus is of the formws,s =
wt,tws,s. This is the case if and only if there is an extremal arrowα : s→ t in F−1(α). Sinceβ is
extremal successor closed,ws,s = wt,tws,s is satisfied. This means thatCM

β (ψ) = A0 is a point.

Considerψ > Ψ(n,n) and letψ′ be its predecessor inΨ(Rel2). We assume thatCM
β (ψ′) is

an affine space. By the assumption of the theorem,(i, j) is maximal for at most oneα ∈Q1. If
there is none suchα, then there is no relevant triple(α, t,s) with Ψβ(α, t,s) = Ψ(i, j), which
means thatwi, j does not appear as a maximal coefficient of an equationE(α, t,s). If i ∈ β or
j /∈ β, thenwi, j = 0 andCM

β (ψ) =CM
β (ψ′). Otherwisewi, j is free andCM

β (ψ) =CM
β (ψ′)×A1.

If there is an arrowα∈Q1 such that(i, j) is maximal forα, then there exists a unique relevant
triple (α, t,s) such thatΨβ(α, t,s) = Ψ(i, j) by Corollary 3.6. Ifwi, j is not free, theni ∈ β or
j /∈ β. By Lemma 3.4, eithert = i and there is an extremal arrowα : s→ j in F−1(α) or s= j
and there is an extremal arrowα : i→ t in F−1(α). In either case, ifi ∈ β or j /∈ β, thent ∈ β
or s /∈ β sinceβ is extremal successor closed. This means thatE(α, t,s) is trivial and thus
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CM
β (ψ) =CM

β (ψ′). If wi, j is free, butE(α, t,s) is trivial, thenCM
β (ψ) =CM

β (ψ′)×A1. If finally
wi, j is free andE(α, t,s) is non-trivial, thenwi, j is determined by all coefficientswi′, j ′ with
Ψ(i′, j ′)< Ψ(i, j) by one of the formulas in Lemma 3.4. This means thatCM

β (ψ) =CM
β (ψ′).

Thus we have shown that in all possible cases,CM
β (ψ) equals eitherCM

β (ψ′) or CM
β (ψ′)×

A1, which are both affine spaces by the inductive hypothesis. This finishes the proof of the
theorem. �

Remark 4.2. Though the assumptions of Theorem 4.1 come in a different shape than the Hy-
pothesis (H) in Section 4.5 of [7], they are indeed equivalent to Hypothesis (H) ifF : Q→ T is
unramified.

Remark 4.3. Though we do not explicitly require thatB is a tree basis, it follows from the
other assumptions of the theorem thatM is a tree module. Indeed, if the coefficient quiverT
had a loop andi was the largest vertex of this loop in maximal distance to 1, then the relevant
pair (i, i) would be maximal for the two connecting arrows of the loop. Note that if M is not
indecomposable, thenT = Γ(M,B) is not necessarily connected (cf. Example 4.7).

By [11], every exceptional module is a tree module. But it is clear that not every exceptional
module admits an ordered tree basis such that the canonical morphismF : T →Q from the co-
efficient quiver is ordered. For instance, there are exceptional representations of the Kronecker
quiverK(3) with three arrows that attest to this fact, cf. the exampleP(x,3) in [12, p. 15].

However, ifM has an radiation basisB, then we can orderB inductively along the construc-
tion of M by smaller radiation modules such thatB satisfies the assumptions of the theorem.
In particular, this includes all exceptional representations of Dynkin type, with an exception
for E8. We see that the class of modules that admit an ordered basis to that we can apply the
theorem lies somewhere between radiation modules and tree modules.

Corollary 4.4. Under the assumptions of Theorem 4.1, the Euler characteristic of Gre(M)
equals the number of extremal successor closed subsetsβ ⊂B of type e.

Proof. Since the Euler characteristic is additive under decompositions into locally closed sub-
sets,

χ
(

Gre(M)
)

= ∑
β⊂B

of typee

χ
(

CM
β

)
.

The Euler characteristic of an affine space is 1 and the Euler characteristic of the empty set is 0.
Therefore the corollary follows immediately from Theorem 4.1. �

Corollary 4.5. If Gre(M) is smooth and the assumptions of Theorem 4.1 are satisfied, then
the closures of the non-empty Schubert cells CM

β of Gre(M) represent an additive basis for the

cohomology ring H∗(Gre(M)). If n= dimGre(M) and d= dimCM
β , then the class of the closure

of CM
β is in Hn−2d(Gre(M)).

Proof. This follows immediately from [7, Cor. 6.2]. �

4.1. Two examples for typeD4.
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Example 4.6(A quiver Grassmannian of a ramified tree module). The following example is an
instance of a ramified tree module to which the methods of thistext apply. LetQ be the quiver

x
t y

z

α

η

γ

of typeD4 and letM be the exceptional module

C
1

C2 C1

C1

(
1
0

)

(
0
1

)

(
1
1

)

of Q. We can order the obvious basisB such that the coefficient quiverT looks like

4
1

3
2

5

α
γ

γ

η

where we label the arrows by its image underF. For the dimension vectore with ex = ez = 0
andey = et = 1, we obtain precisely one subrepresentationN of M with dimN = e. This means
that Gre(M) is a point. Therefore, the Euler characteristic of Gre(M) equals 1.

There is precisely one extremal successor closed subset of typee, namelyβ = {2,3}, which
accounts for the Euler characteristic. It is indeed easily verified that the assumptions of Theorem
4.1 are satisfied. Note thatβ is not successor closed, which shows that the number of successor
closed subsets does not coincide with the Euler characteristic in this example.

Example 4.7(A del Pezzo surface of degree 6). The previous representation appears as a sub-
representation of the following unramified representation. This example arose from discussions
with Markus Reineke. LetQ be the same quiver as in the previous example andM the repre-
sentation

C2

C
3

C
2

C2

(1 0
0 1
0 0

)

(0 0
1 0
0 1

)

(1 0
0 0
0 1

)
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of Q. We can order the obvious basisB such that the coefficient quiverT is

4
5

1 6
2

3 7
8

9

α

α γ

γ

η

η

where we label the arrows by its image underF. It is clear from this picture thatB is an ordered
polarization, and it is easily verified that every relevant pair is maximal for at most one arrow.
Thus Theorem 4.1 implies that the non-empty Schubert cells are affine spaces and that they are
indexed by the extremal successor closed subsetsβ of T0. For typee= (2,1,1,1), we obtain
the non-empty Schubert cells

CM
{1,2,4,6,8} ≃ A

0, CM
{1,2,5,6,8} ≃ A

1, CM
{1,3,4,6,9} ≃ A

1,

CM
{1,3,4,7,9} ≃ A

1, CM
{2,3,5,7,8} ≃ A

1, CM
{2,3,5,7,9} ≃ A

2.

Therefore the Euler characteristic ofX = Gre(M) is 6 and sinceX is smooth (as we will see in
a moment), Corollary 4.5 tell us thatH0(X) = Z, H1(X) = Z4 andH2(X) = Z are additively
generated by the closures of the Schubert cells.

To show thatX is smooth, we considerX as a closed subvariety of Gr(2,3)×P1×P1×P1.
Note that for a subrepresentationN of M with dimension vectore, the 1-dimensional subspaces
Nx, Ny andNz of Mx, My andMz, respectively, determine the 2-dimensional subspaceNt of Mt

uniquely. The images ofNx = 〈
(x0

x1

)
〉, Ny = 〈

(y0
y1

)
〉 andNz= 〈

(z0
z1

)
〉 in Mt lie in a plane if and only

if

det

[
x0 y0 0
x1 0 z0
0 y1 z1

]
= −x0 y1z0 − x1y0z1 = 0.

Therefore the projection Gr(2,3)×P
1×P

1×P
1→ P

1×P
1×P

1 yields an isomorphism

Gre(M)
∼
−→

{
[x0 : x1 |y0 : y1 |z0 : z1 ] ∈ P

1×P
1×P

1
∣∣ x0y1z0 + x1y0z1 = 0

}
.

Since there is no point in Gre(M) for that all derivatives of the defining equation vanishes,
Gre(M) is smooth.

The projectionπ1,3 : P1×P
1×P

1→ P
1×P

1 to the first and third coordinate restricts to a
surjective morphismπ1,3 : Gre(M)→ P1×P1. It is bijective outside the fibres of[1 : 0|0 : 1] and
[0 : 1|1 : 0], and these two fibres are

π−1
1,3

(
[1 : 0|0 : 1]

)
=

{
[1 : 0|y0 : y1 |0 : 1]

}
≃ P

1

and
π−1

1,3

(
[0 : 1|1 : 0]

)
=

{
[0 : 1|y0 : y1 |1 : 0]

}
≃ P

1.

This shows that Gre(M) is the blow-up ofP1×P1 in two points, which is a del Pezzo surface
of degree 6. Note that the closure of the Schubert cellsCM

{1,2,5,6,8}, CM
{1,3,4,6,9}, CM

{1,3,4,7,9} and

CM
{2,3,5,7,8} are four of the six curves on Gre(M) with self-intersection−1. In particular, the
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closures of the latter two cells are the two connected components of the exceptional divisor
w.r.t. the blow-upπ1,3 : Gre(M)→ P1×P1.

To return to the opening remark of this example, we see that every point of Gre(M), but the
intersection points of pairs of(−1)-curves, is a subrepresentation ofM that is isomorphic to
the representation of Example 4.6. There are six intersection points of pairs of(−1)-curves on
Gre(M), whose coordinates inP1×P1×P1 are

[1 : 0|1 : 0|1 : 0], [0 : 1|1 : 0|1 : 0], [0 : 1|0 : 1|1 : 0],

[0 : 1|0 : 1|0 : 1], [1 : 0|0 : 1|0 : 1], [1 : 0|1 : 0|0 : 1].

Note that each Schubert cell contains precisely one of thesepoints, and that these points coin-
cide with the subrepresentationsN of M that are spanned by the successor closed subsetsβ of
B.

This exemplifies the idea that the Euler characteristic of a projective variety should equal the
number ofF1-points. The naive definition of theF1-points as the points with coordinates in
F1 = {0,1} yields the right outcome in this case. The more elaborate definition of theF1-points
as the Weyl extensionW (XF1) of the blue schemeXF1 associated withX =Gre(M) andB yields
a intrinsic bijection between the elements ofW (XF1) and the above points. This definition of
F1-points generalizes the connection between Euler characteristics andF1-points to a larger
class of quiver Grassmannians than the naive definition. See[8, Section 4] for more details.

4.2. Limiting examples. As already mentioned in Remark 2.4, there are different possible
choices to order Rel2, which might lead to different generalities of analogues ofTheorem 4.1.
The following examples show, however, that we cannot simplydrop an assumption in Theorem
4.1.

Example 4.8 (Non-orderedF). Consider the representationM =
[(

0 1
1 0

)
: C2→ C2

]
of the

quiver Q =
[
• → •

]
. With the obvious choice of ordered basisB = {1,2,3,4} of M, the

coefficient quiverT = Γ(M,B) looks as follows:

1 3

2 4

The Schubert cells in the decomposition

Gr(1,1)(M) = CM
{1,3} ∐ CM

{1,4} ∐ CM
{2,3} ∐ CM

{2,4}

are easily determined to be

CM
{1,3} = /0, CM

{1,4} ≃ A
0, CM

{2,3} ≃ A
0 and CM

{2,4} ≃ Gm.

In this examples, we come across a Schubert cell that is isomorphic toGm = A1−A0. The-
orem 4.1 does indeed not apply sinceF : T → Q is not ordered. However, the other conditions
of Theorem 4.1 are satisfied:B is a polarization and every relevant pair is maximal for at most
one arrow (sinceQ has only one arrow).
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Note that the indices of the non-empty Schubert cells are precisely the extremely successor
closed subsetsβ ⊂B of typee. However, only{1,4} and{2,3} contribute to the Euler char-
acteristic of Gre(M) ≃ P

1, which is 2. These two subsets are precisely the successor closed
subsets ofB, in coherence with the methods of [4] and [6], which apply to this example.

Example 4.9 (Non-polarized basis). Consider the representationM =
[(

1 0
1 1

)
: C2→ C2

]
of

the quiverQ =
[
• → •

]
. With the obvious choice of ordered basisB = {1,2,3,4} of M, the

coefficient quiverT = Γ(M,B) looks as follows:

1 3

2 4

The Schubert cells in the decomposition

Gr(1,1)(M) = CM
{1,3} ∐ CM

{1,4} ∐ CM
{2,3} ∐ CM

{2,4}

are easily determined to be

CM
{1,3} = /0, CM

{1,4} ≃ A
0, CM

{2,3} ≃ A
0 and CM

{2,4} ≃ Gm.

The Schubert cellCM
{2,4} ≃Gm does not contradict Theorem 4.1 sinceB is not a polarization,

though the canonical morphismF : T →Q is ordered and every relevant pair is maximal for at
most one arrow (asQ has only one arrow).

APPENDIX A. TREE MODULES WITH POLARIZATIONS(BY THORSTEN WEIST)

Let Q be a quiver without loops and oriented cycles. The aim of thisappendix is to investigate
under which conditions we can construct indecomposable tree modulesX such that the basis
B of the respective coefficient quiverTX := Γ(X,B) is a polarization forX. In many cases,
the question whether there exists a polarization forX is closely related to the question whether
there exists a coefficient quiver without a subdiagram of theform

s1
a
−→ t1

a
←− s2

a
−→ t2

We call a coefficient quiver without such a subdiagram a weak polarization forX. Clearly, a
polarization does not have such a subdiagram. But we will seethat in many cases these two
conditions are already equivalent, for instance for exceptional representations. In the following,
we will not always distinguish between an arrowa of the coefficient quiver and its colourF(a).
Moreover, we will often label the arrows of the coefficient quiver by its colour.

One of the main tools which can be used to construct tree modules is Schofield induction,
see [14] and [15] for an application to tree modules. A directconsequence is that, fixing an
exceptional sequence(Y,X) with Hom(X,Y) = 0 and a basis(e1, . . . ,em) of Ext(X,Y), repre-
sentations appearing as the middle terms of exact sequences

0→Ye→ Z→ Xd→ 0

give rise to a full subcategoryF (X,Y) of Rep(Q), the category of representations ofQ. More-
over, we obtain thatF (X,Y) is equivalent to the category of representations of the generalized
Kronecker quiverK(m) with K(m)0 = {q0,q1} andK(m)1 = {ρi : q0→ q1 | i ∈ {1, . . . ,m}}
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wherem= dimExt(X,Y). Fixing a real rootα of Q, we denote byXα the indecomposable
representation of dimensionα, which is unique up to isomorphism. By Schofield induction,
we also know that, ifα is an exceptional root ofQ, there already exist exceptional rootsβ
andγ such thatXβ ∈ X⊥γ , Hom(Xβ,Xγ) = 0 andα = βd +γe where(d,e) is a real root of the
generalized Kronecker quiverK(dimExt(Xβ,Xγ)).

Let X andY be two representations of a quiverQ. Then we can consider the linear map

γX,Y :
⊕

q∈Q0

Homk(Xq,Yq)→
⊕

a:s→t∈Q1

Homk(Xs,Yt)

defined byγX,Y(( fq)q∈Q0) = (Ya fs− ftXa)a:s→t∈Q1.
It is well-known that we have ker(γX,Y) = Hom(X,Y) and coker(γX,Y) = Ext(X,Y). The

first statement is straightforward. The second statement follows because every morphismf ∈⊕
a:s→t∈Q1

Homk(Xs,Yt) defines an exact sequence

0→Y→ ((Yq⊕Xq)q∈Q0,(

(
Ya fa
0 Xa

)
)a∈Q1)→ X→ 0

with the canonical inclusion on the left hand side and the canonical projection on the right hand
side.

Assume that the representationsX andY are tree modules and letTX = Γ(X,BX) andTY =
Γ(Y,BY) be the corresponding coefficient quivers. Letx = dimX, y = dimY. Fixing a ver-
tex q, from now on we will denote the corresponding vertices of thecoefficient quivers by
(BX)q = {b

q
1, . . . ,b

q
xq} and(BY)q = {c

q
1, . . . ,c

q
yq}. Let ea

k,l , wherea : s→ t ∈ Q1, k = 1, . . . ,xs

andl = 1, . . . ,yt , be the canonical basis of
⊕

a:s→t Homk(Xs,Yt) with respect toBX andBY, i.e.
ea

k,l (b
s
i ) = δi,kδ j ,l ct

j .
This means that the coefficient quiverΓ(Z,BX ∪BY) of the middle-term of the exact se-

quence

E(ea
k,l) : 0→Y→ Z→ X→ 0

is obtained by adding an extra arrow with coloura from bs
k to ct

l to TX ∪TY.
Following [15] we call a basis ofE (X,Y) of Ext(X,Y), which solely consists of elements of

the formeak
ik, jk

with k= 1, . . . ,dimExt(X,Y), ak ∈Q1, 1≤ ik ≤ xs and 1≤ jk ≤ yt , tree-shaped.

In abuse of notation, we will not always distinguish betweeneak
ik, jk

andeak
ik, jk

.
Let X be a tree module. For a vertexbs

i and an arrowa : s→ t ∈Q1 we define

N(a,bs
i ) := {bt

j ∈ (TX)0 | b
s
i

a
−→ bt

j ∈ (TX)1}.

Analogously, we defineN(a,bt
i). If TX is a weak polarization forX, we say that it is strict if

we have for all arrowss
a
−→ t ∈ Q1 that |N(a,bs

i )| ≤ 1 for all 1≤ i ≤ xs or |N(a,bt
i)| ≤ 1 for

all 1≤ i ≤ xt . Clearly, a weak polarization which is strict is a polarization as defined in Section
3.3. Note that we can always assume thatB is ordered.

For a vertexq of TX let S(q) = {F(a) ∈Q1 | a∈ (TX)1, s(a) = q} andT(q) = {F(a) ∈ Q1 |
a∈ (TX)1, t(a) = q}.
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Lemma A.1. Let X be a tree module with coefficient quiver TX such that for every a∈ Q1 we
have that the map Xa is of maximal rank. Then TX is a polarization if and only if TX is a weak
polarization.

Proof. SinceXa is of maximal rank,Xa is either surjective or injective. Thus if, in addition,TX
is a weak polarization, this means that|N(a,bs

i )| ≤ 1 for all 1≤ i ≤ xs or |N(a,bt
i)| ≤ 1 for all

1≤ i ≤ xt . It follows thatTX is a polarization. �

Remark A.2. For general representations of a fixed dimension, and thus inparticular for ex-
ceptional representations, it is true that all linear maps appearing are of maximal rank.

Using the notation from above we introduce the following definition:

Definition A.3. (i) Let X andY be two tree modules with coefficient quiversTX andTY.
Moreover, letE (X,Y) = (eak

ik, jk
)k with sk

ak−→ tk∈Q1 be a tree-shaped basis of Ext(X,Y),

i.e. eak
ik, jk

(bsk
ik
) = ctk

jk
. Then we callE (X,Y) a polarization if

(a) we have thatak /∈ S(bsk
ik
) or ak /∈ T(ctk

jk
) for all k.

(b) if ak = al and bsk
ik
= bsl

i l
(resp. ctk

jk
= ctl

j l
) for k 6= l , we haveak /∈ T(ctk

jk
) (resp.

ak /∈ S(bsk
ik
)).

(c) for all bsk
ik

ak−→ bt
j ∈ (TX)1 we have|N(ak,bt

j)| = 1 and for allcs
i

ak−→ ctk
jk
∈ (TY)1 we

have|N(ak,cs
i )|= 1.

(ii) If we haveak /∈S(bsk
ik
) andak /∈ T(ctk

jk
) for all k in the first condition and if we also have

ak 6= al if k 6= l , we say that the basis is a strong polarization.

Remark A.4. Roughly speaking condition (c) makes sure thatbsk
ik

is the only neighbor which is
connected tobt

j by an arrow with colourak.
Condition (a) means that eitherbsk

ik
is not the source of an arrow with colourak (when only the

coefficient quiverTX is considered) orctk
jk

is not the target of an arrow with colourak (when only

the coefficient quiverTY is considered). In particular, if we haveak /∈ S(bsk
ik
) andak /∈ T(ctk

jk
) for

all k in the first condition, the second and third conditions are clearly satisfied.

Now we are in a position to state under which conditions an exceptional sequence together
with a tree-shaped basis of the Ext-group gives rise to indecomposable representations such
that, in addition, there exists a coefficient quiver which isa (weak) polarization:

Theorem A.5. Let (Y,X) be an exceptional sequence (of tree modules) such that the coefficient
quivers TX and TY are weak polarizations. Moreover, letE (X,Y) = (ea1

i1, j1
, . . . ,eam

im, jm) be a basis
of Ext(X,Y) which is a polarization and let M be an indecomposable tree module of K(m).

(i) If TM is unramified, then the induced coefficient quiver TZ of the middle term Z of the
corresponding exact sequence

eM : 0→Ye→ Z→ Xd→ 0

is a weak polarization for Z. Moreover, Z is indecomposable.
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(ii) If the polarization of the basis is strong and TM is a weak polarization, then the induced
coefficient quiver TZ of the middle term Z of the corresponding exact sequence

eM : 0→Ye→ Z→ Xd→ 0

is a weak polarization for Z. Moreover, Z is indecomposable.
(iii) If Xa is injective (resp. surjective) if and only if Ya is injective (resp. surjective) for all

arrows a∈Q1, then TZ is a weak polarization if and only if TZ is a polarization.
(iv) If M, and thus also Z, is exceptional, the polarization is strict and thus TZ is a polar-

ization for Z.

Proof. By simply counting arrows and vertices of the induced coefficient quiverTZ it follows
thatZ is a tree module, see also [15, Proposition 3.9]. Moreover, sinceM is indecomposable,
by Schofield induction we know thatZ is indecomposable.

Thus we only need to check thatTZ is a weak polarization forZ. We first consider the case
whenTM is unramified andE (X,Y) not necessarily a strong polarization. Clearly, in this case
TM is a weak polarization forM. Moreover, note that, sinceE (X,Y) is a basis, ifak = al for
k 6= l , we either havejk 6= j l or ik 6= i l .

The coefficient quiver could contradict the polarization property ifbsk
ik
= bsl

i l
(resp.ctk

jk
= ctl

j l
),

ak = al for l 6= k andak ∈ T(ctk
jk
)∩ (TY)1 (resp. ak ∈ S(bsk

ik
)∩ (TX)1). But this is not possible

becauseE (X,Y) is a polarization. Indeed, this would contradict condition(b).
Another possibility forTZ being no weak polarization is ifTM had a subdiagram

bq0
j

ai−→ bq1
k

ai←− bq0
l or bq1

j
ai←− bq0

k
ai−→ bq1

l

for somei ∈ {1, . . . ,m}. But sinceTM is unramified, this is not possible.
The last possibility forTZ being no weak polarization were if the basis would contradict

condition (c) of Definition A.3.
Next we consider the case if the polarization is strong, the representationM is a weak polar-

ization and the representation is not forced to be unramified. But in this case it is straightforward
to check that the induced coefficient quiver is a weak polarization. Indeed, for two basis ele-
mentsak : bsk

ik
→ ctk

jk
andal : bsl

i l
→ ctl

j l
with k 6= l , we haveak 6= al and, moreover, considering

the original coefficient quiverTX andTY we have|N(ar ,q)| = 0 for q ∈ {bsk
ik
,ctk

jk
,bsl

i l
,ctl

j l
} and

r ∈ {k, l}. Thus all subdiagrams which could preventTZ from being a weak polarization are
forced to be induced fromTM. But sinceTM is a weak polarization, this cannot happen.

The third claim is straightforward because, in general, foran exact sequencee∈ Ext(X,Y)
with middle termZ, the matrixZa is a block matrix with diagonal blocksXa andYa for every
arrow.

The last claim follows by Lemma A.1, see also Remark A.2.
�

Remark A.6. (i) If we are only interested in (weak) polarizations, we candrop the con-
dition thatX andY are exceptional. But in this case it is far more complicated or even
impossible to say anything concerning the indecomposability of Z.

(ii) If Q is of extended Dynkin type and, moreover,(Y,X) is an exceptional sequence, we
have dimExt(X,Y) ≤ 2 because otherwise there would exist a rootd of Q having an
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n-parameter family of indecomposables forn≥ 2. Then things become easier because
every indecomposable tree module ofK(2) is unramified.

Let S(n) be then-subspace quiver with verticesS(n)0 = {q0,q1, . . . ,qn} and arrowsS(n)1 =

{qi
ai−→ q0 | i = 1, . . . ,n}. Let us consider two examples:

Example A.7. First letn= 4 and consider the exceptional sequence induced by the rootsα =
(2,1,1,1,0) andβ = (0,0,0,0,1). Then coefficient quivers ofXα, Xβ and a basis of Ext(Xβ,Xα)
are for instance given by

• a1

&&▲
▲▲

▲▲
▲

•

• a2

&&▲
▲▲

▲▲
▲

a2 88rrrrrr
•

a4

jj❯ ❯ ❯ ❯ ❯ ❯

a4tt✐ ✐ ✐ ✐ ✐ ✐

•

•

a3 88rrrrrr

Here the dotted arrows correspond to the tree-shaped basis of Ext(Xβ,Xα) under consideration,
whence the remaining vertices and arrows correspond to the two coefficient quivers.

Since the basis of Ext(Xβ,Xα) is a polarization, which is not strong, and since we have
dimExt(Xβ,Xα)≤ 2, the first part of Theorem A.5 applies. For instance, considering the excep-
tional representation of dimension(1,2) of K(2), we obtain

•
a1

��✸
✸✸

✸✸
✸ •

a2
��☛☛
☛☛
☛☛ a2

��✸
✸✸

✸✸
✸ •

a3
��☛☛
☛☛
☛☛

•
a1

��✸
✸✸

✸✸
✸ •

a2
��☛☛
☛☛
☛☛ a2

��✸
✸✸

✸✸
✸ •

a3
��☛☛
☛☛
☛☛

• • • •

•
a4

bb❊❊❊❊❊❊❊❊❊

a4

<<②②②②②②②②②

on theS(4)-side. This is obviously a (strict) polarization.

Example A.8. An example for a basis which is a strong polarization can be obtained when con-
sideringS(n) with n≥ 3 and the exceptional sequence induced by the rootsα = (1,1,0, . . . ,0)
andβ = (1,0,1, . . . ,1). In this case such a basis of Ext(Xβ,Xα) is given by choosingn−2 out
of then−1 maps mapping the one-dimensional subspace(Xβ)qi to (Xα)q0 for i = 2, . . . ,n.
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[9] Oliver Lorscheid and Thorsten Weist. Quiver Grassmannians of typeD̃n. In preparation.
[10] Gregg Musiker, Ralf Schiffler and Lauren Williams. Bases for cluster algebras from surfaces. (English sum-

mary)Compos. Math.149(2):217263, 2013.
[11] Claus Michael Ringel. Exceptional modules are tree modules. InProceedings of the Sixth Conference of the

International Linear Algebra Society (Chemnitz, 1996), volume 275/276, pages 471–493, 1998.
[12] Claus Michael Ringel. Distinguished bases of exceptional modules. Preprint,arXiv:1210.7457, 2012.
[13] Yu Qiu and Yu Zhou. Cluster categories for marked surfaces: punctured case. Preprint,arXiv:1311.0010,

2013.
[14] Aidan Schofield. Semi-invariants of quivers.J. London Math. Soc. (2), 43(3): 383-395, 1991.
[15] Thorsten Weist. Tree modules.Bull. Lond. Math. Soc., 44(5): 882-898, 2012.

IMPA, ESTRADA DONA CASTORINA 110, 22460-320 RIO DE JANEIRO, BRAZIL

E-mail address: lorschei@impa.br

http://arxiv.org/abs/1210.7457
http://arxiv.org/abs/1311.0010

	Introduction
	Torus actions and cluster algebras associated with string algebras
	Cluster algebras from marked surfaces
	Schubert decompositions and ramified tree modules
	The main result of this text
	Content overview
	Acknowledgements

	1. Setup
	1.1. Quiver Grassmannians
	1.2. Schubert decompositions
	1.3. Tree modules

	2. Presentations of Schubert cells
	2.1. Normal form for matrix representations
	2.2. Defining equations
	2.3. Relevant pairs and relevant triples

	3. Preliminaries for the main theorem
	3.1. Extremal successor closed subsets
	3.2. Ordered and ramified morphisms
	3.3. Polarizations
	3.4. Maximal relevant pairs

	4. Schubert decompositions for tree modules
	4.1. Two examples for type D4
	4.2. Limiting examples

	Appendix A. Tree modules with polarizations (by Thorsten Weist)
	References

