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SCHUBERT DECOMPOSITIONS FOR QUIVER GRASSMANNIANS
OF TREE MODULES

OLIVER LORSCHEID, WITH AN APPENDIX BY THORSTEN WEIST

ABSTRACT. LetQ be a quiverM a representation @ with an ordered basi# ande a dimen-
sion vector folQ. In this note we extend the methods|af [7] to establish Schideeompositions
of quiver Grassmannians &M) into affine spaces to the ramified case, i.e. the canonical mor
phismF : T — Q from the coefficient quiveF of M w.r.t. & is not necessarily unramified.

In particular, we determine the Euler characteristic o§(®I as the number oéxtremal
successor closed subsets gf Which extends the results of Cerulli Irell{[4]) and Hau{@])
(under certain additional assumptions#i.

INTRODUCTION

The recent interest in quiver Grassmannians stems fromnautarof Caldero and Chapoton
([2]) that relates cluster variables of a quiv@rwith the Euler characteristics of the quiver
Grassmannians of exceptional module§ofFormulas for the Euler characteristics for a given
quiver yields a description of the associated cluster abgebterms of generators and relations.
This opened a way to understand cluster algebras, whichediieed by an infinite recursive
procedure, in terms of closed formulas—provided one kndwesBuler characteristics of the
associated quiver Grassmannians.

Torus actions and cluster algebras associated with stringlgebras. While the classification
of all cluster algebras seems to be as much out of reach assifidation of wild algebras,
their is some hope to understand and classify cluster edgethiat are associated with tame
algebras. A first step in this direction has been realized &ylG-Irelli ([4]) and Haupt ([6])
who established a formula for the Euler characteristicsiofer Grassmannians in the so-called
unramified case. These results sufficed to understand alieclalgebras associated path with
string algebras.

We review the method of Cerulli-Irelli and Haupt in brevitigllowing Ringel ([11]), every
exceptional representatidvi of a quiverQ has tree basigs, i.e. the coefficient quivel =
(M, %) is a tree. A subsef of Top = % is successor closei for all i € 5 and all arrows
a:i—jinT,alsoj € 3. Asubsets of To = Z is of type e= (ep) peq, if #5NMp = €, for all
p € Qo.

If the canonical morphisrk : T — Q is unramified i.e. the morphism of the underlying CW-
complexes is locally injective, then one can define a (piegewontinuous) action of the torus
Gmon Gr(M) that has only finitely many fixed points. This yields the fotenu

x(Gre(M)) = #{fixed points = # {successor closedlC Ty of typee}.

For other types of cluster algebras, the exceptional madarie in general not unramified

tree modules. This is, for instance, the case of clustetbadgeassociated with exceptional
1
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Dynkin quivers of type® andE, or, more general, for cluster algebras associated witinesa
algebras or exceptional tame algebras. Therefore othdradgtare required to treat ramified
tree modules.

Cluster algebras from marked surfaces.Fomin, Shapiro and Thurston explore in [5] the
connection between cluster algebras and marked surfaeaseli to each surface with bound-
ary and finitely many marked points such that each boundanpooent contains at least one
marked point, one can associate a cluster algebré.| In [&§ sihown that all cluster algebras
associated with quivers of extended Dynkin typesndD come from marked surfaces.

This connection with marked surfaces yields a descriptiothe cluster variables in terms
of triangulations of the surface, which leads to a combinaltdescription of the algebra. For
unpunctured surfaces, i.e. all marked points are contdaméte boundary, Musiker, Schiffler
and Williams construct ir [10] a basis for the associatedtelualgebra.

Cluster algebras of punctured surfaces, which includesByalgebras, are more difficult to
treat since not all mutations of clusters come from flips iafntgulations. For recent results in
this direction, see Qiu and Zhou's paperl/[13]. However, ¢hmgthods do not suffice yet for a
complete understanding of the associated cluster algebras

Schubert decompositions and ramified tree modulesCaldero and Reineke ([3]) show that
Gre(M) is smooth projective i is exceptional. 1M is an equioriented string module, i.e. the
coefficient quiverT is an equioriented Dynkin quiver of typ&, then Gg(M) has a continuous
torus action with finitely many fixed points, see [4]. Thu$/fis an exceptional equioriented
string module, then the Biatynicki-Birula decompositidalgs a decomposition of @GfM) into
affine spaces, cf. [1, Thm. 4.3].

While a torus action with finitely many fixed points deternsniee Euler characteristic, a de-
composition of Gg(M) into affine spaces determines the (additive structure @fcbleomology
of Gre(M), which is a much stronger result. In particular, we re-abthe Euler characteristic
as the number of affine spaces occurring in the decomposilavever, the class of excep-
tional equioriented string modules is very limited. In partar, most exceptional modules of
affine typeD are not of this kind.

In the author’s papel [7], we extend decompositions Qi ) into affine spaces to a larger
class of quiver Grassmannians by a different method. Narttedychoice of an ordered basis
% of M defines a decomposition of gM) into Schubert cells, which are, in general, merely
closed subsets of affine spaces. In certain cases, howeese, Schubert cells are affine spaces
themselves. The method of proof is to exhibit explicit préagons of Schubert cells in terms
of generators and relations.

One requirement of [7] is that the morphigim T — Q is unramified. It is the purpose of
this note to extend the methods of [7] to ramifled T — Q. In particular, this extends, under
the given additional assumptions, the formula of Ceru#iti and Haupt to the ramified case.

As will be shown in the joint work [9] with Thorsten Weist, thesults of this text are indeed
applicable to all exceptional modules of affine tyipg, which yields combinatorial formulas
for the Euler characteristics of gM).
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The main result of this text. Anarrowa of T extremaif for every other arrow’ with F(a/) =
F(«) eithers(a) < s(a’) ort(a’) <t(a). A subsets of Tp extremal successor closédor every
I € g and every extremal arrow:i — jin T, alsoj € S.

Under certain additional assumptions @) the quiver Grassmannian &WK) decomposes
into affine spaces (Theordm #.1), and the parametrizatitireafon-empty Schubert cells yields
the formula

x(Gre(M)) = # {extremal successor closgd- Ty of typee}
(Corollary(4.3).

Content overview. To keep the technical complexity as low as possible, weictsturselves
in this text to tree modules over the complex numbers, thabghmethods work in the more
general context of modules of tree extensions over aritiags as considered inl[7]. The
technique of proof in the ramified case is essentially theesasthe one used in/[7]. But since
the presentation of our results is different and simplifieel include all details.

This text is organized as follows. In Sectidn 1, we reviewibgcts about quiver Grassman-
nians, their Schubert decompositions and tree modulesedtidh[2, we describe generators
and relations for a Schubert cell, which are labeleddbgvant pairsandrelevant triplesrespec-
tively. In Sectior B, we introducextremal successor closed subsptsarizationsandmaximal
relevant pairs and we establish preliminary facts. In Section 4, we stadgemtain results and
conclude with several remarks and examples.

In Appendix A (by Thorsten Weist), we show how to establiskag@ations for exceptional
modules along Schofield induction.

Acknowledgements.| would like to thank Dave Anderson, Giovanni Cerulli IreIMarkus
Reineke, Cecilia Salgado and Jan Schroer for helpful d&ous. |1 would like to thank Thorsten
Weist for including his ideas on polarizations as an appetudihis text.

1. SETUP

To start with, let us explain the notation and terminologgttive use in this text. By a variety
we understand the space of complex points of an underlyingrse, and we broadly ignore the
schematic structure of quiver Grassmannians. For morégletathe notions in this section,
see Sections 1 and 2 of [7].

1.1. Quiver Grassmannians. Let Q = (Qo, Q1,5,t) be a quiverM = ({Mi}icqy, {Ma}aca,)

a (complex) representation @fwith dimension vectod = dimM ande < d another dimension
vector forQ. Thequiver Grassmanniaf®re(M) is the set of subrepresentatioNsof M with
dimN = e. A basis# for M is the unionJpcq, #p of bases#, for the vector spacedl,. An
ordered basis of Ms a basisZ of M whose elements,, ..., b, are linearly ordered. The choice
of an ordered basis yields an inclusion

Gre(M)  — |1 Gr(ep,dp),
pelo

that sendN to (Np) peq,, Which endows Gi(M) with the structure of a projective variety.
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1.2. Schubert decompositions.A point of the Grassmannian @& d) is ane-dimensional sub-
spaceV of CY. LetV be spanned by vectors, ..., we € C9. We writew = (Wij)i=1.d,j=1..e
for the matrix of all coordinates afy, ..., we. The Plicker coordinates

A(V) = detWjicrj=1..e

(wherel is a subset of1,...,d} of cardinalitye) define a pointa; (V)), in P(ASCY). For two
ordered subsets= {i1,...,ie} andJd = {j1,..., je} of {1,...,d}, we defind < Jif ij < j, for
alll =1... e. The Schubert cell;(d) of Gr(e,d) is defined as the locally closed subvariety of
all subspace¥ such that| (V) # 0 andA;(V) =0forallJ > 1.

Given a quiverQ, a representatioM with ordered basisZ and a dimension vecta, we
say that a subset of Z is of type_eif 3, = 5N %Ay is of cardinalityey, for everyp € Qo. For
d = dimM, the Schubert celCs(d) is defined as the locally closed sub$gtcq,Cg,(dp) of
Mpeq, Gr(ep,dp). The Schubert cell (g is defined as the intersection Gf(d) with Gre(M)
inside [peq,Cp,(dp). The Schubert decomposition &re(M) (w.r.t. the ordered basiss) is
the decomposition

GreM) = JJ c¥
BCH
of typee

into locally closed subvarieties. Note that the Schubdtsc%" are affine varieties, but that
they are, in general, not affine spaces. In particular, alSe:’rhnellcg" might be empty. We say

that Ge(M) =[] Cg" Is adecomposition into affine spacé®very Schubert celﬂ:}}" is either
an affine space or empty.

1.3. Tree modules. Let M be a representation of a quiv@mwith basis#. Leta :s—t be an
arrow of Q andb € %4s. Then we have the equations

Ma(b) = Z )\a7b7cc
b/ € %,
with uniquely determined coefficients, ,c € C. The coefficient quiver of M w.r.t% is the
quiverT =T'(M, %) with vertex seflp = % and with arrow set

Tt = {(abc)eQuxBxFB|be Byu),CE Bya andrapc#0 }.

It comes together with a morphisf: T — Q that send$ € %, to p and(«,b,c) to «, and
with a thin sincere representatidh= N(M, %) of T with basis% and 1x 1-matricedN, p¢) =
(Aa,bc). Note thatM is canonically isomorphic to the push-forwefcN (cf. [7, Section 4]).

The representatioM is called atree modulef there exists a basig of M such that the
coefficient quivelT =T (M, %) is a tree. We call such a basisrae basis for M

Note that ifT is a tree, then we can replace the basis elentelnyscertain non-zero multiples
b’ such that all\, ¢ equal 1. We refer to this assumption by the expresMoa F.T where
we identify T, by abuse of notation, with its thin sincere representatitih basisTo = % and
matrices(1). In this caseM and.%# are determined as the push-forward of this thin sincere
representation of alongF : T — Q. Note thatT is in general not determined by: there
are examples of tree modul&s and bases” and %’ such that™ (M, %) andl' (M, %#’) are
non-isomorphic trees.
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2. PRESENTATIONS OFSCHUBERT CELLS

Let Q be a quiver andM a representation with ordered basfsand dimension vectal. Let
e be another dimension vector f@ and 5 C % of typee. In this section, we will describe
coordinates and relations for the Schubert@%‘"of Gre(M).

2.1. Normal form for matrix representations. Let N be a point ofcg/'. ThenNp is aep-
dimensional subspace bf,, for everyp € Qo and has a basisv;)jcs, Wherew; = (Wi j)ic,
are column vectors iMp. If we definew; j = 0 fori, j € 2 wheneverj € 3, ori € %p and
j € PB4 with p # q, then we obtain a matriw = (W j); je. We call such a matriw a matrix
representation of NNote thatN is determined by the matrix representatignbut there are in
general many different matrix representation$lof
We say that a matriw = (W j )i je In Matgz, z isin g-normal formif
(i) wij=1forallie g,

(i) wi,j=0foralli,je g with j#i,

(i) wij =0foralli € Zandj € g with j <i,

(iv) wij=0forallic Zandjc % -3, and

(V) wi j =0 foralli € Zpandj € 3qwith p# q.

Lemma 2.1. Every Ne C/'}" has a unique matrix representation=w(w; )i jc in S-normal
form.

Proof. The uniqueness follows from the fact that a matsixn S-normal form is in reduced
column echelon form byl(i)=(iv). The vanishing of the Pléckoordinated\;(Np) for J > 3y
and the non-vanishing a@is (Np) implies that we find pivot elements in the rows 3, for
eachp € Qo for a matrix presentatiow of N in reduced echelon form. This shows that there
is a matrix presentatiow of N that satisfie(i)£(iv). Since8p C Ny, the matrixw is a block
matrix and satisfies{v). O

2.2. Defining equations. LemmalZ.1 identifie€Y with a subset of the affine matrix space
Maty. ». The following lemma determines defining equations (nextdoations({i)-v) from
Sectior 2.11) fng", which shows thact:g" is a closed subvariety of Mat, 4.

Let T =T(M, %) be the coefficient quiver d¥1 w.r.t. # andF : T — Q the canonical mor-
phism. Recall thaly = £.

Lemma 2.2. A matrix w= (W j)i jes in 8-normal form is the matrix representation of a point
N of Cg" if and only if w satisfies for all arrows € Q; and all vertices = F~(s(@)) and
t € F~L(t(a)) the equation
E(a,t,s): > Wyas = W t () Ws(a),s-
)

acF (@ acF (@)
with t(a)=t

Ift € g orsé¢ g, then Ha,t,s) is satisfied for any w if-normal form.

Proof. Given a matrixw = (W j)i je# in -normal form, we writew; for the column vector
(Wi j)jez, Wherep € Qo andi € #p. The matrixw represents a poimN of Gre(M) if and only
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if for all @ € Q1 and alls € fyg), there are\ € C for k € Sy ) such that
MgWs = )\ka.
ke t()
This means that for atlc F~1(t(a)),
Wsa)s = [MaWs], equals ; AW -
acF1(a@) KE By(a)
with t ()=t
Fort € f3(w), we obtain that
Wsa)s = MWk = Motk = A

acF (@) ke By(a) ke b ()
with t(a)=t

by () and [ii) forwin s-normal form. Therefore, we obtain for arbitrarg F~(t(a)) that

> Wya)s = ; < Ws(a)7s>Wt,k = W t(0)Ws(a),s
acF (@) kEBi@)  acFL(a@) acF (@)
with t(a)=t with t(a)=k

as claimed. It € 3, then this equation is satisfied for &llin 5-normal form by the definition
of the \x and sincem k = ok fort € 8. If s¢ 3, then all coefficientsvy,) s are 0, i.e. we obtain
the tautological equation® 0. This proves the latter claim of the lemma. O

2.3. Relevant pairs and relevant triples. A relevant pairis an element of the set
Ref = {(i,j)eToxTo|F(i)=F(j)andi<j}
and anrelevant tripleis an element of the set
Thereisany' : s —t'in T with F(a/) =@,

F(S)=F(s),F(t')=F(t),s <sandt <t

Given a matrixw = (w; j) in S-normal form, we say that; j is aconstant coefficient (w.r.t)
if it appears in one of the equatioris (f3-(v) from Secfion 2rid otherwise we say that ; is a
free coefficient (w.r.t3), which is the case if and only if there isoee Qg such that € 2, — 3p,
j € Bp andi < j. The significance of Ré&lis that ifwi j is not constant equal to 0 w.r#. (for
any ), then(i, j) is a relevant pair.

If we substitute for a givers all constant coefficients j with i # j by 0, then we obtain
p-reduced form of Ex,t,s):

Ref = {(a,t,S)EleToxTo

(1) Ws(a),s = Wt(a)We(a)s + Wet(a)s
anga) with aeF%) with aeF%) with
t(a)=t, s(a)<s, t<t(a), s(a)<s, s(a)=s, t<t(«),
s(a)¢ 3 or s(a)=s t(a)es, s(a)¢s t(a)ep ort(a)=t

The significance of Rélis that if E(a,t,s) is a non-trivial equation in the coefficients of a
matrixw in g-normal form (for anys), then(a,t,s) is a relevant triple.

In the following, we will associate certain values with redat pairs and relevant triples.
Since Ty = 4 is linearly ordered, we can identify it order-preservativith {1,...,n}. We
define the root of a connected componeniloés its smallest vertex, and we denoterlgh)
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the root of the component that contains the verteba particular, if T is connected, then 1 is
the only root and (i) = 1 for all i € To. Letd(i, j) denote the graph distance of two vertices
i, ] € To. We define theoot distance of a relevant paii, j) as

o(i,j) = max{d(ir()),d(j.r(i))}-
We define thdibre length of a relevant paifi, j) as
e(i,j) = #{keTo|F(k=F()andi<k<]j}.

We consideilN x N x Tp with its lexicographical order, i.€i, j,k) < (i, j’,K) if i <i’, ori =1’
andj < j/,ori=1V, j=j andk < kK. The inclusion

W: ReP — NxNxTp
(i,5) = (e(i,}),0(,),)

induces a linear order on Rel.e. (i, j) < (i', j) if W(i,j) < W({',}').

Let (@,t,s) be a relevant triple. We defin¢(a@,t,s) as the maximum of!(syin,s) and
W(t,tmax) Wheresmi, is the smallest vertex that is the source of an arrow F (@) with
t < t(a) andtmaxis the largest vertex that is the target of an arrow F (@) with s(a) < s.

For a relevant triplg¢a, t,s) with t ¢ 5 ands € 3, we define¥z(a,t,s) asW¥(i, j) where(i, j)
is the largest relevant pair that appears as an index ifnfeeluced form[{ll) oE(a,t,s). Note
thatE(@,t,s) contains at least one non-trivial term by the definition oékevant triple. Note
further that if there is an arrow : s — t in F~1(@) and every other arrow’ € F~1(a@) satisfies
eithers < s(a’) ort(a’) < t, then the only non-trivial terms ifij(1) are the constant iciehts
Wss andw . Thus in this cas&z(@,t,s) = max{¥(s,s), W(t,t)}.

Sincew; j = 0 if j <i for win g-normal form, we havé¥s(@,t,s) < W(a,t,s). In Section
[3.4, we consider cases in whibl(a@,t,s) and¥(a,t,s) are equal.

Example 2.3. A good example to illustrate the roles of relevant pairsvaht triples and the
function W is the following. LetM be the preinjective representation of the Kronecker quiver
Q = K(2) with dimension vectof3,4). Denote the two arrows @ by @ and7y. Then there
exists an ordered basig of M such that the coefficient quiv@r= T (M, %) looks like

AVAVAN

where we label the arrows by their image unéfer We investigate the Schubert cé]/g" for

£ ={3,6,7}. Amatrixw = (Wi j)i jez in f-normal form has the six free coefficiems 3, wo 3,
Wy.6, W56, W4 7, W5 7, andws 3 = Wg g = W7 7 = 1. All other coefficients vanish. The non-trivial
equations on the free coefficients are labeled by the refesiptes (a,5,3), (@,4,3), (7,5,3)
and(%,4, 3), and their respectivg-reduced forms are

W23 = Wsg, W13 = Wspe, W13 = Wo3Ws+Ws7 and 0= Wy3Wse+Wy7.
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It is easy to see that these equations can be solved suadgssilinear terms. We show how
these equations are organized by the ordering of Refined byW. The relevant pairs that
appear as indices of free coefficients are ordered as fallows

(5,6) < (23) < (46) < (1,3) < (57) < (47).

Ordered by size, we have

Ws(@,5,3) = (2,3), Ws(a,4,3)=(1,3), W3(7,53)=(57), Ws3(7,4,3)=(47),
which correspond to the indices of linear terms in each ottireesponding equations. There-
fore, we find a unique solution i, 3, wy 3, Ws 7 andw, 7 for everyws g andw, g, which shows
thatC} is isomorphic toA.

This demonstrates how the ordering of relevant pairs orgaithe defining equations fﬁg"
in a way that they are successively solvable in a linear témthe following section, we will

develop criteria under which this example generalizes hemtepresentationd and ordered
bases®.

Remark 2.4. The definition of¥ is based on heuristics with random examples of tree modules
with orderedF : T — Q. It is possible that different orders of Réead to analogues of Theo-
rem[4.1 that include quiver Grassmannians not covered sntéixt. Interesting variants might
include the graph distancHi, j) of i and j as an ordering criterion; e.g. consider the ordering
of ReP given by the mapV : ReP — N x N — To with ®(i, j) = (d(i, j),€(i, j), j). This might

be of particular interest for exceptional modules that dohawe an ordered tree basis such that
F:T — Qis ordered. See, however, Section 4.2 for some limiting ¢tam

3. PRELIMINARIES FOR THE MAIN THEOREM

In this section, we develop the terminology and establighimpinary facts to formulate and
prove the main theorem in Sectibh 4. As before, weQldie a quiver andWl a representation
with ordered basig#Z and dimension vectal. Let e be another dimension vector f@ and
g C A oftypee. LetT =T (M, Z) be the coefficient quiver dfl w.r.t. Z andF : T — Q the
canonical morphism. We identify the linearly ordered et % with {1,...,n}.

3.1. Extremal successor closed subset#\n arrowa : s—tin T is calledextremal (w.r.t. F)
if all other arrowsa’ : s — t’ with F (o) = F(«) satisfy that eithes < s' ort’ < t. Note that if
F is ordered and unramified, then every arrowras extremal.

Recall thaflyg = 4, which allows us to considét as a subset dlip. We say thats is extremal
successor closeiifor all extremal arrowsy : s—t of T, eithers¢ 5 ort € 5. Note that ifF is
ordered and unramified, theéhis extremal successor closed if and onlyiis successor closed
in the sense of |4] and [6].

Lemma 3.1. If 3 is not extremal successor closed, th%ﬁ S empty.

Proof. We assume thaIg" is non-empty and prove the lemma by contraposition.cLes — t
be an extremal arrow il anda = F(a). LetN € C}}" have the matrix representationin
B-normal form. Thes-reduced form oE(a,t,s) is

Wss = Wi tWss
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sincea : s— t is extremal and thus for every othef: s — t" in F~1(@) eithers < s and thus
Ws s =0 ort’ <t and thusw; = 0. Sincewss= 1 if s g (according to[{i)) andyt = 0
if t ¢ 5 (according to[(iV)), equatioi(a@,t,s) would be 1= 0 if s€ § andt ¢ 3. This is not
possible since we assumed tkatis non-empty. Therefore¢ 3 ort € 3, which shows thag
is extremal successor closed. O

3.2. Ordered and ramified morphisms. The morphisn¥ : T — Q is orderedif for all arrows
a:s—tanda’: s —t' of T with F(a) =F (<), we haves< ' if and only ift <t'.

Consider an arrow € Q and a vertex € To. Theramification index (i) ati in direction@
is the number of arrows € F ~1(@) with source or target If r4(i) > 1, we say thaF branches
at i in direction@ and thatF ramifies above F). The morphisnF : T — Q is unramifiedor
awindingif for all @ € Q; and alli € Tp, we haverg(i) < 1. In other wordsfF : T — Q is
unramified if and only if the associated map of CW-complegasmiramified.

Note thatF is strictly ordered (in the sense 0f [7, Section 4.2]) if amtlyof F is ordered and
unramified. From this viewpoint, we can say that we extencbiéra 4.2 of [7] from unramified
morphismd&= : T — Q to ramifiedF in this text.

3.3. Polarizations. Let | = {iy,...,i;} be a finite ordered set witih < --- < i;. A sorting of

| is a decompositioh = <111~ such thatl < = {i4,...,is} andl” = {is;1,...,ir} for some
se {1,...,r —1}. A polarization for a linear map M : Mp — Mq (between finite dimensional
complex vector spaces) are ordered baggsand %, for M, andMq, respectively, that admit
sortings#p = #5511 %, 5 and%q = B4 11 B4 5 such thaMg restricts to a surjectiogg 5 U
{0} —» %55 U {0} and its adjoint map129 restricts to a surjectiotBy 5 U {0} — #;, U {0}
We call these decompositions @, and % asorting for Ms. ’

Let M be a representation ). A polarization for Mis an ordered basi% of M such that
Py and Ay are a polarization for every arrow: p — g in Q. In this case, we also say thit
is polarized by#. An ordered polarization of Ms a polarizationZ such that the canonical
morphismF : T — Q from the coefficient quiver is ordered.

In other wordsM is polarized by# if and only if there are for all arrow& : p — qin Q
sortings#p = By, 1 B, and%Bq = B, 11 By, such thatg(i) < 1foralli € 5, 11%,,
andrg(i) > 1forallie %’%H%’;ﬂ. This means that the non-zero matrix coefficientd/gf
w.r.t. Z, and %, can be covered by an upper left submatvlx and a lower right submatrix
M- whereM: has at most one non-zero entry in each column and at leastameano entry
in each row whileM_ has at least one non-zero entry in each column and at mosiooreano
entry in each row.

The following figure illustrates the typical shape of a fibfeaa arrowa : p — g of Q in
the coefficient quivel = I'(M, %) where # is an ordered polarization favl. We use the
convention that we order the vertices from left to right imwmg order. The property tha®
is a polarization is visible by the number of arrows conmegtio a vertex in the upper left /
lower left / upper right / lower right of the picture, and theperty that- : T — Qis ordered is
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visible from the fact that the arrows do not cross each other.

VAN,

Lemma 3.2. Let # be an ordered polarization for M. L&t : p — q be an arrow in Q and
PBp = Bya L Bp, and By = By, 1 B, asorting for My. Then every i ingg, 1%,
connects to a unique extremal arrow.

Proof. It is clear that every verteixconnects at most to one extremal arrovFin'(a). SinceM

is polarized by#, we have that if , (i) > 1, thenr,(j) = 1 for all j such that there is an arrow
aii—jora:j—iinFi(@). Incase = s(a), this means that : i — jo is extremal where
jo is minimal among the targets of arrowskm (@) with source. In casd = t(«), this means
thata : jo — i is extremal whergg is maximal among the sources of arrowsAn(a) with
targeti. This establishes the lemma. O

Remark 3.3. Ringel develops in [12] the notion of a radiation basis inesrtb exhibit dis-
tinguished tree bases for exceptional modules. By Prdpas of [12], a radiation basis#

is a polarization oM (w.r.t. any ordering of#). Examples of representations with radiation
basis are indecomposable representations of Dynkin caifweth an exception foEg) and the
pull-back of preinjective or preprojective modules of theKecker quiveK (n) with n arrows

to its universal covering graph. Since the coefficient qudfe pull-back is the same as the co-
efficient quiver of the original representation, it follotygt every preinjective or preprojective
representation of the Kronecker quivefn) is polarized by some ordered basis.

In Appendix[A, we find a general strategy to establish po#dians of exceptional modules
along Schofield induction. In the joint forth-coming pap@} yith Thorsten Weist, we will
show that every exceptional representatibiof a quiver of affine Dynkin typ®,, has a polar-
ization which yields a Schubert decomposition og@f) into affine spaces.

3.4. Maximal relevant pairs. Leta € Qq. Arelevant paifi, j) is maximal fora if there exists
arelevant tripl€a, t,s) such that¥(i, j) = W(a,t,s).

Lemma 3.4. Assume that M is polarized ¥ and thats C 2 is extremal successor closed.
Let (@,t,s) be a relevant triple with & 8 and t¢ 5. Then one of the following holds true.

(i) There is an extremal arrow’ : s — t in F~1(@) such that §¢ 3 and
Ws(a,t,s) = W(s,s) = Y(a,t,s).
In this case, the-reduced form of Ea,t,s) is

Wegs = — Ws(a),s T Wi t(0)Ws(a),s T W t(a)
aeF%) with aeF%x) with aeFZ(a)
t(a)=t, s(a)¢p3 s<s(a)<s, with S(a)=s, and
S(a)¢pB, t(a)eps t(a)ep ort(a)=t

(i) There is an extremal arrow’ : s—t’ in F~1(@) such thatte 3 and
Ws(a,t,s) = P(t,t') = WY(a,t,s).
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In this case, the-reduced form of Ea,t,s) is

Wiy = Ws(a),s — Wi t(a)Ws(a),s — Wit ()
aeFZl— a€F g)wuh anga) with
with t(a)=t, and t<t(a)<t’, s(a)=s, t(a)ep
s(a)¢p or s(ar)=s s(a)¢B, t(a)ep

Proof. Once we know that there is an extremal arr@w s —t (or o/ : s—t'), it is clear that
s ¢ ( (ort € 5), thatwy s (or w ) is a free coefficient and that titereduced form oE(a,t,s)
looks as described il (i) (orXii)).

If there are extremal arrows : s —t anda” : s—t”, thens' is minimal among the sources
of arrows inF~1(@) with targett, andt” is maximal among the targets of arrowsFn(a)
with sources. Clearly, we have¥(a,t,s) = max{¥(s,s),W(t,t”)}. By the definition of a
relevant triple, we have < sandt <t”. Sinceg is extremal successor closesl,¢ 3 and
t” € . In particular, this means that # s andt # t”, and thuswy s andw; ;» are free co-
efficients. By the minimality o€’ and the maximality of”, every other free coefficie; |
in the 5-reduced form oE(a,t,s) must satisfye(i, j) < max{e(s,s),e(t,t”)}. Therefore also
Ws(a@,t,s) = max{¥(s,s),¥(t,t")}, which establishes the proposition in the case that both
andt connect to extremal arrows in the fibreaf

Let p=s(a) andq=t(a). Let Bp = 25,1 B, , and%Bq = B, 11 B, be sortings for

z. If sis not the source of any extremal arrow |n the flbrexothen Lemm@]Z implies that
se %’fa. By the definition of a relevant triple, there is an arrawe F~1(@) with s(a) <'s
andt(a) <t. This implies that € %5, and, by Lemma 312, that there is an extremal arrow
o' 1§ —t. Sinceg is extremely successor closell¢ 5 andwsy is a free coefficient.

We claim that in this situatioWg(a,t,s) = W(s,s) = W(a,t,s). Sincea’ is extremal, all
s’ € F~1(p) appearing in an index of thé-reduced form of (@, t,s) must lie betweers' and
s. This means that(s,s) is larger than:(s,s’) ande(s’,s) if s” is different from boths and
s. Similarly, the largest relevant pait”,t’) with F(t”) = F(t') = g satisfies” =t and that’
is maximal among the targets of arrowsFnml(@) whose source is less or equaldoSince
t,t' € B34 we havee(t,t’) < €(s,s). Equality can only hold if everg’ betweers  andsis the
source of precisely one arrow Fi~1(@). But then there would be such a unique arrow with
sources, which is necessarily extremal. Since this contradictsaggsumption that there is no
extremal arrow with sourcein F~1(-alpha), we see tha¥(s,s) > W(t,t'). This shows that
Ws(a,t,s) = W(s,s) = W(a,t,s) = W(a,t,s), which means thall(i) is satisfied.

If t is not the target of any extremal arrow in the fibreagpthen we conclude analogously to
the previous case that there is an extremal amows — t’ with t’ € 5 such that¥(a@,t,s) =
W(t,t’). Thus in this caselii) is satisfied. O

Lemma 3.5. Let@ € Q; and (i, j) € ReP. Assume that M is polarized 139.
(i) If F(i) = s(@), then there is at most one : i —t in F~1(@) such thatW(i, j) =
W(at,j).
(i) If F(j) =t(@), then there is at most one: s — j in F~1(@) such thatW(i, ) =
Y(a,i,s).

Proof. We prove [i). If there is only one arrow in F~1(@) with sourcei, then [j) is clear.
Assume that there are two different arrowsi — t anda’ : i — t’ in F~1(@) with t’ < t. Since
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M is polarized, we havey(k) < 1 forallk >i andrg(l) > 1 for alll >t’. This means that there
is an arrow” @ j —t” and that(t',t") > €(t,t”) > €(i, j). An equalitye(t,t”) = (i, j) is only
possible ift is maximal among the targets of arrowsAn?(@) with sourcei.

This showsl(i). The proof of {ii) is analogous. O

Corollary 3.6. Assume that M is polarized 3% and thatg C 4 is extremal successor closed.
Leta € Q. If (i, j) is maximal for, then there is a uniqu@r, t,s) € Ref suchthatVs(a, t,s) =
Wi, j) = W(a,t,s). If (i, ) is not maximal for, then there is no relevant triplgv,t,s) with
Wi, j) =Y (a,t,s).

Proof. This is an immediate consequence of Lemmak 3.4-and 3.5. O

4., SCHUBERT DECOMPOSITIONS FOR TREE MODULES

Theorem 4.1.Let M be a representation of Q ard an ordered polarization for M. Let be
a dimension vector for Q. Assume that ev@ry) € ReP is maximal for at most ona € Q.

Then
GreM) = ] c¥

BCH
of type e

is a decomposition into affine spaces. Moreov%/h i€ not empty if and only if is extremal
successor closed.

Proof. By LemmaBZIL,Cg" is empty if 3 is not extremal successor closed. IZbe extremal
successor closed. The theorem is proven once we have shat/@g’ﬂhs an affine space,

As before, we identifylp order-preservative withil,... n}. Fory € N x N x Tp, we denote
by C/'}" (1) the solution space of all coefficients ; with W(i, j) <« in all equationsE(a,t, s)
where(a,t,s) is a relevant triple with¥ 5 (@, t,s) < v. We show by induction ovep € W(ReF)
thatcg'(zp) is an affine space. Sinég(ReP) is finite, this implies thacg" is an affine space as
required.

As base case, consider= ¥(n,n). By Lemmd2.R, only those relevant triples,t, s) with
t ¢ 5 andsc 3 lead to non-trivial equatiors(a,t,s). For such a relevant tripl&s (@, t,s) <1
if and only if E(@,t,s) does not contain any free coefficient and thus is of the fogn=
W tWss. This is the case if and only if there is an extremal artovs — t in F~1(@). Sinces is
extremal successor closaus = W (Ws is satisfied. This means th@/g" (v)) = AV is a point.

Consider > W(n,n) and lety’ be its predecessor #W(ReP). We assume the@/'}" (') is
an affine space. By the assumption of the theor@ny) is maximal for at most ona € Q. If
there is none such, then there is no relevant triple,t,s) with Ws(@,t,s) = W(i, j), which
means thaw; ; does not appear as a maximal coefficient of an equdi@nt,s). If i € 3 or
j ¢ B, thenw; j = 0 andC}f (¢)) = C} (¢/). Otherwisew j is free andC (1)) = Cif (¢') x AL.

If there is an arrov& € Q; such thati, j) is maximal fora, then there exists a unique relevant
triple (@,t,s) such that¥g(a,t,s) = W(i, j) by Corollary(3.6. Ifw j is not free, then € § or
j ¢ 5. By Lemmd3.4, either =i and there is an extremal arraw. s — j in F~1(@) ors= j
and there is an extremal arraw: i — t in F~1(@). In either case, if € 5 or j ¢ 3, thent € 3
or s¢ 3 since( is extremal successor closed. This means Hiat,t,s) is trivial and thus
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CY () =CY\(¢). If wi  is free, butE(a,t,s) is trivial, thenCl () = C} (¢/) x AL. If finally

wi.j is free andE(a,t,s) is non-trivial, thenw; ; is determined by all coefficients; j; with

W(i’,j’) < W(i, j) by one of the formulas in Lemnia 3.4. This means €laty) = CY'(¢/).
Thus we have shown that in all possible caggl$(«) equals eitheCl (') or C}'(¢') x

Al, which are both affine spaces by the inductive hypothesiss fiitishes the proof of the
theorem. O

Remark 4.2. Though the assumptions of Theoreml|4.1 come in a differemqesttaan the Hy-
pothesis (H) in Section 4.5 cf[7], they are indeed equiviatietdypothesis (H) iff : Q — T is
unramified.

Remark 4.3. Though we do not explicitly require tha# is a tree basis, it follows from the
other assumptions of the theorem thais a tree module. Indeed, if the coefficient quivier
had a loop and was the largest vertex of this loop in maximal distance tdéntthe relevant
pair (i,i) would be maximal for the two connecting arrows of the loop.téNitnat if M is not
indecomposable, theh =T (M, %) is not necessarily connected (cf. Exaniplée 4.7).

By [11], every exceptional module is a tree module. But iléac that not every exceptional
module admits an ordered tree basis such that the canonicphmmF : T — Q from the co-
efficient quiver is ordered. For instance, there are exoaptirepresentations of the Kronecker
quiverK(3) with three arrows that attest to this fact, cf. the exanffibe 3) in [12, p. 15].

However, ifM has an radiation basi#, then we can orde# inductively along the construc-
tion of M by smaller radiation modules such that satisfies the assumptions of the theorem.
In particular, this includes all exceptional represeptagi of Dynkin type, with an exception
for Eg. We see that the class of modules that admit an ordered loetfiattwe can apply the
theorem lies somewhere between radiation modules and tdales.

Corollary 4.4. Under the assumptions of Theoréml4.1, the Euler charatier$ Gre(M)
equals the number of extremal successor closed subset% of type e

Proof. Since the Euler characteristic is additive under decontiposi into locally closed sub-
sets,

X(Gre(M)) = Z X(Cg/l)-
BCH
of typee
The Euler characteristic of an affine space is 1 and the Ebbaacteristic of the empty set is O.
Therefore the corollary follows immediately from Theorer.4 O

Corollary 4.5. If Grg(M) is smooth and the assumptions of Theorem 4.1 are satisfied, th
the closures of the non-empty Schubert ceyk(ﬁ Gre(M) represent an additive basis for the

cohomology ring H(Gre(M)). If n=dimGrg(M) and d= ding", then the class of the closure
of Ci is in H"~24(Gre(M)).

Proof. This follows immediately from([7, Cor. 6.2]. O

4.1. Two examples for typeDg.
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Example 4.6(A quiver Grassmannian of a ramified tree modulE)e following example is an
instance of a ramified tree module to which the methods oftéxisapply. LetQ be the quiver

X [ 5
>t<—y
z 7

of typeD,4 and letM be the exceptional module

of Q. We can order the obvious bas#such that the coefficient quivérlooks like

4 @

\
5 7l

where we label the arrows by its image unéerFor the dimension vect@with e =6, =0
andey = g = 1, we obtain precisely one subrepresentahioof M with dimN = e. This means
that Gg(M) is a point. Therefore, the Euler characteristic o§(@) equals 1.

There is precisely one extremal successor closed subsgieétnamelys = {2,3}, which
accounts for the Euler characteristic. Itis indeed eashfied that the assumptions of Theorem
4.7 are satisfied. Note thAtis not successor closed, which shows that the number of ssace
closed subsets does not coincide with the Euler charattarighis example.

Example 4.7(A del Pezzo surface of degree @)he previous representation appears as a sub-
representation of the following unramified representatidns example arose from discussions
with Markus Reineke. LeQ be the same quiver as in the previous exampleMritie repre-
sentation

/N
oOor
or o
~——
/N
oOor
OO
~—

</

CZ
C3
CZ

oro

ROO
S~—~
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of Q. We can order the obvious bas#such that the coefficient quivéris

il 6

4 _
5 T T—
\ 1
2 _
0
— 7
9 7
where we label the arrows by its image unBeilt is clear from this picture tha® is an ordered
polarization, and it is easily verified that every relevaair js maximal for at most one arrow.
Thus Theorerh 411 implies that the non-empty Schubert cedlaffine spaces and that they are
indexed by the extremal successor closed subysefsTy. For typee= (2,1,1,1), we obtain
the non-empty Schubert cells

M 0 M 1 M 1
C{1,2,4,6,8} ~ A, C{1,2,5,6,8} ~ A%, C{1,3,4,6,9} ~ A%

M Al M Al M A2
Cii3470 = A7 Croas78 A Cr23570 A"

Therefore the Euler characteristicXf= Gre(M) is 6 and sinceX is smooth (as we will see in
a moment), Corollary 415 tell us thet%(X) = 7, HY(X) = Z* andH?(X) = Z are additively
generated by the closures of the Schubert cells.

To show thaiX is smooth, we conside as a closed subvariety of @ 3) x P! x P! x PL,
Note that for a subrepresentatibiof M with dimension vectoe, the 1-dimensional subspaces
Ny, Ny andN; of My, My andM,, respectively, determine the 2-dimensional subspaas M
uniquely. The images dt = ((;2)), Ny = ((}?)) andN, = ((2)) in M lie in a plane if and only

X1
if

Xo Yo O
= —XoY12o0—X1Yozz = O.

det[xl 0 7
Oyiz

Therefore the projection G2, 3) x P! x P! x P! — P! x P! x P! yields an isomorphism

Gre(M) = {[x0:Xu|Yo:V1|Z0:z1] € PLx Pt x P | Xoy120 + X1Yoz1 = O }.

Since there is no point in M) for that all derivatives of the defining equation vanishes,
Gre(M) is smooth.

The projectionry 3 : P! x P1 x P — P! x P! to the first and third coordinate restricts to a
surjective morphisnry 3 : Gre(M) — P! x P, Itis bijective outside the fibres ¢f : 00 : 1] and
[0:1]1: 0], and these two fibres are

m15((1:0[0:1]) = {[1:0lyo:y1]0:1]} ~ P
and
m15([0:1[1:0]) = {[0:1]yo:y1|1:0]} ~ P

This shows that G(M) is the blow-up of?! x P! in two points, which is a del Pezzo surface
of degree 6. Note that the closure of the Schubert @%@5 568" C?"l 3469} C'{V'1 3479 and

C'{V'23578} are four of the six curves on M) with self-intersection-1. In particular, the
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closures of the latter two cells are the two connected comptsnof the exceptional divisor
w.r.t. the blow-upry 3 : Gre(M) — P x PL.

To return to the opening remark of this example, we see thayguoint of Gg(M), but the
intersection points of pairs df-1)-curves, is a subrepresentationMfthat is isomorphic to
the representation of Example 4.6. There are six intexsegiints of pairs of —1)-curves on
Grg(M), whose coordinates iA! x P! x P! are

[1:0/1:0|1:0], [0:1|1:0]|1:0], [0:1|0:1|1:0],
[0:1/0:1|0:1], [1:0/0:1]0:1], [1:0/1:0]/0:1].

Note that each Schubert cell contains precisely one of thesgs, and that these points coin-
cide with the subrepresentatioNsof M that are spanned by the successor closed subs#ts
B.

This exemplifies the idea that the Euler characteristic abgegtive variety should equal the
number ofF1-points. The naive definition of thE;-points as the points with coordinates in
F1 ={0,1} yields the right outcome in this case. The more elaborateitiefi of thelF1-points
as the Weyl extensiol (Xg, ) of the blue schemxy, associated witlX = Grg(M) and# yields
a intrinsic bijection between the elements#f(Xy,) and the above points. This definition of
F1-points generalizes the connection between Euler chaistats andF1-points to a larger
class of quiver Grassmannians than the naive definition[&e&ection 4] for more details.

4.2. Limiting examples. As already mentioned in Remalk 2.4, there are differentipless
choices to order R&] which might lead to different generalities of analogue3loéoreni4.1.
The following examples show, however, that we cannot sirdpiyp an assumption in Theorem

4.1.

Example 4.8 (Non-orderedF). Consider the representatidn = [($3) : C*> — C?] of the
quiver Q = [o — o}. With the obvious choice of ordered bas® = {1,2,3,4} of M, the
coefficient quivelT =T'(M, %) looks as follows:

1 3
7
2 X 4
The Schubert cells in the decomposition
Gray(M) = Cig HCY 4 IICHy 1CY,

are easily determined to be
Cla =0 Cly =A% Cly =A% and Clhy ~ Cm

In this examples, we come across a Schubert cell that is iggitoto G, = A1 — A9, The-
orem[4.1 does indeed not apply siffee T — Q is not ordered. However, the other conditions
of Theoreni 4.1l are satisfied? is a polarization and every relevant pair is maximal for asto
one arrow (sinc&) has only one arrow).
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Note that the indices of the non-empty Schubert cells areigely the extremely successor
closed subsets C % of typee. However, only{1,4} and{2,3} contribute to the Euler char-
acteristic of Gg(M) ~ P, which is 2. These two subsets are precisely the successsect|
subsets of4, in coherence with the methods of [4] and [6], which applytis example.

Example 4.9 (Non-polarized basis)Consider the representation = [(19) : C2 — C?] of
the quiverQ = [e — o]. With the obvious choice of ordered bas= {1,2,3,4} of M, the
coefficient quivelT =T (M, %) looks as follows:

1——3

2 34

The Schubert cells in the decomposition
Glay(M) = Ciig I Clly I Clag 11 Cl2g
are easily determined to be
Clig =0, Clg ~A%  Cha ~ A% and Cfhy ~ G

The Schubert cet]:~'{v'2.4} ~ Gy does not contradict Theordm 4.1 singas not a polarization,

though the canonical morphisi: T — Q is ordered and every relevant pair is maximal for at
most one arrow (a® has only one arrow).

APPENDIXA. TREE MODULES WITH POLARIZATIONS(BY THORSTEN WEIST)

Let Q be a quiver without loops and oriented cycles. The aim ofdpisendix is to investigate
under which conditions we can construct indecomposabéertredulesX such that the basis
2 of the respective coefficient quivagk := I'(X, %) is a polarization forX. In many cases,
the question whether there exists a polarizationdas closely related to the question whether
there exists a coefficient quiver without a subdiagram ofdinen

St iy 11 & S BaV to
We call a coefficient quiver without such a subdiagram a wedkration forX. Clearly, a
polarization does not have such a subdiagram. But we wilklsgein many cases these two
conditions are already equivalent, for instance for exoept representations. In the following,
we will not always distinguish between an arrawf the coefficient quiver and its colo&i(a).
Moreover, we will often label the arrows of the coefficienivgu by its colour.

One of the main tools which can be used to construct tree needslSchofield induction,
see [14] and[[15] for an application to tree modules. A dimtsequence is that, fixing an
exceptional sequend®, X) with Hom(X,Y) = 0 and a basisey,...,en) of Ext(X,Y), repre-
sentations appearing as the middle terms of exact sequences

0=YeszZox950

give rise to a full subcategory (X,Y) of RepQ), the category of representations@f More-
over, we obtain that? (X,Y) is equivalent to the category of representations of the rgdined
Kronecker quivelK(m) with K(m)o = {do,q1} andK(m)1 = {pi 1 do — qu [ i € {1,...,m}}
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wherem = dimExt(X,Y). Fixing a real rootr of Q, we denote byX, the indecomposable
representation of dimensian, which is unique up to isomorphism. By Schofield induction,
we also know that, ifx is an exceptional root of), there already exist exceptional rogts
and~y such thaiXs € Xf Hom(Xs,X,) = 0 anda = 3% +~° where(d, e) is a real root of the
generalized Kronecker quiv&r(dim Ext(Xg, X, )).

Let X andY be two representations of a quiv@r Then we can consider the linear map

y D Hom(Xg,Yg) = €D Home(Xs, %)

0cQo as—teQq

defined byyx v ((fq)geqy) = (Yafs — ftXa)asteq, -

It is well-known that we have kéfx y) = Hom(X,Y) and cokefyx y) = Ext(X,Y). The
first statement is straightforward. The second statemdioinfe because every morphisine
Das-teq, HOMK(Xs, Y1) defines an exact sequence

0—=Y = ((Yg® Xq)qep, ( (\gi )1;2))aeQ1) —X—=0

with the canonical inclusion on the left hand side and thenamal projection on the right hand
side.

Assume that the representationgndY are tree modules and & = I' (X, %x) andTy =
r(Y,%y) be the corresponding coefficient quivers. ket dimX, y = dimY. Fixing a ver-
tex g, from now on we will denote the corresponding vertices of ¢befficient quivers by
(Bx)q={b],....b} and(Zy)q = {c],...,c),}. Leted,, wherea:s—t € Q, k=1,...,xs
andl =1,...,y, be the canonical basis . .; Homc(Xs, %) with respect taZx and %y, i.e.
e%(b ) = 5| k51 ICt

This means that the coefficient quivie(Z, x U By) of the middle-term of the exact se-
quence

E():0=-Y—=Z—-X—=0

is obtained by adding an extra arrow with colaurom b to ¢ to Tx U Ty.
Following [15] we call a basis of’(X,Y) of Ext(X,Y), which solely consists of elements of

the forme, withk=1,...,dimExt(X,Y), ax € Q1, 1 <ix < xsand 1< ji < v, tree-shaped.

In abuse of notatlon, we will not always distinguish betwe,%‘rj]k ande,ikjk.
Let X be a tree module. For a vertbxand an arrova: s —t € Q we define

N(a, b;s) = {btj (Tx)o | bs—> b € (TX)l}

Analogously, we defindl(a,bt). If Tx is a weak polarization foK, we say that it is strict if
we have for all arrows — t € Q; that |N(a, b)| <1 forall 1<i<xsor|N(ahb)| <1 for
all 1 <i < x. Clearly, a weak polarization which is strict is a polariaatas defined in Section
[3.3. Note that we can always assume ti#ais ordered.

For a vertexg of Tx let S(q) = {F(a) € Q1| a€ (Tx)1,s(a) =q} andT(q) = {F(a) € Q1 |
a€ (Tx)1, t(a) =a}.
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Lemma A.1. Let X be a tree module with coefficient quiver Such that for every & Q1 we
have that the map is of maximal rank. ThenxTis a polarization if and only if ¥ is a weak
polarization.

Proof. SinceXj is of maximal rankX, is either surjective or injective. Thus if, in additiofk
is a weak polarization, this means thi{a, bf)| < 1 for all 1 <i < xs or [N(a,bf)| < 1 for all
1 <i < x. It follows thatTy is a polarization. O

Remark A.2. For general representations of a fixed dimension, and thpariticular for ex-
ceptional representations, it is true that all linear mageearing are of maximal rank.

Using the notation from above we introduce the following wiéfn:

Definition A.3. (i) Let X andY be two tree modules with coefficient quivelg and Ty .
Moreover, let’(X,Y) = (qa;jk)k with s¢ N ty € Q1 be a tree-shaped basis of EXtY),
ie. g% (b¥) = ctj'j( Then we call¥’(X,Y) a polarization if

(@) we have thaty ¢ S(bis‘k() oray ¢ T(ctj'j() for all k.
(b) if a = a andb* = b (resp. ct]'j( = ctj'l) for k # |, we haveay ¢ T(ctj'j() (resp.
ay ¢ S(bY)).
(c) for all bis: N b\ € (Tx)1 we have|N(a,b})| = 1 and for allc? &, ctjkk € (Ty)yL we
have|N(a, c’)| = 1.
(i) If we haveay ¢ S(bisl':) anday ¢ T(ctj"k) for all kin the first condition and if we also have
a # a if k#1, we say that the basis is a strong polarization.

Remark A.4. Roughly speaking condition (c) makes sure tbfgis the only neighbor which is
connected tdn‘j by an arrow with colougy.

Condition (a) means that eithk:ﬂ: is not the source of an arrow with coloay (when only the
coefficient quiveiTx is considered) omtj'j( is not the target of an arrow with coloag (when only
the coefficient quively is considered). In particular, if we haag ¢ S(bis‘k() anday ¢ T(ctj'j() for
all kiin the first condition, the second and third conditions aeaxdy satisfied.

Now we are in a position to state under which conditions arepticnal sequence together
with a tree-shaped basis of the Ext-group gives rise to ioggposable representations such
that, in addition, there exists a coefficient quiver which (sveak) polarization:

Theorem A.5. Let (Y, X) be an exceptional sequence (of tree modules) such that &fscbent
quivers k and T are weak polarizations. Moreover, I61(X,Y) = (qal{jl, e qargjm) be a basis
of Ext(X,Y) which is a polarization and let M be an indecomposable tredut®of K(m).

(i) If Ty is unramified, then the induced coefficient quivgroT the middle term Z of the
corresponding exact sequence

ew:0-Ye5Z x40

is a weak polarization for Z. Moreover, Z is indecomposable.
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(ii) Ifthe polarization of the basis is strong angl 15 a weak polarization, then the induced
coefficient quiver 7 of the middle term Z of the corresponding exact sequence

ev:0—-Ye—»Z—x950

is a weak polarization for Z. Moreover, Z is indecomposable.

(i) If Xg is injective (resp. surjective) if and only if ¥ injective (resp. surjective) for all
arrows a< Q, then T is a weak polarization if and only ifZlis a polarization.

(iv) If M, and thus also Z, is exceptional, the polarization iscttand thus % is a polar-
ization for Z.

Proof. By simply counting arrows and vertices of the induced coefficquiverT; it follows
thatZ is a tree module, see also [15, Proposition 3.9]. MoreowecedM is indecomposable,
by Schofield induction we know th&tis indecomposable.

Thus we only need to check thst is a weak polarization foZ. We first consider the case
whenTy is unramified and?’(X,Y) not necessarily a strong polarization. Clearly, in thisecas
Tm is a weak polarization foM. Moreover, note that, sinc&(X,Y) is a basis, ifaxy = g for
k #£ 1, we either havgy # j, origx #ij.

The coefficient quiver could contradict the polarizatioogerty |fbsk bs4 (resp.ctjkk = ctj'l),

ax=a forl #kanda, € T(c Jk) (Ty)1 (resp. ax € S(b,k) (Tx)1)- But thIS is not possible
becaus&’(X,Y) is a polarization. Indeed, this would contradict condit{bh
Another possibility fofTz being no weak polarization is iy had a subdiagram

bCIO bCI1 8 blqo or bCI1 bQO le

for somei € {1,...,m}. But sinceTy is unramified, this is not possible.

The last possibility forTz being no weak polarization were if the basis would contradic
condition (c) of Definitio A.B.

Next we consider the case if the polarization is strong, épeasentatioM is a weak polar-
ization and the representation is not forced to be unramiBedin this case it is straightforward
to check that the induced coefﬁcient quiver is a weak paddion. Indeed, for two basis ele-
mentsay : b — ctk andg : b ' with k # |, we haveay # a and, moreover, considering

the original coeﬁ|C|ent quweTx andTy we have|N(a;,q)| =0 forq e {bﬁ':, t';,bﬁ', i} and
r € {k,1}. Thus all subdiagrams which could prevd@ntfrom being a weak polarlzation are
forced to be induced froniy. But sinceTy is a weak polarization, this cannot happen.

The third claim is straightforward because, in general gioexact sequeneec Ext(X,Y)
with middle termZ, the matrixZ, is a block matrix with diagonal block,; andY; for every
arrow.

The last claim follows by Lemnia’Al.1, see also Remark A.2.

O

Remark A.6. (i) If we are only interested in (weak) polarizations, we ciap the con-
dition thatX andY are exceptional. But in this case it is far more complicateemen
impossible to say anything concerning the indecomposgiofiZ.

(i) If Qis of extended Dynkin type and, moreove¥, X) is an exceptional sequence, we
have dimEx{X,Y) < 2 because otherwise there would exist a matf Q having an
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n-parameter family of indecomposables for 2. Then things become easier because
every indecomposable tree modulekgR2) is unramified.

Let S(n) be then-subspace quiver with vertic&n)o = {qo, s, . ..,qn} and arrowsS(n); =
{g 2 qo|i=1,...,n}. Let us consider two examples:

Example A.7. First letn = 4 and consider the exceptional sequence induced by theaosts
(2,1,1,1,0)and$ = (0,0,0,0,1). Then coefficient quivers of,,, X3 and a basis of EXX3, X,)
are for instance given by

Here the dotted arrows correspond to the tree-shaped Hadsis(X3, X,,) under consideration,
whence the remaining vertices and arrows correspond tavhedefficient quivers.

Since the basis of E{Kg, X,) is a polarization, which is not strong, and since we have
dimExt(Xg, X,) < 2, the first part of Theorem A.5 applies. For instance, casig the excep-
tional representation of dimensioh, 2) of K(2), we obtain

AN AN A
DN

on theS(4)-side. This is obviously a (strict) polarization.

Example A.8. An example for a basis which is a strong polarization can bainbd when con-
sideringS(n) with n > 3 and the exceptional sequence induced by the etg1,1,0,...,0)
andf = (1,0,1,...,1). In this case such a basis of EXg, X,) is given by choosing — 2 out
of then — 1 maps mapping the one-dimensional subsggey to (X.)q, fori=2,...,n.
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