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Abstract

We discuss and prove some results on Corestriction principle for non-abelian étale
cohomology and Norm principle for class groups of reductive group schemes over
Dedekind rings in global fields.
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Introduction.

The well-known notion of class group of a global field plays an important role in number
theory in general and in the arithmetic of global fields in particular. Its natural generalization
to algebraic groups also turns out to be an important notion in the study of arithmetic of
algebraic groups over local and global fields.

Since algebraic groups under consideration may be not commutative, the best we can
afford is to associate to a given linear algebraic group Gj defined over a global field £ a
set of double cosets, called the class set of GG,. However, this set is not an invariant in the
k-isomorphism class of G. To remedy the situation, one may consider a model of G over
a Dedekind ring in k. We consider more generally the class set of a given flat affine group
scheme G of finite type defined over Dedekind ring A with smooth generic fiber Gy, over the
global quotient field k of A. Let X = Spec(A), n € X the generic point of X, S a finite
subset of Xy := X \ {n}. The ring A(S) of S-adeles is defined as

AS) = [I Avx ]I kv

vEXo\S veS

where k, (resp. A,) is the completion of k (resp. A) in the v-adic topology. We denote by
A = ind.limg A(S) the adele ring of k (with respect to A !). Recall that (see e. g. [B],
[PIR], Chap. VIII, in the case of linear algebraic groups and [Gil, [Gi2], [Hal, [Nil] in the
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case of group schemes) the S-class set, of G with respect to a finite set S of primes of A
(denoted by Cl4(S,G)), and the class set of G (denoted by Cla(G)), is the set of double
classes

Cla(5,G) = G(A(9)) \ G(A)/G(k),

and

Cla(G) = GAD) \ G(A)/G(k),

respectively. (Here G(k) is embedded diagonally into G(A). Another, more familiar nota-
tion for Cl4(G) using the set of infinite primes is given in the last section.) The important
fact is that these sets are invariant in the class of A-isomorphism of G. It may happen that
Cla(S, Q) (resp. Cla(G) has a natural group structure (i.e. inherited from that of G(A)). In
this case it is denoted by GCl4(S, G) (resp. GCl4(G)). (By convention, in the case of global
function field k£, we assume that k is the field of rational functions of a smooth irreducible
affine curve C' defined over some finite field F;, and by convention, the ring of integers of k
is the ring of F -regular functions of C')

Theorem. (Norm principle for S-class groups of algebraic groups.)

Let k be a global field, A the ring of integers of k, G a reductive A-group scheme of finite
type and L/k a finite separable extension. Assume that for a finite set S of primes of k, con-
taining the set 0o of archimedean primes, and for the derived subgroup G' = |G, G| of G, the
topological group [l,eg G'(ky) is non-compact. Let S be the (finite) set of all non-equivalent
valuations of L which are extensions of those in S to L. Then for A" the integral closure of
A in L, the class set Cla(S', G) has a natural structure of finite abelian group, and we have
a norm homomorphism, functorial in G, A

NA’/A : gClA/(S,,G) - QC’ZA(S, G),

such that for A" = A, Naja = id, and for a tower of finite separable extensions K/L/k, with
obvious notations S”/S'/S, we have

NA”/A = NA//AONA”/A’-

In fact, we give two proofs of this theorem. A short presentation of the results obtained here
was announced before (see [T7] (appeared in 2006), and also in preprint form [T8] (appeared
in 2007)). Quite recently, after [T7], [T8] had been done, there appeared interesting papers
and thesis by C. Demarche ([Deml1] (2011), [Dem2] (2009)), where among other things, he
gave another proof for our Theorem above. His proof is based on some results of his theory
of approximation for complexes of tori, but only in the case of number fields, whereas our
result holds true over any global field. So our paper can be considered as a complement
to the work by Demarche. Later on, there was some extension to a more general base by
Gonzales-Aviles [GA] (2013), with different technique of the proofs. One of our main tools is
Theorem 3.2, which we hope can be further strengthend to prove the existence of the norm
map in a more general case, to which we hope to return later on.



1 Some preliminary results

We refer the reader to [SGA 3] for standard notation and terminology used below.

1.1. Induced tori. We need the following analogs of some results proved in [Bo,
[Kol, [T2], [T3]. First, we recall the important notion of induced (or quasi-trivial) tori (see
[Hal, pp. 171 - 172, especially [CTS2], Section 1).

For a noetherian domain R with quotient field k, such that Spec(R) is geometrically
unibranch and connected, we recall that (cf. [SGA 3], Exp. X, Remark 5.15, Théoreme
5.16) for an R-torus T there is a finite étale extension S/R, with quotient field &’ such that
Ts is S-isomorphic to G], for some r. We may assume that k'/k is a finite Galois extension,
and that S/R is also a Galois extension with the same Galois group I' := Gal(S/R) =
Gal(k'/k). Denote by Xg(T) := Homg(Ts, G,,) the character group, which is a I'-module
and it determines the R-group scheme 7" up to a unique R-isomorphism ([SGA 3], Exp. X,
Théoreme 1.1). T is called R-induced (or R-quasi-trivial) if there are a subgroup I'y C I" and
a ['-submodule X, C Xg(7T') such that 'y acts trivially on X, and

Xs(T) = @ a(Xp).

O’EF/FQ

Equivalently, an induced R-torus T is R-isomorphic to a finite direct product of X-tori of
the form Rg,/r(Gy,) (cf. also [CTS2], Section 1).

1.2. z-extensions. As in the case of fields, for a ring R as above, and an exact se-
quence 1 — Z — H — G — 1 of reductive R-group schemes, with Z an R-torus (cf. [SGA
3], Exp. XXII, Sec. 4.3.3, for the corresponding notions), we say (after Langlands) that H
is a z-extension of G if Z is an induced R-torus and the derived subgroup of H is simply
connected. Now, if x € H(S,G), we say that a z-extension H — G (over R) is z-lifting if
r € Im (H(S, Hs) — HY(S,Gy)).

Note that the crossed-diagram construction by Ono (used in [Hal]) also relates to the notion
of z-extensions used by Langlands. We fix a noetherian domain R as in 1.1 and consider in
this section the category GSchpg of flat affine group schemes over Spec(R) of finite type. The
existence of z-extensions in the case of fields was proved in Borovoi [Bo] and Kottwitz [Ko]
(in the case of fields of characteristic 0) and extended to more general case in [T6], Lemma
2.2.1. In fact, some conditions were omitted in loc.cit, and the referee pointed out several
points in the proof of (loc.cit) which need to be clarified and we take a chance to present
some corrections and modifications here. (In fact, only the existence of z-extension is what
we need later on in Section 4.)

1.2.1. Lemma. For R as in 1.1, and G a connected reductive R-group, there exists a
z-extension 1 — Z — H — G — 1.

We give below a correct formulation of Lemma 2.2.1 of [T6], from which Lemma 1.2.1
follows. We first need the following assertions.



1.2.2. Lemma. (Cf. [SGA3, Exp. X, 1.3, 5.15, 5.16]) Let S be a locally noetherian,
connected and geometrically unibranch scheme. Then any S-group scheme H of multiplica-
tive type and of finite type over S is isotrivial, i.e., H becomes split (diagonalizable) over a
finite surjective étale cover S’ of S.

It is known that if H is an isotrivial group scheme of multiplicative type over a connected
scheme S, then H is split over a finite étale connected cover S’ — S, which is a finite Galois
cover in the sense of [SGA1, Exp. V, 2.8].

Let G be a reductive R-group. Denote by rad(G) the radical of G, G the simply connected
covering of the derived subgroup G’ := [G,G] of G,

71 G Xspee(r) 7ad(G) — G Xgpee(ry Tad(G) — G

the composition of central isogenies (cf. [SGA 3], Exp. XXII, Prop. 6.2.4). Let A = Ker (7).
The following lemma is the corrected version of [T6, Lem. 2.2.1] and is due to Borovoi
and/or Kottwitz (see [Bor], Sec. 3, [Kol], [Ko2]) in the case S, R are fields. The method of
proof is similar, but for the self-containedness and convenience of readers, we give them here.

1.2.3. Lemma. Let R be a ring such that Spec(R) is a locally noetherian, connected
and geometrically unibranch.

a) Let F be a finite flat R-group scheme. Then there ezist a Galois extension S/R which
splits F' and an induced R-torus Z which is R-isomorphic to Resg/r(Gp)™ for some n with
an embedding of R-group schemes F' — Z.

b) Let G be a R-reductive group, m, A be as above, where A is split over a finite étale con-
nected extension S/R. Then there exists a z-extension 1 — Z — H — G — 1 over R, such
that Z ~ Resgi p(Gm)" for some n and Galois extension S’/ R which contains S.

¢) Let G be a reductive R-group, S'/S/R finite étale connected covers of R, v € H.,(S"/S,G) :=
Ker(HL(S,G) — HL(S',G)). Then the exists a z-extension 1 — Z — H — G — 1 over R,
which is z-lifting.

Proof. a) Under the new assumption on the ring R and by using 1.2.1, the arguments
used in the proof of a) and b) given in [T6, p.94-95] holds true. Since the argument is short,
we repeat it here.

By the choice of R, by [SGA 3, Exp. X, Corol. 1.2], there is an anti-equivalence between
the category of R-multiplicative groups and the category of continuous II-modules (i.e., the
stabilizer in IT of any point of the module is open), where II = m(Spec(R), ) the funda-
mental group of Spec(R) in the sense of Grothendieck (cf. [SGA 1], Exp. V) with respect
to a geometric point v : Spec(ks) — Spec(R). Here ky denotes a separable closure of the
quotient field k of R. In particular, I' is a finite quotient group of II. The corresponding
functor is given by character group on the fiber at geometric point

H— My = Homg(Hy, G y).

In our case, if F' corrresponds to a II-module Mg, then Mg is a finite Z[I']-module, thus
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there is a surjective homomorphism of I'-modules Mg — Mg, where Mp is a free Z[T']-
module Z[I']", where n = Card(Mp), considered as a Z[Il]-module, with trivial action of
Ker (I = I') on Mp. The R-torus B corresponding to Mp has the form Resg /r(Gy,)".
Due to the surjectivity of the homomorphism Mp — Mg, the corresponding R-morphism
F' — B is injective.

b) By a), there exists an induced R-torus Z such that A — Z. We set

H= (é X Spec(R) rad(G) X Spec(R) Z)/A,

where A is embedded into the product in an obvious way. Then G = (G Xgpec(r) rad(G))/A,
and the obvious map H — G is clearly surjective. Its kernel is Z, and we have a z-extension
as required.

¢) We use the z-extension obtained in b). We may assume that S’/R is a Galois extension
with Galois group I'. Then we have the following commutative diagram

HL,(S,H) — HL(S,G) = HY(S,2)

! l [

HY(S,H) — HY(S.G) = H(S,2)
where all lines are exact, the vertical arrows are restriction maps, and the maps A, A’
are coboundary maps (see [Gir], Chap. IV, Sec. 3.5). Setting Z = Resgs(1T'), where
T := (Gp)%. Then Z = Resgg(Zy), where Z;(U) := T(S ®g U) for any S’-algebra U.
Then one checks that H2,(S, Z) ~ H2,(S’, Z1) (see 1.3.4.1) and due to the diagonal embedding

Zhs — Resgys(Z1)s ~ [ Zv,s,

vel’

it implies that the induced map
v HG(S, Z) = He (S, Zh) — HE(S', Ressiys(21))

is just embedding , thus also injective. Further the rest of the proof remains the same as in
[T6].
(In [T6], the arrow 1 on p. 95, line 12 from the bottom should be shifted to the right to
make a map 7 : H%,(S, Z) — H%(S, Z2).)

[

Since the rings of integers of global fields satisfy the condition of Lemma 1.2.3, Lemma 1.2.1
follows from 1.2.3.

1.2.4. Other corrections to [T6]. We take a chance to make some corrections to [T6].
Therefore the following assumptions should be added in order the results be valid :



1) All the rings under consideration in [T6] are assumed to be connected, noetherian and
geometrically unibranch. (This is needed if we use Grothendieck theory in [SGA3, Exp. IX,
X] to make sure the existence of z-extensions.)

2) P. 112, line (-10): The numbering 4.7 (resp. 4.8, 4.9) should be changed to 4.8 (resp. 4.9,
4.10).

1.3. Deligne hypercohomology and abelianized cohomology.

1.3.1. Deligne hypercohomology. (See [De], [Br], Section 4.) In [De], Sec. 2.4, Deligne
has associated to each pair f : G; — G of algebraic groups defined over a field k, where f is
a k-morphism, a category [G; — Gs] of Go-trivialized G;-torsors, and certain hypercohomol-
ogy sets denoted by H'(G; — G3), which fits into an exact sequence involving G (k), G2 (k)
and their first Galois cohomologies. In many important cases, the above category appears
to be a strictly commutative Picard category (loc.cit). In [De], p. 276, there was also an
indication that the construction given there can be done for sheafs of groups over any topos.
Thus in [De], Section 2.4, there was defined the hypercohomology sets H.(G; — Gs) for
i = —1,0, where r stands for étale or flat topology. (To be consistent, we use the notations
of [Bo] and [Br], Section 4, while in [De], the degree of the hypercohomology sets correspond-
ing to G4 — Gy is shifted.) In particular, the existence of a norm map (i.e., the validity
of Corestriction principle) for hypercohomology in degree 0 in the case of local and global
fields was first proved by Deligne [De], Prop. 2.4.8.

Later on, Borovoi in [Bo] (resp. Breen in [Br], Section 4, gave a detailed exposition and
extension of such hypercohomology theory over fields of characteristric 0 (resp. for arbitrary
site). Namely, in [Bo] (resp. [Br]), there was defined also the set H'(G; — G3) (resp.
HY(7,G, — G3), where the setting in [Br] works over any topos 7). In the particular
case, when the base scheme is the spectrum of a field of characteristic 0, the Breen theory
coincides with the one given by Borovoi [Bo).

1.3.2. Breen cohomology theory. (Cf. [Br], Sections 3, 4.) Recall the following general
results due to Breen [Br|, Section 4 related to H of a crossed module. Let 0 : G; — Gg be
a crossed module in a topos 7. Then there exists a uniquely determined simplicial group
G in 7 associated to 0 : G; — Gy. Together with G, one defines also the abelian (sim-
plicial) loop group QG in 7, and the (simplicial) classifying group BG, which are defined
by (BG); := B(G;). To define cohomology of crossed modules, one defines first the loop
space G and the classifying space BG of G, the derived category De(7) of the category of
simplical objects of 7', obtained by localizing the (homotopies) quasi-isomorphisms. Then
let e be the final object of Do(7) and one defines the cohomology of T" with values in the
crossed module 0 : G; — Gy in degrees —1,0, 1 (see loc. cit. for details) by

(1.3.2.1) HYT,G1 — Gy) :== Homp,(1)(e,QG),

(1.3.2.2) H(T,Gy — Go) := Homp,1(e,G),



(1.3.2.3) HY(T,G1 — Go) := Homp,1(e, BG).
Then we have the following exact sequence (see [Br], Section 4)

(1324) 1 — H_1<T, G1 — Go) — HO(T, Gl) — HO(T, G(])
i HO(T, G1 — Go) - Hl(T, Gl) e HI(T, Go)

— HY(T,G, — Gy).

1.3.3. Now, for a noetherian domain ring A, in the particular case of Spec(A), by [Br],
4.2.2, we may also define the abelianization maps

abl;, - Hi(A,G) — Hi(G — G) :=HL(A,G — G),

for a reductive A-group scheme G, where r stands for ”ét” or "flat” (="fppf”), G is the sim-
ply connected semisimple A-group scheme, which is the universal covering of G’ := [G, G|,
the semisimple part of G, and i = 0,1. and 7, is the corresponding small étale site (resp.
big fppf site). In fact, it has been proved in [De], Section 2.4 (and 2.7), that if 7 (resp.
Z) is the center of G (resp. of G), and T (vesp. T) is a maximal A-torus of G (resp. G),
with f~%(T) = T, then there are an equivalence of categories [Z — Z] ~ [G — G], and
quasi-isomorphisms of complexes

(Z—2)~(T—T)~(G— Q).

One defines HY, (A, G) :=HL(G — G)(=H.(Z — Z)) and call it the abelianized cohomology
of degree i of G (in the corresponding topos; here r stands for "ét” or "fppf’ = "flat”,
(wherever they make sense) For i = 0, it is a group homomorphism. Since Z and Z are
commutative, so the resulting cohomology sets Hi(A, Z — Z) (wherever they make sense),
have natural structure of abelian groups. In the particular case, we have the following exact
sequence, which is functorial in A

0

] 0 ~ 0 abg o 0 ~
1 _)Hab,et(A7 G) - Het(A’ G) - Het(A7 G) - Het(A7 G — G) -

~ abl
- Hit(Aa G) — Hit(A» G) " etHét(A G — G).

1.3.4. Corestriction maps. Let A be a commutative domain, and let G be a re-
ductive A-group scheme. Denote by G’ the derived subgroup scheme of G, G the simply
connected covering of G, G the adjoint group scheme of G (see [SGA 3], Exp. XXII, 4.3.3),
F :=Ker (G — G), F := Ker (G — @) and let Z = Cent(G), Z = Cent(G) be the
corresponding centers. First we have the following (cf. also [Gil, Sec. 0] or [T6, Prop. 2.1]).

1.3.4.1. Proposition. (Cf. [CTS, Sec. 0.4]) a) Let p : Y — X be a finite étale cover
of connected scheme X, and let G be an affine group scheme over Y. Then we have canonical
1somorphisms

@i : Hy (X, Ry/x(G)) ~ H, (Y, G)
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for alli >0, where i = 0,1 if G is a non-abelian group.
b) If Y is as above, and if G is commutative affine group over X, then there exists a functorial
corestriction homomorphism

Coresy,x : H,,(Y,p*G) — H.,(X,G), for all i >0,

such that if Y = X, f =id, then Coresy;x = id, and if f':Y' —Y 1is finite and étale, then
Coresy)x o Coresy: )y = Coresy: x.

1.3.5. Corestriction principle. For any smooth commutative A-group scheme T and
each finite étale extension A’/A, as we have seen, there is a functorial homomorphism

COT’@SA//A7T : Hit(‘A,v TA/) — Hit(A, T),

where Ty = T x4 A’. Assume that we have a morphism of cohomology functors f :
(A HL(A,G)) = (A — HL(A,T)) (resp. g : (A — HL(A,T)) — (A — H,(4,G)),
where G is non-commutative, thus a system of maps fa : H,(AG)) — Hgt(A,T) (resp.
gat HL(A,T)) — HL(4,G)).

We say that Corestriction Principle holds for the image of f (resp. kernel of g) with respect
to the extension A'/A, if Coresaryar(Im(fa)) C Im(fa) (resp. Coresajar(Ker(ga)) C
Ker(ga)).

If it holds for any finite étale extension A’/A, we say Corestriction principle holds for the
image of f (resp. kernel of g).

Finally, if Coresajar({(Im(far))) C (Im(fa)) (resp. Coresajar((Ker(ga))) C (Ker(ga))).
where (@) denotes the subgroup generated by @), we say the Weak Corestriction principle
holds for the image of f (resp. kernel of g).

In [T7], [T8], we prove the validity of such principle under some restriction on domains A
and its field of fractions k.

1.3.6. In the case A is a local or global field of characteristic 0, it is known that there
exists functorial corestriction homomorphisms for H, (A, G), ¢ > 0 (which follows from
[De], Sec. 2.4.3, cf. also [Pe], Sec. 3, [T1], Theorem 2.5). It can also be extended to the case
of positive characteristic ([T3], Section 3, Theorem B), where instead of Galois cohomology,
we use flat cohomology. However, in general (étale or flat) case, it is not clear whether such
functorial homomorphisms always exist. Thus it is natural to make the following hypothesis
(Hypa) with respect to the given ring A.

(Hypa) For any finite étale extension A’'JA, for any G as above such that Z is smooth,
there exist functorial corestriction homomorphisms

CO?“@SA//A : Hfzb,et(A/? GA/> — Hfzb,et(A7 G),Z = 0, 1,

such that if A’ = A then Na/4 = id, and for any tower of finite separable extensions K/L/k,
with obvious notations A”/A’/A, we have

NA”/A = NA’/AONA”/A’~
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Assuming (Hypa), we may also consider the similar notion of Corestricton Principle for the
image of abil//A,et,z' =0,1.

1.3.7. Notice that in many important cases, (Hyp4) above holds for i = 0, due to Deligne,
that we recall briefly below. Recall that for a complex of commutative algebraic k-groups
(G, — Gs), HY(k, Gy — G5) denotes the abelian group of isomorphic objects of the Picard
category [G1 — G| (see 1.3). Then, for a finite separable extension &’/k, it has been shown
that there exists an additive trace functor

Tﬁc'/k : [GLk/ - G2,k/] - [Gl - Gz]-
Also, in [De], Section 2.4.7, there has been established a quasi-isomorphism of complexes
(Z = Z)~ (T -T)~ (G —G),
which gives rise to additive trace functor (called a "norm functor”) between such categories
Nieji: |G — Gi] =[G — G,
which induces a norm homomorphism
Coresy . HO(K', Gy — Gp) — H'(k, G — G),

which is, in our notation, nothing else than the corestriction HY, .,(k', Gr) — HY, (K, G).
The situation can be generalized to a more general setting (here we replace Spec k by
Spec (A)).

In particular case, when k is a non-archimedean local field, we may derive the map Cores /4 :
HY, (A, Gu) — HY, (A, G) differently as follows. In above notation (see 1.3.2), we have
the following exact sequence

ab?

L —H (A, G) — HY (A, G) — HY(A,G) ="HY(A,G — G) —

~ abl ~
- Hit(Aa G) — H;t(A» Q) getHét(Aa G — Q).

According to Tits result (Theorem 2.1.1, a) below), we have Ker(HL, (A, G) — H'(k,G)) = 0.
Since H'(k, G) = 0 due to well-known Kneser - Bruhat -Tits Theorem, we have H., (A, G) =
0. Since (T — T) ~ (G — @), we have H%,(A,T — T) ~ H%(A,G — G). Hence from the
exact sequence

- ~ abl -
1 -HMAT —-T) - HY(AT) - HY(AT) 53"HY (AT - T) —

~ abl ~
- Hit(A, T) - Hét(A, T) i)etHelzt<Aa T—T).



we obtain

HY, (A, G) ~ Coker(aa : HY(A, T) — HY (A, T)).

Since for any finite étale extension A’/A we have (by 1.3.4.1) a functorial corestriction
homomorphisms

Coresaa: HO(A', Ta) — HY(A,T), Coresarya: H(A', Tar) — H(A,T),
we may derive another one Coker(aa) — Coker(ay), i.e.,
(1371) CoresA//A : Hgb,et<A,7 GA/) — Hgb,et<A7 G)

1.3.8. Proposition. 1) Let k be a field, A a domain with quotient field k, G a reduc-
tive A-group scheme. Assume that for finite étale extension A'/A with corresponding finite
quotient fields extension k'/k, the corestriction principle holds for the image of homomor-
phism abdy ;. : H'(k,Gy) — HY, . (k,Gy) (via Corespyy, = HY, (K, Gr) — HY, ,(k,G)) and
the map v - HL(A,G) — H'(k,Gy) has trivial kernel. Then the corestriction principle
holds for the image of homomorphism ab; 4 : H'(A,G) — Hy, (A, G) (via Coresaya
Hgb,et(Alv GA/) - Hgb,et(A? G))

2) Let k be a local (resp. global) field with the ring of integers A, oo the set of all archimedean
valuations of k, G a reductive A-group scheme, A'/A a finite étale extension, and let k' be
the quotient field of A'. Assume that in the case of a global field k, G has (absolute) strong
approzimation over A, i.e., G(Ag) is dense in [[,eg G(ky) for any finite set S(D o0) of
primes of A. Then the Corestriction principle holds for the image of aboaet.

Proof. 1) We have the following commutative diagram with exact rows for (A4, k)

G(A) 4 GA) % HY,,(A,G) % HL(AG)

lid lid L Yab,k A7

Gk) % Gk) % HY,(kG) % H'(KQE)

and similar one for (A’, k") (where we drop the subscrip to denote the base extension for
simplicity)

= Qayr ab 4/

G(A) ™ GA) " OHY, (A, Ga) B HL(A,Ga)
lid Lid b Yab ke L

abys
—

G(K) = G(K) Hppu(K,G) = H'(K,G)
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Thus we have the following commutative diagram

Hit(A7é) E} Hl(kaék)
HL(A,Gy) X H'(K,Gp) 16, T 8k

Toa 1oy HY L (A,G) ™ 1Y ., (k,Gy)

I e

Vab k!
Hgb,et(A/’ GA/) if Hgb,et(k/’ Gk’/)

where f = Coresa /4 and g = Coresg, i, exist by Deligne result mentioned above (see
1.3.7.1). Let x € G(A") ar. Let y :=04(f(abas(x))). To see that f(aba(x)) € Im(aby) is the
same to verify that y = 0, hence it suffices to verify that v;(y) = 0, since by assumption 7
has trivial kernel. But

Ye(y) = 1 (8a(f(aba (2)))
= 0k(9(ab (2)))
=0,

since the Corestriction principle holds for the image of ab,. Thus y = 0, i.e., f(aba (z)) €
Im(abya) as asserted.
2) First assume that k is a local field. Then as in 1.3.7, since H, (A, G) = 0, we conclude as in
1). Now we assume that k is a global field. By assumption, G has strong approximation over
A, thus by [Ha], Corollary 2.3.2, Hy,.(A, G) = 0, so from exact sequence 1 — Hy, (A,G) —
H!,(A,G) B8 H(k,G), (due to Nisnevich, see Theorem 2.1.1 below), we have Ker(v;) = 0.
The rest follows again using arguments from 1). Notice that in all cases we have used the
fact that over local and global fields, the Corestriction principle holds (see [De], Sec. 2.4,
[T1], Thm. 2.5, [T3], Thm. B).

[

2 Generalities on class sets (groups) of algebraic groups

2.1. Serre - Grothendieck conjecture. Let S be an integral, regular, Noetherian
scheme with function field K, G' a reductive group scheme over S, and let F be a G-torsor
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over S, i.e., a principal homogeneous space of G over S locally trivial for the étale topology
of S. We say that E is rationally trivial if it has a section over K.

First we recall the following conjecture due to Serre and Grothendieck, in the most gen-
eral form given by Grothendieck. J.-P. Serre and A. Grothendieck in C. Chevalley’s Seminar
in 1958 ([SCh], Exp. I and Exp. V) and A. Grothendieck in a Bourbaki Seminar [Gr] in
1966 formulated the following conjecture.

Conjecture. ([Gr], Remarque 1.11.) Let S be a locally noetherian regular scheme, G a
semisimple group scheme over S. Then any G-torsor over S which is trivial at mazimal
points is also locally trivial.

In the case of arbitrary reductive group schemes, the following is a more general formu-
lation of this conjecture (cf. [Nil], [CTO], p. 97):

(*) If S is as above and G is a reductive S-group scheme, then every rationally trivial G-
torsor is locally trivial for the Zariski topology of S.

In other form the conjecture says (cf. [Nil], [CTO], p. 97)

(**) The following sequence of (pointed) cohomology sets
l— HlZaT(S7 G) - Hit(87 G) - Hl(Ka GK)

15 exact.

Equivalently, it says that
() If S, G are as above, n is the generic point of S and A = O, is any local ring at
x € S\ {n}, then the natural map of cohomology

Hit(A7 G) - Hl (K7 GK)

has trivial kernel.

Partial results obtained are due to Harder [Hal], Tits (unpublished, but see [Nil], The-
orem 4.1,) Nisnevich [Nil], [Ni2], Theorem 4.2, Colliot-Thélene and Sansuc [CTS2] and
Colliot-Thélene and Ojanguren [CTO]. We mainly need only the following

2.1.1. Theorem. a) (Tits, cf. [Nil], Theorems 4.1.) If A is a complete discrete valu-
ation ring with quotient field K, and G is a semisimple A-group scheme, then the above
congjectures hold.

b) ([Nil], Théoreme 4.2) If S is a reqular one-dimensional noetherian scheme and G is a
semisimple S-group scheme, then the above conjectures hold.

c¢) ([Nil], Théoreme 4.5) If S = Spec R, R is a reqular local henselian ring and G is S-
semisimple group scheme, then above conjectures hold.

12



2.2. Double classes. We consider the class set of a given flat affine group scheme G
of finite type over Dedekind ring A with smooth generic fiber Gy over the quotient field k
of A. Let X = Spec(A), n € X the generic point of X, S a finite subset of X := X \ {n}.
The ring A(S) of S-adeles is defined as

AS) = [I Avx Ik

UEX()\S vES

where k, (resp. A,) is the completion of k (resp. A) in the v-adic topology. We denote by
Ag the localization of A at S, A = ind.limg A(S) the adele ring of k (with respect to A !).
We recall (see [Hal], [Nil], [Ni3], [Ni4]) that the local class set for a prime v € X (denoted
by Cl,(G)), the S-class set, of G with respect to a finite set S of primes of A (denoted by
CI(S,G)), and the class set of G (denoted by Cl4(G)), is the set of double classes

Cly(G) == G(A) \ G(ky)/G(k),
Cla(S, G) = G(A(9)) \ G(A)/G(k),

and

Cla(G) = G(AM) \ G(A)/G(k),

respectively. Here G(k) is embedded diagonally into G(A). The double class G(A(0)).1.G(k)
is called the principal class. In the classical case (and notation) of the algebraic groups G
defined over a Dedekind ring A with quotient field a global field k, which is the ring of
integers of k, the class set is nothing else than the usual class set of the group G, i.e., if 0o
is the set of all infinite primes of A, A(oco) the set of integral adeles of A:

A(oo) =[] Av x [] ke,

Voo VEOCO

then
Cla(G) = G(A(0)) \ G(A)/G(k),

(cf. [B], [PIR], Chapter VIII, [Ro]).

Especially in the case G = G,,, the class set is exactly the ideal class group of the
global field k. Many other information related with the class number can be found in [PIR],
Chap. VIII and reference therein. In general, class sets contain lot of arithmetic information
of the groups under consideration, and it is an important arithmetic invariant for group
schemes over A. This was one of the main motivations for Nisnevich to introduce a new
Grothendieck topology, which was originally called completely decomposed topology and
now is called Nisnevich topology. A site with Nisnevich topology is called a Nisnevich site
and the corresponding cohomology is called Nisnevich cohomology, denoted by Hy,, (X, G),
where G is a sheaf of groups over a scheme X (see [Nil] - [Ni4]). The following theorem
records most basic properties of Nisnevich cohomology that we need in this paper.

2.2.1. Theorem. Let X be a noetherian scheme of finite Krull dimension d.
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1) (Kato - Saito, [KS]) For any sheaf F of abelian groups over X n;s, we have HY, (X, F) = 0,
for alln > d.

2) ([Ni3], [Ni4]) We have the following exact sequence of cohomology sets for any sheaf of
groups G over X

I — H}V15<X7 G) - Hit(Xv G) - H?st(X7 le*G)) - 17

where f: X — Xnis 1S canonical projection.

3) ([Nil], [Ni3], [Ni4]) Let X be a Dedekind scheme Spec(A), G a flat affine group scheme
over X of finite type with smooth generic fiber. For a finite set of primes S, Ag denotes the
localisation of A at S. Then we have the following bijections

CZU(G) >~ H}Vi'S(A’U’ G)7

HlZm‘(A7 G) = CZA(G) = H}VZS(A7 G)7
CI(S,G) ~ Hy,,(Ag, G),
for all v and finite set of primes S.

2.2.2. Remarks. 1) Regarding Theorem 2.2.1, 3), it was shown in [Hal, prior to [Nil],
[Ni3], [Ni4], that there always exists an injection H},,.(A, G) < Cl4(G). Some related results
are given in [Gil] - [GIMB].

2) Some other applications can be found in [T8].

3 Class groups of algebraic groups

3.1. Let k be a global field, A a Dedekind ring with quotient field k, co the set of infinite
primes of A, A(oco) the set of integral adeles of A. The problem of computing class sets for a
given linear algebraic group G defined over k is a non-trivial one, and depends on the choice
of an A-integral model G4 of G. Namely, take a flat affine A-affine group scheme G = G4 of
finite type with generic fiber G. Then as in 2.2, we define the class set for a given G as

Cla(G) == G(A(0)) \ G(A)/G (),

One of the most interesting cases is when the class set has a natural group structure (i.e.,
induced from the group structure of G(A)), which is then called the class group of G (denoted
by GCI(G) as in [PIR], Chapter VIII). Recall that for a finite set S of primes of A, G has
weak approximation relative (or with respect) to S if G(k) is dense in the product of v-adic
topologies on [T,cq G(ky). Also (see loc.cit, p. 250), we say that G has strong approzimation
relative (or with respect) to S (or just S-strong approximation) with S D oo, if, G(Ag) is
dense in [T,c5 G(ky). Equivalently, the subset G(k) is dense in G(Ag), where Ag denotes the
ring of truncated adeles (removing those components belong to S), or the same, G(k)Gg is
dense in G(A), where Gs := [[,c5 G(ky). It is known that the notion of strong approximation
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with respect to S does not depend on the choice of G, and that in this case, Cl4(S,G) = {1}.
In the case S = oo, G is said to have absolute strong approximation over k (or over A). It
is equivalent to saying that G(Ay) is dense in [,y G(k,) for all finite sets W D oo, and in
particular we have Cl,(G) = {1}.

It is interesting to see whether the group structure on G(A) induces a group structure on
Cla(S,G). This question has been first addressed by Kneser in [Knl] - [Kn2], who showed
that if G is a connected reductive k-group defined over a number field k, such that the
simply connected covering G of G has the absolute strong approximation, then C1 4(G) has
a natural structure of finite abelian group. Notice that the arguments in [Knl] rely on an
argument in [Kn2], Hilfsatz 6.2, which are valid for any perfect field k, but the proof does
not seem to cover the case of non-perfect fields. Then this result has been shown to hold
in ([PIR], Prop. 8.8, p. 451), using similar ideas, in the case k is a number field, G is a
semisimple algebraic k-group.

Our aim in this section is to extend this result (under the assumption on strong approx-
imation with respect to a finite set S(D 00)) to the case of connected reductive k-groups G
over global fields of any characteristic, and we have the following similar property charac-
terizing Cla(S,G) as a finite abelian group. The method of proof is a slight modification of
(loc. cit.), by using some arguments due to Deligne [De| and Kneser [Knl], [Kn2]. The fol-
lowing statements (Theorem 3.2), is important in the proof of our main theorem mentioned
in Introduction.

3.2. Theorem. (see [PIR]|, Prop. 8.8 for semisimple groups, k a number field, [Knl]-
[Kn2] for connected reductive groups, k a number field)

Let k be a global field, A a Dedekind ring with quotient field k. Let G be a connected reductive
k-group and G an integral model of G chosen as above. Assume that the simply connected
covering G of the derived subgroup G, G| of G has strong approximation with respect to a
finite set of valuations S D co. Then

1) the principal double class G(A(S))G(k) contains the derived subgroup [G(A),G(A)];

2) the principal double class G(A(S))G (k) is a normal subgroup of G(A);

3) the class set Cla(S,G) has a natural structure of a finite abelian group, and we have

ClLA(S,G) = GCU(S,G) ~ G(A)/G(A(S))G(k).

Proof. By abuse of notation, and for simplicity, we use also the notation G(B) instead of
G(B), where B is any commutative A-algebra.
1) Let G = G'T, where the product is almost direct, G’ is semisimple, T is a central k-
subtorus of G and there is a central k-isogeny

(%) 1-F—-GxT' 5 G=GT —1,
where G is the simply connected covering of G'.

It is a standard fact that in a central extension 1 — F' — G — H — 1, there exists a homo-
morphism from the commutator group [H, H| to G. From this it follows (cf also observation
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made by Kneser and Deligne (see [Kn1], [De], Sec. 2.0.2)), that in the above exact sequence,
7(G(k)) is a normal subgroup of G(k) with abelian quotient group. In particular,

[G(k), G(k)] € m(G(F)).

Moreover, this is true for G considered as a sheaf of groups over some site. Since A is
a k-algebra, the above exact sequence can be considered as an exact sequence of A-group
schemes, therefore, by considering the flat cohomology we have an exact sequence

1 — F(A) — G(A) x T'(A) ™ G(A) 2 HL, (A, F).

Since the above sequence of groups is exact (see e.g. [Gir], Chap. III, Proposition 3.4.3),
and the cohomology group H},,, (A, F) is commutative, it follows that Im (74) is a normal
subgroup of G(A), containing [G(A), G(A)]. Also, from what has been said, we have

[G(A),G(A)] C ma(G(A)) C Im (74).

(This has been proved by Kneser in the case of number fields. One may also use the argu-
ments given in [Oe|, Chap. II, related with the cohomology of adelic groups, in the case of
global function fields.)
By assumption, G has strong approximation with respect to S, hence we have G (A(S ))C?Y (k) =
G(A). We show that )

ma(G(A)) C G(A(S))G(k)

by showing that .
TA(G(A(S))) € G'(A(S))G' (k).

Indeed, let W be a finite set of primes v of k containing S, such that (%) defines a short
exact sequence of flat A(W)-group schemes of finite type (denoted by the same symbols as
above) with 7 as central A(W)-isogeny. It is clear that we have

ma([] G(A) < ] {1}) € G'(A(S))

vgW veEWUoo
7TA<1—[SG(AD) X 1;!9{1}) C G'(A(9)).

Therefore it remains to show that

ma( [[ G(A) x T {1}) € G'(A(9)).

veW\S vgW\S

Denote by CI(.) the operation of taking closure in G(A). Let Ag be the ring of S-truncated
adeles. Since G has S-strong approximation over k, G(k) is dense in the adele topology
in the restricted product G(As) = [T,¢s(G(ky), G(A,)) (the square bracket does not mean

taking the commutator group), hence

II Ga)x ]I {1} c CUGK)),

veW\S vgW\S

16



where the closure is taken in G(A). Therefore

ma( I G(A) x [ {1}) C ma(CUG(R))).

veW\S vgW\S

Since 74 is continuous in the adele topology, which has a countable basis, it follows easily
that

Ta(CUG(K))) C Cl(ma(G(K)))
c UG (k))
c Cl(G(K))
C G(A(9)G(k),
since the latter is an open subset of G(A) containing G(k). Therefore we have
Ta(G(A)) C G'(A(S)G' (k)

as required. It follows from above that

(*) [G(A),G(A)] € ma(G(A)) = ma(G(A(S))G (k)

C G(A(9)))G(k).

2) We show that G(A(S))G (k) is a normal subgroup of G(A). Let g,91 € G(A(S)),h,hy €
G(k). Then

(gh)(g1h1) = g.g1(g7 " -hgr-h™ ) hln

= (9-91)[o1 " Dlh.y

€ G(A(9)(G(A(S)G(k)G(k)  (by 1) and ()
(*%) = G(A(8)G(k);

(g.h)"L = g~ h L (h.g.h~tg))

= (g7"h7")(g2.h2) (by 1) and (¥))

€ G(A(9))G(k) (by (**)).
Hence G(A(S))G(k) is a subgroup of G(A), and since it contains [G(A), G(A)], it is a

normal subgroup of G(A).
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3) In [Kn1], under the assumption of absolute strong approximation, it has been proved that
over a number field k, for any g € G(A), we have

G(A(0)).9.G(k) = g.G(A(00))G(k).

One checks without difficulty that the same argument works in the case of S-strong approxi-
mation, and also in the case char.k > 0 (by using 2)). From above we see that G(A(S))G(k)
is a normal subgroup of G(A), and the double class set

Cla(5,G) = G(A(S)) \ G(A)/G(k) = G(A)/G(A(9))G (k) = GC1A(S, G)

is naturally the S-class group of G, which is finite according to Borel (see [B]) in number
field case, Borel - Prasad in global function field case (see [BP], also [Col], [Co2| in general
case of affine k-group scheme of finite type).

(]

3.3. Remark. If we replace the condition that G has absolute strong approximation
over k by the (obviously weaker) condition

[G(A), G(A)] € G(A(9)G(k),

then all the statements of Theorem 3.2 still holds and the proof remains the same.

4 A norm principle for class groups

4.1. Assume that the natural group structure exists on the class set of a connected reductive
group G defined over a global field k£, and the same also holds for GG}, for all finite extension
k'/k. In this case, one may ask if GCI(G) possesses certain norm map. More precisely, if
E'/E is a finite separable extension of fields, we ask whether there is a norm homomorphism

Nk:’/k: : QCZ(Gk/) — QCZ(G),

which is functorial in &'/k, and also in G, which coincides with the usual one when G is
commutative. In particular, it should be the identity map for &’ = k, and for a towers of
separable extensions k" /k’/k, we have

Nk‘”/k = Nk’/k’ o Nk///k/,
With notation as above, in [De], Deligne has introduced the group

I(G) == G(A)/m(G(A)G(k)
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for a connected reductive group G defined over a global field k. It is an abelian quotient
group of G(A), and it was shown to have a norm homomorphism Ny, : II(Gy) — II(G)
([De], Sec. 2.4), which plays a definite role in the study of reciprocity law for canonical
models of Shimura varieties. If G has absolute strong appoximation, then the class group
GCIU(S, Q) is a factor group of II(G) and it is quite possible that in this case, we also have a
norm homomorphism GCI(S’, Gy) — GCI(S, G), where S” denotes the set of all extensions
of S to k’. In the case of reductive A-group schemes we have a property, similar to Theorem
3.2, for reductive A-group schemes, and, under the same assumption, also a norm homomor-
phism as follows.

Recall that if k£ is a global function field, under a ring of integers of k£ we mean the ring
of regular functions of an open dense affine subvariety of a smooth projective curve defined
over a finite field F,.

4.2. Theorem. (Norm principle for S-class groups of algebraic groups.)

Let k be a global field, A the ring of integers of k, G a reductive A-group scheme of finite
type. Assume that for a finite set S of primes of k, containing the set oo of archimedean
primes, and for the derived subgroup G' = |G, G] of G, the topological group [l,eg G'(k,) is
non-compact. For any finite separable extension k'/k, A’ the integral closure of A in k', and
S’ the extension of S to k', the S-class set Cla/(S, G) has a natural structure of finite abelian
group, and we have a norm homomorphism, functorial in A and G

NA’/A : QCZA/(S’,G) — QCZA(S, G)

Proof of Theorem 4.2. We present two proofs of this theorem.

4.2.1. First proof.
4.2.1.1.  Claim. Assume that [G,G] is simply connected. Consider the following exact
sequence of reductive A-group schemes

1-G—->G5T -1,

where T = G/G is an A-torus. Then we have canonical (functorial in A, G) isomorphism
of finite abelian groups

GCL(S,G) ~ GOL(S,T).

We know that 7 induces a continuous homomorphism 74 : G(A) — T'(A). We notice that
since 7 is defined over A, and the class set of G is a class group GCl4(S,G), 7 induces a
homomorphism between class groups

7 GOLA(S,G) — GOLA(S,T).

Let t = (t,) € T(A). Let S; be a finite set of finite primes of A, such that for v ¢ S; we
have t, € T(A,). We may take S; sufficiently large such that for S’ := co U S; U S, we have

A(G) = A(Y,G) = [] G(k,)/CUG(k)) ~

ves’
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~ A(T) ~ A = I T(k,)/CUT (k)

veS’

(see the proof of Theorem 2.3 of [T9]). Then 7 induces an isomorphism
e A(S,G) =~ A(S", T),

such that

(#) s (Cls (T(k))) = Cls (G(K))),
where the closure is being taken in [T,csu00 7' (ky) (resp. in [Tyesuoo G(ky)). We can write
t=tg.ty,

where

tgr € H T(k‘v) X H {1},tig/ € H T(AU) X H {1}

ves’ vgS’ vgS’ veSs’

By Tits result (Theorem 2.1.1 a)), and Kneser - Bruhat - Tits (see [BrT]) about the triviality
of the H! of simply connected groups above, it is clear that t, € Im (7). From the isomor-
phism above, we can choose gs: € [[,cs G(ky) such that mg (gs) = ts (mod. Clg/(T(k))).
All these facts show that 7 induces a surjective homomorphism

71 GOLL(S, G) — GOUA(S, T).

Next we show that 7’ is a monomorphism. Let ¢ = (g,) € G(A) such that m4(g) €
T(A(S))T(k), the principal double class of T'(A). Let W be a finite set of finite primes of
A such that for v € W then g, € G(A,). Assume that S’ O S U W is sufficiently large so
that A(S",G) = A(G) = A(T) = A(S",T). Then we write ks := ITyes kvs koo = [peoo ko
malg) = tststy € T(A(S))T(k),

t, € T(k‘),tgl € T(k’g/) X H {1},tf € H T(AU) X H {1}

vgS’ vg S’ veS!

As we notice above, t; € Im 7y, say ty = ma(hy), where

hf € H G(Av) X H {1}

vgS! ves’!
By replacing g = (g,) by h;lg, we may assume that ¢ty = 1. Thus we have
WA(g) = tsltk.

Let tg = t1.ty, where t1 € [[,egn00 T'(Av), t2 € [lyeoo T'(ky). The same argument as above

shows that
theIm(: J] GA) — [ T(A))

veES\ oo veS'\oco
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Therefore we may assume that ¢; = 1, thus also that m4(g) = tootr € T(koo)T(k). Since,
as it is well-known, the weak approximation holds for connected k-groups with respect to
archimedean primes, it follows that ¢t € Cls/(T'(k)). By writing g = googs\ (wuose) 9w\ s 9w »

where
goo € G(koo) X H {1},
V€00
gs\wuey € [ G(A) x T[T {1}
veS\(WUo) v S\ (WU0)

gw\s € H G(kv) X H {1}a
vEW\S veS!

gwe I GA)x II {13},
vgSUW veSUW

to show that g € G(A(S))G(k), we may assume that g, = 1, gs\(wuse) = 1. Thus we have
Ta(googuns) € Clg/(T(k)), hence googwrs € Clg/(G(k)) by our choice (#). Since G(A(S))
is an open subgroup of G(A), it follows that we have
CU(G (k) C G(A(0))G(k),
hence
9 = JooGW\S

€ CUG(k)) [Tpgs G(Ay) X Tyes{1}

C G(A(S9))G(F) ITugs G(Av) X Tloes{1}

C G(A(9))G(k),

where the last inclusion follows from the proof of Theorem 3.2. Thus ¢ has trivial image
in the class group as required. (To prove the last inclusion, one may also use the strong
approximation assumption and also a result due to Deligne [De], Corollary 2.0.9.)

4.2.1.2. Claim. With above notation and assumptions, we have the following exact se-
quence of finite abelian groups

1 — GCls(Z) — GCls(H) — GCl4(G) — 1.
Indeed, from the exact sequence
l1—-7Z—H—-G—1
we derive without difficulty the exact sequence on adelic and k-points
1—Z(A)— HA) - GA) — 1
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1 — Z(A(S)) — H(A(S)) — G(A(S)) — 1,
1 — Z(k) — H(k) — G(k) — 1.

and from this the corresponding class groups. (One may also invoke results on Nisnevich
cohomology to deduce this (simple) fact. See [Ni4].)
Let

1-GoH->T—1

be the exact sequence considered before. Due to the functoriality of étale cohomology and
also Nisnevich cohomology of tori (or just use the results proved in Sections 2) and the Claim
4.2.1.1, the corestriction (i.e., the norm) homomorphism exist for the class group GCl4(Z) of
Z (denoted by Ny), and for the class group GCl4(T') of T, hence also for GCl4(H) (denoted
by Ns). The following commutative diagram with exact rows (and the map N3)
1 — QCZA/(S’, ZA/) — QCZA/(S’, HA/) — QCZA/(S’, GA/) — 1
l N1 l NQ l N3

1 —  GCIu(S,Z) — GCIu(S,H) — GClu(S,G) — 1

resulting from this functoriality, shows the existence of the corestriction (norm) map N3 for
GClA(S,G) as required.
[

4.2.2. Second proof. For simplicity, we assume only that S = co, and we denote

where 7 : G— G = |G, G] denotes the canonical projection from simply connected covering
G of the semisimple part G’ of G. We prove the following

4.2.2.1. Claim. There exists a norm homomorphism
N QCZA/(GA/) — QC’ZA(G)

which is compatible with the Deligne’s norm homomorphism in the sense that the following
diagram 1s commutative

!

1 — Ker(q’) — B//F/ L QCZA/(GA/) — 1
L@ I @ lNA//A
1 — Ker(f) — B/F L GCIlu(G) — 1
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where (.)" means an object is obtained if we pass from k to a finite extension k'/k, i.e., con-
sidered over a finite separable extension k'/k.

With our assumption on the strong approximation, we know from the proof of Theorem
3.2, that C'D is a normal subgroup of finite index of B, and GCl4(G) = B/CD. From
[De], Section 2.4.9 (see also [T1], [T5]), we know that there is a norm homomorphism for
the quotient group B/F. (In fact, in the case of local fields, and, under our assumption
on strong approximation, also that in the case of global fields, one deduces that the Core-
striction principle holds for the image of canonical map aby : H)(A,G) — HY, (A, G).
(see Proposition 1.3.8.) From this fact, one deduces without difficulty the above mentioned
norm homomorphism.) This norm homomorphism is compatible with the Deligne’s norm
homomorphism for the group II(G), i.e., the following diagram is commutative

1 — Ker(f) — B/F L WGy — 1

LA L2 E

1 - Ker(f) — B/F L 100G - 1

Indeed, we just need to show that f; is induced from corestriction (norm) homomorphisms
previously obtained for algebraic groups over local and global fields as in [T1]. Take a z-
extension 1 — Z — H — G — 1 (see 1.2.3). By using the surjectivity of the homomorphisms
H(A) — G(A) and H(k) — G(k), we are reduced to proving the same assertion for H, i.e.,
we may assume GG = H. But one checks that in this case Ker (f) = G(k) N G(A) = G(k),
and the norm homomorphism for Ker (f) is nothing else than the Deligne’s norm homomor-
phism constructed in [De|, Section 2.4.

4.2.2.2. We have the following exact sequence of groups
1 — Ker (9) = B/FD — GCla(G) — 1.

Since there exists a norm homomorphism of II(G) = B/F D compatible with Deligne’ norm
homomorphism, the proof of the existence of a norm homomorphism of GCl4(G) compatible
with Deligne’ norm homomorphism is reduced to that of Ker (¢). Again, as in the previous
part, we may assume that G = H, i.e., [G,G] is simply connected. In this case one checks
that Ker (g) = CD/ED. Since G has absolute strong approximation over k, we have

CD/ED =CD/JD
= C.JD/JD
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=C/CNnJD

=C/J(CND)

=C/JG(A).
Therefore we are reduced to proving the existence of a norm homomorphism for C'/JG(A)
which is compatible with Deligne’ norm homomorphism. We notice that J is a normal
subgroup of C, and that there exists a norm homomorphism of C'/J compatible with Deligne’

norm homomorphism (which, for finite primes, follows from Sections 1.3.6 - 1.3.8, and for
infinite primes follows from [De] and/or [T1]). By considering the exact sequence

1 — Ker (h) — C/J 5 C/IG(A) — 1
we are reduced to proving the same assertion for
Ker (h) = JG(A)/J = G(A)/J N G(A) = G(A)/G(A).

4.2.2.3. To proceed further with the proof, we consider the exact sequence 1 — G — G —
T — 1. We have the following commutative diagram

/

Hgt (A/7 GA’) L H(e)t(A/7 TA/) l) Hit(A/a GN(A’)
L Narya

Hgt(A7 G) L Hgt<A7 T) ﬂ) Hét(Aa é)

We now show that the Corestriction principle holds for the image of 7/, i.e., Naja(Im(n')) C
I'm(m). For this we consider also the following commutative diagram

Hét(A7 é) i Hl<k7 ék)
HL (A, G ) S H(K, Gy) Ta 18

T 7 T 0 Hgt(Av T) ﬂ Ho(ka Tk)

7

HO, (A, Tw) & HO(K, Ty

where the south-east arrows are corestriction homomorphisms. Since G has strong ap-
proximation in S, the same is true for G4 with respect to S’, the extension of S to k'
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The proof of [Ha], Korollar 2.3.2, shows that H}, (A’,G4) = 0. Therefore by Nisnevich
results (Theorem 2.1.1, b)), the maps ¢, have trivial kernels. Let 2’ € Im (x’). Then
2" € Ker (7) = Ker (¢p o y) = Ker (§ 0 ¢'). By [T1], [T2], the Corestriction principle holds
for Ker (), therefore for x = Cores(z’) we have ¢/(x) € Ker (). Hence

U(a(Cores(a')))) = B(¥'(Cores(a')))
= B(Cores(¢'(2')))
=0,

i.e., x € Ker (), since ¢ has trivial kernel.

The proof of Theorem 4.2 (and the one in the Introduction) now follows from above results.

4.3. Some consequences. As a consequence of the proof of Theorem 4.2, we derive
the following result, which can be considered as a complement to a description of the class
groups given by Nisnevich in the case of semisimple group schemes, or the case of group
schemes with semisimple groups as generic fibers) (see [Ni4], Theorem 4.3).

4.3.1. Corollary. With notation and assumption as in Theorem 4.2, there exist well-
defined A-tori Z, T, where Z is an induced A-torus, satisfying the following exact sequence
of finite abelian groups

1 — GClLu(S, Z) — GClLu(S,T) — GClLa(S,G) — 1.

Proof. Take any z-extension
17 —-H—-G—1

for the reductive A-group G (see 1.2.3). Denote by G the derived subgroup of H, which is
a semisimple simply connected A-group scheme, and let T' = H/ G, the A-torus quotient.
Since Z is an induced A-torus, as in Claim 2 of the first proof, we have the corresponding
exact sequence for class groups

1 — GCOl4(S,Z) — GCl4(S, H) — GClA(S,G) — 1.
Also, by Claim 4.2.1.1, we have canonical isomorphism of finite abelian groups
QCZA(S, H) ~ QC’ZA(S, T)

Thus we obtain the exact sequence desired.
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4.3.2. Corollary. Let k be a global function field or a totally imaginary number field, A
a Dedekind ring with quotient field k, G a reductive A-group scheme. Then the class set
Cla(G) has a natural structure of a finite abelian group, and we have

ClLi(G) = GCUG) ~ G(A)/G(A ()G (k).

Proof. Tt follows from the fact, that G’ has absolute strong approximation over k (see
e.g. [PIR], Section 7.4), and from Theorem 3.2 and Theorem 4.2.
[ ]

4.4. Remarks. 1) It is worth of noticing that the restriction map for the class sets of linear
algebraic groups over number fields has been studied before by Rohlfs [Ro|, Satz 3.1, in a
very general setting. In particular, he studied the map

Res : G(A(o0)) \ G(A)/G(k) — G(Ay(00)) \ G(A)/G(D),

where [ is a finite Galois extension of k, A; denotes the adele ring of [, and obtained a beau-
tiful expression of the kernel (in the category of pointed sets) of the restriction map Res via
Galois cohomology of G. Theorem 4.1 can be considered as a complement to this result. It
would be nice to extend the results obtained above to the case considered by Rohlfs [Ro],
Satz 3.1 and Korollar 3.2.

2) In most of results above, which are proved under the assumption of absolute strong ap-
proximation, we may relax this condition by assuming only that the class number of G is
equal to 1. (It would be nice to verify the ”Kottwitz principle” ([Ko]) in this case.) Also,
one may also reformulate the results for the case of S-class groups in an appropriate way,
for a finite set S of primes containing oo.

3) It is highly possible that by using similar method of proof, we still have norm homo-
morphisms for the class group (still under the condition on absolute strong approximation
assumption) for any connected reductive k-group G (i. e. without assuming that G is a
reductive A-group scheme).

4) In the case of number fields k, [Dem1, Théoreme 4.7] (or [Dem2, Théoreme 3.9.7]), De-
marche gave another proof of Theorem 4.1 by using his results on strong approximation in
homogeneous spaces defined over k.
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