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Abstract

In this paper, we present a complete list of rigid spherical CR hypersurfaces in C?. The
construction is based on a renormalization of Stanton’s family of rigid spheres.
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1 Introduction
The class of real hypersurfaces in complex space that are invariant with respect to an
infinitesimal translation transversal to the complex tangent space is known as rigid hyper-
surfaces (see [1]). In this article, we consider rigid hypersurfaces in C? with coordinates
z,w = u + iv. In this case, a rigid hypersurface can be locally described by an equation of
the form v = h(z).

In 1991, Stanton [8] developed a normal form for rigid hypersurfaces. Other normal
forms that reflect the presence of symmetries have been constructed by Kolaf [5] and
Ezhov et al. [2] more recently.

It is a natural question how to recognise hypersurfaces that are holomorphically equiv-
alent to the model hypersurface, i.e. the sphere v = |z|2, via its normal form. As an
application of the normal form, Stanton derived a list of examples of normal forms
equivalent to the sphere:

1
— sinh 2rv = |z)? )
2r
1 21b 29 z 26726]/ b g
— sin2rv (1 2 |2 ) = < - % (7" = cos2rv) +
o lc| 1+4|b|2|z|2 +2i (bé—bz) lc]
+_L_(e—29v_62irv) L._(e—ZQV_e—Zirv) ,(2)
e(1—2ibz) c(1+2ibz)

where b and ¢ = r + i0 are complex parameters. The remaining examples from Stanton’s
list can be obtained by letting  and 6 converge to 0. In particular, for b = 0 and § = 0,
one finds the pendant to (1)
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Stanton has raised the question whether this list was complete. Her method was based
on the analysis of the holomorphic mappings that transform the infinitesimal translation
d/dw into a vector field of a seven-parameter family of infinitesimal sphere automor-
phisms. She acknowledged that the listed examples correspond to a four-parameter
subfamily.

The main aim of this paper is to provide a complete classification of spherical rigid
hypersurfaces. Combined with Stanton’s results, this also answers Rothschild’s question
which rigid hypersurfaces are equivalent to a hypersurface that is given by an equation:

v=p(z2)

where p is a homogeneous polynomial (see [8]). Stanton has solved this problem for
polynomials of degree bigger than two. Our result completes the case of degree 2.

The following argument gives the upper bound 4 for the number of parameters
involved: In the Levi non-degenerate case, which applies for spherical rigid hypersur-
faces, Stanton’s normal form is similar to Chern-Moser’s normal form, except for the
terms of the defining function ¢ of bidegrees (2,2), (2,3), (3,2) and (3,3) with respect to z, z
being allowed to be any constants. These four real constants completely control the rigid
hypersurface. Thus, the normal form equation becomes:

v =z + coalz* + 023227 + c522°7% + c3302l° + Z ijZ’Ek-

min(j,k)>2
max(j,k)>4

The coefficients cy3, c23 = ¢32 and ¢33 depend in an algebraic way on Stanton’s param-
eters b and c. It can be shown that not all coefficients can be attained in this way, which
indicates that Stanton’s list is incomplete. In the case when ¢33 = 0, Stanton’s example
reduces to:

1 sin 2rv = e 2|z,
2r
which realises only the coefficients ¢33 > %C%Q. The coefficients ¢33 < %C%Z are realised by
the family:
1 Gnhor = e 2|22, 3)
2r
which for & = 0 coincides with (1) but was absent in Stanton’s list for 6 # 0.

We show that Stanton’s mappings of a rigid sphere to the Heisenberg sphere can be
modified by combining them with suitable sphere automorphisms so that all parameters
can be covered.

This yields not only the desired classification but also provides the complete solu-
tion to a non-linear partial differential equation (PDE) that expresses the zero-curvature
equation of a rigid hypersurface M in normal form:

v = h(z).

It is well known that local sphericity is equivalent to vanishing of the Cartan curvature
(see, e.g.[3]). For rigid hypersurfaces the zero-curvature equation simplifies to

faz = 3faf +2Lf —ffi=0 (4)

where f(z) = % log Ah(z). Loboda has derived and studied PDE (4) in [6]. In particular
he found the solution (3). The PDE (4) appears in relation to the study of shear-free con-
gruences of null geodesics in a Lorentzian geometry by Robinson and Wilson in [7]. In
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particular, they establish a correspondence between the Taub-NUT congruence and a CR
manifold that is equivalent to our CR manifold sinh v = e™"|z|%.

2 Modified normalisation
We apply a modified Chern-Moser normalisation procedure to the Heisenberg sphere
Im wy = |2z3|? to obtain a hypersurface of the form:

v = |z|® + colz* + €232°2% + 3027 + ¢33020 + - -

For given cag, ¢23, ¢33, such normalisation mapping is uniquely determined up to auto-
morphisms of the Heisenberg sphere. All rigid spheres can be found by this procedure,
though the resulting hypersurface does not have to be rigid in the higher-order terms a
priori. We construct the inverse mapping as a composition of two:

o0
. j 21
= 20y Tiw))Z, = _
2 = pw) +21 + 1]; oz = pon) + s
o .
j 2ip(w1)z1
= 2i (w7, = —_
w2 qwi) + 1;&(”’1) 1 qw1) + 1 —2ip/(wy)z1
Here, we assume:
q =1+2ip'p. (5)

Condition (5) is imposed for convenience in computation and can be fixed at the next
step.
The second mapping has the form:

z = 2 i (wizn
w = h(wy).

Then, p, a, & satisfy the equations:

6|p'1> 4+ 22" — el =0 (6)
_nge—ia(h/)B/Q _ 2]9” + 4'i|]9/|2[9/ — (7)

1 W2 3c2, — 2 L2 .,
= (2h), + R SR 2 S (P ) =0 @)

with initial conditions p(0) = 0, #(0) = 0, 4#'(0) > 0. Using combinations with automor-
phisms of the Heisenberg sphere we may assume that «(0) = 0, #'(0) = 1, p'(0) = 0,
K’ (0) = 0. It follows that, for given ¢33, ¢23, ¢33, system (6)-(8) has unique solutions «, p, h.

Though it is easy to successively compute the coefficients of the power series of «, p, h
from recursive formulae, we have not succeeded in solving this system of ODE, except for

9,2
2 9c5, — 6c33U
h(u) = arctan 5
\/ 9652 — 6c33

o) = %h(u).

c23 = 0. In this case, p = 0 and:

3 Stanton’s mapping
Rigid surfaces can be characterised by the presence of a translation symmetry transversal
to the complex tangent spaces. In suitable local coordinates, such symmetry is generated
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as the flow of the vector field %. Stanton constructed holomorphic mappings in the ambi-
ent space that pull a suitable infinitesimal automorphism X of the Heisenberg sphere back
to %. The relevant infinitesimal automorphisms of the Heisenberg sphere are well-known
and form a seven-parametric family consisting of:

X =2Re ((b + cz+ aw + 2iaz> + paw) % + (1 4 2ibz + 2rw + 2iazw + pr) ;;/)

where b,a € Candc=r+1i0 € C*and p € R.
The resulting system is:

0Z o
T b+cZ+aW +2iaZ” + pZW
w
aw .7 .- 2
T =142ibZ+2rW +2iaZW + pW 9)
w
with initial conditions Z(z,0) = 1—;@/ W (z,0) = 0. Stanton solved this system in the
particular case a = p = 0, that is when (9) is linear. The solutions are:
b cw
Z="e" -1+
c 1—2ibz
2i|b)?\ ¥ —1  2ib z b
W:(l— 1||>e+_1<_+)<e2rw—ecw). (10)
c 2r ¢ \1-2ibz ¢

Substituting this mapping into the sphere equation, v = |z|? yields (2). We show that
not all values of the parameters cyy, c23, ¢33 can be realised by these mappings. Direct
computation shows that the explicit sixth-order expansion of (2) is:

v=lz|? + (61b]* — 260) |z|* + (2¢ + 4i[b|?) b22Z> + (2¢ — 4i|b*) b2*Z* +
2 112
+ <3r2 + 662 + 56|b|* — 3(9|19|2) lz®+ - (11)

Hence, the parameters take the form:

oo = 6|b|> — 20 (12)

3 = 2(r—i0)b +4ib|b? (13)
2 112

33 = grz + 602 +56|b|* — ?9|b|2. (14)

Stanton’s family realises all those c22,c23,¢33 for which the system of algebraic
equations (12)-(14) has a solution b € C, r, 6 € R. A method to solve this system is to first
express 6 using Equation (12) then express r? through c33 and |b|? using Equation (14)
and plug it into the absolute square of Equation (13). Solve the resulting cubic equation
on |b|? and finally find r, 8. However, the resulting values for |b|? or r* could turn out to
be negative.

Consider two examples: 1. Let ¢p3 = 0. Then, b = 0, and (14) becomes:

3 9
2 2
ro= §C33 - ECZZ.

By allowing 2 to become negative, the solution:

1
— sin2rv = e~ 20V |z|?
2r

turns into (1).
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2. For co3 = 0 and ¢p3 = 2, only ¢33 > —2 is feasible. Indeed, from Equation (12), we get
6 = 3|b|%. Then, (13) is equivalent to:

1
5=T- i|b)%.
This implies:
1
2 4
bld =
r* 4+ |b| PE
and hence:
1
2 4
= — —|b|*.
B ||

This is only possible if |»| < 1. Now (14) becomes:

21

8
=3%p " g|b|4 > 2.

€33

Finally, we point out that Stanton’s mapping can be interpreted as modified normalisa-
tion with:

—0
a(u) = glog(l + 2ru)
1
h(u) = — log(1 + 2ru)
2r
b/
po) = = (eF e ),
c

Notice that the initial conditions are p'(0) = b and 4" (0) = —2r.
On the other hand, the proposition below shows that the solutions of (9) with different
vector fields X yield the missing rigid spheres.

Proposition 1. For any set of parameters ¢, ca3, €33, there exists a rigid sphere. It can
be realised by the solutions Z(z, w), W (z, w) of (9) with parameters ¢ = i0,a, p and Rec =

b = 0, where:

c
g = 22

2

€23
a=——

2

3 9,
p = —§C33+EC22

and initial conditions Z(z,0) = z, W(z,0) = 0.

Proof. For any choice of parameters cyg, 23, ¢33, we find the corresponding parameters
0,a, p and hence the infinitesimal sphere automorphism X. According to the Picard-
Lindelof theorem, the system (9) has a unique solution with initial conditions Z(z,0) = z,
W (z,0) = 0.

Direct computations with jets show that:

2 2

aw -6 iba
Z(z,w) = 2+ 102w+ - + 2iaztw + pTZWZ a5

W

3
w
Wz, w) = w+i€zzw2+%+...
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where the dots indicate terms of order higher than 3. Substituting these truncated
mappings into the sphere equation:

w-w =

21
yields:
2 4 2-3 ~ 322 2 2P 3
v =|z|* — 20|z|* — 2az°z> — 2az°Zz" + | 60 5 |z|7 4 - - -
where the dots indicate terms of bidegree (2,4) and (4,2) and higher order. O

It is an immediate consequence that the modified Chern-Moser normalisation of the
Heisenberg sphere from Section 2 yields indeed rigid hypersurfaces.

4 Twisting Stanton’s mapping

One way to produce solutions of (9) with non-trivial 4, p is to apply the adjoint action of
SU(2,1) on the coefficient matrix of the linear system in a suitable way. Geometrically,
this amounts to compose Stanton’s mapping with a sphere automorphism. The composi-
tion of Stanton’s mapping z; (z, w), wi (z, w) with parameters ¢ = r + i0, b and the sphere

automorphism:
zZ1 — le
zy = =
14 2ibz; + (r —i|b]?)w;
w1
Wy = =
14+ 2ibz; + (r —i|b|2)wy
is:
Py Py
22 =—= Wy = —
Q Q
with:

Py = (a+4(0 — ¢)p2)

coshrw — el 4 jgsinhrw _ sinhrw 50
oy + | —2i¢ +e z

r
P 206 —a )Coshrw—eww%—iew sinh rw
2= az r2 492 r
_ _cosh rw—eieW—HGM ) _ _sinhrw
Q=2 —0)(¢p —az) + i(¢p — 2az) +coshrw (15)
(r2 +02) r
where a = —b(r —i6 + 2i|b|*) and ¢ = |b|%.
Notice that the Taylor series of:
. inh
coshrw — el +i6 S
has coefficients ag = a1 =0 :
4 _ 19(7'2” _ (_1)}492}1) - ,,,2}1 _ (_1)}462}’1
il e o (2n)!

for n > 1 and therefore is divisible by r? 4+ 62. Clearly, sinh rw is divisible by r. There-
fore, P1, Py, Q are entire functions with respect to z,w,r, 6, a, ¢. Moreover, they are even
functions with respect to r.
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The vector field % is pulled back to:

_ a L
(itza + awy + 2iaz5 + pzaws) — + (1 + 2iazws + pw3) —,
822 3W2
where:

r=0—3p=—2 (16)

2
a= —b(r—ie+2i¢)=—%

2_ .2 3 G
o = —3¢° —r°+2¢0 = — 563 + 1622
We make formula (15) universal by allowing imaginary r and negative ¢.
Solving (16) for 0, b, r, we find:
0 =1+3¢
r* = —p+ QT +39)¢ (17)

Now ¢ can be determined from the equation:
|al> = 4¢° + 47¢” + (r* — p)¢. (18)

Notice that the cubic equation has real coefficients and therefore has at least one real
solution. Let ¢ be any real solution.

For 7 = 0, the solution ¢ can be given by the formula:

1 1

3 3

2 4 1= flapt = £
= a|l” +,/|al* — al® —/lal* — —
> | {14 =5 27

03

¢

Here, we take the principal branch of the cubic root on the right half-plane and the real
cubic root on the real axis. Notice that ¢ is a continuous real-valued function, though not
necessarily non-negative, and that ¢ = 0 for a = 0.

Theorem 1. Let:

Z( p =
Z: W; ﬂ, )OJ t; = —
Q

P,

W(z,w,a,p,t,p) = 6

where P1, Py, Q are as in (15) and 0 and r* are expressed as functions of T, p, ¢ by (17).

Then, Z, W satisfy the system (9) on the real algebraic set given by (18).
It follows that all rigid spheres can be found as inverse images of Im W = |Z|? under the
mappings Z, W with suitable parameters t, a, p, 0 and therefore have the form:

=20V _ cos 2rv +

r2 462

6 sin 2rv
r

sin 2rv _ _
(1+2¢z1%) T—e%wzﬁ — (¢ +az+az+49@ —0)zl*) =0.

Proof. Direct computation shows that the expressions:

0Z . o

— —itZ —aW — 2iaZ” — pZW
aw

ow L 9

— — 1 —-2iaZW — pW

ow

factorise with a factor 4¢> + 41¢2 + (t2 — p)¢p — |al® = 4¢° — 4092 + (6% + r1)¢ — |al>.

Page 7 of 10
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In fact:
aP 3
Qa—l - Pla—Q — aP,Q — 2iaP} + (r* + 3¢* — 20¢) P1P, — (0 — 3¢)P1Q =
w w
2 (4¢3 — 4092 + (0% + )¢ — |al?) (ei(’w — cosh(rw) — i@M)

X

r2 +62
[~ (2a(0 — ¢)2* + (0% — 60¢ + r* + 6¢%) z — a) (€ + cosh(rw))

+(2a (06 +17) 2 + 3¢ (6 =296 —r*) 2$+6a) Smhr(rW)]

and:
aP 9
Q&2 _ Pz—Q —Q*—2iaP1Py + (r* + 3¢> — 20¢) P; =
ow ow
2 (49> — 40¢% + (6> + r1)¢ — |al?) (eif’w — cosh(rw) — ieisi“hjfm)
X

r2 + 62
[2@2 — $)(€?" — cosh(rw)) — i (2a0z + 0% — 26 + 12 M}

Therefore, Z, W satisfy the system (9) on the real algebraic set (18).
Now the rigid sphere formula can be obtained either from Stanton’s formula (2) by
replacing r,0, b by their expressions in 7,4, p,0 or by inserting Z, W into the standard

Heisenberg sphere equation. O

Notice that the Taylor series of e 29 _ cos2rv + @ has coefficients ag = a; = 0:
22n+19(r2n _ (_1)7102;4) 22n(r2n _ (_1)1’192}4)
A1 = @n+1)! = 2n)!
for n > 1 and therefore is divisible by 72 4-62. Clearly, sin 2rv is divisible by r. It follows that
the rigid sphere formula is an entire function with respect to all variables and parameters.
We find an example of a rigid sphere that is not in Stanton’s family by setting:

1=0, a=+2 p=6.

Then:
60 =-3, ¢=—1, r2=_3
and:
i 6V __ _ .
(1-21%) %jfv—e“lzﬁ(l —V2(z+2) +8l2l?) = COShzﬁg V3sinh2v3v_ o

5 The zero-curvature equation

Local equivalence of a real hypersurface M in C? to a sphere can be characterised by
vanishing of its Cartan curvature. In [3], an explicit expression of the Cartan curvature has
been computed. In the case of rigid hypersurfaces, this expression considerably simplifies.

If M is given by the equation:

v="h(2)
vanishing of the Cartan curvature is equivalent to the non-linear PDE:
ez = 3eaf +Uef* —fufe =0 (19)
o _ o

with f = a% log Ah. The condition that 4 is a real function translates into 5 = -.

Page 8 of 10
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Notice that the normal form conditions on / are encoded in the choice of the solution
of the auxiliary equation:

9
2 Jog Al =
5z 08 AN =1

together with the condition that f does not contain antiholomorphic terms.

Though we did not succeed in solving the zero-curvature equation directly, we can
demonstrate the special cases when M is circular, i.e. v = f(|z|?), or M is a tube, i.e.
v = h(x).

In the circular case:

v=h(z]*) = |zI* + azlel* + aslzl® + . ..
and the equation on g = log(th” + k') with t replacing |z|? is:
€ + 38" g (g +7") £ () + 2 (¢) 2 +2(¢) =
Formal power series solutions:
gty =ct+ 62t2 +...

are determined by ¢y, ¢2. They correspond to the surfaces:

sin av

sinh av
=ePz? and T—— = &Pz

a o
. c1 2¢ C% ) c% i
with 8 = 3, @ =/ -5 — 15 and @ = y/ 5* + 15 respectively.

The spherical tubes are well-known (see, for instance, [4]). They are never in rigid
normal form, and they are affinely equivalent to one of the following:

v=x?, v=¢", sinv=¢", & +e=1 (20)
This corresponds to the solutions for (19) listed below, respectively:

1
f=0, f:i, f =tanx, f= —tanhx

If follows:
1
h= ixz, h=¢% h=—logcosx, h=Ilogcoshx
which yields the tubes:

v=2x, v=¢*, e =cosx, e =coshx

which are affinely equivalent to the tubes (20).

Acknowledgements

The authors are grateful to Martin Kolaf for numerous useful discussions from which some of the ideas used in this article
arose. The research was supported by the Max-Planck-Institut fir Mathematik Bonn and the ARC Discovery grant
DP130103485.

Received: 6 June 2014 Accepted: 10 June 2014
Published: 3 June 2015

References

1. Baouendi, MS, Rothschild, LP, Treves, F: CR structures with group action and extendability of CR functions. Invent.
Math. 82(2), 359-396 (1985). issn: 0020-9910, doi: 10.1007/BF01388808,

2. Ezhov, V, Kolaf, M, Schmalz, G: Normal forms and symmetries of real hypersurfaces of finite type in C2. Indiana Univ.
Math. J. 62(1), 1-32 (2013)

3. Ezhov,V, Mclaughlin, B, Schmalz, G: From Cartan to Tanaka: getting real in the complex world. Notices Amer. Math.
Soc. 58(1), 20-27. issn: 0002-9920

4. lsaev, A: Spherical tube hypersurfacesLecture Notes in Mathematics, vol. 2020. Springer, Heidelberg (2011). pp.
Xii+220, isbn=978-3-642-19782-6, doi: 10.1007/978-3-642-19783-3,



Ezhov and Schmalz Complex Analysis and its Synergies 2015, 1:2 Page 10 of 10
http://www.casjournal.com/content/1/1/2

5. Koldf, M: Local equivalence of symmetric hypersurfaces in C2. Trans. Amer. Math. Soc. 362(6), 2833-2843 (2010).
issn: 0002-9947, doi: 10.1090/50002-9947-10-05058-0,

6. Loboda, AV: On the sphericity of rigid hypersurfaces in C2. Mat. Zametki. 62(3), 391-403 (1997). issn:0025-567X,
English translation in Math. Notes, 62(3-4), 329-338 (1998), issn:0001-4346, doi:10.1007/BF02360874

7. Robinson, |, Wilson, EP: The generalized Taub-NUT congruence in Minkowski space. Gen. Relativity Gravit. 25(3),
225-244(1993).issn: 0001-7701, doi: 10.1007/BF00756258

8. Stanton, NK: A normal form for rigid hypersurfaces in C2. Amer. J. Math. 113(5), 877-910 (1991). issn: 0002-9327, doi:
10.2307/2374789

doi:10.1186/2197-120X-1-2
Cite this article as: Fzhov and Schmalz: Explicit description of spherical rigid hypersurfaces in C2. Complex Analysis
and its Synergies 2015 1:2.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Immediate publication on acceptance

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Abstract
	Mathematics Subject Classification
	Keywords

	1 Introduction
	2 Modified normalisation
	3 Stanton's mapping
	4 Twisting Stanton's mapping
	5 The zero-curvature equation
	Acknowledgements
	References

