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Vertex operators, Weyl determinant formulae and

Littlewood duality

Naihuan Jing and Benzhi Nie

Abstract. Vertex operator realizations of symplectic and orthogonal Schur functions

are studied and expanded. New proofs of determinant identities of irreducible characters

for the symplectic and orthogonal groups are given. We also give a new proof of the

duality between the universal orthogonal and symplectic Schur functions using vertex

operators.

1. Introduction

Symmetric functions (cf. [14]) were used by Hermann Weyl to determine irreducible

characters of highest weight representations of the classical groups [17] as consequence of

the Cauchy identities. Later Dudley Littlewood [13] upgraded the approach of symmetric

functions and studied the symplectic and orthogonal Schur functions in the same setting

as the Schur symmetric functions, and showed that in respective categories O, the restric-

tion functor ResGL2n

Sp
2n

has the same decomposition (up to duality) as that of ResGL2n

SO2n

or Res
GL2n+1

SO2n+1

, which in turn would imply that symplectic Schur functions are equal to

orthogonal Schur functions with the conjugate Young diagrams.

Vertex operator realization of Schur symmetric functions, though relatively young,

was started in the early days of its appearance in representations of affine Lie algebras

(cf. [18], see also [7]). Historically the Kyoto school’s fermionic formulation (cf [2] for a

beautiful survey) had also used Schur functions in a remarkable way to understand the

KP and KdV hiearachies earlier than the bosonic consideration. The aim of this paper is

to understand both the Weyl determinant formulae and the Littlewood duality from the
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vertex operator viewpoint, and also explain why many properties of Schur functions are

shared by symplectic and orthogonal Schur functions.

In the classic paper [11] the symplectic and orthogonal Schur functions have been

systematically studied by Koike and Terada following Weyl [17], where they obtained

determinant formulae in terms of elementary symmetric functions (see also [10]). Parallel

to their approach we will define certain vertex operators to realize the Schur symplectic

and orthogonal symmetric functions inside the ring Λ of symmetric functions. The vertex

operators we constructed are closely related to Baker’s vertex operators [1] who used

certain middle terms (similar to [7]), but they are not necessary for our purpose (see

[7, 9]). We then compute directly that the symplectic and orthogonal Schur functions

can be realized by vertex operators within Λ. Due to Clifford type relations satisfied by

two basis generators we show that they are actually the same up to a sign, from this we

then obtain a new proof for Littlewood’s duality between symplectic and orthogonal Schur

functions. Finally eight determinant formulae are easily derived for both symplectic and

orthogonal Schur functions (see Theorem 4.6).

We remark that some of the vertex operators were studied by Shimozono and Zabrocki

[16] who constructed symplectic and orthogonal Schur functions in the language of λ-rings.

Their paper has paved the way to understand these important symmetric functions bet-

ter and also contained some determinant formulae for the irreducible characters. In our

current approach we will emphasize the role of *-operators which can lead to several gen-

eralized formulae, e.g. Eqs. (4.12, 4.13, 4.18, 4.19). In [5] determinant identities for

symplectic and orthogonal symmetric polynomials are discussed from matrix considera-

tion, so vertex operator or λ-ring approach can be viewed as another way to prove these

determinant formulae (and more identities) for infinitely many variables.

2. Ring of symmetric functions

Let Λ = ΛQ be the ring of symmetric functions in countably many variables

x1, x2, · · · over the field Q of rational numbers. The degree of homogeneous symmetric

functions give rise to a natural gradation for ΛQ:

(2.1) ΛQ =
⊕

k≥0

Λk
Q,

where Λk
Q consists of the homogeneous symmetric functions of degree k.
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We recall some basic notations following [14]. A partition is any sequence λ =

(λ1, λ2, · · · , λr, · · · ) of non-negative integers in decreasing order : λ1 ≥ λ2 ≥ · · · ≥ λr ≥ · · ·

with only finitely many non-zero terms. The non-zero λi are called the parts of λ. The

number of the parts is the length of λ, denoted by l(λ); and the summation of the parts is

the weight of λ, denoted by |λ| : |λ| = λ1 + λ2 + · · · . The partition λ can be visualized by

its Ferrers diagram or Young diagram formed by aligning l rows of boxes such that there

are exactly λi boxes on the ith row. If one reflects the Ferrers diagram along the main

diagonal (the −45◦-axis) , the associated partition is called the conjugate λ′ of λ. The

Frobenius notation λ = (α|β) = (α1 · · ·αr|β1 · · · βr) of the Ferrers diagram describes the

partition by αi = λi − i, βi = λ′
i − i, where r is the length of the main diagonal of λ.

If the parts λi are not necessarily in descending order, λ is called a composition and

we also use the same notation |λ| for its weight. If |λ| = n, we say that λ is a partition

of n. We also use the other notation : λ = (1m12m2 · · · rmr · · · ) to mean that exactly mi

of the parts of λ are equal to i. The set of partitions will be denoted by P.

The ring ΛQ has several families of linear bases indexed by partitions. The well-known

ones are the monomial functions {mλ}, the complete homogeneous symmetric functions

hλ, the elementary symmetric function functions {eλ} and the power sum symmetric

functions {pλ}. They are respectively determined by their finite counterparts:

(i) mλ(x1, · · · , xn) = xλ + distinct permutations of xλ;

(ii) hk(x1, · · · , xn) =
∑

i1≤···≤ik
xi1 · · · xik , and hλ = hλ1

· · · hλl
;

(ii) ek(x1, · · · , xn) =
∑

i1<···<ik
xi1 · · · xik , and eλ = eλ1

· · · eλl
;

(iii) pk(x1, · · · , xn) =
n
∑

i=1
xki , and pλ = pλ1

· · · pλl
.

The first three bases are in fact Z-bases, and the power-sum basis pλ is over Q. The

standard inner product in ΛQ is defined by requiring that the power sum symmetric

functions are orthogonal:

(2.2) < pλ, pµ >= zλδλµ,

where zλ =
∏

i
imimi! for λ = (1m12m2 · · · ). Under this inner product the Schur sym-

metric functions are othornormal and are triangular linear combination of the complete

homogeneous symmetric functions. For each partition λ, the Schur function is defined by

(2.3) sλ(x1, · · · , xn) =

∑

σ∈Sn
sgn(σ)xσ(λ+δ)

∏

i<j(xi − xj)
,
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where δ = (n− 1, n − 2, · · · , 1, 0).

Both hn and en are special Schur functions. In fact,

(2.4) hn = s(n), en = s(1n).

Their generating functions are expressed in terms of the power-sum pn:

∑

n≥0

hnz
n = exp(

∞
∑

n=1

pn

n
zn),(2.5)

∑

n≥0

enz
n = exp(−

∞
∑

n=1

pn

n
(−z)n).(2.6)

The Jacobi-Trudi formula [14] expresses the Schur functions in terms of hn or en:

(2.7) sλ = det(hλi−i+j) = det(eλ′

i−i+j),

where λ′ is the conjugate of λ.

We also define an involution ω: Λ → Λ by ω(pn) = (−1)n−1pn. Then it follows that

ω(hn) = en. Subsequently we have

(2.8) ω(sλ) = sλ′ .

3. Vertex operators and symmetric functions

In this section, we define certain vertex operators to realize the Schur symplectic and

orthogonal functions inside Λ. These symmetric functions are studied by Baker [1] using

vertex operators with middle terms, which are not necessary for our purpose (see [7, 9]).

Our approach is based on [7, 9], which enables us to prove the duality between symplectic

and orthogonal Schur functions directly.

First we turn the ring ΛQ into a Fock space for the infinite dimensional Heisenberg

algebra. In fact let a−n = pn for n ≥ 1, the multiplication operator on Λ, and an =

n ∂
∂pn

, where pn(x) =
∞
∑

i=1
xni is the power sum symmetric function. Then {an|n 6= 0} and

c = I generate the infinite dimensional Heisenberg algebra H inside End(Λ):

(3.1) [am, an] = mδm,−nc, [c, an] = 0.

The space Λ is then the unique irreducible representation of H such that an.1 = 0 for

n > 0 and c = 1. The natural hermitian structure on Λ is given by a∗n = a−n. The
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monomial basis a−λ = pλ is orthogonal and

(3.2) < a−λ, a−µ >= zλδλµ.

First we recall the vertex operator construction of Schur symmetric functions. Let

S(z) and S∗(z) be the Bernstein vertex operators: Λ → Λ[[z, z−1]] defined by

S(z) = exp
(

∞
∑

n=1

a−n

n
zn

)

exp
(

−
∞
∑

n=1

an

n
z−n

)

(3.3)

= exp
(

∞
∑

n=1

pn

n
zn

)

exp
(

−

∞
∑

n=1

∂

∂pn
z−n

)

=
∑

n∈Z

Snz
−n,

S∗(z) = exp
(

−

∞
∑

n=1

a−n

n
zn

)

exp
(

∞
∑

n=1

an

n
z−n

)

(3.4)

= exp
(

−

∞
∑

n=1

pn

n
zn

)

exp
(

∞
∑

n=1

∂

∂pn
z−n

)

=
∑

n∈Z

S∗
nz

n.

In the following result the first realization of Schur functions by S(z) was given by

Bernstein [18]. The second realization using the dual operators was first proved in [7] and

the last realization (3.10) is special case proved in [9].

Proposition 3.1. ([9], Th. 2.7) The operator product expansions are given by

S(z)S(w) =: S(z)S(w) : (1− wz−1),(3.5)

S∗(z)S∗(w) =: S∗(z)S∗(w) : (1− wz−1),(3.6)

S(z)S∗(w) =: S(z)S∗(w) : (1− wz−1)−1,(3.7)

where |w| < min{|z|, |z|−1}, and the last rational functions are understood as power series

expansions in the second variable w. Moreover for any partition λ, the following give four

realizations of Schur functions

sλ = S−λ1
· · ·S−λl

.1 = (−1)|λ|S∗
λ′

1
· · · S∗

λ′

k
.1,(3.8)

s(α|β) = (−1)|β|+r(r−1)/2S−α1−1 · · ·S−αr−rS
∗
β1−(r−1)S

∗
β2−(r−2) · · ·S

∗
βr
.1,(3.9)

s(α|β) = (−1)|β|+rS∗
β1−1 · · ·S

∗
βr−rS−α1+(r−1) · · ·S−αr .1,(3.10)

where (α|β) is the Frobenius notation of a partition, i.e., αi ≥ αi−1+1 and βi ≥ βi−1+1.
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Note that S(z).1 = exp
(

∞
∑

n=1

a−n

n zn
)

, therefore S0.1 = 1, which means that S0 and

similarly S∗
0 will not be needed in the realization.

We introduce the vertex operator for the symplectic Schur functions as follows.

Definition 3.2. Let Y (z) and Y ∗(z) be the vertex operators: Λ → Λ[[z, z−1]] defined

by

Y (z) = Y (a, z) = exp
(

∞
∑

n=1

a−n

n
zn

)

exp
(

−
∞
∑

n=1

an

n
(z−n + zn)

)

(3.11)

= exp
(

∞
∑

n=1

pn

n
zn

)

exp
(

−
∞
∑

n=1

∂

∂pn
(z−n + zn)

)

=
∑

n∈Z

Ynz
−n,

Y ∗(z) = (1− z2)exp
(

−

∞
∑

n=1

a−n

n
zn

)

exp
(

∞
∑

n=1

an

n
(z−n + zn)

)

= (1− z2)W ∗(z)(3.12)

= (1− z2)exp
(

−

∞
∑

n=1

pn

n
zn

)

exp
(

∞
∑

n=1

∂

∂pn
(z−n + zn)

)

=
∑

n∈Z

Y ∗
n z

n,

The operator Y (z) coincides with V (12)(z) in [3] and was also studied in [16] in λ-ring

language. We will emphasize the role of Y ∗(z) in our approach. Note that the intermediate

vertex operator W ∗(z) = Y (−a, z) is obtained from Y (a, z) by formally changing an to

−an. Below we will use W ∗(z) for the orthogonal Schur functions.

The operators Yn and Y ∗
n are well-defined operators on the Fock space Λ. If one

views the variable z as a complex number, then they are Fourier coefficients of the vertex

operators Y (z) and Y ∗(z). The operator Y ∗
n and the intermediate operator W ∗

n are related

by

Y ∗
n = W ∗

n −W ∗
n−2,(3.13)

W ∗
n = Y ∗

n + Y ∗
n−2 + Y ∗

n−4 + · · · ,(3.14)

where the second identity is viewed as a locally finite operator, i.e. it is well-defined on

any finite dimensional subspace of Λ.
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The normal order product is defined as usual. For example,

: Y (z)Y (w) : = exp
(

∞
∑

n=1

pn

n
zn +

∞
∑

n=1

pn

n
wn

)

· exp
(

−

∞
∑

n=1

n
∂

∂pn
(
zn + z−n

n
+

wn + w−n

n
)
)

.

Proposition 3.3. The operator product expansions are given by

Y (z)Y (w) =: Y (z)Y (w) : (1− wz−1)(1 − wz),(3.15)

Y ∗(z)Y ∗(w) =: W ∗(z)W ∗(w) : (1− z2)(1− w2)(1− wz−1)(1 − wz),(3.16)

Y (z)Y ∗(w) =: Y (z)W ∗(w) :
1− w2

(1− wz−1)(1 −wz)
,(3.17)

Y ∗(z)Y (w) =: Y ∗(z)W (w) :
1− z2

(1− wz−1)(1 −wz)
,(3.18)

where |w| < min{|z|, |z|−1}, and the rational functions appeared on the right are under-

stood as power series expansions in the second variable w.

Theorem 3.4. The operators Yn and Y ∗
n satisfy the following generalized Clifford

algebra relations:

YmYn + Yn+1Ym−1 = 0,

Y ∗
mY ∗

n + Y ∗
n−1Y

∗
m+1 = 0,

YmY ∗
n + Y ∗

n+1Ym+1 = δm,n.

Proof. It follows from (3.15) that

zY (z)Y (w) + wY (w)Y (z)

=: Y (z)Y (w) : {(z − w)(1 − zw) + (w − z)(1 − wz)} = 0.
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Taking coefficients one proves the first two relations. Similarly we derive the following

relation by using (3.17-3.18).

z−1Y (z)Y ∗(w) + w−1Y ∗(w)Y (z)

=: Y (z)W ∗(w) :
1− w2

1− zw
{(z − w)−1 + (w − z)−1}

=: Y (z)W ∗(w) :
1− w2

1− zw
z−1δ(

w

z
)

= z−1δ(
w

z
)

�

Besides the operator W ∗(z), we also introduce the following vertex operators for the

orthogonal Schur functions.

Definition 3.5. The vertex operator W (z) is defined as the vertex operators from Λ

to Λ[[z, z−1]] given by

W (z) = (1− z2)exp
(

∞
∑

n=1

pn

n
zn

)

exp
(

−
∞
∑

n=1

∂

∂pn
(z−n + zn)

)

= (1− z2)Y (z)(3.19)

=
∑

n∈Z

Wnz
−n.

We remark that the operator W (z) was denoted as V (2)(z) in [3].

Proposition 3.6. The operators Wn and W ∗
n satisfy the following generalized Clifford

algebra relations:

WmWn +Wn+1Wm−1 = 0,

W ∗
mW ∗

n +W ∗
n−1W

∗
m+1 = 0,

WmW ∗
n +W ∗

n+1Wm+1 = δm,n.

Moreover, the orthogonal and symplectic vertex operators are related by:

Wn = Yn − Yn−2, Y ∗
n = W ∗

n −W ∗
n+2,

Yn = Wn +Wn−2 + · · · , W ∗
n = Y ∗

n + Y ∗
n+2 + · · · .

In other words, the operators Wn and W ∗
n satisfy the same relations as Yn and Y ∗

n do

in Theorem 3.4. The following result explains why we introduce Y ∗(z) even though it is

not the dual operator of Y (z).
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Theorem 3.7. For any partition λ = (λ1, · · · , λl) and its conjugate partition λ′ =

(λ′
1, · · · , λ

′
k) one has that

Y−λ1
· · ·Y−λl

.1 = (−1)|λ|Y ∗
λ′

1
· · ·Y ∗

λ′

k
.1,(3.20)

W−λ1
· · ·W−λl

.1 = (−1)|λ|W ∗
λ′

1
· · ·W ∗

λ′

k
.1.(3.21)

Both are Z-bases in Λ.

Proof. The two identities are proved exactly the same, so we only treat the first

one. First of all, it is clear that {Y−λ1
· · ·Y−λl

.1} and {Y ∗
λ′

1

· · ·Y ∗
λ′

k
.1} are bases of Λ. We

now show that the respective inner products of Y (z)′s and Y ∗(z)′s with the Schur basis

constructed in Proposition 3.1 are equal. To simplify computation we use the exponential

operator exp(
∑∞

n=1
a2
−n−a−2n

2n wn) to relate Y (z) and S(z). In fact, for any two vectors

u, v ∈ Λ we have

< Y ∗(z)u, exp(

∞
∑

n=1

a2−n − a−2n

2n
wn)v >

=< exp(

∞
∑

n=1

a2n − a2n

2n
wn)Y ∗(z)u, v >

=< (1− wz2)−1Y ∗(z)exp(−

∞
∑

n=1

an

n
(zw)n)exp(

∞
∑

n=1

a2n − a2n

2n
wn)u, v >

Notice that lim
w→1

(1− wz2)−1Y ∗(z)exp(−
∞
∑

n=1

an

n
(zw)n) = S∗(z). Subsequently one has for

any k, l

< Y ∗(z1) · · · Y
∗(zl).1, exp(

∞
∑

n=1

a2−n − a−2n

2n
)S(w1) · · · S(wk).1 >(3.22)

=< S∗(z1) · · · S
∗(zl).1, S(w1) · · · S(wk).1 >

Similar computation also gives that

< Y (z1) · · · Y (zl).1, exp(

∞
∑

n=1

a2−n − a−2n

2n
)S(w1) · · · S(wk).1 >(3.23)

=< S(z1) · · · S(zl).1, S(w1) · · ·S(wk).1 >
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By comparing coefficients of zλwν in Eqs. (3.22-3.23) and using Eq. (3.8) it follows that

for any two partitions λ and ν

< Y−λ1
· · · Y−λl

.1, S−ν1 · · ·S−νm.1 >

= (−1)|λ| < Y ∗
λ′

1
· · ·Y ∗

λ′

k
.1, S−ν1 · · ·S−νm .1 >,

Therefore Y−λ1
· · · Y−λl

.1 = (−1)|λ|Y ∗
λ′

1

· · ·Y ∗
λ′

k
.1. The proof also shows that the vectors

{Y−λ1
· · · Y−λl

.1} form a Z-basis of Λ. �

4. Determinant formulae and duality

For any partition λ = (λ1, λ2, · · · , λk) we define the symplectic and orthogonal Schur

functions (cf. [11]) respectively as follows.

spλ =
1

2
det(hλi−i+j + hλi−i−j+2)1≤i,j≤k,(4.1)

oλ = det(hλi−i+j − hλi−i−j)1≤i,j≤k.(4.2)

where hm is the mth complete symmetric function in Λ. Note that the factor 1
2 does not

affect that both elements are in ΛZ. In fact,

(4.3) spλ = det

















hλ1
hλ1+1 + hλ1−1 · · · hλk+k−1 + hλ1−k+1

hλ2−1 hλ2
+ hλ2−2 · · · hλ2+k−2 + hλ2−k

...
...

. . .
...

hλk−k+1 hλk−k+2 + hλk−k · · · hλk
+ hλk−2k+2

















.

The orthogonal/symplectic Schur functions come fromWeyl characters for classical Lie

groups. In fact spλ(x1, x
−1
1 , · · · , xn, x

−1
n ) = 1

2det(hλi−i+j − hλi−i−j+2) is the character of

the irreducible Sp2n-module with weight λ. Here the complete homogeneous function hm

is defined by
n
∏

i=1

1
(1+xiz)(1+x−1

i z)
=

∞
∑

m=0
hmzm. In particular if V is the defining module of

Sp2n, then Sn(V ) is irreducible, but Λn(V )+Λn−2(V )+ · · · is the fundamental irreducible

representation.

Similarly for SO(2n+ 1) the character ch(V (λ) is also given by the orthogonal Schur

function, and the irreducible character of SO2n-module Res
O(2n)
SO(2n)V (λ) associated with

the highest weight λ = λ1ǫ1 + · · · + λnǫn is given by oλ(t1, t
−1
1 · · · , tn, t

−1
n ) = χλ + χσ(λ).

In both cases the Schur orthogonal symmetric function is defined by oλ(x1 · · · , xn) =

det(eλi−i−j − eλi−i+j) where the elementary symmetric functions em are given by (1 +
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z)
n
∏

i=1
(1 + xiz)(1 + x−1

i z) =
∞
∑

m=0
emzm or

n
∏

i=1
(1 + xiz)(1 + x−1

i z) =
∞
∑

m=0
emzm, respec-

tively for type B and D.

Before giving vertex operator realization of spλ and oλ, we need several Vandermonde

type identities.

Lemma 4.1. For any positive integer k, the following Vandermonde-like identities hold.

det(zk−j
i + z

k+j−2
i ) = 2

∏

1≤i<j≤k

(zi − zj)(1− zizj)(4.4)

=
∑

σ∈Sk ,ǫi=±1

sgn(σ)(z1 · · · zk)
k−1z

ǫ1(σ(1)−1)
1 · · · z

ǫk(σ(k)−1)
k

det(zk−j
i − z

k+j
i ) =

∏

1≤i<j≤k

(zi − zj)
∏

1≤i≤j≤k

(1− zizj)(4.5)

=
∑

σ∈Sk ,ǫi=±1

sgn(σ)ǫ1 · · · ǫkz
k−ǫ1σ(1)
1 · · · z

k−ǫkσ(k)
k

det(zj−1
i − z

2k−j+1
i ) =

∏

1≤i<j≤k

(zj − zi)
∏

1≤i≤j≤k

(1− zizj)(4.6)

=
∑

σ∈Sk ,ǫi=±1

sgn(σ)ǫ1 · · · ǫk(z1 · · · zk)
kz

ǫ1(−k+σ(1)−1)
1 · · · z

ǫk(−k+σ(k)−1)
k .

Proof. These formulae are special cases of Weyl’s denominator formulae [17]. We

include a proof for completeness. The Weyl denominator formula of type D [17] says that

(in reversing order of columns):

(4.7)
∑

σ∈Sk,ǫi=±1

sgn(σ)z
ǫ1(σ(1)−1)
1 · · · z

ǫk(σ(k)−1)
k = 2(z1 · · · zk)

1−k
∏

1≤i<j≤k

(zi−zj)(1−zizj).

By the anti-symmetry of the summation side, one sees that the left-hand side is equal

to det(zj−1
i + z

−j+1
i ). Note that

det(zj−1
i + z

−j+1
i ) = 2|1, z + z−1, · · · , zk−1 + z1−k|

= 2z−1
2 z−2

3 · · · z1−k
k |1, 1 + z2, 1 + z4, · · · , 1 + z2k−2|

= 2(z1 · · · zk)
1−k|zk−1, zk−2 + zk, · · · , 1 + z2k−2|

= (z1 · · · zk)
1−kdet(zk−j

i + z
k+j−2
i ),

where we have displayed a typical row in the determinant computation.
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Similarly one form of Weyl denominator formula of type C [17] says that

det(z−j
i − z

j
i ) = (z1 · · · zk)

−k
∏

1≤i<j≤k

(zi − zj)
∏

1≤i≤j≤k

(1− zizj)

=
∑

σ∈Sk ,ǫi=±1

sgn(σ)ǫ1 · · · ǫkz
−ǫ1σ(1)
1 · · · z

−ǫkσ(k)
k .

The left-hand side can be easily changed to our current form:

det(z−j
i − z

j
i ) = |z−1 − z, z−2 − z2, · · · , z−k − zk|

= (z1 · · · zk)
−k|zk−1 − zk+1, zk−2 − zk+2, · · · , 1− z2k|

= det(zk−j
i − z

k+j
i ).

Finally the last identity is obtained from Eq. (4.5) by reversing the order of columns. �

We remark that one can also prove Lemma 4.1 exclusively based on the Vandermonde

identities, which will make our later derivation of Weyl formulae independent from Weyl

denominator formulae. Now we are ready for vertex operator realization of symplectic

Schur functions.

Theorem 4.2. For any partition λ = (λ1, · · · , λk) we have

(4.8) Y−λ1
Y−λ2

· · ·Y−λk
.1 = spλ =

1

2
det(hλi−i+j + hλi−i−j+2).

Proof. First of all, we recall Eq. (2.5)

H(z) = exp
(

∞
∑

n=1

a−n
zn

n

)

=

∞
∑

n=0

hnz
n.

where hn is the complete symmetric function.

By the standard normal order product and Wick’s theorem [4] it follows that

(4.9) Y (z1)Y (z2) · · · Y (zk).1 =
∏

i<j

(1−
zj

zi
)(1 − zizj)H(z1) · · ·H(zk),

where 1 > |z1| > · · · > |zk|.

Let C1, C2, · · · , Ck be concentric circles with decreasing radii < 1, and take z1, · · · , zk

as complex numbers. Then

Y−λ1
Y−λ2

· · ·Y−λk
.1

=
1

(2πi)k

∫

C1

· · ·

∫

Ck

∏

1≤i<j≤k

(1−
zj

zi
)(1− zizj)H(z1) · · ·H(zk)

dz

zλ+ι
,
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where we denote zλ = zλ1

1 · · · zλk

k for any composition λ = (λ1, · · · , λk), ι = (1, · · · , 1) is

of length k, and dz = dz1 · · · zk.

Recall the Vandermonde type identity (4.4):

1

2
det(zk−j

i + z
k+j−2
i ) =

∏

1≤i<j≤k

(1− zizj)
∏

1≤i<j≤k

(zi − zj)

=(z1 · · · zk)
k−1 1

2

∑

σ∈Sk ,ǫi=±1

sgn(σ)z
ǫ1(σ(1)−1)
1 · · · z

ǫk(σ(k)−1)
k .

We obtain that Y−λ1
Y−λ2

· · ·Y−λk
.1 is equal to

1

(2πi)k

∫

C1···Ck

k
∏

i=1

exp
(

∞
∑

n=1

a−n

n
zni

)

∏

1≤i<j≤k

(1−
zj

zi
)(1− zizj)

dz

zλ+ι

=
∑

n1≥0···nk≥0

1

(2πi)k

∫

C1···Ck

hn1
· · · hnk

zn1

1 · · · znk

k

∏

1≤i<j≤k

(zi − zj)(1− zizj)
dzk · · · dz1

zλ1+k
1 · · · zλk+1

k

=
∑

n1≥0···nk≥0

1

(2πi)k

∫

C1···Ck

hn1
· · · hnk

dzk · · · dz1
zk · · · z1

1

2

∑

σ∈Sk ,ǫ1,··· ,ǫk=±1

sgn(σ)z
ǫ1(σ(1)−1)−λ1+n1

1 z
ǫ2(σ(2)−1)−λ2+1+n2

2 · · · z
ǫk(σ(k)−1)−λk+k−1+nk

k

=
1

2

∑

σ∈Sk ,ǫi=±1

ǫ1 · · · ǫksgn(σ)hλ1+ǫ1(σ(1)−1)hλ2−1+ǫ2(σ(2)−1) · · · hλk−k+1+ǫk(σ(k)−1)

=
1

2
det(hλi−i+j + hλi−i−j+2)

�

Similarly for the vertex operator Y ∗(z) we have the following determinant expression.

We also remark that the formulae involving Frobenius notation seem to be new, see Eqs.

(4.12), (4.13), (4.18) and (4.19).

Theorem 4.3. For partition λ = (λ1, · · · , λk) we have

(4.10) Y ∗
λ1
Y ∗
λ2

· · ·Y ∗
λk
.1 = (−1)|λ|det(eλi−i+j − eλi−i−j).

Therefore for any partition λ and its conjugate λ′ one has that

(4.11) spλ =
1

2
det(hλi−i+j + hλi−i−j+2) = det(eλ′

i−i+j − eλ′

i−i−j).



14 NAIHUAN JING AND BENZHI NIE

Moreover one has for any partition (α|β) in Frobenius notation

sp(α|β) = (−1)|β|+r(r−1)/2Y−α1−1 · · ·Y−αr−rY
∗
β1−(r−1)Y

∗
β2−(r−2) · · ·Y

∗
βr
.1,(4.12)

sp(α|β) = (−1)|β|+rY ∗
β1−1 · · ·Y

∗
βr−rY−α1+(r−1) · · ·Y−αr .1.(4.13)

Proof. Let C1, C2, · · · , Ck be as above, then invoking (4.5) we get that

Y ∗
λ1
Y ∗
λ2

· · ·Y ∗
λk
.1

=
1

(2πi)k

∫

Ck···C1

k
∏

i=1

exp
(

−

∞
∑

n=1

a−n

n
zni

)

∏

1≤i<j≤k

(1−
zj

zi
)

∏

1≤i≤j≤k

(1− zizj)
dz

zλ+1

=
∑

n1≥0···nk≥0

(−1)|n|

(2πi)k

∫

Ck···C1

en1
· · · enk

zn
∏

1≤i<j≤k

(zi − zj)
∏

i≤j

(1− zizj)
dz

zλ+1

=
∑

n1≥0···nk≥0

(−1)|n|

(2πi)k

∫

Ck···C1

en1
· · · enk

dzk · · · dz1
zk · · · z1

∑

σ∈Sk,ǫ1,··· ,ǫk=±1

ǫ1 · · · ǫksgn(σ)z
1−ǫ1σ(1)−λ1+n1

1 · · · z
k−ǫkσ(k)−λk+nk

k

=
∑

σ∈Sk ,ǫ1,··· ,ǫk=±1

(−1)|λ|ǫ1 · · · ǫksgn(σ)eλ1+ǫ1σ(1)−1eλ2+ǫ2σ(2)−2 · · · eλk+ǫkσ(k)−k

=(−1)|λ|det(eλi−i+j − eλi−i−j),

where zn = zn1

1 · · · znk

k . This completes the proof of (4.10), and the identity (4.11) then

follows as a consequence of Theorem 3.7.

The formulae (4.12) and (4.12) in Frobenius notation are consequences of Theorem 3.7

and Theorem 4.2. In fact (4.12) is derived by first rewriting Y ∗
β1−(r−1)Y

∗
β2−(r−2) · · · Y

∗
βr
.1

back to (−1)|µ|Yµ.1 using Theorem 3.7 and then reapply Theorem 4.2, where µ is the

conjugate diagram of (β1 − (r − 1), β2 − (r − 2), · · · , βr). The second formula (4.13) is

proved similarly. �

We remark that Eq. (4.10) can also be proved by using the third Vandermonde-like

identity. In fact we can rewrite the identity as

(4.14) Y ∗
λ1
Y ∗
λ2

· · · Y ∗
λk
.1 = (−1)|λ|+k(k−1)/2det(eλi−i−j+k+1 − eλi−i+j−k−1).

This is the same determinant (4.10) by reversing the columns.

For the orthogonal case we have the following result for the vertex operators W (z)

and W ∗(z), which is shown in the same way as Theorem 4.2–4.3.
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Theorem 4.4. For partition λ = (λ1, · · · , λk) we have

W−λ1
W−λ2

· · ·W−λk
.1 = oλ = det(hλi−i+j − hλi−i−j),(4.15)

W ∗
λ1
W ∗

λ2
· · ·W ∗

λk
.1 =

(−1)|λ|

2
det(eλi−i+j + eλi−i−j+2).(4.16)

Therefore for any partition λ and its conjugate λ′ one has that

(4.17) oλ = det(hλi−i+j − hλi−i−j) =
1

2
det(eλ′

i−i+j + eλ′

i−i−j+2).

Moreover for any partition (α|β) in Frobenius notation one has that

o(α|β) = (−1)|β|+r(r−1)/2W−α1−1 · · ·W−αr−rW
∗
β1−(r−1)W

∗
β2−(r−2) · · ·W

∗
βr
.1,(4.18)

o(α|β) = (−1)|β|+rW ∗
β1−1 · · ·W

∗
βr−rW−α1+(r−1) · · ·W−αr .1.(4.19)

We can now prove the duality between symplectic Schur functions and orthogonal

Schur functions.

Theorem 4.5. Under the involution ω

(4.20) ω(spλ) = oλ′ .

Proof. Let spλ =
∑

µ dλµsµ. Then it follows from the matrix coefficients of vertex

operators:

dλµ =< Y−λ.1, S−µ.1 >= coeff. of zλwµ of < Y (z1) · · · Y (zk).1, S(w1) · · ·S(wl).1 >

= CTzλwµ

∏

1≤i<j≤l

(1−
wj

wi
)

∏

1≤i<j≤k

(1−
zj

zi
)(1− zizj)

<: Y (z1) · · · Y (zk) : .1, : S(w1) · · · S(wl) : .1 >

= CTzλwµ

∏

1≤i<j≤l

(1−
wj

wi
)

∏

1≤i<j≤k

(1−
zj

zi
)(1− zizj)

∏

1≤i≤l,1≤j≤k

(1− wizj)
−1,

where the last identity uses the fact that : Y (z1) · · · Y (zk) : .1 =: S(z1) · · · S(zk) : .1 and

Proposition 3.1. Similarly let oλ =
∑

µ d
′
λµsµ, then using Theorem 3.7 we have

d′λµ =< W ∗
λ′ .1, S∗

µ′ .1 >= CTzλ′wµ′ < W ∗(z1) · · ·W
∗(zk).1, S

∗(w1) · · · S
∗(wl).1 >

= CTzλ′wµ′

∏

1≤i<j≤l

(1−
wj

wi
)

∏

1≤i<j≤k

(1−
zj

zi
)(1 − zizj)

<: W ∗(z1) · · ·W
∗(zk) : .1, : S

∗(w1) · · ·S
∗(wl) : .1 >

= CTzλ′wµ′

∏

1≤i<j≤l

(1−
wi

wj
)

∏

1≤i<j≤k

(1−
zj

zi
)(1 − zizj)

∏

1≤i≤l,1≤j≤k

(1− wizj)
−1,
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where we note that : W ∗(z1) · · ·W
∗(zk) : .1 =: S∗(z1) · · ·S

∗(zk) : .1. Therefore d
′
λµ = dλ′µ′ .

Hence ω(spλ) = oµ′ due to ω(sλ) = sλ′ . �

If we introduce the symmetric function ĥn := hn−hn−2 and ên := en−en−2 for n ∈ N,

then

hn = ĥn + ĥn−2 + ĥn−4 + · · ·(4.21)

en = ên + ên−2 + ên−4 + · · ·(4.22)

Subsequently Λ = Z[h1, h2, · · · ] = Z[ĥ1, ĥ2, · · · ] = Z[e1, e2, · · · ] = Z[ê1, ê2, · · · ]. We also

introduce ȟn and ěn by

ȟn = hn + hn−2 + hn−4 + · · ·(4.23)

ěn = en + en−2 + en−4 + · · ·(4.24)

Theorem 4.6. In terms of the generators hn, en and the new generators ĥn, ên, ȟn

and ěn, we have that

spλ =
1

2
det(hλi−i+j + hλi−i−j+2) = det(ȟλi−i+j − ȟλi−i−j)(4.25)

= det(eλ′

i−i+j − eλ′

i−i−j) =
1

2
det(êλ′

i−i+j + êλ′

i−i−j+2),(4.26)

oλ = det(hλi−i+j − hλi−i−j) =
1

2
det(ĥλi−i+j + ĥλi−i−j+2)(4.27)

=
1

2
det(eλ′

i−i+j + eλ′

i−i−j+2) = det(ěλ′

i−i+j − ěλ′

i−i−j).(4.28)

Proof. Consider the determinant spλ = det(eλ′

i−i+j − eλ′

i−i−j). If we denote for

n ∈ Z+ the column vector

[en] =

















en

en−1

...

en−k+1

















Then spλ = |[eλ′

1
]− [eλ′

1
−2], [eλ′

1
+1]− [eλ′

1
−3], · · · , [eλ′

1
+k−1]− [eλ′

1
−k−1]|. Note that the ith

column

[eλ′

1
+i−1]− [eλ′

1
−i−1] = [êλ′

1
+i−1] + [êλ′

1
+i−3] + · · · + [êλ′

1
−i+1]

= [êλ′

1
+i−1] + [êλ′

1
−i+1] + ([êλ′

1
+i−3] + · · ·+ [êλ′

1
−i+3])



VERTEX OPERATORS FOR SYMPLECTIC/ORTHOGONAL SCHUR FUNCTIONS 17

where the parentheses are exactly the (i − 2)th column, so it can be removed. Thus by

successively subtracting from previous columns we have that

spλ = |[êλ′

1
], [êλ′

1
+1] + [êλ′

1
−1], · · · , [êλ′

1
+k−1] + [êλ′

1
−k+1]|,

which is exactly 1
2det(êλ′

i+j−i + êλ′

i−j−i+2). The other identities are proved similarly. �

We remark that the left identities (4.25) and (4.27) were due to Weyl [17] and the left

identities (4.26) and (4.28) were found by Koike and Terado [11] (see also [5], [16]). The

right identities (4.26) and (4.28) are consequences of the duality and the right identities

(4.27) and (4.25), which were due to Shimozono-Zabrocki (cf. Prop. 12 in [16]).
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[10] R. C. King, S-functions and characters of Lie algebras and superalgebras. Invariant theory and tableaux

(Minneapolis, MN, 1988), pp.226–261, IMA Vol. Math. Appl., 19, Springer, New York, 1990.



18 NAIHUAN JING AND BENZHI NIE

[11] K. Koike and I. Terada, Young diagrammatic methods for the representation theory of the classical

groups of types Bn, Cn, Dn, J. Algebra, 107 (1987), 466–511.

[12] A. Lascoux, Littlewood’s formulas for characters of orthogonal and symplectic groups, in: N. Jing

(ed.), Algebraic Combinatorics and Quantum Groups, World Scientific, River Edge, NJ, 2003, pp.

125–133.

[13] D. E. Littlewood, The theory of group characters and matrix representations of groups, 2nd ed. Oxford

University Press, London, 1950.

[14] I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Clarendon Press, Oxford, 1995.

[15] A. Ram, Group symmetric functions and the representation theory of Lie algebras, Proc. 4th Conf. on

Formal Power Series and Algebraic Combinatorics, 1992, pp.327–342.

[16] M. Shimozono and M. Zabrocki, Deformed universal characters for classical and affine algebras, J.

Algebra 299 (2006) 33–61.

[17] H. Weyl, The classical groups; their invariants and representations, Princeton Univ. Press, Princeton,

1946.

[18] A. Zelevinsky, Representations of finite classical groups, Springer-Verlag, New York, 1981.

Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA

and School of Mathematical Sciences, South China University of Technology, Guangzhou,

Guangdong 510640, China

E-mail address: jing@math.ncsu.edu

School of Mathematical Sciences, South China University of Technology, Guangzhou,

Guangdong 510640, China

E-mail address: niebenzhi@163.com


	1. Introduction
	2. Ring of symmetric functions
	3. Vertex operators and symmetric functions
	4. Determinant formulae and duality
	References

