A GENERALIZATION OF THE ALCOVE MODEL AND ITS APPLICATIONS

CRISTIAN LENART AND ARTHUR LUBOVSKY

Abstract

The alcove model of the first author and A. Postnikov uniformly describes highest weight crystals of semisimple Lie algebras. We construct a generalization, called the quantum alcove model. In joint work of the first author with S. Naito, D. Sagaki, A. Schilling, and M. Shimozono, this was shown to uniformly describe tensor products of column shape Kirillov-Reshetikhin crystals in all untwisted affine types; moreover, an efficient formula for the corresponding energy function is available. In the second part of this paper, we specialize the quantum alcove model to types A and C. We give explicit affine crystal isomorphisms from the specialized quantum alcove model to the corresponding tensor products of column shape Kirillov-Reshetikhin crystals, which are realized in terms of Kashiwara-Nakashima columns.

1. Introduction

Kashiwara's crystals [Kas91] are colored directed graphs encoding the structure of certain bases (called crystal bases) for certain representations of quantum groups $U_{q}(\mathfrak{g})$ as q goes to zero. The first author and A. Postnikov [LP07, LP08] defined the so-called alcove model for highest weight crystals associated to a semisimple Lie algebra \mathfrak{g} (in fact, the model was defined more generally, for symmetrizable Kac-Moody algebras \mathfrak{g}). A related model is the one of Gaussent-Littelmann, based on LS-galleries [GL05]. Both models are discrete counterparts of the celebrated Littelmann path model [Lit94, Lit95].

In this paper we construct a generalization of the alcove model, which we call the quantum alcove model, as it is based on enumerating paths in the so-called quantum Bruhat graph of the corresponding finite Weyl group. This graph originates in the quantum cohomology theory for flag varieties [FW04], and was first studied in [BFP99]. The path enumeration is determined by the choice of a certain sequence of alcoves (an alcove path or, equivalently, a λ-chain of roots), like in the classical alcove model. If we restrict to paths in the Hasse diagram of the Bruhat order, we recover the classical alcove model. The mentioned paths in the quantum Bruhat graph first appeared in [Len12], where they index the terms in the specialization $t=0$ of the Ram-Yip formula [RY11] for Macdonald polynomials $P_{\lambda}(X ; q, t)$. We construct combinatorial crystal operators on the mentioned paths, and prove various properties of them.

The main application $\left[\mathrm{LNS}^{+} 12, \mathrm{LNS}^{+} 13 \mathrm{~b}\right]$ is that the new model uniformly describes tensor products of column shape Kirillov-Reshetikhin (KR) crystals [KR90], for all untwisted affine types. (KR crystals correspond to certain finite-dimensional representations of affine algebras.) More precisely, the model realizes the crystal operators on the mentioned tensor product, and also gives an efficient formula (based on the so-called height statistic) for the corresponding energy function $\left[\mathrm{HKO}^{+} 99\right]$. (The energy can be viewed as an affine grading on a tensor product of KR crystals [NS08, ST12].) This result, combined with the Ram-Yip formula for Macdonald polynomials [RY11], implies that the graded character of a tensor product of column shape KR modules (the grading

[^0]being by the energy function) concides with the corresponding Macdonald polynomial specialized at $t=0\left[\mathrm{LNS}^{+} 13 \mathrm{~b}\right]$.

In the second part of this paper, we specialize the quantum alcove model to types A and C, and prove that the bijections constructed in [Len12], from the objects of the specialized quantum alcove model to the tensor products of the corresponding Kashiwara-Nakashima (KN) columns [KN94], are affine crystal isomorphisms. (A column shape KR crystal is realized by a KN column in these cases.) Note that this result has no overlap with the type-independent result in [LNS ${ }^{+}$12, LNS^{+}13b], because the λ-chains on which the quantum alcove model is based in the two cases are different. Moreover, note that having such explicit bijections to models based on diagram fillings, which are known to be crystal isomorphisms, is important for the following reason. It is often easier to define extra structure on the quantum alcove model, which describes additional structure of the crystal, and only then translate it to the models based on fillings via the bijection. One such example was mentioned above, in connection with the energy function; the height statistic in the quantum alcove model has been translated to the so-called charge statistic for fillings in types A and C in [Len12], while type B is currently under investigation in [BL]. Another example is related to the combinatorial R-matrix mentioned below.

We also conjecture that, like the alcove model, its generalization given here is independent of the λ-chain of roots on which the whole construction is based, cf. [Len07]. This conjecture is currently under investigation in [LL]. We intend to realize an affine crystal isomorphism between the models based on two λ-chains by extending to the quantum alcove model the alcove model version of Schützenberger's jeu de taquin [Ful97] on Young tableaux in [Len07]; the latter is based on so-called Yang-Baxter moves. Another application of this construction would be a uniform realization of the combinatorial R-matrix (i.e., the unique affine crystal isomorphism commuting factors in a tensor product of KR crystals).

2. Background

Let \mathfrak{g} be a complex semisimple Lie algebra, and \mathfrak{h} a Cartan subalgebra, whose rank is r. Let $\Phi \subset \mathfrak{h}^{*}$ be the corresponding irreducible root system, $\mathfrak{h}_{\mathbb{R}}^{*} \subset \mathfrak{h}$ the real span of the roots, and $\Phi^{+} \subset \Phi$ the set of positive roots. Let $\Phi^{-}:=\Phi \backslash \Phi^{+}$. For $\alpha \in \Phi$ we will say that $\alpha>0$ if $\alpha \in \Phi^{+}$, and $\alpha<0$ if $\alpha \in \Phi^{-}$. The sign of the root α, denoted $\operatorname{sgn}(\alpha)$, is defined to be 1 if $\alpha \in \Phi^{+}$, and -1 otherwise. Let $|\alpha|=\operatorname{sgn}(\alpha) \alpha$. Let $\rho:=\frac{1}{2}\left(\sum_{\alpha \in \Phi^{+}} \alpha\right)$. Let $\alpha_{1}, \ldots, \alpha_{r} \in \Phi^{+}$be the corresponding simple roots, and $s_{i}:=s_{\alpha_{i}}$ the corresponding simple reflections. We denote $\langle\cdot, \cdot\rangle$ the nondegenerate scalar product on $\mathfrak{h}_{\mathbb{R}}^{*}$ induced by the Killing form. Given a root α, we consider the corresponding coroot $\alpha^{\vee}:=2 \alpha /\langle\alpha, \alpha\rangle$ and reflection s_{α}. If $\alpha=\sum_{i} c_{i} \alpha_{i}$, then the height of α, denoted by ht (α), is given by $\operatorname{ht}(\alpha):=\sum_{i} c_{i}$. We denote by $\widetilde{\alpha}$ the highest root in Φ^{+}; we let $\theta=\alpha_{0}:=-\widetilde{\alpha}$ and $s_{0}:=s_{\widetilde{\alpha}}$.

Let W be the corresponding Weyl group. The length function on W is denoted by $\ell(\cdot)$. The Bruhat order on W is defined by its covers $w \lessdot w s_{\alpha}$, for $\alpha \in \Phi^{+}$, if $\ell\left(w s_{\alpha}\right)=\ell(w)+1$. Define $w \triangleleft w s_{\alpha}$, for $\alpha \in \Phi^{+}$, if $\ell\left(w s_{\alpha}\right)=\ell(w)-2 h t\left(\alpha^{\vee}\right)+1$. The quantum Bruhat graph [FW04] is the directed graph on W with edges labeled by positive roots

$$
\begin{equation*}
w \xrightarrow{\alpha} w s_{\alpha} \quad \text { for } w \lessdot w s_{\alpha} \text { or } w \triangleleft w s_{\alpha} ; \tag{1}
\end{equation*}
$$

see Example 4.2.
The weight lattice Λ is given by

$$
\begin{equation*}
\Lambda:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}:\left\langle\lambda, \alpha^{\vee}\right\rangle \in \mathbb{Z} \text { for any } \alpha \in \Phi\right\} . \tag{2}
\end{equation*}
$$

The weight lattice Λ is generated by the fundamental weights $\omega_{1}, \ldots \omega_{r}$, which form the dual basis to the basis of simple coroots, i.e., $\left\langle\omega_{i}, \alpha_{j}^{\vee}\right\rangle=\delta_{i j}$. The set Λ^{+}of dominant weights is given by

$$
\begin{equation*}
\Lambda^{+}:=\left\{\lambda \in \Lambda:\left\langle\lambda, \alpha^{\vee}\right\rangle \geq 0 \text { for any } \alpha \in \Phi^{+}\right\} . \tag{3}
\end{equation*}
$$

Given $\alpha \in \Phi$ and $k \in \mathbb{Z}$, we denote by $s_{\alpha, k}$ the reflection in the affine hyperplane

$$
\begin{equation*}
H_{\alpha, k}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*}:\left\langle\lambda, \alpha^{\vee}\right\rangle=k\right\} . \tag{4}
\end{equation*}
$$

These reflections generate the affine Weyl group $W_{\text {aff }}$ for the dual root system $\Phi^{\vee}:=\left\{\alpha^{\vee} \mid \alpha \in \Phi\right\}$. The hyperplanes $H_{\alpha, k}$ divide the real vector space $\mathfrak{h}_{\mathbb{R}}^{*}$ into open regions, called alcoves. The fundamental alcove A_{\circ} is given by

$$
\begin{equation*}
A_{\circ}:=\left\{\lambda \in \mathfrak{h}_{\mathbb{R}}^{*} \mid 0<\left\langle\lambda, \alpha^{\vee}\right\rangle<1 \text { for all } \alpha \in \Phi^{+}\right\} . \tag{5}
\end{equation*}
$$

We will need the following properties of the quantum Bruhat graph which were proved in [LNS ${ }^{+}$12]; more precisely, Lemma 2.1 below is a simplified version of Proposition 5.4.2 in the mentioned paper, whereas Lemmas 2.2 and 2.3 below are simplified versions of different parts of the Diamond Lemma 5.5.2.

Lemma 2.1. Let $w \in W$. We have $w^{-1}(\theta)>0$ if and only if $w \triangleleft s_{\theta} w$. We also have $w^{-1}(\theta)<0$ if and only if $s_{\theta} w \triangleleft w$.

Lemma 2.2. Let $w \in W$, let α be a simple root, $\beta \in \Phi^{+}$, and assume $s_{\alpha} w \neq w s_{\beta}$. Then $w \lessdot s_{\alpha} w$ and $w \longrightarrow w s_{\beta}$ if and only if $w s_{\beta} \lessdot s_{\alpha} w s_{\beta}$ and $s_{\alpha} w \longrightarrow s_{\alpha} w s_{\beta}$, cf. the diagram below. Furthermore, in this context we have $w \lessdot w s_{\beta}$ if and only if $s_{\alpha} w \lessdot s_{\alpha} w s_{\beta}$.

Lemma 2.3. Let $w \in W, \beta \in \Phi^{+}$, and assume $s_{\theta} w \neq w s_{\beta}$. Then $w \triangleleft s_{\theta} w$ and $w \longrightarrow w s_{\beta}$ if and only if $w s_{\beta} \triangleleft s_{\theta} w s_{\beta}$ and $s_{\theta} w \longrightarrow s_{\theta} w s_{\beta}$.
2.1. Kirillov-Reshetikhin (KR) crystals. A \mathfrak{g}-crystal (for a symmetrizable Kac-Moody \mathfrak{g}) is a nonempty set B together with maps $e_{i}, f_{i}: B \rightarrow B \cup\{\mathbf{0}\}$ for $i \in I$ (I indexes the simple roots, as usual, and $\mathbf{0} \notin B)$, and wt : B $\rightarrow \Lambda$. We require $b^{\prime}=f_{i}(b)$ if and only if $b=e_{i}\left(b^{\prime}\right)$, and $\mathrm{wt}\left(f_{i}(b)\right)=\mathrm{wt}(b)-\alpha_{i}$. The maps e_{i} and f_{i} are called crystal operators and are represented as arrows $b \rightarrow b^{\prime}=f_{i}(b)$ colored i; thus they endow B with the structure of a colored directed graph. For $b \in B$, we set $\varepsilon_{i}(b):=\max \left\{k \mid e_{i}^{k}(b) \neq \mathbf{0}\right\}$, and $\varphi_{i}(b):=\max \left\{k \mid f_{i}^{k}(b) \neq \mathbf{0}\right\}$. Given two \mathfrak{g}-crystals B_{1} and B_{2}, we define their tensor product $B_{1} \otimes B_{2}$ as follows. As a set, $B_{1} \otimes B_{2}$ is the Cartesian product of the two sets. For $b=b_{1} \otimes b_{2} \in B_{1} \otimes B_{2}$, the weight function is simply $\mathrm{wt}(b):=\mathrm{wt}\left(b_{1}\right)+\mathrm{wt}\left(b_{2}\right)$. The crystal operators f_{i} and e_{i} are given by

$$
\begin{align*}
& f_{i}\left(b_{1} \otimes b_{2}\right):= \begin{cases}f_{i}\left(b_{1}\right) \otimes b_{2} & \text { if } \varepsilon_{i}\left(b_{1}\right) \geq \varphi_{i}\left(b_{2}\right) \\
b_{1} \otimes f_{i}\left(b_{2}\right) & \text { otherwise }\end{cases} \tag{6}\\
& e_{i}\left(b_{1} \otimes b_{2}\right):= \begin{cases}e_{i}\left(b_{1}\right) \otimes b_{2} & \text { if } \varepsilon_{i}\left(b_{1}\right)>\varphi_{i}\left(b_{2}\right) \\
b_{1} \otimes e_{i}\left(b_{2}\right) & \text { otherwise } .\end{cases} \tag{7}
\end{align*}
$$

The highest weight crystal $B(\lambda)$ of highest weight $\lambda \in \Lambda^{+}$is a certain crystal with a unique element u_{λ} such that $e_{i}\left(u_{\lambda}\right)=\mathbf{0}$ for all $i \in I$ and $\operatorname{wt}\left(u_{\lambda}\right)=\lambda$. It encodes the structure of the crystal basis of the $U_{q}(\mathfrak{g})$-irreducible representation with highest weight λ as q goes to 0 .

A Kirillov-Reshetikhin (KR) crystal [KR90] is a finite crystal $B^{r, s}$ for an affine algebra, associated to a rectangle of height r and width s, where $r \in I \backslash\{0\}$ and s is any positive integer. We refer, throughout, to the untwisted affine types $A_{n-1}^{(1)}-G_{2}^{(1)}$.

We now describe the models based on diagram fillings for KR crystals $B^{r, 1}$ of type $A_{n-1}^{(1)}$ and $C_{n}^{(1)}$, where $r \in\{1,2, \ldots, n-1\}$ and $r \in\{1,2, \ldots, n\}$, respectively. As a classical type A_{n-1} (resp. C_{n}) crystal, the KR crystal $B^{r, 1}$ is isomorphic to the corresponding $B\left(\omega_{r}\right)$. Therefore, we can use the corresponding models in terms of fillings, as mentioned below.

In type $A_{n-1}^{(1)}$, an element $b \in B^{r, 1}$ is represented by a strictly increasing filling of a height r column, with entries in $[n]:=\{1, \ldots, n\}$. We will now describe the crystal operators on a tensor product of type $A_{n-1}^{(1)} \mathrm{KR}$ crystals $B^{r, 1}$ in terms of the so-called signature rule, which is just a translation of the tensor product rules (6)-(7). To apply f_{i} (or e_{i}) on $b:=b_{1} \otimes \cdots \otimes b_{k}$ in $B^{i_{1}, 1} \otimes \cdots \otimes B^{i_{k}, 1}$, consider the word with letters i and $i+1$, if $1 \leq i \leq n-1$ (resp., the letters n and 1 , if $i=0$) formed by recording these letters in b_{1}, \ldots, b_{k}, which are scanned from left to right and bottom to top; we make the convention that if $i=0$ and a column contains both 1 and n, then we discard this column. We replace the letter i with the symbol + and the letter $i+1$ with - (resp., n with + and 1 with - , if $i=0$). Then, we remove from our binary word adjacent pairs -+ , as long as this is possible. At the end of this process, we are left with a word

$$
\begin{equation*}
\rho_{i}(b)=\underbrace{++\ldots+}_{x} \underbrace{--\ldots-}_{y}, \tag{8}
\end{equation*}
$$

called the i-signature of b.
Definition 2.4. (1) If $y>0$, then $e_{i}(b)$ is obtained by replacing in b the letter $i+1$ which corresponds to the leftmost - in $\rho_{i}(b)$ with the letter i (resp., the letter 1 with n, after which we sort the column, if $i=0$). If $y=0$, then $e_{i}(b)=\mathbf{0}$.
(2) If $x>0$, then $f_{i}(b)$ is obtained by replacing in b the letter i which corresponds to the rightmost + in $\rho_{i}(b)$ with the letter $i+1$ (resp., the letter n with 1 , after which we sort the column, if $i=0$). If $x=0$, then $f_{i}(b)=\mathbf{0}$.
 have \(f_{0}\left(\begin{array}{l|l|l}\hline 2 \& 1 \& 1

\hline 3 \& 2 \&

\hline\end{array}\right)=\)	1	1	1
2	2		.

In type $C_{n}^{(1)}$, the elements of $B^{r, 1}$ are represented by Kashiwara-Nakashima (KN) columns [KN94] of height r, with entries in the set $[\bar{n}]:=\{1<\cdots<n<\bar{n}<\cdots<\overline{1}\}$, which we will now describe.
Definition 2.6. A column-strict filling $C=x_{1} \ldots x_{r}$ with entries in $[\bar{n}]$ is a KN column if there is no pair (z, \bar{z}) of letters in C such that:

$$
z=x_{p}, \bar{z}=x_{q}, q-p \leq r-z .
$$

Crystal operators f_{i} and e_{i} are defined on tensor products of KN columns in a similar way to type $A_{n-1}^{(1)}$. To apply f_{i} (or e_{i}) on $b:=b_{1} \otimes \cdots \otimes b_{k}$ in $B^{i_{1}, 1} \otimes \cdots \otimes B^{i_{k}, 1}$, consider the word with letters $i, i+1, \bar{\imath}, \overline{i+1}$, if $1 \leq i \leq n-1$ (resp., the letters n and \bar{n}, if $i=n$, or $\overline{1}$ and 1 , if $i=0$) formed by recording these letters in b_{1}, \ldots, b_{k}, which are scanned from from left to right and bottom to top; note that the letters 1 and $\overline{1}$ cannot simultaneously appear in a column, so we do not need an exception like in type $A_{n-1}^{(1)}$ if $i=0$. We replace the letters $i, \overline{i+1}$ with the symbol + and the letters $i+1, \bar{\imath}$ with - , if $1 \leq i \leq n-1$ (if $i=n$ we replace n with + and \bar{n} with - , and if $i=0$ we replace $\overline{1}$ with + and 1 with -$)$. We proceed like in type $A_{n-1}^{(1)}$ by cancelling adjacent pairs -+ as long as possible, and we obtain the i-signature $\rho_{i}(b)$. The crystal operators f_{i} and e_{i} are again given in terms $\rho_{i}(b)$, by a similar procedure to the one in Definition 2.4. Namely, if $1 \leq i \leq n-1$, changing + to - means changing i to $i+1$, if + corresponds to i, and changing $\overline{i+1}$ to $\bar{\imath}$, if +
corresponds to $\overline{i+1}$; similarly changing - to + means changing $i+1$ to i or $\bar{\imath}$ to $\overline{i+1}$. On another hand, changing + to - means changing n to \bar{n} if $i=n$, and changing $\overline{1}$ to 1 if $i=0$.

We will need a different definition of KN columns which was proved to be equivalent to the one above in [She99].

Definition 2.7. Let C be column and $I=\left\{z_{1}>\ldots>z_{k}\right\}$ the set of unbarred letters z such that the pair (z, \bar{z}) occurs in C. The column C can be split when there exists a set of k unbarred letters $J=\left\{t_{1}>\ldots>t_{k}\right\} \subset[n]$ such that:

- t_{1} is the greatest letter in $[n]$ satisfying: $t_{1}<z_{1}, t_{1} \notin C$, and $\overline{t_{1}} \notin C$,
- for $i=2, \ldots, k$, the letter t_{i} is the greatest one in $[n]$ satisfying $t_{i}<\min \left(t_{i-1}, z_{i}\right), t_{i} \notin C$, and $\bar{t}_{i} \notin C$.
In this case we write:
- $r C$ for the column obtained by changing $\overline{z_{i}}$ into $\overline{t_{i}}$ in C for each letter $z_{i} \in I$, and by reordering if necessary,
- $l C$ for the column obtained by changing z_{i} into t_{i} in C for each letter $z_{i} \in I$, and by reordering if necessary.
The pair $(l C, r C)$ will be called a split column, which we well sometimes denote by $l C r C$.
Example 2.8. The following is a KN column of height 5 in type C_{n} for $n \geq 5$, together with the corresponding split column:

$$
C=\begin{array}{|c|}
\hline 4 \\
\hline 5 \\
\hline \overline{5} \\
\hline \overline{4} \\
\hline \overline{3} \\
\hline
\end{array}, \quad(l C, r C)=\begin{array}{|l|l|}
\hline 1 & 4 \\
\hline 2 & 5 \\
\hline \overline{5} & \overline{3} \\
\hline \overline{4} & \overline{2} \\
\hline \overline{3} & \overline{1} \\
\hline
\end{array}
$$

We used the fact that $\left\{z_{1}>z_{2}\right\}=\{5>4\}$, so $\left\{t_{1}>t_{2}\right\}=\{2>1\}$.

Proposition 2.9.

(1) [She99] A column with entries in $[\bar{n}]$ is a $K N$ column if and only if it can be split.
(2) [Kas95, Theorem 5.1] The splitting is compatible with the action of the crystal operators, i.e., if $f_{i}(C)=C^{\prime}$ then $l C^{\prime} r C^{\prime}=f_{i}^{2}(l C r C)$. This holds more generally, for tensor products of columns, i.e., if $f_{i}\left(C_{1} \ldots C_{n}\right)=C_{1}^{\prime} \ldots C_{n}^{\prime}$, then $l C_{1}^{\prime} r C_{1}^{\prime} \ldots l C_{n}^{\prime} r C_{n}^{\prime}=f_{i}^{2}\left(l C_{1} r C_{1} \ldots l C_{n} r C_{n}\right)$.

In what follows we will use Definition 2.7 as the definition of KN columns.
We refer again to KR crystals of arbitrary (untwisted) type. Let $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \ldots\right)$ be a partition, which encodes a dominant weight in classical types; let λ^{\prime} be the conjugate partition. We define

$$
\begin{equation*}
B^{\otimes \lambda}:=\bigotimes_{i=1}^{\lambda_{1}} B^{\lambda_{i}^{\prime}, 1}, \tag{9}
\end{equation*}
$$

assuming that the corresponding column shape KR crystals exist. We denote such a tensor product generically by B. It is known that B is connected as an affine crystal, but disconnected as a classical crystal (i.e., with the 0 -arrows removed).

Definition 2.10. An arrow $b \rightarrow f_{i}(b)$ in B is called a Demazure arrow if $i \neq 0$, or $i=0$ and $\varepsilon_{0}(b) \geq 1$.

Demazure arrows exclude 0 -arrows at the beginning of a string of 0 -arrows. We are interested in excluding 0 -arrows at the end of a string of 0 -arrows. We call these arrows dual Demazure.

Definition 2.11. An arrow $b \rightarrow f_{i}(b)$ in B is called a dual Demazure arrow if $i \neq 0$, or $i=0$ and $\varphi_{0}(b) \geq 2$.

The energy function $D=D_{B}$ is a function from B to the integers, defined by summing the so-called local energies of all pairs of tensor factors $\left[\mathrm{HKO}^{+} 99\right]$. We will only refer here to the so-called tail energy $\left[\mathrm{LNS}^{+} 13 \mathrm{~b}\right]$, so we will not make this specification. (There are two conventions in defining the local energy of a pair of tensor factors: commuting the right one towards the head of the tensor product, or the left one towards the tail; the tail energy corresponds to the second choice.) We will only need the following property of the energy function, which defines it as an affine grading on B.

Theorem 2.12. [NS08, ST12] The energy is preserved by the classical crystal operators f_{i}, i.e., $i \neq 0$. If $b \rightarrow f_{0}(b)$ is a dual Demazure arrow, then $D\left(f_{0}(b)\right)=D(b)-1$.

It follows that the energy is determined up to a constant on the connected components of the subgraph of the affine crystal B containing only the dual Demazure arrows. In the case when all of the tensor factors of B are perfect crystals [HK00], the mentioned subgraph is connected, so the energy is determined up to a constant on the whole crystal B.
Remark 2.13. In classical types, $B^{k, 1}$ is perfect as follows: in types $A_{n-1}^{(1)}$ and $D_{n}^{(1)}$ for all k, in type $B_{n}^{(1)}$ only for $k \neq n$, and in type $C_{n}^{(1)}$ only for $k=n$ (using the standard indexing of the Dynkin diagram); in other words, for all the Dynkin nodes in simply-laced types, and only for the nodes corresponding to the long roots in non-simply-laced types. It was conjectured in [HKO $\left.{ }^{+} 99\right]$ that the same is true in the exceptional types. In type $G_{2}^{(1)}$ this was confirmed in [Yam98], while for types $E_{6,7}^{(1)}$ and $F_{4}^{(1)}$ it was checked by computer, based on a model closely related to the quantum alcove model, see [$\left.\mathrm{LNS}^{+} 13 \mathrm{~b}\right]$.

One can define a statistic called charge on the model based on KN columns for $B^{\otimes \lambda}$ in types A and C. This was done in [Len12], by translating a certain statistic in the Ram-Yip formula for Macdonald polynomials (i.e., the height statistic in (12)) to the model based on KN columns, via certain bijections recalled in Section 4, cf. Remarks 4.8 (2) and 4.21 (2). In type A, this procedure leads to the same statistic that was originally defined by Lascoux and Schützenberger [LS79]. A similar procedure to the one in [Len12] is under investigation in type B in [BL]. The charge statistic is related to the energy function by the following theorem.
Theorem 2.14. [NY97, LS11] Let $B^{\otimes \lambda}$ be a tensor product of $K R$ crystals in type $A_{n-1}^{(1)}$ or type $C_{n}^{(1)}$. For all $b \in B^{\otimes \lambda}$, we have $D(b)=-\operatorname{charge}(b)$.

The charge gives a much easier method to compute the energy than the recursive one based on Theorem 2.12. See also Theorem 3.24 (2) for a much more general result.

3. The quantum alcove model

In this section we construct the quantum alcove model and study its main properties.
3.1. λ-chains and admissible subsets. We say that two alcoves are adjacent if they are distinct and have a common wall. Given a pair of adjacent alcoves A and B, we write $A \xrightarrow{\beta} B$ if the common wall is of the form $H_{\beta, k}$ and the root $\beta \in \Phi$ points in the direction from A to B.

Definition 3.1. [LP07] An alcove path is a sequence of alcoves $\left(A_{0}, A_{1}, \ldots, A_{m}\right)$ such that A_{j-1} and A_{j} are adjacent, for $j=1, \ldots m$. We say that an alcove path is reduced if it has minimal length among all alcove paths from A_{0} to A_{m}.

Let $A_{\lambda}=A_{\circ}+\lambda$ be the translation of the fundamental alcove A_{\circ} by the weight λ.
Definition 3.2. [LP07] The sequence of roots $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ is called a λ-chain if

$$
A_{0}=A_{\circ} \xrightarrow{-\beta_{1}} A_{1} \xrightarrow{-\beta_{2}} \cdots \xrightarrow{-\beta_{m}} A_{m}=A_{-\lambda}
$$

is a reduced alcove path.
We now fix a dominant weight λ and an alcove path $\Pi=\left(A_{0}, \ldots, A_{m}\right)$ from $A_{0}=A_{\circ}$ to $A_{m}=A_{-\lambda}$. Note that Π is determined by the corresponding λ-chain $\Gamma:=\left(\beta_{1}, \ldots, \beta_{m}\right)$, which consists of positive roots. A specific choice of a λ-chain, called a lex λ-chain and denoted $\Gamma_{\text {lex }}$, is given in [LP08][Proposition 4.2]; this choice depends on a total order on the simple roots. We let $r_{i}:=s_{\beta_{i}}$, and let \widehat{r}_{i} be the affine reflection in the hyperplane containing the common face of A_{i-1} and A_{i}, for $i=1, \ldots, m$; in other words, $\widehat{r}_{i}:=s_{\beta_{i},-l_{i}}$, where $l_{i}:=\left|\left\{j<i ; \beta_{j}=\beta_{i}\right\}\right|$. We define $\widetilde{l}_{i}:=\left\langle\lambda, \beta_{i}^{\vee}\right\rangle-l_{i}=\left|\left\{j \geq i ; \beta_{j}=\beta_{i}\right\}\right|$.

Example 3.3. Consider the dominant weight $\lambda=3 \varepsilon_{1}+2 \varepsilon_{2}$ in the root system A_{2} (cf. Section 4.1 and the notation therein). A λ-chain is $\Gamma=\left(\alpha_{23}, \alpha_{13}, \alpha_{23}, \alpha_{13}, \alpha_{12}, \alpha_{13}\right)$. The corresponding l_{i} are $(0,0,1,1,0,2)$ and \widetilde{l}_{i} are $\{2,3,1,2,1,1\}$. The alcove path is shown in Figure 1a; here A_{\circ} is shaded, and $A_{-\lambda}$ is the alcove at the end of the path.

Figure 1. Unfolded and folded λ-chain

Let $J=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\}$ be a subset of $[m]$. The elements of J are called folding positions. We fold Π in the hyperplanes corresponding to these positions and obtain a folded path, see Example 3.6 and Figure 1b. Like Π, the folded path can be recorded by a sequence of roots, namely $\Delta=\Gamma(J)=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right)$; here

$$
\begin{equation*}
\gamma_{k}:=r_{j_{1}} r_{j_{2}} \ldots r_{j_{p}}\left(\beta_{k}\right), \tag{10}
\end{equation*}
$$

with j_{p} the largest folding position less than k. We define $\gamma_{\infty}:=r_{j_{1}} r_{j_{2}} \ldots r_{j_{s}}(\rho)$. Upon folding, the hyperplane separating the alcoves A_{k-1} and A_{k} in Π is mapped to

$$
\begin{equation*}
H_{\left|\gamma_{k}\right|,-l_{k}^{J}}=\widehat{r}_{j_{1}}{\widehat{r_{j}}} \ldots \widehat{r}_{j_{p}}\left(H_{\beta_{k},-l_{k}}\right), \tag{11}
\end{equation*}
$$

for some l_{k}^{J}, which is defined by this relation.
Given $i \in J$, we say that i is a positive folding position if $\gamma_{i}>0$, and a negative folding position if $\gamma_{i}<0$. We denote the positive folding positions by J^{+}, and the negative ones by J^{-}. We call $\mu=\mu(J):=-\widehat{r}_{j_{1}} \widehat{r}_{j_{2}} \ldots \widehat{r}_{j_{s}}(-\lambda)$ the weight of J. We define

$$
\begin{equation*}
\operatorname{height}(J):=\sum_{j \in J^{-}} \widetilde{l}_{j} . \tag{12}
\end{equation*}
$$

Definition 3.4. A subset $J=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\} \subseteq[m]$ (possibly empty) is an admissible subset if we have the following path in the quantum Bruhat graph on W :

$$
\begin{equation*}
1 \xrightarrow{\beta_{j_{1}}} r_{j_{1}} \xrightarrow{\beta_{j_{2}}} r_{j_{1}} r_{j_{2}} \xrightarrow{\beta_{j_{3}}} \cdots \xrightarrow{\beta_{j_{s}}} r_{j_{1}} r_{j_{2}} \cdots r_{j_{s}} . \tag{13}
\end{equation*}
$$

We call $\Delta=\Gamma(J)$ an admissible folding. We let $\mathcal{A}(\Gamma)$ be the collection of admissible subsets.
Remark 3.5. If we restrict to admissible subsets for which the path (13) has no down steps, we recover the classical alcove model in [LP07, LP08].

Example 3.6. We continue Example 3.3. Let $J=\{1,2,3,5\}$, then $\Delta=\Gamma(J)=\left(\alpha_{23}, \alpha_{12}, \alpha_{31}, \alpha_{23}\right.$, $\left.\alpha_{21}, \alpha_{13}\right)$. The folded path is shown in Figure 1b. We have $J^{+}=\{1,2\}, J^{-}=\{3,5\}, \mu(J)=-\varepsilon_{3}$, and height $(J)=2$. In Section 4.1 we will describe an easy way to verify that J is admissible.
3.2. Crystal operators. In this section we define the crystal operators f_{i} and e_{i}. Given $J \subseteq[m]$ and $\alpha \in \Phi$, we will use the following notation:

$$
I_{\alpha}=I_{\alpha}(\Delta):=\left\{i \in[m] \mid \gamma_{i}= \pm \alpha\right\}, \quad \widehat{I}_{\alpha}=\widehat{I}_{\alpha}(\Delta):=I_{\alpha} \cup\{\infty\}
$$

and $l_{\alpha}^{\infty}:=\left\langle\mu(J), \operatorname{sgn}(\alpha) \alpha^{\vee}\right\rangle$. The following graphical representation of the heights l_{i}^{J} for $i \in I_{\alpha}$ and l_{α}^{∞} is useful for defining the crystal operators. Let

$$
\widehat{I}_{\alpha}=\left\{i_{1}<i_{2}<\cdots<i_{n} \leq m<i_{n+1}=\infty\right\} \quad \text { and } \varepsilon_{i}:=\left\{\begin{array}{rl}
1 & \text { if } i \notin J \\
-1 & \text { if } i \in J
\end{array} .\right.
$$

If $\alpha>0$, we define the continuous piecewise linear function $g_{\alpha}:\left[0, n+\frac{1}{2}\right] \rightarrow \mathbb{R}$ by

$$
g_{\alpha}(0)=-\frac{1}{2}, \quad g_{\alpha}^{\prime}(x)= \begin{cases}\operatorname{sgn}\left(\gamma_{i_{k}}\right) & \text { if } x \in\left(k-1, k-\frac{1}{2}\right), k=1, \ldots, n \tag{14}\\ \varepsilon_{i_{k}} \operatorname{sgn}\left(\gamma_{i_{k}}\right) & \text { if } x \in\left(k-\frac{1}{2}, k\right), k=1, \ldots, n \\ \operatorname{sgn}\left(\left\langle\gamma_{\infty}, \alpha^{\vee}\right\rangle\right) & \text { if } x \in\left(n, n+\frac{1}{2}\right)\end{cases}
$$

If $\alpha<0$, we define g_{α} to be the graph obtained by reflecting $g_{-\alpha}$ in the x-axis. By [LP08][Propositions 5.3 and 5.5], for any α we have

$$
\begin{equation*}
\operatorname{sgn}(\alpha) l_{i_{k}}^{J}=g_{\alpha}\left(k-\frac{1}{2}\right), k=1, \ldots, n, \text { and } \operatorname{sgn}(\alpha) l_{\alpha}^{\infty}:=\left\langle\mu(J), \alpha^{\vee}\right\rangle=g_{\alpha}\left(n+\frac{1}{2}\right) \tag{15}
\end{equation*}
$$

Example 3.7. We continue Example 3.6. The graphs of $g_{\alpha_{2}}$ and g_{θ} are given in Figure 2.

Figure 2
Let J be an admissible subset. Let $\delta_{i, j}$ be the Kronecker delta function. Fix p in $\{0, \ldots, r\}$, so α_{p} is a simple root if $p>0$, or θ if $p=0$. Let M be the maximum of $g_{\alpha_{p}}$. Let m be the minimum index i in $\widehat{I}_{\alpha_{p}}(\Delta)$ for which we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{i}^{J}=M$. By Proposition 3.22, if $M \geq \delta_{p, 0}$, then we
have either $m \in J$ or $m=\infty$; furthermore, if $M>\delta_{p, 0}$, then m has a predecessor k in $\widehat{I}_{\alpha_{p}}$, and we have $k \notin J$. We define

$$
f_{p}(J):= \begin{cases}(J \backslash\{m\}) \cup\{k\} & \text { if } M>\delta_{p, 0} \tag{16}\\ \mathbf{0} & \text { otherwise } .\end{cases}
$$

Now we define e_{p}. Again let $M:=\max g_{\alpha_{p}}$. Assuming that $M>\left\langle\mu(J), \alpha_{p}^{\vee}\right\rangle$, let k be the maximum index i in $I_{\alpha_{p}}$ for which we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{i}^{J}=M$, and let m be the successor of k in $\widehat{I}_{\alpha_{p}}$. Assuming also that $M \geq \delta_{p, 0}$, by Proposition 3.23 we have $k \in J$, and either $m \notin J$ or $m=\infty$. Define

$$
e_{p}(J):= \begin{cases}(J \backslash\{k\}) \cup\{m\} & \text { if } M>\left\langle\mu(J), \alpha_{p}^{\vee}\right\rangle \text { and } M \geq \delta_{p, 0} \tag{17}\\ \mathbf{0} & \text { otherwise } .\end{cases}
$$

In the above definitions, we use the convention that $J \backslash\{\infty\}=J \cup\{\infty\}=J$.
Example 3.8. We continue Example 3.7. We find $f_{2}(J)$ by noting that $\widehat{I}_{\alpha_{2}}=\{1,4, \infty\}$. From $g_{\alpha_{2}}$ in Figure 2 we can see that the heights l_{i}^{J} and $l_{\alpha_{2}}^{\infty}$ corresponding to these positions are $0,0,1$, so $k=4, m=\infty$, and $f_{2}(J)=J \cup\{4\}=\{1,2,3,4,5\}$. We can see from Figure 2 that the maximum of $g_{\theta}=1$, hence $f_{0}(J)=\mathbf{0}$. To compute $e_{0}(J)$ observe that $\widehat{I}_{\theta}=\{3,6\}$ with $k=3$ and $m=6$. So $e_{0}(J)=(J \backslash\{k\}) \cup\{m\}=\{1,2,5,6\}$.

The following theorem is one of our main results, and will be proved in Section 3.3.

Theorem 3.9.

(1) If J is an admissible subset and if $f_{p}(J) \neq \mathbf{0}$, then $f_{p}(J)$ is also an admissible subset. Similarly for $e_{p}(J)$. Moreover, $f_{p}(J)=J^{\prime}$ if and only if $e_{p}\left(J^{\prime}\right)=J$.
(2) We have $\mu\left(f_{p}(J)\right)=\mu(J)-\alpha_{p}$. Moreover, if $M \geq \delta_{p, 0}$, then

$$
\varphi_{p}(J)=M-\delta_{p, 0}, \quad \varepsilon_{p}(J)=M-\left\langle\mu(J), \alpha_{p}^{\vee}\right\rangle,
$$

while otherwise $\varphi_{p}(J)=\varepsilon_{p}(J)=\mathbf{0}$.
3.3. Proofs. In this section we collect necessary results for the proof of Theorem 3.9. The techniques are similar to those in [LP08]; we go in detail over the parts of the proofs where there are notable differences, and we refer to the mentioned paper for the remaining parts.
Lemma 3.10. Let $w \in W, \alpha$ a simple root or θ, and β a positive root. If we have $w \longrightarrow w s_{\beta}$, as well as $w^{-1}(\alpha)>0$ and $s_{\beta} w^{-1}(\alpha)<0$, then $w^{-1}(\alpha)=\beta$.
Proof. If $s_{\alpha} w=w s_{\beta}$, then $w^{-1}(\alpha)= \pm \beta$, and $w^{-1}(\alpha)>0$ implies $w^{-1}(\alpha)=\beta$. Suppose by way of contradiction that $s_{\alpha} w \neq w s_{\beta}$. First suppose α is a simple root. Since $w^{-1}(\alpha)>0$, then $w \lessdot s_{\alpha} w$. By assumption we have $w \longrightarrow w s_{\beta}$, hence by Lemma 2.2 we have $w s_{\beta} \lessdot s_{\alpha} w s_{\beta}$. But $s_{\beta} w^{-1}(\alpha)<0$ implies $s_{\alpha} w s_{\beta} \lessdot w s_{\beta}$, which is a contradiction.

Suppose $\alpha=\theta$. Since $w^{-1}(\theta)>0$, we deduce $w \triangleleft s_{\theta} w$, by Lemma 2.1, and then $w s_{\beta} \triangleleft s_{\theta} w s_{\beta}$, by Lemma 2.3. On another hand, since $s_{\beta} w^{-1}(\theta)<0$, Lemma 2.1 implies that $s_{\theta} w s_{\beta} \triangleleft w s_{\beta}$, which is a contradiction.

Lemma 3.11. Let $J=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\}$ be an admissible subset. Assume that $r_{j_{a}} \ldots r_{j_{1}}(\alpha)>0$ and $r_{j_{b}} \ldots r_{j_{1}}(\alpha)<0$ where α is a simple root or θ, and $0 \leq a<b$ (if $a=0$, then the first condition is void). Then there exists i with $a \leq i<b$ such that $\gamma_{j_{i+1}}=\alpha$.
Proof. Find i with $a \leq i<b$ such that $r_{j_{i}} \ldots r_{j_{1}}(\alpha)>0$ and $r_{j_{i+1}} \ldots r_{j_{1}}(\alpha)<0$. By Lemma 3.10, we have $\beta_{j_{i+1}}=r_{j_{i}} \ldots r_{j_{1}}(\alpha)$. This means that $\gamma_{j_{i+1}}=r_{j_{1}} \ldots r_{j_{i}}\left(\beta_{j_{i+1}}\right)=\alpha$.
Proposition 3.12. Let $J=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\}$ be an admissible subset. Assume that α is a simple root or θ, with $I_{\alpha} \neq \emptyset$. Let $m \in I_{\alpha}$ be an element for which its predecessor k (in I_{α}) satisfies $\left(\gamma_{k}, \varepsilon_{k}\right) \in\{(\alpha, 1),(-\alpha,-1)\}$. Then we have $\gamma_{m}=\alpha$.

Proof. First suppose that $\left(\gamma_{k}, \varepsilon_{k}\right)=(\alpha, 1)$. Assume that $\gamma_{m}=-\alpha$. Let us define the index b by the condition $j_{b}<m \leq j_{b+1}$ (possibly $b=s$, in which case the second inequality is dropped). We define the index a by the condition $j_{a}<k<j_{a+1}$ (possibly $a=0$, in which case the first inequality is dropped). We clearly have $r_{j_{1}} \ldots r_{j_{b}}\left(\beta_{m}\right)=-\alpha$, which implies $r_{j_{b}} \ldots r_{j_{1}}(\alpha)<0$. We also have $r_{j_{1}} \ldots r_{j_{a}}\left(\beta_{k}\right)=\alpha$, so $r_{j_{a}} \ldots r_{j_{1}}(\alpha)>0$ (hence $a<b$). Note that if $\alpha=\theta$, then $a>0$. We can now apply Lemma 3.11 to conclude that $\gamma_{j_{i}}=\alpha$ for some $i \in[a+1, b]$. Since $k<j_{a+1} \leq j_{b}<m$, we contradicted the assumption that γ_{k} is the predecessor of γ_{m} in I_{α}.

Now suppose that $\left(\gamma_{k}, \varepsilon_{k}\right)=(-\alpha,-1)$. Assume that $\gamma_{m}=-\alpha$ and define b as in the previous case. Again we have $r_{j_{b}} \ldots r_{j_{1}}(\alpha)<0$. Define a by the condition $j_{a}=k<j_{a+1}$. Hence $r_{j_{1}} \ldots r_{j_{a-1}}\left(\beta_{j_{a}}\right)=-\alpha$, so $r_{j_{a}} \ldots r_{j_{1}}(\alpha)>0$. This leads to a contradiction by a similar reasoning to the one above.

Proposition 3.13. Let J be an admissible subset. Assume that α is a simple root for which $I_{\alpha} \neq \emptyset$. Let $m \in I_{\alpha}$ be the minimum of I_{α}. Then we have $\gamma_{m}=\alpha$.

Proof. The proof of Proposition 3.12 carries through with $a=0$.
Proposition 3.14. Let $J=\left\{j_{1}<j_{2}<\cdots<j_{s}\right\}$ be an admissible subset. Assume that α is a simple root or θ. Suppose that $I_{\alpha} \neq \emptyset$, and $\left(\gamma_{m}, \varepsilon_{m}\right) \in\{(\alpha, 1),(-\alpha,-1)\}$ for $m=\max I_{\alpha}$. Then we have $\left\langle\gamma_{\infty}, \alpha^{\vee}\right\rangle>0$.

Proof. Assume that the conclusion fails, which means that $r_{j_{s}} \ldots r_{j_{1}}(\alpha)<0$. First suppose that $\left(\gamma_{m}, \varepsilon_{m}\right)=(\alpha, 1)$. Define the index a by the condition $j_{a}<m<j_{a+1}$. (If $a=0$ or $a=s$ one of the two inequalities is dropped). We have $r_{j_{1}} \ldots r_{j_{a}}\left(\beta_{m}\right)=\alpha$, so $r_{j_{a}} \ldots r_{j_{1}}(\alpha)>0$ (hence $a \neq s$). Note that if $\alpha=\theta$, then $a>0$. We now apply Lemma 3.11 to conclude that $\gamma_{j_{i}}=\alpha$ for $i \in[a+1, s]$. Since $m<j_{a+1} \leq j_{s}$, this contradicts that $m=\max I_{\alpha}$.

Now suppose that $\left(\gamma_{m}, \varepsilon_{m}\right)=(-\alpha,-1)$. In this case we define the index a by $j_{a}=m<j_{a+1}$. We have $r_{j_{1}} \ldots r_{j_{a-1}}\left(\beta_{j_{a}}\right)=-\alpha$, so $r_{j_{a}} \ldots r_{j_{1}}(\alpha)>0$. This leads to a contradiction by a similar reasoning to the one above.

Proposition 3.15. Let J be an admissible subset. Assume that, for some simple root α, we have $I_{\alpha}=\emptyset$. Then $\left\langle\gamma_{\infty}, \alpha^{\vee}\right\rangle>0$.

Proof. The proof of Proposition 3.14 carries through with $a=0$.
Let us now fix a simple root α. We will rephrase some of the above results in a simple way in terms of g_{α}, and we will deduce some consequences. Assume that $I_{\alpha}=\left\{i_{1}<i_{2}<\cdots<i_{n}\right\}$, so that g_{α} is defined on $\left[0, n+\frac{1}{2}\right]$, and let M be the maximum of g_{α}. Note first that the function g_{α} is determined by the sequence $\left(\sigma_{1}, \ldots, \sigma_{n+1}\right)$, where $\sigma_{j}=\left(\sigma_{j, 1}, \sigma_{j, 2}\right):=\left(\operatorname{sgn}\left(\gamma_{i_{j}}\right), \varepsilon_{i_{j}} \operatorname{sgn}\left(\gamma_{i_{j}}\right)\right)$ for $1 \leq j \leq n$, and $\sigma_{n+1}=\sigma_{n+1,1}:=\operatorname{sgn}\left(\left\langle\gamma_{\infty}, \alpha^{\vee}\right\rangle\right)$. From Propositions 3.12, 3.13, 3.14 and 3.15 we have the following restrictions.
(C1) $\sigma_{1,1}=1$.
(C2) $\sigma_{j, 2}=1 \Rightarrow \sigma_{j+1,1}=1$.
Proposition 3.16. If $g_{\alpha}(x)=M$, then $M \in \mathbb{Z}_{\geq 0}, x=m+\frac{1}{2}$ for $0 \leq m \leq n$, and $\sigma_{m+1} \in$ $\{(1,-1), 1\}$.

Proof. By (C1), we have $M \geq 0$, therefore $g_{\alpha}(0)=-\frac{1}{2} \neq M$. For $m \in\{1, \ldots, n\}$, if $g_{\alpha}(m)=M$ then $\sigma_{m, 2}=1$, and (C2) leads to a contradiction. The last statement is obvious.

We use Proposition 3.16 implicitly in the proof of Proposition 3.17 and Proposition 3.18.
Proposition 3.17. Assume that $M>0$, and let m be such that $m+\frac{1}{2}=\min g_{\alpha}^{-1}(M)$. We have $m>0, \sigma_{m}=(1,1)$, and $g_{\alpha}\left(m-\frac{1}{2}\right)=M-1$. Moreover, we have $g_{\alpha}(x) \leq M-1$ for $0 \leq x \leq m-\frac{1}{2}$.

Proof. By (C1) we have $g_{\alpha}\left(\frac{1}{2}\right)=0$, so $m>0$. If $\sigma_{m} \in\{(-1,-1),(1,-1)\}$, then we have $g_{\alpha}\left(m-\frac{1}{2}\right)=$ M, which contradicts the definition of m. If $\sigma_{m}=(-1,1)$, then $g_{\alpha}(m-1)=M-\frac{1}{2}>-\frac{1}{2}$. By (C1) we have $m \geq 2$, and by (C 2) we have $\sigma_{m-1,2}=-1$. This implies that $g_{\alpha}\left(m-\frac{3}{2}\right)=M$, contradicting the definition of m. Hence $\sigma_{m}=(1,1)$.

Suppose by way of contradiction that the last statement in the corollary fails. Then there exists a k with $1 \leq k \leq m-1$ such that $g_{\alpha}(k-1)=M-\frac{1}{2}>-\frac{1}{2}$ and $\sigma_{k, 1}=-1$. Condition (C1) implies that $k \geq 2$ and Condition (C2) implies $\sigma_{k-1,2}=-1$. This implies $g_{\alpha}\left(k-\frac{3}{2}\right)=M$, contradicting the definition of m.

Proposition 3.18. Assume that $M>g_{\alpha}\left(n+\frac{1}{2}\right)$, and let k be such that $k-\frac{1}{2}=\max g_{\alpha}^{-1}(M)$. We have $k \leq n, \sigma_{k+1} \in\{(-1,-1),-1\}$, and $g_{\alpha}\left(k+\frac{1}{2}\right)=M-1$. Moreover, we have $g_{\alpha}(x) \leq M-1$ for $k+\frac{1}{2} \leq x \leq n+\frac{1}{2}$.

Proof. Since $M>g_{\alpha}\left(n+\frac{1}{2}\right)$, it follows that $k \leq n$. If $\sigma_{k+1} \in\{(1,1),(1,-1), 1\}$ then $g_{\alpha}\left(k+\frac{1}{2}\right)=M$, contradicting the choice of k. If $\sigma_{k+1}=(-1,1)$, then by (C2) we have $\sigma_{k+2,1}=1$, and $g_{\alpha}\left(k+\frac{3}{2}\right)=$ M, contradicting the choice of k. Hence $\sigma_{k+1} \in\{(-1,-1),-1\}$.

Suppose by way of contradiction the last statement in the corollary fails. Then there exists an m with $k+2 \leq m \leq n$ such that $g_{\alpha}(m)=M-\frac{1}{2}$ and $\sigma_{m, 2}=1$. Condition (C2) implies that $\sigma_{m+1,1}=1$, so $g_{\alpha}\left(m+\frac{1}{2}\right)=M$, contradicting the choice of k.

We now consider g_{θ}. Since $\theta<0$, the definition of the piecewise linear function g_{θ} requires us to define its linear steps by $\sigma_{j}=\left(\sigma_{j, 1}, \sigma_{j, 2}\right):=\left(-\operatorname{sgn}\left(\gamma_{i_{j}}\right),-\varepsilon_{i_{j}} \operatorname{sgn}\left(\gamma_{i_{j}}\right)\right)$ for $1 \leq j \leq n$, and $\sigma_{n+1}=\sigma_{n+1,1}:=\operatorname{sgn}\left(\left\langle\gamma_{\infty}, \theta^{\vee}\right\rangle\right)$. From Propositions 3.12 and 3.14 we conclude that condition (C2) holds for g_{θ}. We can replace condition (C1) by restricting to admissible subsets J where M is large enough, as we will now explain. In the proof of Proposition 3.16, condition (C1) is needed to conclude that $g_{\alpha}(0) \neq M$. It is possible that $g_{\theta}(0)=M$, but if we restrict to g_{θ} where $M \geq 1$ we can conclude that $g_{\theta}(0)=\frac{1}{2} \neq M$, and the rest of the proof follows through. In the proof of Proposition 3.17, condition (C1) first implies $m \geq 1$; we can conclude the same thing if we assume $M \geq 2$, since $g_{\theta}\left(\frac{1}{2}\right) \leq 1$. Then we need to derive $m \geq 2$ from $g_{\theta}(m-1)=M-\frac{1}{2}$; again, if $M \geq 2$, then $M-\frac{1}{2}>g_{\theta}(0)=\frac{1}{2}$, so $m-1>0$. Note that Proposition 3.18 depends on Proposition 3.16 so we need to assume $M \geq 1$ here too. We have therefore proved the following propositions.

Proposition 3.19. Suppose $M \geq 1$. If $g_{\theta}(x)=M$, then $M \in \mathbb{Z}_{\geq 1}, x=m+\frac{1}{2}$ for $0 \leq m \leq n$, and $\sigma_{m+1} \in\{(1,-1), 1\}$.
Proposition 3.20. Assume that $M \geq 2$, and let m be such that $m+\frac{1}{2}=\min g_{\theta}^{-1}(M)$. We have $m>0, \sigma_{m}=(1,1)$, and $g_{\theta}\left(m-\frac{1}{2}\right)=M-1$. Moreover, we have $g_{\theta}(x) \leq M-1$ for $0 \leq x \leq m-\frac{1}{2}$.

Proposition 3.21. Assume $M \geq 1$, and also that $M>g_{\theta}\left(n+\frac{1}{2}\right)$. Let k be such that $k-\frac{1}{2}=$ $\max g_{\theta}^{-1}(M)$. We have $k \leq n, \sigma_{k+1} \in\{(-1,-1),-1\}$, and $g_{\theta}\left(k+\frac{1}{2}\right)=M-1$. Moreover, we have $g_{\theta}(x) \leq M-1$ for $k+\frac{1}{2} \leq x \leq n+\frac{1}{2}$.

Recall from from Section 3.2 the definitions of the finite sequences $I_{\alpha}(\Delta)$ and $\widehat{I}_{\alpha}(\Delta)$, where α is a root, of g_{α}, as well as the related notation.

Fix p, so α_{p} is a simple root if $p>0$, or θ if $p=0$. Let M be the maximum of $g_{\alpha_{p}}$, and suppose that $M \geq \delta_{p, 0}$. Note this is always true for $p \neq 0$ by Proposition 3.16. Let m be the minimum index i in $\widehat{I}_{\alpha_{p}}(\Delta)$ for which we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{i}^{J}=M$. The following proposition is an immediate consequence of Propositions 3.16, 3.17, 3.19, 3.20.

Proposition 3.22. Given the above setup, the following hold.
(1) If $m \neq \infty$, then $\gamma_{m}=\alpha_{p}$ and $m \in J$.
(2) If $M>\delta_{p, 0}$, then m has a predecessor k in $\widehat{I}_{\alpha_{p}}(\Delta)$ such that

$$
\gamma_{k}=\alpha_{p}, k \notin J, \text { and } \operatorname{sgn}\left(\alpha_{p}\right) l_{k}^{J}=M-1 .
$$

Now assume that $M>\left\langle\mu(J), \alpha_{p}^{\vee}\right\rangle$. Let k be the maximum index i in $I_{\alpha_{p}}(\Delta)$ for which we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{i}^{J}=M$, and let m be the successor of k in $\widehat{I}_{\alpha_{p}}(\Delta)$. The following analogue of Proposition 3.22 is proved in a similar way, based on Propositions 3.16, 3.18, 3.19, 3.21.

Proposition 3.23. Given the above setup, and assuming also that $M \geq \delta_{p, 0}$, the following hold.
(1) We have $\gamma_{k}=\alpha_{p}$ and $k \in J$.
(2) If $m \neq \infty$, then

$$
\gamma_{m}=-\alpha_{p}, m \notin J, \quad \text { and } \operatorname{sgn}\left(\alpha_{p}\right) l_{m}^{J}=M-1
$$

Proof of Theorem 3.9. Suppose $p \neq 0$. We consider f_{p} first. The cases corresponding to $m \neq$ ∞ and $m=\infty$ can be proved in similar ways, so we only consider the first case. Let $J=$ $\left\{j_{1}<j_{2}<\ldots<j_{s}\right\}$, and let $w_{i}:=r_{j_{1}} r_{j_{2}} \ldots r_{j_{i}}$. Based on Proposition 3.22, let $a<b$ be such that

$$
j_{a}<k<j_{a+1}<\cdots<j_{b}=m<j_{b+1}
$$

if $a=0$ or $b+1>s$, then the corresponding indices j_{a}, respectively j_{b+1}, are missing. To show that $(J \backslash\{m\}) \cup\{k\}$ is an admissible subset, it is enough to prove that we have the path in the quantum Bruhat graph

$$
\begin{equation*}
w_{a} \longrightarrow w_{a} r_{k} \longrightarrow w_{a} r_{k} r_{j_{a+1}} \longrightarrow \ldots \longrightarrow w_{a} r_{k} r_{j_{a+1}} \ldots r_{j_{b-1}}=w_{b} \tag{18}
\end{equation*}
$$

By our choice of k, we have

$$
\begin{equation*}
w_{a}\left(\beta_{k}\right)=\alpha_{p} \Longleftrightarrow w_{a}^{-1}\left(\alpha_{p}\right)=\beta_{k}>0 \Longleftrightarrow w_{a} \lessdot s_{p} w_{a}=w_{a} r_{k} \tag{19}
\end{equation*}
$$

So we can rewrite (18) as

$$
\begin{equation*}
w_{a} \longrightarrow s_{p} w_{a} \longrightarrow s_{p} w_{a+1} \longrightarrow \ldots \longrightarrow s_{p} w_{b-1}=w_{b} \tag{20}
\end{equation*}
$$

We will now prove that (20) is a path in the quantum Bruhat graph. Observe that, for $a<i \leq b$, we have

$$
s_{p} w_{i-1}=w_{i}=w_{i-1} r_{j_{i}} \Longleftrightarrow w_{i-1}\left(\beta_{j_{i}}\right)= \pm \alpha_{p} \Longleftrightarrow j_{i} \in I_{\alpha} .
$$

Our choice of k and b implies that we have

$$
\begin{equation*}
s_{p} w_{i-1} \neq w_{i} \text { for } a<i<b, \quad \text { and } s_{p} w_{b-1}=w_{b} . \tag{21}
\end{equation*}
$$

Since J is admissible, we have

$$
\begin{equation*}
w_{i-1} \longrightarrow w_{i} \tag{22}
\end{equation*}
$$

Starting from (19), and then using (21)-(22), we can apply Lemma 2.2 repeatedly to conclude that

$$
\begin{equation*}
s_{p} w_{i-1} \longrightarrow s_{p} w_{i} \text { and } w_{i} \lessdot s_{p} w_{i}, \quad \text { for } a<i<b . \tag{23}
\end{equation*}
$$

The proof for $e_{p}(J)$ is similar. The main difference is that we need the "if" part of Lemma 2.2, whereas above we used the "only if" part.

The above proof follows through for $p=0$, based on Lemma 2.1, which is used to derive the analogue of (19), and Lemma 2.3, which replaces Lemma 2.2.

We can prove that $f_{p}(J)=J^{\prime}$ if and only if $e_{p}\left(J^{\prime}\right)=J$ based on [LP08][Proposition 7.4 (1)]; this still holds in the above setup (for any p, including $p=0$), based on Propositions 3.16-3.21. The same result can be invoked to derive the formulas for $\varphi_{p}(J)$ and $\varepsilon_{p}(J)$.

In order to show that f_{p} changes weights by $-\alpha_{p}$, the proof of [LP08][Proposition 7.1 (3)] can be applied in our context. In essence, we note that $\mu\left(f_{p}(J)\right)$ is $-\widehat{t}_{k} \widehat{t}_{m}(-\mu)$ if $m \neq \infty$, and $-\widehat{t}_{k}(-\mu)$
otherwise, where $\widehat{t}{ }_{j}:=s_{\left|\gamma_{j}\right|,-l_{j}^{J}}=s_{\gamma_{j},-\operatorname{sgn}\left(\gamma_{j}\right) l_{j}^{J}}$. By Proposition 3.22 and (15), we have $\widehat{t}_{k}=s_{\alpha_{p},-M}$ and $\widehat{t}_{m}=s_{\alpha_{p},-(M-1)}$. The rest of the calculation is the same as in the proof mentioned above.
3.4. Main application. We summarize the main results in [$\left.\mathrm{LNS}^{+} 13 \mathrm{~b}\right]$, cf. also $\left[\mathrm{LNS}^{+} 12\right.$, LNS^{+}13a]. The setup is that of untwisted affine root systems.

Theorem 3.24. [LNS $\left.{ }^{+} 13 \mathrm{~b}\right]$ Consider a composition $\mathbf{p}=\left(p_{1}, \ldots, p_{k}\right)$ and the corresponding crystal $B:=\bigotimes_{i=1}^{k} B^{p_{i}, 1}$. Let $\lambda:=\omega_{p_{1}}+\ldots+\omega_{p_{k}}$, and let $\Gamma_{\text {lex }}$ be a corresponding lex λ-chain (see above).
(1) The (combinatorial) crystal $\mathcal{A}\left(\Gamma_{\mathrm{lex}}\right)$ is isomorphic to the subgraph of B consisting of the dual Demazure arrows, via a specific bijection.
(2) If the vertex b of B corresponds to J under the isomorphism in part (1), then the energy is given by $D_{B}(b)-C=-\operatorname{height}(J)$, where C is a global constant.

Remarks 3.25 . (1) The entire crystal B is realized in $\left[\mathrm{LNS}^{+} 13 \mathrm{~b}\right]$ in terms of the so-called quantum $L S$ path model. If we identify the two, the bijection in Theorem $3.24(1)$ is the "forgetful map" from the quantum alcove model to the quantum LS path model, so it is a very natural map. Therefore, we think of the former model as a mirror image of the latter, via this bijection. However, if we use this identification to construct the non-dual Demazure arrows in the quantum alcove model, we quickly realize that, in general, the constructions are considerably more involved than (16)-(17), cf. Remark 4.8 (1) and Example 4.9.
(2) Although the quantum alcove model so far misses the non-dual Demazure arrows, it has the advantage of being a discrete model. Therefore, combinatorial methods are applicable, for instance in proving the independence of the model from the choice of an initial alcove path (or λ-chain of roots), see below, including the application in Remark 3.27 (2). This should be compared with the continuous arguments used for the similar purpose in the Littelmann path model [Lit95].
(3) Theorem 3.24, combined with the Ram-Yip formula for Macdonald polynomials [RY11], implies that the graded character of a tensor product of column shape KR modules (the grading being by the energy function) concides with the corresponding Macdonald polynomial specialized at $t=0\left[\mathrm{LNS}^{+} 13 \mathrm{~b}\right]$.

Based on Theorem 3.24 (1), as well as on the realization of the same subgraph of B in types A and C in terms of a different λ-chain (see Theorems 4.7 and 4.20), we make the following conjecture.

Conjecture 3.26. Theorem 3.24 holds for any choice of a λ-chain (instead of a lex λ-chain).
We plan to prove this conjecture in [LL] by using Theorem 3.24 as the starting point. Then, given two λ-chains Γ and Γ^{\prime}, we would construct a bijection between $\mathcal{A}(\Gamma)$ and $\mathcal{A}\left(\Gamma^{\prime}\right)$ preserving the dual Demazure arrows and the height statistic; this would mean that the quantum alcove model does not depend on the choice of a λ-chain. This construction will be based on generalizing to the quantum alcove model the so-called Yang-Baxter moves in [Len07]. As a result, we would obtain a collection of a priori different bijections between B and $\mathcal{A}(\Gamma)$.

Remarks 3.27. (1) We believe that the bijections mentioned above would be identical. In fact, this would clearly be the case if all the tensor factors of B are perfect crystals, see Section 2.1. Indeed, then the subgraph of B consisting of the dual Demazure arrows is connected, so there is no more than one isomorphism between it and $\mathcal{A}(\Gamma)$.
(2) In the case when all the tensor factors of B are perfect crystals, a corollary of the work in [LL] would be the following application of the quantum alcove model, cf. Remark 3.27 (1). By making specific choices for the λ-chains Γ and Γ^{\prime}, the bijection between $\mathcal{A}(\Gamma)$ and $\mathcal{A}\left(\Gamma^{\prime}\right)$ mentioned above would give a uniform realization of the combinatorial R-matrix (i.e., the unique affine crystal isomorphism commuting factors in a tensor product of KR crystals). In fact, we believe that this statement would hold in full generality, rather than just the perfect case.

4. The quantum alcove model in types A and C

In this section we specialize the quantum alcove model to types A and C, and prove that the bijections constructed in [Len12], from the objects of the specialized quantum alcove model to the tensor products of the corresponding KN columns (see Section 2.1), are affine crystal isomorphisms.
4.1. Type A. We start with the basic facts about the root system of type A_{n-1}. We can identify the space $\mathfrak{h}_{\mathbb{R}}^{*}$ with the quotient $V:=\mathbb{R}^{n} / \mathbb{R}(1, \ldots, 1)$, where $\mathbb{R}(1, \ldots, 1)$ denotes the subspace in \mathbb{R}^{n} spanned by the vector $(1, \ldots, 1)$. Let $\varepsilon_{1}, \ldots, \varepsilon_{n} \in V$ be the images of the coordinate vectors in \mathbb{R}^{n}. The root system is $\Phi=\left\{\alpha_{i j}:=\varepsilon_{i}-\varepsilon_{j}: i \neq j, 1 \leq i, j \leq n\right\}$. The simple roots are $\alpha_{i}=\alpha_{i, i+1}$, for $i=1, \ldots, n-1$. The highest root $\widetilde{\alpha}=\alpha_{1 n}$. We let $\alpha_{0}=\theta=\alpha_{n 1}$. The weight lattice is $\Lambda=\mathbb{Z}^{n} / \mathbb{Z}(1, \ldots, 1)$. The fundamental weights are $\omega_{i}=\varepsilon_{1}+\ldots+\varepsilon_{i}$, for $i=1, \ldots, n-1$. A dominant weight $\lambda=\lambda_{1} \varepsilon_{1}+\ldots+\lambda_{n-1} \varepsilon_{n-1}$ is identified with the partition ($\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n-1} \geq \lambda_{n}=0$) having at most $n-1$ parts. Note that $\rho=(n-1, n-2, \ldots, 0)$. Considering the Young diagram of the dominant weight λ as a concatenation of columns, whose heights are $\lambda_{1}^{\prime}, \lambda_{2}^{\prime}, \ldots$, corresponds to expressing λ as $\omega_{\lambda_{1}^{\prime}}+\omega_{\lambda_{2}^{\prime}}+\ldots$ (as usual, λ^{\prime} is the conjugate partition to λ).

The Weyl group W is the symmetric group S_{n}, which acts on V by permuting the coordinate vectors $\varepsilon_{1}, \ldots, \varepsilon_{n}$. Permutations $w \in S_{n}$ are written in one-line notation $w=w(1) \ldots w(n)$. For simplicity, we use the same notation (i, j) with $1 \leq i<j \leq n$ for the root $\alpha_{i j}$ and the reflection $s_{\alpha_{i j}}$, which is the transposition $t_{i j}$ of i and j. We recall a criterion for the edges of the type A quantum Bruhat graph. We need the circular order \prec_{i} on $[n]$ starting at i, namely $i \prec_{i} i+1 \prec_{i}$ $\ldots \prec_{i} n \prec_{i} 1 \prec_{i} \ldots \prec_{i} i-1$. It is convenient to think of this order in terms of the numbers $1, \ldots, n$ arranged on a circle clockwise. We make the convention that, whenever we write $a \prec b \prec c \prec \ldots$, we refer to the circular order $\prec=\prec_{a}$.

Proposition 4.1. [Len12] For $1 \leq i<j \leq n$, we have an edge $w \xrightarrow{(i, j)} w(i, j)$ if and only if there is no k such that $i<k<j$ and $w(i) \prec w(k) \prec w(j)$.

Example 4.2. The quantum Bruhat graph of type A_{2}, i.e., on the symmetric group S_{3}, is indicated in Figure 3.

Figure 3

QUANTUM ALCOVE MODEL
We now consider the specialization of the quantum alcove model to type A. For any $k=$ $1, \ldots, n-1$, we have the following ω_{k}-chain, from A_{\circ} to $A_{-\omega_{k}}$, denoted by $\Gamma(k)$ [LP07]:

$((k, k+1)$,	$(k, k+2)$,\ldots,	(k, n),
$(k-1, k+1)$,	$(k-1, k+2)$,\ldots,	$(k-1, n)$,
\vdots	\vdots		\vdots
$(1, k+1)$,	$(1, k+2)$,\ldots,	$(1, n))$.

Example 4.3. For $n=4, \Gamma(2)$ can be visualized as obtained from the following broken column, by pairing row numbers in the top and bottom parts in the prescribed order.

$$
\begin{aligned}
& \begin{array}{l}
1 \\
2
\end{array} \\
& \begin{array}{l}
3 \\
4
\end{array}
\end{aligned}, \quad \Gamma(2)=\{(2,3),(2,4),(1,3),(1,4)\} .
$$

Note that the top part of the above broken column corresponds to ω_{2}.
Fix a dominant weight/partition λ for the remainder of this section. We construct a λ-chain $\Gamma=$ $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ as the concatenation $\Gamma:=\Gamma^{1} \ldots \Gamma^{\lambda_{1}}$, where $\Gamma^{j}=\Gamma\left(\lambda_{j}^{\prime}\right)$. Let $J=\left\{j_{1}<\cdots<j_{s}\right\}$ be a set of folding positions in Γ, not necessarily admissible, and let T be the corresponding list of roots of Γ. The factorization of Γ induces a factorization of T as $T=T^{1} T^{2} \ldots T^{\lambda_{1}}$, and of $\Delta=\Gamma(J)$ as $\Delta=\Delta^{1} \ldots \Delta^{\lambda_{1}}$. Recalling that the roots in Δ were denoted γ_{k}, we use the notation $\gamma_{k} \in \Delta^{q}$ to indicate that the k th root in Δ falls in the segment Δ^{q} (rather than the fact that Δ^{q} contains a root equal to γ_{k}). We denote by $T^{1} \ldots T^{j}$ the permutation obtained by composing the transpositions in T^{1}, \ldots, T^{j} left to right. For $w \in W$, written $w=w_{1} w_{2} \ldots w_{n}$, let $w[i, j]=w_{i} \ldots w_{j}$.

We now recall from [Len12] the construction of the correspondence between the type A quantum alcove model and model based on diagram fillings.
Definition 4.4. Let $\pi_{j}=\pi_{j}(T):=T^{1} \ldots T^{j}$. We define the filling map, which associates with each $J \subseteq[m]$ a filling of the Young diagram λ, by

$$
\begin{equation*}
\operatorname{fill}(J)=\operatorname{fill}(T):=C_{1} \ldots C_{\lambda_{1}}, \quad \text { where } C_{i}:=\pi_{i}\left[1, \lambda_{i}^{\prime}\right] . \tag{25}
\end{equation*}
$$

We define the sorted filling map sfill (J) by sorting ascendingly the columns of fill (J).
Example 4.5. Let $n=3$ and $\lambda=(4,3,0)$, which is identified with $4 \varepsilon_{1}+3 \varepsilon_{2}=3 \omega_{2}+\omega_{1}$, and corresponds to the Young diagram $\square \square \square$. We have

$$
\Gamma=\Gamma^{1} \Gamma^{2} \Gamma^{3} \Gamma^{4}=\Gamma(2) \Gamma(2) \Gamma(2) \Gamma(1)=\{\underline{(2,3)}, \underline{(1,3)}|\underline{(2,3)},(1,3)| \underline{(2,3)},(1,3) \mid \underline{(1,2)},(1,3)\},
$$

where we underlined the roots in positions $J=\{1,2,3,5,7\}$. Then

$$
\begin{gather*}
T=\{(2,3),(1,3)|(2,3)|(2,3) \mid(1,2)\}, \text { and } \\
\Gamma(J)=\Delta=\Delta^{1} \Delta^{2} \Delta^{3} \Delta^{4}=\{\underline{(2,3)}, \underline{(1,2)}|\underline{(3,1)},(2,3)| \underline{(1,3)},(2,1) \mid \underline{(2,3)},(3,1)\}, \tag{26}
\end{gather*}
$$

where we again underlined the folding positions, and indicated the factorizations of T and Δ by bars. It is easy to check that J is admissible; indeed, the sequence of permutations (13) corresponding to J (written as broken columns) is a path in the quantum Bruaht graph, cf. Example 4.2:

By considering the top part of the last column in each segment and by concatenating these columns left to right, we obtain $\operatorname{fill}(J)$, i.e., $\operatorname{fill}(J)=$| 2 | 2 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| 3 | 1 | 3 | | .

Theorem 4.6. [Len12][Theorem 4.1] The map sfill is a bijection between $\mathcal{A}(\Gamma)$ and $B^{\otimes \lambda}$, see (9).
We now state the main result of this section.
Theorem 4.7. The map sfill is an affine crystal isomorphism between $\mathcal{A}(\Gamma)$ and the subgraph of $B^{\otimes \lambda}$ consisting of the dual Demazure arrows. In other words, given $\operatorname{sill}(J)=b$, there is a dual Demazure arrow $b \rightarrow f_{p}(b)$ if and only if $f_{p}(J) \neq \mathbf{0}$, and we have $f_{i}(b)=\operatorname{sfill}\left(f_{i}(J)\right)$.

Remarks 4.8. (1) The affine crystal isomorphism in Theorem 4.7 is unique, cf. Remark 3.27 (1). Therefore, this isomorphism gives the unique way to realize the non-dual Demazure arrows in $\mathcal{A}(\Gamma)$, cf. Remark 3.25 (1) and Example 4.9 below.
(2) In [Len12] it was shown that the map sfill translates the height statistic to the charge statistic, which is known to express the energy function in the model based on diagram fillings, cf. Theorem 2.14. This should be compared with Theorem $3.24(2)$, where the constant C is 0 in this case.

Example 4.9. In type A_{2}, consider $\lambda=(3,2,0)$, the λ-chain in Example 3.3, and the admissible subset $J=\{1,2,3,5\}$, cf. Examples 3.6, 3.7, and 3.8. We have $b=\operatorname{sfill}(J)=$\begin{tabular}{|l|l|l|}
\hline 2 \& 1 \& 1

\hline 3 \& 2

, and $f_{0}(b)=\operatorname{sfill}(\emptyset)=$

\hline 1 \& 1 \& 1

\hline 2 \& 2 \& cf. Example 2.5. However, $b \rightarrow f_{0}(b)$ is not a dual Demazure
\end{tabular} , arrow, and indeed $f_{0}(J)=\mathbf{0}$, cf. Example 3.8. In order to realize this arrow in the quantum alcove model, we would have to define $f_{0}(J)=\emptyset$. This shows that, in general, the changes in an admissible subset corresponding to non-dual Demazure arrows are hard to control. Nevertheless, such arrows are sometimes still realized by our construction (16), assuming that we drop the corresponding condition $M>1$. For an example, still in type A_{2}, consider $\lambda=(3,0,0)$, the λ-chain $\left(\alpha_{12}, \alpha_{13}, \alpha_{12}, \alpha_{13}, \alpha_{12}, \alpha_{13}\right)$, and $J=\{3,4\}$. We have $b=\operatorname{sfill}(J)=1 / 3 \mid 3$, and $b \rightarrow f_{0}(b)=1|3| 1$ is not a dual Demazure arrow. Now note that the corresponding arrow in the quantum alcove model is $J \mapsto J \cup\{5\}$, which is given by the mentioned relaxed version of (16).

The main idea of the proof of Theorem 4.7 is the following. The signature of a filling, used to define the crystal operator f_{p}, can be interpreted as a graph similar to the graph of $g_{\alpha_{p}}$, which is used to define the crystal operator on the corresponding admissible subsequence. The link between the two graphs is given by Lemma 4.12 below, called the height counting lemma, which we now explain.

Let $N_{c}(\sigma)$ denote the number of entries c in a filling σ. Let $\operatorname{ct}(\sigma)=\left(N_{1}(\sigma), \ldots, N_{n}(\sigma)\right)$ be the content of σ, which is identified with a type A_{n-1} weight. Let $\sigma[q]$ be the filling consisting of the columns $1,2, \ldots, q$ of σ. Given a λ-chain and a corresponding sequence J (not necessarily admissible), recall the related notation, including the heights l_{k}^{J} in (11), the sequence of roots Δ, and its factorization illustrated in (26).

Lemma 4.10. [Len11][Proposition 3.6] Let $J \subseteq[m]$, and $\sigma=\operatorname{sfill}(J)$. Then we have $\mu(J)=\operatorname{ct}(\sigma)$.
Corollary 4.11. Let $J \subseteq[m], \sigma=\operatorname{fill}(J)$, and $\alpha \in \Phi$. Then $\operatorname{sgn}(\alpha) l_{\alpha}^{\infty}=\left\langle\operatorname{ct}(\sigma), \alpha^{\vee}\right\rangle$.
The height counting lemma can be viewed as an extension of Corollary 4.11.
Lemma 4.12. [Len11][Proposition 4.1] Let $J \subseteq[m]$, and $\sigma=\operatorname{fill}(J)$. For a fixed k, let $\gamma_{k}=(c, d)$ be a root in Δ^{q+1}. We have

$$
\operatorname{sgn}\left(\gamma_{k}\right) l_{k}^{J}=\left\langle\operatorname{ct}(\sigma[q]), \gamma_{k}^{\vee}\right\rangle=N_{c}(\sigma[q])-N_{d}(\sigma[q])
$$

We now introduce notation to be used for the remainder of this section. Let $p \in\{1, \ldots, n-1\}$. Let J be an admissible sequence and let $\sigma=\operatorname{sfill}(J)=C_{1} \ldots C_{\lambda_{1}}$. For $i=1, \ldots, \lambda_{1}$, let $a_{i}:=$ $\left\langle\operatorname{ct}\left(C_{i}\right), \alpha_{p}^{\vee}\right\rangle$, and note that $a_{i} \in\{1,-1,0\}$; here $a_{i}=1$ (resp. $a_{i}=-1$) corresponds to C_{i} containing p but not $p+1$ (resp. $p+1$ but not p), while $a_{i}=0$ corresponds to C_{i} containing both p and $p+1$, or neither of them.

The sequence a_{i} corresponds to the p-signature from Section 2.1, as we now explain. For $j=$ $0, \ldots, \lambda_{1}$, let $h_{j}:=\left\langle\operatorname{ct}(\sigma[j]), \alpha_{p}^{\vee}\right\rangle=\sum_{i=0}^{j} a_{i}$, where we set $a_{0}=h_{0}:=0$. It is useful to think of this sequence as a piecewise linear function, by analogy with the function $g_{\alpha_{p}}$ used to define the crystal operator f_{p} in the quantum alcove model. Let M^{\prime} be the maximum of h_{j}, and let m^{\prime} be minimal with the property $h_{m^{\prime}}=M^{\prime}$. We clearly have $M^{\prime} \geq 0$. If $M^{\prime}>0$ then $a_{m^{\prime}}=1$, and m^{\prime} is the position of the rightmost + in the p-signature of σ. It follows that f_{p} changes the p in column m^{\prime} of σ to $p+1$. The previous observations hold if we replace α_{p}, f_{p}, and the p-signature with α_{0}, f_{0}, and the 0 -signature, while at the same time we replace the entries p and $p+1$ in a filling with n and 1 , respectively. Therefore, from now on we assume that the index p is in $\{0,1, \ldots, n-1\}$.

Example 4.13. We continue with Example 4.5. Let $\sigma=\operatorname{sill}(J)=$| 2 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |
| | 2 | 3 | | , then $f_{2}(\sigma)=$

Figure 4
note that $m=7$, with $\gamma_{7} \in \Delta^{4}$, and $k=4$ with $\gamma_{k} \in \Delta^{2}$. So $f_{2}(J)=(J \backslash\{7\}) \cup\{4\}=\{1,2,3,4,5\}$, and

$$
\Gamma\left(f_{2}(J)\right)=\{\underline{(2,3)}, \underline{(1,2)}|\underline{(3,1)}, \underline{(2,3)}| \underline{(1,2)},(3,1) \mid(3,2),(3,1\},
$$

where we underlined roots in positions $f_{2}(J)$. From the graph corresponding to h_{j} for J, we can see that $M^{\prime}=1$ and $m^{\prime}=2$.

Lemma 4.14. If $\alpha_{p}=\gamma_{k} \in \Delta^{q}$ with $k \notin J$ then $a_{q}=1$.
Proof. Recall that $\alpha_{p}=\gamma_{k}=w\left(\beta_{k}\right)$ for the corresponding w defined in (10), and let $\beta_{k}=(b, c)$. The result follows from the claim that $w(b)=\pi_{q}(b)$ and $w(c)=\pi_{q}(c)$ (cf. Definition 4.4), which is a consequence of the structure of Γ^{q} (cf. (24)), as we now explain. The only reflections in Γ^{q} to the right of β_{k} that affect values in positions b or c are $\left(b, c^{\prime}\right)$ for $c^{\prime}>c$, and $\left(b^{\prime}, c\right)$ for $b^{\prime}<b$. Applying these reflections (on the right) to any w^{\prime} satisfying $w^{\prime}(b)=w(b)$ and $w^{\prime}(c)=w(c)$ does not give an edge in the quantum Bruhat graph, by the corresponding criterion in Proposition 4.1.

Fix an admissible subset J, and recall Proposition 3.22, including the notation therein. In particular, M is the maximum of $g_{\alpha_{p}}$. Moreover, if $M>\delta_{p, 0}$ we defined $k \notin J$ and $m \in J \cup\{\infty\}$
with $\gamma_{k}=\alpha_{p}, \operatorname{sgn}\left(\alpha_{p}\right) l_{k}^{J}=M-1$, and $\gamma_{m}=\alpha_{p}$ when $m \neq \infty$. We will implicitly use the following observation when applying Lemma 3.11 in the next two proofs: if $a_{i} \neq 0$ then $\operatorname{sgn}\left(a_{i}\right)=$ $\operatorname{sgn}\left(\pi_{i}^{-1}\left(\alpha_{p}\right)\right)$, where π_{i} is given in Definition 4.4.
Proposition 4.15. We have $M \geq M^{\prime}$. If $M \geq \delta_{p, 0}$ then $M=M^{\prime}$.
Proof. We first prove that $M \geq M^{\prime}$. By Corollary 4.11 we have $h_{\lambda_{1}}=\operatorname{sgn}(\alpha) l_{\alpha_{p}}^{\infty}$, so the case $M^{\prime}=h_{\lambda_{1}}$ is clear. The case $M^{\prime}=0$ is trivial, since $M \geq 0$. Therefore, we can assume that the maximum of the sequence h_{i} does not occur at its endpoints $i=0$ and $i=\lambda_{1}$. Then we can find $i<j$ such that $h_{i}=M^{\prime}, a_{i}>0, a_{j}<0$, and $a_{t}=0$ for $t \in(i, j)$. By Lemma 3.11 there exists $\gamma_{k^{\prime}}=\alpha_{p} \in \Delta^{q}$ with $q \in(i, j]$, and by Lemma 4.12 we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{k^{\prime}}^{J}=h_{q-1}=h_{i}=M^{\prime}$. Hence $M \geq M^{\prime}$.

By (15), Lemma 4.12, and Corollary 4.11, all the values of $g_{\alpha_{p}}$ at points in $\mathbb{Z}+\frac{1}{2}$ are among the values h_{i}. If $M \geq \delta_{p, 0}$ then, by Propositions 3.16 and 3.19, the maximum M is attained at a point in $\mathbb{Z}+\frac{1}{2}$. It follows that $M \leq M^{\prime}$, hence $M=M^{\prime}$.

The previous proposition states that $M=M^{\prime}$ except in a few corner cases that occur when $p=0$. We will sometimes use one symbol in favor of the other to allude to the corresponding graph.
Proposition 4.16. Assume that $M>\delta_{p, 0}$, so $M=M^{\prime}$ (by Proposition 4.15) and $f_{p}(J) \neq \mathbf{0}$. Then $\gamma_{k} \in \Delta^{m^{\prime}}$. If $m \neq \infty$, so $\gamma_{m} \in \Delta^{m^{\prime \prime}}$ for some $m^{\prime \prime} \geq m^{\prime}$, then $a_{i}=0$ for $i \in\left(m^{\prime}, m^{\prime \prime}\right)$; if $m=\infty$ then $a_{i}=0$ for $i>m^{\prime}$.
Proof. Assuming $\gamma_{k} \in \Delta^{j}$, by Proposition 3.22 (2), Lemma 4.14, and Lemma 4.12, we have $a_{j}=1$ and $\operatorname{sgn}\left(\alpha_{p}\right) l_{k}^{J}=M-1=h_{j-1}$. It follows that $h_{j}=M=M^{\prime}$. By the definition of m^{\prime} and the fact that $M^{\prime}>0$, we have $1 \leq m^{\prime} \leq j$ and $a_{m^{\prime}}=1$. By way of contradiction suppose that $m^{\prime}<j$. It follows that the set $\left\{i \in\left(m^{\prime}, j\right] \mid a_{i} \neq 0\right\}$ is not empty, so let t be its minimum. We have $a_{t}=-1$ and $t<j$, because $a_{t}=1$ would imply $h_{t}>h_{m^{\prime}}=M^{\prime}$. We can now apply Lemma 3.11 to show that there exists $\gamma_{k^{\prime}}=\alpha_{p} \in \Delta^{q}$ with $q \in\left(m^{\prime}, t\right]$ and $k^{\prime} \in J$. By Lemma 4.12, we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{k^{\prime}}^{J}=h_{q-1}=h_{m^{\prime}}=M^{\prime}=M$. Thus, since $k^{\prime}<k<m$, the minimality of m is contradicted. We conclude that $j=m^{\prime}$. If $m \neq \infty$, we can use a similar proof to conclude that the set $\left\{i \in\left(m^{\prime}, m^{\prime \prime}\right) \mid a_{i} \neq 0\right\}$ is empty. The case $m=\infty$ is done similarly.
Proof of Theorem 4.7. We continue to use the notation from the above setup. Recall that $b=$ $\operatorname{sfill}(J)$. The statement that there is a dual Demazure arrow $b \rightarrow f_{p}(b)$ if and only if $f_{p}(J) \neq \mathbf{0}$ follows from Proposition 4.15; indeed, it is clear that $\varphi_{p}(b)=M^{\prime}$, whereas $\varphi_{p}(J)=M-\delta_{p, 0}$ in the quantum alcove model if $M \geq \delta_{p, 0}$, by Theorem 3.9 (2).

We next show that $f_{p}(b)=\operatorname{sfill}\left(f_{p}(J)\right)$, when $f_{p}(J) \neq \mathbf{0}$. Since $f_{p}(b) \neq \mathbf{0}$, we have $M^{\prime}>0$, and f_{p} changes the p in column m^{\prime} to $p+1$ (f_{0} changes n to 1 and sorts the column). Now let us turn to $f_{p}(J)$, where we write the admissible subset J as $\left\{j_{1}<\cdots<j_{s}\right\}$. Let $w_{i}:=r_{j_{1}} \ldots r_{j_{i}}$ be the corresponding sequence of permutations. (Recall that the filling fill (J) is constructed from a subsequence of w_{i}, see Definition 4.4.) We assume $m \neq \infty$, as the case $m=\infty$ is proved similarly. There exist $a<b$ such that

$$
j_{a}<k<j_{a+1}<\cdots<j_{b}=m<j_{b+1} ;
$$

if $a=0$ or $b=s$, then the corresponding indices j_{a}, respectively j_{b+1} are missing. The sequence of permutations associated to $f_{p}(J)$ is

$$
1, w_{1}, \ldots, w_{a}, s_{p} w_{a}, s_{p} w_{a+1}, \ldots, s_{p} w_{b-1}=w_{b}, w_{b+1}, \ldots, w_{s}
$$

(see (20)). By the first part of Proposition 4.16 and by using the notation therein, we conclude that $\operatorname{sill}\left(f_{p}(J)\right)$ is obtained from sfill (J) by interchanging p and $p+1$ in columns i for $i \in\left[m^{\prime}, m^{\prime \prime}\right)$ (interchange n with 1 if $p=0$). By the second part of Proposition 4.16, this amounts to changing the p in column m^{\prime} to $p+1(n$ to 1 if $p=0)$.
4.2. Type C. We start with the basic facts about the root system of type C_{n}. We can identify the space $\mathfrak{h}_{\mathbb{R}}^{*}$ with $V:=\mathbb{R}^{n}$, the coordinate vectors being $\varepsilon_{1}, \ldots, \varepsilon_{n}$. The root system is $\Phi=$ $\left\{ \pm \varepsilon_{i} \pm \varepsilon_{j}: 1 \leq i<j \leq n\right\} \cup\left\{ \pm 2 \varepsilon_{i}: 1 \leq i \leq n\right\}$. The simple roots are $\alpha_{i}=\varepsilon_{i}-\varepsilon_{i+1}$, for $i=$ $1, \ldots, n-1$, and $\alpha_{n}=2 \varepsilon_{n}$. The highest root $\widetilde{\alpha}=2 \varepsilon_{1}$. We let $\alpha_{0}=\theta=-2 \varepsilon_{1}$. The weight lattice is $\Lambda=\mathbb{Z}^{n}$. The fundamental weights are $\omega_{i}=\varepsilon_{1}+\cdots+\varepsilon_{i}$, for $i=1, \ldots, n$. A dominant weight $\lambda=\lambda_{1} \varepsilon_{1}+\cdots+\lambda_{n} \varepsilon_{n}$ is identified with the partition ($\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n} \geq 0$) of length at most n. Note that $\rho=(n, n-1, \ldots, 1)$. Like in type A, writing the dominant weight λ as a sum of fundamental weights corresponds to considering the Young diagram of λ as a concatenation of columns. We fix a dominant weight λ throughout this section.

The Weyl group W is the group of signed permutations B_{n}, which acts on V by permuting the coordinates and changing their signs. A signed permutation is a bijection w from $[\bar{n}]:=\{1<$ $2<\cdots<n<\bar{n}<\overline{n-1}<\cdots<\overline{1}\}$ to $[\bar{n}]$ satisfying $w(\bar{\imath})=\overline{w(i)}$. Here $\bar{\imath}$ is viewed as $-i$, so $\overline{\bar{\imath}}=i,|\bar{\imath}|=i$, and $\operatorname{sign}(\bar{\imath})=-1$. We use both the window notation $w=w_{1} \ldots w_{n}$ and the full one-line notation $w=w(1) \ldots w(n) w(\bar{n}) \ldots w(\overline{1})$ for signed permutations. For simplicity, given $1 \leq i<j \leq n$, we denote by (i, j) the root $\varepsilon_{i}-\varepsilon_{j}$ and the corresponding reflection, which is identified with the composition of transpositions $t_{i j} t_{\bar{\jmath}}$. Similarly, we denote by $(i, \bar{\jmath})=(j, \bar{\imath})$, for $1 \leq i<j \leq n$, the root $\varepsilon_{i}+\varepsilon_{j}$ and the corresponding reflection, which is identified with the composition of transpositions $t_{i \bar{\jmath}} t_{j \bar{\imath}}$. Finally, we denote by $(i, \bar{\imath})$ the root $2 \varepsilon_{i}$ and the corresponding reflection, which is identified with the transposition $t_{i \bar{\imath}}$.

We recall a criterion for the edges of the type C quantum Bruhat graph. We need the circular order \prec_{i} on $[\bar{n}]$ starting at i, which is defined in the obvious way, cf. Section 4.1. It is convenient to think of this order in terms of the numbers $1, \ldots, n, \bar{n}, \ldots, \overline{1}$ arranged on a circle clockwise. We make the same convention as in Section 4.1 that, whenever we write $a \prec b \prec c \prec \ldots$, we refer to the circular order $\prec=\prec_{a}$.

Proposition 4.17. [Len12]
(1) Given $1 \leq i<j \leq n$, we have an edge $w \xrightarrow{(i, j)} w(i, j)$ if and only if there is no k such that $i<k<j$ and $w(i) \prec w(k) \prec w(j)$.
(2) Given $1 \leq i<j \leq n$, we have an edge $w \xrightarrow{(i, \bar{\jmath})}$ if and only if $w(i)<w(\bar{\jmath}), \operatorname{sign}(w(i))=$ $\operatorname{sign}(w(\bar{\jmath}))$, and there is no k such that $i<k<\bar{\jmath}$ and $w(i)<w(k)<w(\bar{\jmath})$.
(3) Given $1 \leq i \leq n$, we have an edge $w \xrightarrow{(i, \bar{\imath})} w(i, \bar{\imath})$ if and only if there is no k such that $i<k<\bar{\imath}$ (or, equivalently, $i<k \leq n$) and $w(i) \prec w(k) \prec w(\bar{\imath})$.

We now consider the specialization of the quantum alcove model to type C. For any $k=1, \ldots, n$, we have the following ω_{k}-chain, from A_{\circ} to $A_{-\omega_{k}}$, denoted by $\Gamma(k)$ [Len10]:

$$
\begin{align*}
& \Gamma(k):= \Gamma_{l}(k) \Gamma_{r}(k) \text { where } \\
& \Gamma_{l}(k):= \Gamma_{k k} \ldots \Gamma_{k 1}, \quad \Gamma_{r}(k):=\Gamma_{k} \ldots \Gamma_{2}, \tag{28}\\
& \Gamma_{i}:=((i, \overline{i-1}),(i, \overline{i-2}), \ldots,(i, \overline{1})), \\
& \Gamma_{k i}:=((i, k+1), \quad(i, k+2), \quad \ldots, \quad(i, n), \\
&(i, \bar{l}), \\
&(i, \bar{n}), \\
&(i, \overline{\bar{i}-1}), \\
&(i, \overline{i-1}), \ldots, \\
&(i, \overline{i-2}), \ldots, \\
&(i, \overline{1})) .
\end{align*}
$$

Fix a dominant weight/partition λ for the remainder of this section. We construct a λ-chain $\Gamma=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right)$ as a concatenation $\Gamma:=\Gamma^{1} \ldots \Gamma^{\lambda_{1}}$, where $\Gamma^{j}=\Gamma\left(\lambda_{j}^{\prime}\right)$; we also let $\Gamma_{l}^{j}:=$ $\Gamma_{l}\left(\lambda_{j}^{\prime}\right)$ and $\Gamma_{r}^{j}:=\Gamma_{r}\left(\lambda_{j}^{\prime}\right)$. Like in type A, given a set $J=\left\{j_{1}<\cdots<j_{s}\right\}$ of folding positions in Γ, not necessarily admissible, we let T be the corresponding list of roots of Γ. We factor Γ as $\Gamma=\widetilde{\Gamma}^{1} \ldots \widetilde{\Gamma}^{2 \lambda_{1}}$, where $\widetilde{\Gamma}^{2 i-1}=\Gamma_{l}^{i}$ and $\widetilde{\Gamma}^{2 i}=\Gamma_{r}^{i}$, for $1 \leq i \leq \lambda_{1}$. This factorization of Γ induces a
factorization of T as $T^{1} T^{2} \ldots T^{2 \lambda_{1}}$, and of $\Delta=\Gamma(J)$ as $\Delta=\Delta^{1} \ldots \Delta^{2 \lambda_{1}}$. Like in type A, we use the notation $\gamma_{k} \in \Delta^{q}$ to indicate that the k th root in Δ falls in the segment Δ^{q}. We denote by $T^{1} T^{2} \ldots T^{j}$ the permutation obtained by composing the type C transpositions in T^{1}, \ldots, T^{j} left to right. For $w \in W$ written in the window notation as $w=w_{1} w_{2} \ldots w_{n}$, let $w[i, j]=w_{i} \ldots w_{j}$.

We now recall from [Len12] the construction of the correspondence between the type C quantum alcove model and model based on diagram fillings.

Definition 4.18. Let $\pi_{j}=\pi_{j}(T):=T^{1} \ldots T^{j}$. We define the filling map, which associates with each $J \subseteq[m]$ a filling of the Young diagram 2λ, by

$$
\begin{equation*}
\operatorname{fill}(J)=\operatorname{fill}(T):=C_{1} \ldots C_{2 \lambda_{1}}, \quad \text { where } C_{i}:=\pi_{i}\left[1, \lambda_{\left\lceil\frac{i}{2}\right]}^{\prime}\right] . \tag{29}
\end{equation*}
$$

We define the sorted filling map $\operatorname{sill}(J)$ by sorting ascendingly the columns of the filling fill (J).
For an example we refer to [Len12][Examples 5.3 and 5.5].
Recall from (9) the definition of $B^{\otimes \lambda}$, which is now realized with split KN columns, see Section 2.1. As such, its arrows are given by f_{p}^{2}, according to Proposition 2.9 (2).

Theorem 4.19. [Len12][Theorem 6.1] The map sfill is a bijection between $\mathcal{A}(\Gamma)$ and $B^{\otimes \lambda}$.
We now state the main result of this section, cf. Theorem 4.7 in type A.
Theorem 4.20. The map sfill is an affine crystal isomorphism between $\mathcal{A}(\Gamma)$ and the subgraph of $B^{\otimes \lambda}$ consisting of the dual Demazure arrows.
Remarks 4.21. (1) The affine crystal isomorphism in Theorem 4.20 is not guaranteed to be unique in general. However, we believe that it coincides with the bijection that we plan to construct (in a type-independent setup) in order to prove Conjecture 3.26. See Remark 3.27 (1).
(2) In [Len12] it was shown that the map sfill translates the height statistic to the charge statistic, which is known to express the energy function in the model based on KN columns, cf. Theorem 2.14. This should be compared with Theorem 3.24 (2), where the constant C is 0 in this case.

The proof of Theorem 4.19 is parallel to the proof of Theorem 4.7. In this case, we use the height counting lemma in type C_{n}, namely Lemma 4.24. As before let $N_{i}(\sigma)$ denote the number of entries i in a filling σ. Let $c_{i}=c_{i}(\sigma):=\frac{1}{2}\left(N_{i}(\sigma)-N_{\bar{\imath}}(\sigma)\right)$ and define the content of a filling σ as $\operatorname{ct}(\sigma):=\left(c_{1}, c_{2}, \ldots, c_{n}\right)$, which is identified with a type C_{n} weight. Let $\sigma[q]$ be the filling consisting of the columns $1,2, \ldots, q$ of σ. Given a λ-chain and a corresponding sequence J (not necessarily admissible), recall the related notation, including the heights l_{k}^{J} in (11), the sequence of roots Δ, and its factorization.

Lemma 4.22. [Len10][Proposition 4.6 (2)] Let $J \subseteq[m]$, and $\sigma=\operatorname{fill}(J)$. Then we have $\mu(J)=$ $\operatorname{ct}(\sigma)$.

Corollary 4.23. Let $J \subseteq[m], \sigma=\operatorname{fill}(J)$, and $\alpha \in \Phi$. Then $\operatorname{sgn}(\alpha) l_{\alpha}^{\infty}=\left\langle\operatorname{ct}(\sigma), \alpha^{\vee}\right\rangle$.
Lemma 4.24. [Len10][Proposition 6.1] Let $J \subseteq\left[m\right.$], and $\sigma=$ fill (J). For a fixed k, let γ_{k} be a root in Δ^{q+1}. We have

$$
\operatorname{sgn}\left(\gamma_{k}\right) l_{k}^{J}=\left\langle\operatorname{ct}(\sigma[q]), \gamma_{k}^{\vee}\right\rangle .
$$

We now introduce notation to be used for the remainder of this section. Let $p \in\{0,1, \ldots, n\}$. Let J be an admissible sequence, and $\sigma=\operatorname{sill}(J)=C_{1} \ldots C_{2 \lambda_{1}}$, which is guaranteed to be in $B^{\otimes \lambda}$ by Theorem 4.19. Let $a_{i}:=\left\langle\operatorname{ct}\left(C_{i}\right), \alpha_{p}^{\vee}\right\rangle$. We have $a_{i} \in\left\{-1,-\frac{1}{2}, 0, \frac{1}{2}, 1\right\}$, for $1 \leq p \leq n-1$, and $a_{i} \in\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$ for $p \in\{0, n\}$.
Remarks 4.25. (1) The value of a_{i} indicates which entries related to the action of f_{p} are contained in column C_{i}, as we now explain. Assuming first that $1 \leq p \leq n-1$, the relevant entries are $\mathcal{P}:=\{p, p+1, \overline{p+1}, \bar{p}\}$. If $a_{i}=1$ (resp. $a_{i}=-1$), then C_{i} contains both p and $\overline{p+1}$ (resp. $p+1$
and \bar{p}). If $a_{i}=\frac{1}{2}\left(\right.$ resp. $\left.a_{i}=-\frac{1}{2}\right)$, then C_{i} contains only one of $p, \overline{p+1}$ (resp. only one of $p+1, \bar{p}$), while if $a_{i}=0$ then C_{i} contains both p and $p+1$, or both $\overline{p+1}$ and \bar{p}, or none of these elements. For $p=n$, the relevant entries are n and \bar{n}. If $a_{i}=\frac{1}{2}$ (resp. $a_{i}=-\frac{1}{2}$), then C_{i} contains n (resp. \bar{n}), while if $a_{i}=0$ then C_{i} contains both n and \bar{n}, or none of these elements. The case $p=0$ is similar to $p=n$: just replace n and \bar{n} with $\overline{1}$ and 1 , respectively.
(2) The sequence a_{i} corresponds to the p-signature of the filling σ. To be more precise, associate with this sequence a (,+-)-word by replacing $\pm \frac{1}{2}$ with \pm and ± 1 with $\pm \pm$ (the 0's are ignored). If $1 \leq p \leq n-1$, this is the same as the $(+,-)$-word associated with σ (see Section 2.1) after cancelling -+ pairs corresponding to the entries p and $p+1$ (or $\overline{p+1}$ and \bar{p}) in a column; similarly for $p=n$ and $p=0$.

Let $h_{j}:=\left\langle\operatorname{ct}(\sigma[j]), \alpha_{p}^{\vee}\right\rangle=\sum_{i=0}^{j} a_{i}$, with $a_{0}=h_{0}:=0$. Like in type A, let $M^{\prime} \geq 0$ be the maximum of h_{j}, and let m^{\prime} be minimal with the property $h_{m^{\prime}}=M^{\prime}$. If $M^{\prime}>0$ then m^{\prime} is the number of the column containing the entry changed by f_{p}. Recall that we need to apply f_{p} twice; the way in which this can happen is described below.

Proposition 4.26. If $1 \leq p \leq n-1$, then we always have one of the following cases related to the action of f_{p}^{2} on the filling σ.
(i) $m^{\prime}=2 i-1$ and $a_{m^{\prime}}=1: p$ and $\overline{p+1}$ in column m^{\prime} are changed to $p+1$ and \bar{p}.
(ii) same as (i) with $m^{\prime}=2 i$.
(iii) $m^{\prime}=2 i$ and $a_{m^{\prime}}=a_{m^{\prime}-1}=\frac{1}{2}$: columns m^{\prime} and $m^{\prime}-1$ both contain an entry p (or both contain $\overline{p+1})$, and these entries are changed to $p+1$ (resp. $\bar{p})$.
If $p=n$ or $p=0$, then the analogue of case (iii) always holds, with n changed to \bar{n}, resp. $\overline{1}$ changed to 1 .

Proof. We implicitly use the following observation, which is immediate from the construction of the splitting $(l C, r C)$ of a column C in Definition 2.7: given $x \in[n]$, the column $l C$ contains x or \bar{x} if and only if $r C$ does.

We consider only $1 \leq p \leq n-1$, as the proof is simpler for $p=n$ and $p=0$. We first prove the following claim: if $a_{2 i-1}= \pm \frac{1}{2}$ (or $a_{2 i}= \pm \frac{1}{2}$), then $C_{2 i-1}$ and $C_{2 i}$ contain a single element in \mathcal{P}, the two elements have the same absolute value, and the pair $\left(a_{2 i-1}, a_{2 i}\right)$ can take only the following values: $\left(\frac{1}{2}, \frac{1}{2}\right),\left(-\frac{1}{2},-\frac{1}{2}\right)$, or $\left(-\frac{1}{2}, \frac{1}{2}\right)$.

We consider only the case $a_{2 i-1}=\frac{1}{2}$, as the others are completely similar. The assumption implies that column $C_{2 i-1}$ contains a single element in \mathcal{P}, namely p or $\overline{p+1}$. In the first case, it is clear that $C_{2 i}$ does not contain $p+1$ or $\overline{p+1}$, but it contains either p or \bar{p}. It suffices to rule out the occurence of \bar{p}. Assuming it, we deduce that the column C whose splitting is $\left(C_{2 i-1}, C_{2 i}\right)$ contains $z_{j}>p$ and $\overline{z_{j}}$, and the corresponding $t_{j}<z_{j}$ is p (cf. Definition 2.7). But C cannot contain $p+1$ or $\overline{p+1}$, so $z_{j}>p+1$, and the maximality of t_{j} is contradicted. In the second case, we need to rule out the occurence of $p+1$ in $C_{2 i}$. Assuming it, we deduce that C contains $z_{j}=p+1$ and $\overline{z_{j}}$, and we have $t_{j}<p$, so again the maximality of t_{j} is contradicted.

Now consider the $(+,-)$-word associated with the sequence a_{j}, see Remark 4.25 (2). Cancel pairs -+ corresponding to the case $\left(a_{2 i-1}, a_{2 i}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right)$ mentioned above. The above claim implies that the resulting word is a concatenation of pairs ++ and -- which come from $a_{j}= \pm 1$ and $\left(a_{2 i-1}, a_{2 i}\right)=\left(\pm \frac{1}{2}, \pm \frac{1}{2}\right)$; recall that for the latter pairs, the claim also gives the corresponding entries in \mathcal{P}. The statement of the proposition now follows.

The following is the analogue of Lemma 4.14.
Lemma 4.27. If $\alpha_{p}=\gamma_{k} \in \Delta^{2 i-1}$ with $k \notin J$ then we have either $a_{2 i-1}=\frac{1}{2}$ and $a_{2 i}=\frac{1}{2}$, or $a_{2 i-1}=1$. If $\alpha_{p}=\gamma_{k} \in \Delta^{2 i}$ with $k \notin J$ then $a_{2 i}=1$.

Proof. We only consider the case corresponding to $\alpha_{p} \in \Delta^{2 i-1}$ and $1 \leq p \leq n-1$, as the others are simpler. We use freely the structure of the chain of roots $\widetilde{\Gamma}^{2 i-1}$, see (28). Recall that $\alpha_{p}=\gamma_{k}=$ $w\left(\beta_{k}\right)$ for the corresponding w defined in (10). We have the following cases:
(1) $\beta_{k}=(b, c)$ with $b \leq \lambda_{i}^{\prime}, c>\lambda_{i}^{\prime}$, and $w(b)=p, w(c)=p+1($ or $w(b)=\overline{p+1}, w(c)=\bar{p})$;
(2) $\beta_{k}=(b, \bar{c})$ with $b \leq \lambda_{i}^{\prime}, c>\lambda_{i}^{\prime}$, and $w(b)=p, w(c)=\overline{p+1}$ (or $\left.w(b)=\overline{p+1}, w(c)=p\right)$;
(3) $\beta_{k}=(b, \bar{c})$ with $c<b \leq \lambda_{i}^{\prime}$, and $w(b)=p, w(c)=\overline{p+1}$ (or $\left.w(b)=\overline{p+1}, w(c)=p\right)$.

We will only consider the first case with $w(b)=p, w(c)=p+1$, as the others are completely similar. We first claim that $w(b)=\pi_{2 i-1}(b)$ (cf. Definition 4.4), i.e., the entry p is not moved by the reflections $s_{\beta_{k^{\prime}}}$ for $\beta_{k^{\prime}}$ in $\widetilde{\Gamma}^{2 i-1}$ with $k^{\prime}>k$. These reflections are $\left(b, c^{\prime}\right)$ with $c^{\prime}>c,(b, \bar{b}),\left(b, \bar{c}^{\prime}\right)$ with $c^{\prime}>\lambda_{i}^{\prime}$, and $\left(b, \overline{c^{\prime}}\right)$ with $c^{\prime}<b$. So if the claim failed, the quantum Bruhat graph criterion in Proposition 4.17 would be violated, because the entry $p+1$ is still in position c when these reflections are applied.

Let us now track the entry $p+1$ as we apply the subsequent reflections not involving position b, by freely using the quantum Bruhat graph criterion. If this entry is not moved by any of these reflections, then $\pi_{2 i-1}(c)=p+1$, so $a_{2 i-1}=\frac{1}{2}$. The first reflection which can move $p+1$ is of the form $\left(b^{\prime}, \bar{c}\right)$ with $b^{\prime}<b$, which means that in position b^{\prime} we will now have the entry $\overline{p+1}$. If this entry is not moved by any of the subsequent reflections $\left(b^{\prime}, \overline{c^{\prime}}\right)$ with $\lambda_{i}^{\prime}<c^{\prime}<c$, then it is not moved by any of the remaining reflections either, so $\pi_{2 i-1}\left(b^{\prime}\right)=\overline{p+1}$, and $a_{2 i-1}=1$. Otherwise, we will have the entry $p+1$ in a position c^{\prime} with $\lambda_{i}^{\prime}<c^{\prime}<c$, and the above reasoning can be applied again (a finite number of times).

Finally, the fact that if $a_{2 i-1}=\frac{1}{2}$ then $a_{2 i}=\frac{1}{2}$ was deduced in the proof of Proposition 4.26.
Recall Proposition 3.22 and the notation therein. M is the maximum of $g_{\alpha_{p}}$, and suppose $M>\delta_{p, 0}$; then $\gamma_{k}=\alpha_{p}$ with $k \notin J, \operatorname{sgn}\left(\alpha_{p}\right) l_{k}^{J}=M-1$, and if $m \neq \infty$ then $\gamma_{m}=\alpha_{p}$ with $m \in J$. The following result is the analogue of Proposition 4.15, and its proof is identical. Indeed, the following key fact is still true: if $a_{i} \neq 0$ then $\operatorname{sgn}\left(a_{i}\right)=\operatorname{sgn}\left(\pi_{i}^{-1}\left(\alpha_{p}\right)\right)$, where π_{i} is given in Definition 4.18 (simply note that $a_{i}=\left\langle\pi_{i}\left(\omega_{k}\right), \alpha_{p}^{\vee}\right\rangle=\left\langle\omega_{k}, \pi_{i}^{-1}\left(\alpha_{p}^{\vee}\right)\right\rangle$, where $\left.k=\lambda_{\left\lceil\frac{i}{2}\right\rceil}^{\prime}\right)$. This will be needed in the proof of Proposition 4.29 as well.

Proposition 4.28. We have $M \geq M^{\prime}$. If $M \geq \delta_{p, 0}$, then $M=M^{\prime}$.
The following result is the analogue of Proposition 4.16.
Proposition 4.29. Assume that $M>\delta_{p, 0}$, so $M=M^{\prime}$ (by Proposition 4.28) and $f_{p}(J) \neq \mathbf{0}$. If $a_{m^{\prime}}=1$ then $\gamma_{k} \in \Delta^{m^{\prime}}$, otherwise $\gamma_{k} \in \Delta^{m^{\prime}-1}$. If $m \neq \infty$, so $\gamma_{m} \in \Delta^{m^{\prime \prime}}$, then $a_{i}=0$ for $i \in\left(m^{\prime}, m^{\prime \prime}\right)$; if $m=\infty$, then $a_{i}=0$ for $i>m^{\prime}$.

Proof. Assuming $\gamma_{k} \in \Delta^{j}$, by Proposition 3.22 (2), Lemma 4.27, and Lemma 4.24, we have $\operatorname{sgn}\left(\alpha_{p}\right) l_{k}^{J}=M-1=h_{j-1}$, and either $a_{j}=1$ or $a_{j}=a_{j+1}=\frac{1}{2}$. In the first case, the rest of the proof is essentially identical to that of Proposition 4.16; in particular, we show that $j=m^{\prime}$. In the second case, we have $j=2 i-1$, so it follows that $h_{2 i}=M=M^{\prime}$. Once again, essentially the same proof as that of Proposition 4.16 applies; in particular, we show that $2 i=m^{\prime}$. Note that in both situations we implicitly used the cases in Proposition 4.26.

Proof of Theorem 4.20. The proof is similar to that of Theorem 4.7, so we only point out the extra complexity in type C. This has to do with showing that, if $b=\operatorname{sfill}(J)$ and $f_{p}(J) \neq \mathbf{0}$, then $f_{p}^{2}(b)=\operatorname{sfill}\left(f_{p}(J)\right)$. We continue to use the notation from the above setup, and we consider only the case $1 \leq p \leq n-1$, as the others are simpler.

Since $f_{p}(b) \neq \mathbf{0}$, we have $M^{\prime}>0$, and f_{p}^{2} acts on b in one of the ways indicated in Proposition 4.26 , cases (i)-(iii). Now let us turn to $f_{p}(J)$, and use the same setup as in the proof of Theorem 4.7, to which we refer. By the first part of Proposition 4.29, we conclude that sfill $\left(f_{p}(J)\right)$ is obtained
from sfill(J) by applying s_{p} to columns i for $i \in\left[m^{\prime}, m^{\prime \prime}\right)$ in cases (i)-(ii), resp. $i \in\left[m^{\prime}-1, m^{\prime \prime}\right)$ in case (iii). By the second part of Proposition 4.29, this amounts to applying s_{p} to column m^{\prime}, resp. to columns $m^{\prime}-1$ and m^{\prime}. By Proposition 4.26 , this is the same as the action of f_{p}^{2} on $\operatorname{sfill}(J)$, which concludes the proof. Note that in the above reasoning we implicitly used Remark 4.25 (1).

References

[BL] C. Briggs and C. Lenart. A charge statistic in type B. In preparation.
[BFP99] F. Brenti, S. Fomin, and A. Postnikov. Mixed bruhat operators and yang-baxter equations for Weyl groups. International Mathematics Research Notices, 8:419-441, 1999.
[FSS07] G. Fourier, A. Schilling, and M. Shimozono. Demazure structure inside KirillovReshetikhin crystals. J. Algebra, 309:386-404, 2007.
[Ful97] W. Fulton. Young Tableaux. Cambridge University Press, 1997.
[FW04] W. Fulton and C. Woodward. On the quantum product of Schubert classes. J. Algebraic Geom., 13:641-661, 2004.
[GL05] S. Gaussent and P. Littelmann. LS-galleries, the path model and MV-cycles. Duke Math. J., 127:35-88, 2005.
$\left[\mathrm{HKO}^{+} 99\right]$ G. Hatayama, A. Kuniba, M. Okado, T. Takagi, and Y. Yamada. Remarks on fermionic formula. In Recent developments in quantum affine algebras and related topics (Raleigh, NC, 1998), volume 248 of Contemp. Math., pages 243-291. Amer. Math. Soc., Providence, RI, 1999.
[HK00] J. Hong and S.J. Kang. Introduction to Quantum Groups and Crystal Bases, volume 42 of Graduate Studies in Mathematics. Amer. Math. Soc., 2000.
[Hum90] J. E. Humphreys. Reflection Groups and Coxeter Groups, volume 29. Cambridge University Press, Cambridge, 1990.
[Kas95] M. Kashiwara. Similarity of crystal bases, Lie algebras and their representations. (Seoul, 1995) Contemp. Math., vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177 186.
[Kas91] M. Kashiwara. On crystal bases of the q-analogue of universal enveloping algebras. Duke Math. J., 63:465-516, 1991.
[KN94] M. Kashiwara and T. Nakashima. Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra, 165:295-345, 1994.
[KR90] A. Kirillov and N. Reshetikhin. Representations of Yangians and multiplicities of the inclusion of the irreducible components of the tensor product of representations of simple Lie algebras. J. Sov. Math., 52:3156-3164, 1990.
[LS79] A. Lascoux and M.-P. Schützenberger. Sur une conjecture de H. O. Foulkes. C. R. Acad. Sci. Paris Sér. I Math., 288:95-98, 1979.
[Len07] C. Lenart. On the combinatorics of crystal graphs, I. Lusztig's involution. Adv. Math., 211:324-340, 2007.
[Len10] C. Lenart. Haglund-Haiman-Loehr type formulas for Hall-Littlewood polynomials of type B and C. Algebra and Number Theory, 4:887-917, 2010.
[Len11] C. Lenart. Hall-Littlewood polynomials, alcove walks and fillings of Young diagrams. Discrete Math., 311:258-275, 2011.
[Len12] C. Lenart. From Macdonald polynomials to a charge statistic beyond type A. J. Combin. Theory Ser. A, 119:683-712, 2012.
[LL] C. Lenart and A. Lubovsky. A uniform realization of the combinatorial R-matrix. In preparation.
[LNS ${ }^{+}$12] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph, 2012. arXiv:1211.2042. To appear in Int. Math. Res. Not.
[LNS $\left.{ }^{+} 13 a\right]$ C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. Explicit description of the action of root operators on quantum Lakshmibai-Seshadri paths. arXiv:1308.3529, 2013. To appear in Proceedings of the 5th Mathematical Society of Japan Seasonal Institute. Schubert Calculus, Osaka, Japan, 2012.
[LNS ${ }^{+}$13b] C. Lenart, S. Naito, D. Sagaki, A. Schilling, and M. Shimozono. A uniform model for Kirillov-Reshetikhin crystals II: Path models and $P=X, 2013$. In preparation. Extended abstract in 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math. Theor. Comput. Sci. Proc. AS, pages 57-68, Paris, France, 2013. arXiv:1211. 6019.
[LP07] C. Lenart and A. Postnikov. Affine Weyl groups in K-theory and representation theory. Int. Math. Res. Not., pages 1-65, 2007. Art. ID rnm038.
[LP08] C. Lenart and A. Postnikov. A combinatorial model for crystals of Kac-Moody algebras. Trans. Amer. Math. Soc., 360:4349-4381, 2008.
[LS11] C. Lenart and A. Schilling. Crystal energy functions via the charge in types A and C. Math. Z., 273:401-426, 2013.
[Lit94] P. Littelmann. A Littlewood-Richardson rule for symmetrizable Kac-Moody algebras. Invent. Math., 116:329-346, 1994.
[Lit95] P. Littelmann. Paths and root operators in representation theory. Ann. of Math. (2), 142:499-525, 1995.
[NS08] S. Naito and D. Sagaki. Lakshmibai-Seshadri paths of level-zero weight shape and one-dimensional sums associated to level-zero fundamental representations. Compos. Math., 144:1525-1556, 2008.
[NY97] A. Nakayashiki and Y. Yamada. Kostka polynomials and energy functions in solvable lattice models. Selecta Math. (N.S.), 3:547-599, 1997.
[RY11] A. Ram and M. Yip. A combinatorial formula for Macdonald polynomials. Adv. Math., 226:309-331, 2011.
[She99] J. T. Sheats. A symplectic jeu de taquin bijection between the tableaux of King and of De Concini. Trans. Amer. Math. Soc., 351:3569-3607, 1999.
[ST12] A. Schilling and P. Tingley. Demazure crystals, Kirillov-Reshetikhin crystals, and the energy function. Electronic J. Combin., 2012.
[Yam98] Y. Yamane. Perfect crystals of $U_{q}\left(G_{2}^{(1)}\right)$. J. Algebra, 210:440-486, 1998.
Department of Mathematics and Statistics, State University of New York at Albany, Albany, ny 12222, USA

E-mail address: clenart@albany.edu
Department of Mathematics and Statistics, State University of New York at Albany, Albany, Ny 12222, USA

E-mail address: alubovsky@albany.edu

[^0]: 2010 Mathematics Subject Classification. Primary 05E10. Secondary 20G42.
 Key words and phrases. Kirillov-Reshetikhin crystals, energy function, alcove model, quantum Bruhat graph, Kashiwara-Nakashima columns.

 Both authors were partially supported by the NSF grant DMS-1101264. The first author gratefully acknowledges the hospitality of the Max-Planck-Institut für Mathematik in Bonn, where part of this work was carried out.

