PERVERSE COHERENT SHEAVES AND FOURIER-MUKAI TRANSFORMS ON
SURFACES II

KOTA YOSHIOKA

ABSTRACT. We study perverse coherent sheaves on the resolution of rational double points. As examples,
we consider rational double points on 2-dimensional moduli spaces of stable sheaves on K3 and elliptic
surfaces. Then we show that perverse coherent sheaves appears in the theory of Fourier-Mukai transforms.
As an application, we generalize the Fourier-Mukai duality for K3 surfaces to our situation.
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0. INTRODUCTION.

This is the second half part of our study of perverse coherent sheaves on surfaces. In the first part [Y7],
we studied basic properties of the category of perverse coherent sheaves especially on the minimal resolution
of a projective surface with rational double points. In this paper, we shall give several examples of perverse
coherent sheaves on projective surfaces. In particular, we shall study Fourier-Mukai transforms associated
to normal K3 surfaces and ellitpic surfaces.

In section 1, we collect some results in [Y7]. In section 2, we consider the Fourier-Mukai transforms on
K3 surfaces. We first generalize known facts on the 2-dimensional moduli spaces of usual stable sheaves to
those of stable perverse coherent sheaves. In particular, we shall show that the singularities of the moduli
spaces Y’ := M y;(v) are rational double points and the minimal resolutions 7’ : X’ — Y are constructed
as X' = My (v), where w is a suitable parameter. We next define similar categories 2 and ¥ to those in
[Br4], and generalize results in [H]. In particular, we study the relation of Fourier-Mukai transforms and the
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categories 2, A (Theorem 2.5.9). This result will be used to study Bridgeland’s stable objects in [MYY]. We
also prove the Fourier-Mukai duality (Theorem 2.6.1). Finally we give some conditions for the preservation
of Gieseker stability conditions.

In section 3, we shall study Fourier-Mukai transforms on elliptic surfaces.

Fourier-Mukai transforms by equivariant coherent sheaves are treated in section 4. Let G be a finite group
acting on a projective surface X. Assume that Kx is the pull-back of a line bundle on Y := X/G. We shall
first construct the moduli space of G-sheaves (Theorem 4.2.4). In particular, we shall construct a minimal
resolution X’ of Y as a moduli space of stable G-sheaves. Then we can describe the exceptional divisors
by a similar method as in the proof of [Y7, Thm.2.2.19]. We next show that the Fourier-Mukai transform
D¢ (X) — D(X') induces an equivalence Cohg(X) — ~!Per(X’/Y) (McKay correspondence [VB]). Then
by using this equivalence, we show that there are many moduli spaces of stable G-sheaves which induce
Fourier-Mukai transforms, if X’ is a K3 surface.

Notation.

(i) For a scheme X, Coh(X) denotes the category of coherent sheaves on X and D(X) the bounded
derived category of Coh(X). We denote the Grothendieck group of X by K(X).

(ii) Let A be a sheaf of Ox-algebras on a scheme X which is coherent as an Ox-module. Let Coh 4(X)
be the category of coherent A-modules on X and D _4(X) the bounded derived category of Coh 4(X).

(iii) Assume that X is a smooth projective variety. Let E be an object of D(X). EY := RHomo, (E,Ox)
denotes the dual of E. We denote the rank of E by rk E. For a fixed nef divisor H on X, deg(E)
denotes the degree of E with respect to H. For G € K(X), tkG > 0, we also define the twisted
rank and degree by rkg(F) := 1k(GY ® E) and deg(E) := deg(GY ® E) respectively. We set
pe(F) = dega(E)/tka(E), if rk E # 0.

(iv) Integral functor. For two schemes X, Y and an object £ € D(X x Y), ®§ ., : D(X) — D(Y)
is the integral functor

(0.1) B,y (E) = Rpy.(€ & p (E)), E € D(X),

where px : X XY — X and py : X XY — Y are projections. If <I>§<_)Y is an equivalence, it is said
to be the Fourier-Mukai transform.
(v) D(X),p denotes the opposit category of D(X). We have a functor

Dx: D(X) — D(X)o
E — EY.

(vi) Assume X is a smooth projective surface.
(a) Weset H(X,Z) := @?:0 H?(X,7Z). In order to describe the element z of H®(X,Z), we use

two kinds of expressions: x = (x¢, 71, T2) = 2o+ 1 +T20x, Where xg € Z,x1 € H*(X,Z), x5 €

Z, and fX ox = 1. For & = (z¢, 21, 22), we set tkx := z¢ and ¢1(x) = ;.
(b) We define a homomorphism

v: K(X) - ZeNS(X)aZ
E = (kE ca(E),x(E)
and set K (X)iop := K(X)/kery. We denote £ mod kervy by 7(E). K(X)op has a bilinear

form x( , ).
(¢) Mukai lattice. We define a lattice structure ( , ) on H®(X,Z) by

0.3) (x,y) == — /X ¥ Uy
=(x1,91) — (woy2 + T2y0),

where x = (xg,z1,22) (resp. y = (yo,y1,%2)) and ¥V = (mg, —x1,%2). It is now called
the Mukai lattice. Mukai lattice has a weight-2 Hodge structure such that the (p,q)-part
is @, HPH11(X). We set

H(X,Z)ag =H"'(H"(X,C)) N H*"(X,Z)

0.4

(0.4) ~7 @& NS(X) @ Z.
Let E be an object of D(X). If X is a K3 surface or rk E = 0, we define the Mukai vector of
E as

(0.5) v(E) :=1k(E) + c1(E) + (x(E) — rk(E))ox € H* (X, Z).

Then for E, F € D(X) such that the Mukai vectors are well-defined, we have
(0.6) X(E, F) = =(v(E), v(F)).
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(d) Since degy(E) is determined by the Chern character ch(E), we can also define degq(v), v €
H(X,Z)ag by using E € D(X) with v(E) = v.

1. A SUMMARY OF SOME RESULTS IN [Y7].

1.1. Perverse coherent sheaves. For a convenience sake, we collect some results in [Y7] which will be
used in this paper.

Let Y be a projective normal surface with at worst rational singularities and 7 : X — Y the minimal
resolution. Let p;, i = 1,2,....,n be the singular points of Y and Z; := 7w~ (p;) = Z§=1 a;;C;; their
fundamental cycles. By the assumption, we have R'm,(Ox) = 0 and C;; are smooth rational curves on X.

We are interested in an abelian subcategory C of D(X) such that there is a locally free sheaf G on X
satisfying

(1) R'm.(GV @ G) =0,
(2) Rm.(GY ®e) induces an equivalence C & Coh 4(Y'), where A = 7, (GY ®G) is a sheaf of Oy-algebras.
Thus

(1.1) C={EcDX)|H(E)=0,i# —1,0, H*(E) € S,H°(E) € T},
where
S :={F € Coh(X)|m.(G" ® E) = 0}
(1.2) T :={F € Coh(X)|R'7.(GY ® E) = 0}
and SNT =0.

Definition 1.1.1 (cf. [Y7, Prop. 2.1.1 (1)]). Let b; := (bi1,bia,...,bis;), @ = 1,2,...,n be sequences of
integers.

(1) We define a torsion pair (T, 5) of Coh(X) such that
S :={F € Coh(X)| E is generated by subsheaves of O¢,, (b;) },
T :={E € Coh(X)|Hom(E, O¢,, (b;;)) = 0}.

(2) Per(X/Y,by,...,b,) denotes the tilting of Coh(X) by (T, S).

(1.3)

Per(X/Y,by,...,b,) is an example of the category of perverse coherent sheaves ([Y7, Lem. 1.2.4]). If
b; = (—1,—1,...,—1) for all 4, then Per(X/Y,b1,...,b,) is nothing but ~! Per(X/Y) in [Br3] and [VB].
We take a locally free sheaf Go on X such that Goc,, = Oc;; (bij + 1)®rkGo We set Ag := .(Gy @ Go).

Definition 1.1.2 ([Y7, Lem. 1.2.16], [Y7, Defn. 2.1.7]). (1)
(1.4) AO(bi) = 7'1'_1(71'*(6%/ ® (Cgc)) ®r-1(A0) Gy

is the unique line bundle on Z; such that Ag(b;)|c,, = Oc;; (bij + 1) for all j. Ag(b;) is denoted by
Ap, in [Y7, Defn. 2.1.7].
(2) We also set Ag(b;)* := Ap(b;) @ wyz,.

We collect easy facts on Ag(b;) and Ag(b;)* which follow from [Y7, Lem. 1.2.22, Lem. 1.2.27].
Lemma 1.1.3. (1) (a) For E = Ay(b;), we have
(1.5) Hom(E, Oc,, (b;;)) = Ext'(E, Oc,, (bij)) =0, 1 <j <t
and there is an exract sequence
(1.6) 0 F E Cs 0

such that F is a successive extension of Oc,;(bi;) and x € Z;.
(b) Conversely if E satisfies these conditions, then E = Ag(b;).
(2) (a) For E = Ay(b;)*, we have

(1.7) Hom(Og,, (bij), E) = Ext' (Oc,, (bi;), E) =0, 1 <j <t

and there is an eract sequence
(1.8) 0 E F C, 0

such that F is a successive extension of Oc,;(bi;) and x € Z;.
(b) Conversely if E satisfies these conditions, then E = Ag(b;)*.

Proposition 1.1.4 (cf. [Y7, Cor. 1.2.24]). The irreducible objects of Per(X/Y,by,...,b,) are
Cy (x € X\ U;Z;) and
AO(bi)a Oc,,y (bll)[l]a -, Oc

3
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Proposition 1.1.5 ([Y7, Prop. 1.1.33]). Let C be a category of perverse coherent sheaves on X. Let I;
(0 < j < sy) be the irreducible objects of C such that 7(Supp(Ly;)) = {y}.

(1) Let Gy be an object of D(X) such that H'(E) = 0 for i # —1,0 and satisfies
(1.10) (a) Hom(G1,1,;[p]) =0,p#0, (b) x(G1,1,;) >0
forally €Y and j =0,1,...,s,. Then Gy is a locally free sheaf on X such that R'7,.(GY @ G1) =0
and G1 is a local projective generator of C.

(2) Assume that x(G1,1,;) >0 for ally € Y and 0 < j < s,. Then there is a local projective generator
G’ with 7(G") = 27(G1).
Lemma 1.1.6 ([Y7, Lem. 1.1.14]). Let C be a category of perverse coherent sheaves and G a locally free
sheaf on X which gives a local projective generator of C.
(1) We have a category of perverse coherent sheaves CP such that GV is a local projective generator:
CP = {E € D(X)|R7.(G® E) € Coh(Y)}.
(2) If E is a local projective object of C, that is, R'm.(EY ® F) = 0 for all F € C, then E" is a local
projective object of CP.
(3) E is an irreducible object of C if and only if EV[2] is an irreducible object of CP.
Definition 1.1.7 (cf. [Y7, Prop. 2.1.1 (2)]). Per(X/Y,by,...,b,)* denotes the tilting of Coh(X) by the
torsion pair (7%, S*):
S* :={F € Coh(X)| E is generated by subsheaves of Ay(b;)*},

(1.11) T* :={F € Coh(X)|Hom(E, Ag(b;)*) = 0}.

Definition 1.1.8. For b; = (b;1, ..., bis,) (1 <i < n), we set bP = (=b;; —2,..., b5, — 2).

Then Per(X/Y,by,...,b,)P = Per(X/Y,bP, ..., bP)*. In particular, Per(X/Y,b? ... bP)* is the category
of perverse coherent sheaves. For Per(X/Y, by, ...,b,)", the irreducible objects are

(Cx($ eX \ U1ZZ) and

(1.12) b |
OCU(_bil — 2), ceey Ocisi (_bisi — 2), Ao(bl )*[1] (1 S 1 S 7’7,)

1.2. Stabilities.

1.2.1. Stability for perverse coherent sheaves. We introduce the notion of semi-stability and constructed the
moduli space as a projective scheme. We shall briefly recall parts of the notion. Let H be the pull-back of
an ample divisor on Y. For a local projective generator G and a perverse coherent sheaf E € C, we have a
G-twisted Hilbert polynomial x(G, E(nH)). If the degree is d, then E is of dimension d. A 2-dimensional
object E is G-twisted semi-stable with respect to H if

(1.13) x(G,F(nH)) < %X(G,E(nH)), n>0

for all subsheaf F' of E. We also define u-semi-stability for a purely 2-dimensional object by comparing the
coefficients of n in (1.13). If E is 1-dimensional, then the condition is

(H,c1(F))
1.14 )< —— E
(1.14) X&) s o m &P
for all proper subobject F' of F.
Definition 1.2.1. (1) For e € K(X)top, Mi(e) is the moduli space of G-twisted semi-stable objects

E of C with 7(E) = e and M§ (e) the open subscheme consisting of G-twisted stable objects.
(2) Let Mg (e)*ss (resp. MG (e)**, M% (e)*) be the moduli stack of y-semi-stable (resp. G-twisted
semi-stable, G-twisted stable) objects E of C with 7(F) = e.

1.2.2. Stability for 0-dimensional objects. A 0-dimensional object F is (G, a)-twisted semi-stable, if
x(o.F) _ x(aB)

X(G,F) = x(G,E)

for all subobject F of E. If v(E) = ox, then it is equivalent to the condition

(1.16) x(a, F) <0

for all subobject F' of E. In this case, the semi-stability is independent of the choice of G. We abbreviatedly
say that F is a-semi-stable. (G, a)-twisted stability and a-stability is also defined in a usual way.

(1.15)

Definition 1.2.2. Let Mg’a(v) be the moduli stack of (G, a)-semi-stable objects E with v(E) = v and
Hi“(v) the moduli space of (G, a)-semi-stable objects E. We also set X* := Mf{a(gx).
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Proposition 1.2.3. There is an isomorphism v : X — Y such that o o : X — Y coincides with 7. In
particular, X° is a normal projective surface.

1.3. Characterization of Per(X/Y,by,...,b,).

Proposition 1.3.1. Let C be the category of perverse coherent sheaves. Then there exists X' and v such that
X =(X")"andC = @gfjl)[f] (Per(X'/Y, b1, ...,b,)) if and only if there is a 3 € o% such that C, are (3-stable
for all z € X, where £Y € D(X' x (X')7) is the universal family of v-stable objects of Per(X'/Y, by, ...,by,).

Since X' = X, @f,zv)?] is regarded as an auto-equivalence of D(X).

Proposition 1.3.2 ([Y7, Prop. 2.4.5]). We setv = (r,{,a) € H*(X,Z)ag, 7 > 0. Assume that (§,D) & rZ
for all D € &, ;Z[C;;] with (D?) = —2. Then there is a category of perverse coherent sheaves C(v) satisfying
the following conditions:
(1) There is a local projective generator G of C(v) such that G is a locally free sheaf on X with v(G) = 2v.
(2) There is B € 0% such that C, € C(v) is (B-stable for all x € X.

Corollary 1.3.3 ([Y7, Cor.2.5.5]). Let X be a K3 surface with a birational morphism m : X — Y, where
Y is a normal surface. Let vy = (r,&,a) be a primitive isotropic Mukai vector such that r (&, D) for all
(—2)-curves D with (D, H) = 0. Let C(vg) be the category in Proposition 1.3.2. Then M (vg) # 0.

2. FOURIER-MUKAI TRANSFORM ON A K3 SURFACE.

2.1. Basic results on the moduli spaces of dimension 2. Let Y be a normal K3 surfaceand 7 : X — Y
the minimal resolution. Let p1,pa,...,pn be the singular points of Y and Z; := 7~ ! (p;) = >_7° a;;Cij the
fundamental cycle, where C;; are smooth rational curves on X and a;; € Z~o. We shall study moduli of
stable objects in the category of perverse coherent sheaves C satisfying the following assumption.

Assumption 2.1.1. There is a 3 € ox ® Q such that C,, is S-stable for all x € X.

By Proposition 1.3.1, there are b; := (b;1, bi2, ..., bis,) € ZP% and an autoequivalence @;12;( :D(X) —
D(X) such that ¢§i%]((Per(X/Y)) = C, where Per(X/Y) := Per(X/Y,by,...,b,) and F is the family of
% (B)-stable objects of Per(X/Y) in Proposition 1.3.1. We set

FY[2 .
2.1) p {%i;mo(bi)), j=0,
’ o FY[2 .
0% (00, bip)1]), > 0.
Throughout this section, we assume the following:

Assumption 2.1.2. vy := rg + & + agox, ro > 0,& € NS(X) is a primitive isotropic Mukai vector such
that (vg,v(A;;)) < 0 for all ¢, j.

By Proposition 1.1.5 (2), we have the following.

Lemma 2.1.3. There is a local projective generator G of C whose Mukai vector is 2vy. More generally, for a
sufficiently small o € (v Nox)®Q, there is a local projective generator G of C such that v(G) € Qso(vo+a).

Remark 2.1.4. By Proposition 1.3.2, Assumptions 2.1.1, 2.1.2 are weak.

Let H be the pull-back of an ample divisor on Y. For a sufficiently small o € (vy N o%) ® Q, we take
a local projective generator G of C with v(G) € Qso(vp + ). We define vg + a-twisted semi-stability in a
usual way. Since it is equivalent to the G-twisted semi-stability, we have the moduli space M}?Jm(vo). Let
M7 (vo) be the moduli space of vy + a-stable objects. By Corollary 1.3.3, M}?(vo) # (). Hence we see
that M+ (vp) is also non-empty. Then we have the following which is well-known for the moduli of stable
sheaves on K3 surfaces.

Proposition 2.1.5. (1) MpP**(vo) is a smooth surface. If a is general, then M?Jra(vo) = MP"*(vo)
18 projective.
(2) Ifﬂ?+a(vo) = M} *(vy), then it is a K3 surface.

For the structure of My, (vg), as in [OY], we have the following.

Theorem 2.1.6 (cf. [OY, Thm. 0.1]). (1) MUHO (vo) is normal and the singular points q1,q2, ..., Gm of
M?}) (vo) correspond to the S-equivalence classes of properly vo-twisted semi-stable objects.
(2) For a suitable choice of a with |(a?)| < 1, there is a surjective morphism 7 : M?}ﬁa(vo) =
M (vg) — My (vo) which becomes a minimal resolution of the singularities.
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(3) Let @0 By
objects.
(a) Then the matriz (—(v(Eij),v(Eix))) x>0 is of affine type A, D, E.
(b) Assume that ajy = 1. Then the singularity of My (vo) at g; is a rational double point of type
A, D, E according as the type of the matriz (—(v(E;;), v(Eix)));k>1-

% be the S-equivalence class corresponding to q;, where E;; are vo-twisted stable

Remark 2.1.7. A (—2)-vector u € L := vg- N H+ nH*(X, Z)ag is numerically irreducible, if there is no
decomposition v = Y, bju; such that u; € L, (u?) = =2, tku > rku; > 0, b; € Zs¢. If u is numerically
irreducible, as we shall see in Proposition 2.2.14, there is a vo-twisted stable object E with v(E) = wu.
In particular, if there is a decomposition vy = >,-,a;u; such that u; € L are numerically irreducible,
(u?) = =2, tku; > 0 and a; € Zs, then there are vg-stable objects E; such that v(E;) = u;, and hence

?

vo = v(@; E*). Thus the types of the singularities are determined by the sublattice L of H*(X,Z).

We shall give a proof of this theorem in subsection 2.2. We assume that o € (vy- N %) ® Q is general
and set X' := M (vp). X’ is a K3 surface. We have a morphism ¢ : X’ — My (v9). We shall explain
some cohomological properties of the Fourier-Mukai transform associated to X’. Let £ be a universal family
as a twisted object on X’ x X. For simplicity, we assume that £ is an untwisted object on X’ x X. But all
results hold even if £ is a twisted object. We set

G1 ::g\{z/}xX S K(X),
(22) G2 ::g\\;(’x{w} € K(XI)
Gs IZS‘X/X{QC} S K(X/)

)

for some x € X and 2’ € X’. We also set

(2.3) wo = V(E% x (a3) = o + &0 + Goox, &0 € NS(X).

We set @ := <I>§(V_)X, and ® := %, . Thus

(2.4) 9% (z) := RHom,, (€, 7 (¢)), 2 € D(X),

and ®° : D(X’) — D(X) by

(2.5) ®°(y) := R Hom,, (£¥,p:(y)),y € D(X'),

where Hom,,, (—, —) = pz.Homo,, (=, —), Z = X, X" are the sheaves of relative homomorphisms.

Theorem 2.1.8 ([Br2], [O]). ®° is an equivalence of categories and the inverse is given by ®*[2].

Definition 2.1.9. (1) We set
- e YRS,
(2) For D € H%(X,Q), we set
b= (o (3(D)],
=0 = [pe (e - @@ ) uiko) | e o)

where [ ]; means the projection to H2(X', Q).
The following result is a consequence of [Y7, Lem. 1.4.6, Lem. 1.4.8].

Lemma 2.1.10 (cf. [Y5, Lem. 1.4]). roH s a nef and big divisor on X' which defines a contraction
7 X' =Y’ of X' to a normal surface Y'. There is a morphism 1 : Y’ — My (vo) such that ¢ = ¢ o',

Proof. Let G be a local projective generator of C such that 7(G) = 27(G1) (Lemma 2.1.3). Applying

[Y7, Lem. 1.4.6], we have an ample line bundle £({) on Mg(vo) = My (vo). By the definition of H,
c1(¢*(L(C))) = roH ([Y7, Lem. 1.4.8]). Hence our claim holds. O

We use H (resp. H) to define degg, (E) (resp. degg, (E') (i =2,3)) for £ € D(X) (resp. E' € D(X’)).

Proposition 2.1.11 (cf. [Y5, Prop. 1.5]). (1) Every element v € H*(X,Z) can be uniquely written as

1 1
v = lvg + aox +d (H +q gom) + (D + TO(D,@@X) ,
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where

k 1
l:r v :_<1},Qx> cly
rk vg rk vg /)
(v, vg) 1
2. =— —7Z,
( 8) @ I‘kvo € To
_ degg, (v) 1 7

“rkvo(H?) T ro(H?)
and D € H*(X,Q) N H*. Moreover v € v(D(X)) if and only if D € NS(X) @ QN H+.

1
o« (lvo +aox + (dH+D+ T(dH-i-D,fo)QX))
0

SO PO
=lox' + awy — (dH—i-D + (dH+D,§o)QX')

To

where D € H*(X,Q)N HL.

degg, (v) = —degg, (*(v)).
In particular, degg, (w) € Z for w € H*(X',7Z) and

min{degq, (E) > 0|F € K(X)} = min{degq, (F) > 0|F € K(X")}.

2.2. Proof of Theorem 2.1.6. We shall choose a special a and study the structure of the moduli spaces.
We first prove the following. The normalness of M 5 (vo) will be proved in Proposition 2.2.13.

Proposition 2.2.1. (1) ¥ :Y" — My (vo) is bijective.
(2) The singular points of Y’ correspond to properly vy-twisted semi-stable objects.

(3) Let @j>0 Ef;a” be the S-equivalence class of a properly vo-twisted semi-stable object, where E;; are

vo-twisted stable. Then the matriz (—(v(Eij), v(Ei)))jr>0 is of affine type A,D,E. We assume
that a;g = 1. Then w’l(@jzo Ef;a”) is a rational double point of type A, D, E according as the
type of the matriz (—(v(Esj), v(Eik)))jk>1-

2.2.1. Proof of Proposition 2.2.1. We note that M/} (vo) is smooth, and ¢ : X’ — MUHO (vp) and ¢ : Y —
My} (o) are isomorphic over M (vg). Hence the singular points of Y/ are in the inverse image of M (vg) \
M3 (vo). Thus we may concentrate on the locus of properly vo-twisted semi-stable objects. The first claim
of Proposition 2.2.1 (3) follows from the following.

Lemma 2.2.2. Assume that E is S-equivalent to P Eiﬂj-a”

the matriz (—(v(Eij),v(Eix)))jrs0 is of type A, D, E. Moreover (v(Ey;),v(Ew)) = 0, if D;>0 Efj'aij #
daj =

Dizo Br -

Proof. We note that rk(e) : K(X) — Z satisfies rk £;; > 0 for all 4,j. Since degg, (E) = x(G1, E) = 0,

degg, (Eij) = x(G1, Eij) = 0, which implies that v(E;;) € v NO(H)*. Since (v N §(H)L)/Zvg is negative

definite, applying Lemma [Y7, Lem. 3.1.1 (1)], we see that the matrix is of type A,D,E. We note that
@a;i a,, . . .

GBJZO B o @120 ES * implies that {EiO,Eil,...7EiS;} %+ {Eko,Em,-.-,Eks;}- Since x(Eij, Er) > 0

implies that Ej; = Ej, we have {v(Eio), v(En),...,v(Eis)} # {v(Eko), v(Ek1), ..., v(Egs; )} Then the

second claim follows from [Y7, Lem. 3.1.1 (2)]. O

, where E;; are vg-twisted stable objects. Then

By this lemma, we may assume that al, = 1 for all i. Then we can choose a sufficiently small o € v
such that —(o, v(E;;)) > 0 for all j > 0. We have the following.

Lemma 2.2.3. Let E;; be vg-stable objects in Theorem 2.1.6. Assume that —(c, c1(E;;)) > 0 for all j > 0.
Let F be a vo-semi-stable object such that v(F) = v(Eij © ;- E;‘;bj), 0<b; <ayj.
(1) If v(F) # vo, then F is S-equivalent to Eio @ €D, Eijbj with respect to vo-stability.
(2) Assume that F is S-equivalent to Eio ® ;- Eijbj. Then the following conditions are equivalent.
(a) F is vg + a-stable
(b) F is vy + a-semi-stable
(c) Hom(E;;, F) =0 for all j > 0.
(3) Assume that F' is vg + a-stable. For a non-zero homomorphism ¢ : F — E;;, j > 0, ¢ is surjective
and F' :=ker ¢ is a vy + a-stable object.
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(4) If there is a non-trivial extension
(2.10) 0—-F—F'—E;—0
and by, + 61 < a;i, then F” is a vg + a-stable object, where 6j;, = 0,1 according as j # k, j = k.
Proof. The proof is similar to that of [Y7, Lem. 2.2.17]. (1) Assume that F' is S-equivalent to €, F@C”
where F}; are vp-twisted stable objects. If v(F) = v(@j>0 E-@-b“), bip = 1, then applying Lemma 2.2.2 to
Do FE & @00 EE ™) and @0 EE™, we got @00 FE% & @, 0 EEC9) & @ _ B3

which 1mpl1eb the clalm Then the proofs of (2 ) (3) and (4) are the same as of [Y? Lem. 2.2.17]. D
Lemma 2.2.4. (1) We set
(2.11) CZIJ = {1'/ S X/| Hom(5|{r/}xx7 Eij) 75 0},j > 0.

Then szj is a smooth rational curve.
(2)
_ ®aj,
(2.12) o (EPE;") ={=' € X'|Hom(Eio, &|(aryxx) # 0} = U;C;
j=0
In particular, ¢ and v are surjective.
Proof. The proof is the same as in [Y7, Lem. 2.2.22]. O

We also have the following lemma whose proof is the same as of [Y7, Lem. 2.3.11].

Lemma 2.2.5. ®%(E;; )[1] is a line bundle on C};. In particular, (v(Eyj),v(Ew)) = (C]

i Cry)- We define
bi; by ®*(Eij) = Oc;, (b;)[=1].

This lemma shows that the configuration of {C};|j > 0} is of type A, D, E. Since (H, Ci;) =0, U;Cy; is

contracted to a rational double point of Y. Hence Proposition 2.2.1 (2) and (3) hold. Since 1 (D,>0 E;‘;a”’j)
is a point, v is injective. Thus Proposition 2.2.1 (1) also holds.
We shall prove the normality in Proposition 2.2.13.

2.2.2. Perverse coherent sheaves on X' and the normality of My (vo). We set Z) := 7~ (¢;) = Z] 1 ;G
Then Ej is a subobject of &,y x for x’ € Z! and we have an exact sequence

(213) 0_>E10_)g|{z’}><X_)F_)07 {EIGZ:

where F' is a vp-twisted semi-stable object with gr(F') = @;;1 Ef?a”. Then we get an exact sequence
(2.14) 0— O¥(F)[1] — @*(E)[2] = C — 0

in Coh(X’). Thus WIT; holds for E;y with respect to ®°.

Definition 2.2.6. We set Ajj := ®*(Ejo)[2] and Aj; := ©%(E;;)[2] = Oy, (by;)[1] for j > 0.

Lemma 2.2.7. (1) Hom(Ajy, Aj;[-1]) = Extl(A;O,A’ [-1]) = 0.
(2) We set bl := (b, blo, .. .,b;g ) Then ALy = Ag(b ) In particular, Hom(Al,,C,/) = C for 2’ € Z!.
(3) Irreducible objects of Per(X’/Y’,b’l, ., bl.) are

(2.15) Ay (1<i<m,0<j<s)), Co (2 € X"\ U; Z)).

Proof. (1) We have

Hom(Ajy, Aj;[k]) = Hom(®*(Eio)[2], * (Ey;)[2 + k)

2.16 ’
(&10) = Hom(Ejo, Ey;[k]) = 0
for k= —1,0.
(2) By (2.14) and (1), we can apply Lemma 1.1.3 to prove A}, = Ag(b}) = A,,. (3) is a consequence of
(2) and Proposition 1.1.4 O

Definition 2.2.8. We set
Per(X'/Y") :=Per(X'/Y',b},...,b ),

2.17
(217) Per(X'/Y")P :=Per(X' /Y, b}", ... bl )",

Remark 2.2.9. Assume that o € vg satisfies —(v(E;;),a) < 0, j > 0. Then ®(E;;)[2] = (’)C{j(bg’j), j > 0and
D(E;0)[2] = Ao(bY)[1] belong to Per(X'/Y’,bY,...,bll)*, where b = (bly, ..., b],).

’zs
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Lemma 2.2.10. There is a local projecive generator G of Per(X'/Y") such that 7(G) = 27(G2). Moreover
GV is a local projective generator of Per(X'/Y")P.

Proof. Since x(G2, Aij) = x(Cy, Eij) = tk E;; > 0, we get our claim by Proposition 1.1.5 (2). The second
claim follows from the definition of Per(X’/Y’)? and Lemma 1.1.6. O

Lemma 2.2.11. Let E be an object of C such that E is G-twisted stable and degg, (E) = x(G1,E) = 0.
Then E = E;; or B = 5\{w’}><X; e X'\, Z..

Proof. Since x(G1, E) = 0, there is a point 2’ € X’ such that Hom(&|(,1yxx, E) # 0 or Hom(E, &|(z}xx) #
0. Then E is a quotient object or a subobject of £ (,/}x x, which implies the claim. O

Definition 2.2.12. (1) Let Cy, be the full subcategory of C generated by E;; and &yxx, ' € X',
That is C,, consists of vp-twisted semi-stable objects E with deggs, (E) = x(G1, E) = 0.
(2) Let Per(X’/Y")o be the full subcategory of Per(X’/Y”) consisting of 0-dimensional objects.

Proposition 2.2.13. (1) ®*[2] induces an equivalence C,, — Per(X'/Y")o.
(2) Moreover ®[2] induces an isomorphism M9 (vy)ss M%q) (ﬁ)(gx/)ss, where 3 € (vg Nox)®Q
is sufficiently small and G an arbitrary projective generator of Per(X'/Y").

(3) D2 (vg) = Mﬁ’@a(ﬁ)@xl). In particular, My (vo) is a normal surface.

Proof. (1) We note that ®*(E;;)[2] = A}; and ®*(&|(,yxx)[2] = Ca, 2’ € X'. Hence the claim holds. (2)
We note that E € M7 (v)*® is v + B-twisted semi-stable, if x(8, F) = x(vo + 3, F) < 0 for all subsheaf
F of E with degg, (F) = x(G1,F) = 0. Since x(®“(8), 2*(F)) = x(8, F), ®*(E)[2] is (G2, P*(B))-twisted
semi-stable. Then (1.16) implies that ®*(E)[2] is (G, ®(8))-twisted semi-stable for any G. The first claim
of (3) follows from (2). In the notation of Definition 1.2.2, M%O(QX/) = (X")°. Hence the second claim of
(3) follows from Proposition 1.2.3. O

Proposition 2.2.14. Let u € H(X,Z)a be a Mukai vector such that u € vy NS(H)*, 0 < rku < rkvg
and (u?) = —2. Then u = > bju(Eij), 0 < bj < ay;. In particular, My (u) # 0.

Proof. Since u € vy N§(H)*L, ®*(u) = (0, D,b), D € NS(X'), b € Z and (D,ﬁ) = 0. Since (D?) = -2, D or
—D is an effective divisor supported on an exceptional locus Z;. Hence ®*(u) € @j"':OZCI)O‘( E;j) = @ji:lZCij@
Zox . By the basic properties of the root systems of affine Lie algebra, ®*(u) = c®*(vo) £3_,.,¢;®%(Ejj),
0 < ¢j < ajj. Then tku = or £ Zj>0 cjtk E;;. Since Zj>0 ¢tk By < Zj>0 ai;tk By < r, we get
u =73 0¢v(Eij) or u=1uvg— 3, cjv(Ei;). Therefore the claim holds. O

2.3. Walls and chambers for the moduli spaces of dimension 2. We shall study the dependence of
My (vo) on w. We may assume that w = vo + o, € §(HL) (cf. [OY, sect. 1.1]). We set
<U2> = _27 <’U0,’U,> < 05 <6(H)a u) = 07}

(2.18) U:= {uEU(D(X)) 0 < rku <tk

For a fixed vg and H, U is a finite set. For u € U, we define a wall W,, C §(H1) ®g R with respect to v by
(2.19) W, :={a € 5(H) @ R| (vy + a,u) = 0}.
A connected component of §(HL) ®g R \ UyeyyW, is said to be a chamber.

Lemma 2.3.1. If a does not lie on any wall W, u € U, then M?Jm(vo) = M}’I"+°‘(vo). In particular,

—vo+a

My (vo) is a K3 surface.

We are interested in the vy + a-twisted stability with a sufficiently small [(a?)|. So we may assume that
(2.20) uel :={uell|{vy,u) =0}
For an a € §(H*) with [{(a?)] < 1, let F be a vy + a-twisted stable torsion free object such that

(i) (v(F)?) = -2,
(i) (v(F),0(H))/rk F = (c1(F),H)/rk F — (&0, H) /790 = 0 and
(iii) (vg,v(F)) = (e, v(F)) = 0.
By (i), F is a rigid torsion free object.
Proposition 2.3.2 ([OY, Prop. 1.12]). We set a®* := +ev(F) + a, where 0 < € < 1. Then Tr induces an
isomorphism
MEF @) = My (v)
E — Tr(E)
9
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which preserves the S-equivalence classes. Hence we have an isomorphism

—v+at

(2.22) My () = My (v).
Remark 2.3.3. In [OY], we considered the functor Tr[—1].

Combining Proposition 2.3.2 with [Y7, Lem. 2.3.20], we get the following Corollary.
Corollary 2.3.4.

vo+at vota~ vota~
(2.23) D5y 2Trpods) y =05 0Ty,

where A := @gfi);f )12l (F).

Assume that €|”{°fo ¢ is S-equivalent to €, El(@“é_ Then a € (3, Qu(E)))*.
Remark 2.3.5. If a belongs to exactly one wall W,,, u € U’, then there is a v + a-twisted stable object F
with v(F) = u. So we can apply Propositions 2.3.2. Moreover A = O¢(b), where C is a smooth rational
curve defined by

(2.24) C = {a' € X'|Ext*(E[ehy x» F) # 0}
Proposition 2.3.6. Let G be an object of D(X) such that x(G, E;;) > 0 for alli,j and
(2.25) Hom(G, E;;[k]) =Hom(G, E[k]) = 0,k # 2

for all E € MG (vo) and i,j. Assume that o € 6(H) \ Uyeres W, is sufficiently smail.
(1) G* := ®*(G) is a locally free sheaf on X' and A’ = 7.((G*)Y @ G%) is a reflexive sheaf on Y’
which is independent of the choice of .
(2) Rm.((G¥)V®@ _)o®*: D(X) — D (Y’) is independent of the choice of a.

Proof. We take a small a € §(H*) with —(a, v(E;;)) > 0, j > 0. By the base change theorem, G is a locally
free sheaf on X'. Let Aj; be objects of Per(X'/Y”) in subsection 2.2. Then we have Hom(G®, Aj;[k]) =

0 for k& # 0 and Hom(G, Aj;) # 0. Assume that o € S(H™) belongs to another chamber. We set
X" = Mﬁ’+‘¥/(v0). By Proposition 2.2.13 (2), X" = Mga’q)a(a/)(QX/) and F = @gf:);[,z](é'a') is the
universal family of ®“(a’)-twisted stable objects, where £ is the universal family associated to o’. We

have & = @;YE}X,, o ®*. In particular, G* = <I>§,VE]X,,(G”‘). Then the claim follows from [Y7, Prop.
2.3.4]. O

2.4. A tilting appeared in [Br4| and its generalizations. From now on, we assume that « satisfies
—({a,v(E;;)) > 0 for all j > 0 and set

(2.26) = 0%, O := DO,

By Proposition 2.3.6, the assumption is not essential.

Definition 2.4.1. We set
C, 1=1,

(2.27) ¢ = Per(X'/Y"), i=2,
Per(X'/Y")P, i=3.

For an object E € €;, we define the G;-twisted Hilbert polynomial by

(2.28) X(Gi, E(n)) =) (1) dim Hom(G;, E(n)[j]),
J

where E(n) := E(nH), i =1 and E(n) := E(nH), i = 2,3.

Then Lemma 2.1.3 and Lemma 2.2.10 imply the following.

Lemma 2.4.2. x(G;, E(n)) >0 for E # 0 and n > 0, that is, (i) 1k E > 0 or (ii) tk E = 0,degg, (E) >0

or (i) tk E = degg, (E) = 0, x(Gs, E) > 0.

Definition 2.4.3. Let E # 0 be an object of €;.

(1) There is a (unique) filtration

(2.29) OCHhHCFkC---CFy,=F
such that each E; := Fj/Fj,l is a torsion object or a torsion free G;-twisted semi-stable object and
(2.30) (K By )X (G, By (n)) > (tk By )x(Gi, By (n)),n > 0.

We call it the Harder-Narasimhan filtration of E.
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(2) In the notation of (1), we set

e, (Er), tkEy >0

max.c; (E) ==
Hma,i; (F) {oo, rk By =0,

(2.31)

Hmin,G; (E) :

e (Es), tkEs >0
00, rk Es = 0.

Remark 2.4.4. An object E # 0 has a torsion if and only if pimax,q, (E) = 0o and E is a torsion object if and
only if pimin,g; (F) = 0.

We define several torsion pairs of ;.

Definition 2.4.5. (1) Let T (resp. T') be the full subcategory of €; such that E € ¢; belongs to T
(resp. T, ) if (i) E is a torsion object or (i) fimin.c, (E) > 0 (resp. pmin.c, (E) > 0).
(2) Let * (resp. 3, ) be the full subcategory of €; such that E € €; belongs to T (resp. 3 ) if E =0
or E is a torsion free object with fimax,¢; (E) < 0 (resp. fimax,c; (E) < 0).

Definition 2.4.6. (1) Let T; (resp. ;) be the full subcategory of €; such that E € ¢; belongs to T;
(resp. T;) if (i) E is a torsion object or (ii) for the Harder-Narasimhan filtration (2.29) of E, E,
satisfies ug, (Es) > 0 or ug, (Es) = 0 and x(G;, Es) > 0 (resp. pg,(Es) =0 and x(Gy, E5) > 0).
(2) Let §; (resp. F;) be the full subcategory of €; such that E € €; belongs to §; (resp. §;) if E is a
torsion free object and for the Harder-Narasimhan filtration (2.29) of E, E; satisfies ug, (F1) < 0
or pe,; (E1) =0 and x(Gi, E1) <0 (resp. pg,(E1) =0 and x(G;, E1) < 0).

Definition 2.4.7. (T%,3"), (%,,3.), (%:,3:) and (T;,3;) are torsion pairs of ¢;. We denote the tiltings of
¢; by 2, A, A; and A; respectively.

We note that T} C T;. We shall study the condition T} = T;. We start with the following lemma.

Lemma 2.4.8. Let E be a local projective generator of €;. Then Extl(E, F) = 0 for all 0-dimensional
objects F' of €;. In particular, if E is a subobject of a torsion free object E' such that E'/E is 0-dimensional,
then £/ = E.

Proof. We only treat the case where i = 1. Then Rm.(EY ® F) = m.(EY ® F) is a 0-dimensional sheaf on
Y. Hence we get Ext'(E, F) = H (Y, 7.(EY @ F)) = 0. O

Lemma 2.4.9. Assume that (.}« x is a p-stable local projective generator of C for a general x’" € X'.
(1) T, =%Y.
(2) Every p-semi-stable object E € C with degg, (E) = x(G1, E) = 0 is G1-twisted semi-stable. More-
over if E is G1-twisted stable, then it is p-stable.
(3) Let E be a p-semi-stable object E € C withtk E > 0, degg, (E) = x(G1, E) = 0. Then Ext'(E, S) =
0, i # 0 for any irreducible object S € C.
(4) &{aryxx 18 a local projective generator of C for any x' € X'.

Proof. (1) Let E be a p-stable object of C with degg, (E) = 0 and x(G1, E) > 0. Since Hom(E, &|(z/3xx) =0
for all ' € X', Hom(&|{,1yxx, E) # 0 for all 2 € X'. Assume that & (,/}xx is a p-stable local projective
generator. By Lemma 2.4.8 and Hom(&|(y/yxx, E) # 0, we get E = &1,y x. Therefore x(G1, E) < 0 for
all p-stable object E € C with degg, (E) = 0. Hence we get T; = TV

(2) Let E' be a subobject of E with degg, (E') = 0. Then (1) implies that x(G1, E') < 0. Hence E
is G1-twisted semi-stable. If F/E’ is torsion free, then we also have x(G1, E/E’) < 0, which implies that
x(G1,E") = x(G1,E/E") = 0. Thus FE is properly Gi-twisted semi-stable. Therefore the second claim also
holds.

(3) If Ext'(S, E) = Ext'(F, S)¥ # 0, then a non-trivial extension
(2.32) 0-E—FE —-S—0
gives a p-semi-stable object E' with x(G1,FE’) = x(G1,S) > 0. On the other hand, (1) implies that
x(G1, E') < 0. Therefore Ext'(E, S) = 0. Since S is a torsion object, Ext*(E, S) = Hom(S, E)" = 0.

(4) Since &(z1xx is a p-semi-stable object with degg, (£{z1xx) = X(G1,E{a3xx) = 0, Ejfaryxx €C
and satisfies the assertion of (3). By Lemma 2.4.2, x(€|{z/}xx,5) = x(G1,S) > 0 for any irreducible object
S. Then & (,}x x is locally free and is a local projective generator by Proposition 1.1.5. (I

Remark 2.4.10. By the proof of Lemma 2.4.9, £ ,xx, ¥ € X' is a local projective generator of C if
Ty = %Y. Indeed if Ty = T, then the same proofs of (2), (3) and (4) work.
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2.5. Equivalence between 2; and 2}.

Lemma 2.5.1. (1) If E € %, then Hom(E, Ejj) = Hom(E, |(zyxx) = 0 for alli,j and z' € X'.
(2) If E € §1, then Hom(&(zyx x, E) = 0 for a general z' € X'. In particular, H°(®(E)) = 0.

Proof. (1) The first claim is obvious. (2) If there is a non-zero morphism ¢ : £ {1y xx — E, we see that ¢
is injective and coker ¢ € §1. By the induction on rk F, we get the first claim. The second claim follows by
the base change theorem. ([

Lemma 2.5.2. Let E be an object of C.
(1) Assume that Hom(E;;, Elq]) = Hom(&|(pyxx, Elq]) = 0 for all 4,5, ' € X' and ¢ > 0. Then
O(E) € Per(X']Y").
(2) There is a complex

(233) 0—>W0—>W1—>W2—>O

such that W; are local projective objects of Per(X'/Y") and ®(F) is quasi-isomorphic to this complez.

(3) H(PH?(®(E))) = H?*(®(E)) and PH(®(E)) Cc H°(®(E)). In particular, PH(®(E)) is torsion
free.

(4) If Hom(E, E;;) = 0 for all i,j and Hom(E, £ {yyxx) = 0 for all 2’ € X', then PH*(®(E)) = 0. In
particular, if E € Ty, then PH?(®(E)) = 0.

(5) If E € §1, then "HO(®(E)) = 0.

Proof. (1) Since Hom(&|11yxx, Elg]) = 0 for all 2’ € X" and ¢ # 0, the base change theorem implies that
HY(®(E)) = 0 for ¢ # 0 and H°(®(E)) is a locally free sheaf on X’. In particular, PH?(®(E)) = 0 unless
q=0,1. We note that F' € Per(X'/Y") is 0 if and only if Hom(F, A};) = Hom(F, Aj;) = Hom(F,Cy/) =0
for all 7, j > 0 and 2’ € X’. Since

Hom(®(E)|q], ®(Ei;)[2]) = Hom(E[q], Ei;[2]) = Hom(E;;, E[q])",
Hom(®(E)[q], ®(£{o1x x)[2]) = Hom(E[q], £ (2} x x [2]) = Hom(& 12y x, Eld])Y,

we have PHY(®(FE)) = 0 for ¢ > 0, which implies that ®(E) € Per(X’'/Y’). Thus the claim (1) holds.
(2)

We take a resolution of E

(2.34)

(2.35) 0—-V,y,—=V,—-Vy,—-E—=0

such that V_p = G(—niH)®N*, ng, > 0 for k = 0,1, where G is a local projective generator of C. By using
the Serre duality, our choice of n implies that Hom(&|1,1yxx, V-#[q]) = Hom(Ej;, V_g[q]) = 0 for ¢ # 2 and
k = 0,1. Then we also have Hom(&|,1yx x, V_2[q]) = Hom(E;;,V_3[q]) = 0 for ¢ # 2. Hence ®(V_;)[2],
k =0,1,2 are locally free sheaves on X'. Since Hom(®(V_)[2], A;[q]) = Hom(®(V_)[2], ®(E4;)[2 + q]) =
Hom(V_y, Eijlq]) =0, ¢ > 0, Wo_y := ®(V_y)[2], £ =0, 1,2 are local projective objects of Per(X’/Y”) and
the associated complex W, defines the required complex.

(3) is obvious. (4) follows from the proof of (1) and Lemma 2.5.1 (1). (5) follows from (3) and Lemma
2.5.1 (2). O

Corollary 2.5.3. For F € Per(X'/Y"), PHY(®(F)) = 0 unless ¢ = 0,1,2
Proof. For any E € C, Lemma 2.5.2 (2) implies that ®(E) is generated by PHY(®(E))[—q] (¢ =0,1,2). Hence

Hom(ff(F)[q],E) = Hom(F, ®(E)[—q +2]) = 0 for ¢ > 2 and Hom(E,q)( )[¢]) = Hom(®(E), Flg—2]) =0
for ¢ < 0, which implies our claim. (I
Definition 2.5.4. (1) We set ®(E) := PH(®(E)) € Per(X'/Y"’) and ®'(E) := PH((E)) € C.

(2) We say that WIT; holds for E € C (resp. F € Per(X'/Y")) with respect to ® (resp. @), if ®(E) =0
(resp. ®7(F)) = 0) for j # i.
Lemma 2.5.5. Let E be an object of C.

(1) If WITq holds for E with respect to ®, then E € T;.
(2) If WITy holds for E with respect to @, then E € §1. In particular, E is torsion free. Moreover if

®2(E) does not contain a 0-dimensional object, then E € T .
Proof. For an object E € C, there is an exact sequence

(2.36) 0—FE —FE— FEy—0
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such that E7 € 1 and Fs € §1. Applying ® to this exact sequence, we get a long exact sequence
0 —— ®YE) —— OYE) —— I(Ey)

(2.37) — ®Y(E)) —— PYE) —— OY(Ey)
— ®%(E)) —— P*(E) —— O%(Ey) —— 0.

By Lemma 2.5.2 (4),(5), ®°(E2) = ®*(E;) = 0. If WIT, holds for E, then we get ®(F2) = 0. Hence (1)
holds. If WIT5 holds for E, then we get ®(FE;) = 0. Thus the first part of (2) holds. Assume that there is
an exact sequence

(2.38) 0— FEy—FE—E)—0

such that Ej is a p-semi-stable object with degg, (E3) = 0 and EYy € 34, By the first part of (2), we get
x(G1, E4) < 0. By Lemma 2.5.2 (5), ®°(E4) = 0. Then we see that WIT; holds for Fj and degg, (9 (E%)) =
—degg, (B}) = 0. Since rk ®?(E}) = x(Gy, Ey) < 0, ®?(E%) is a 0-dimensional object. By our assumption,
we get that ®!(EY) — ®2(E}) is an isomorphism. By Lemma 5.1.1 in the appendix, we have ®°(®!(E})) = 0,
which implies that Ej) = &°(®2(E})) = 0. O
Lemma 2.5.6. For an object E € C, degg, (P°(E)) < 0 and degg, (P*(E)) > 0.

Proof. We note that

(2.39) B(20(B)) = B (2°(E))[-2], B(P*(E)) = &°(2*(E))
and
(2.40) degg, (B°(E)) = — degg, (B*(8°(E))), degg, (2*(E)) = — degg, (2°(2*(E))).

Since ®2(®°(E)) satisfies WIT, with respect to ®, ®2(°(E)) € Ty, which implies that degg, (D2(9°(E))) >
0. Since ®°(®2(E)) satisfies WIT, with respect to ®, ®°(2(E)) € F1, which implies that degg, (D°(D2(E))) <
0. Therefore our claims hold.
Lemma 2.5.7. (1) If F € T4, then ®%(F) = 0.
(2) If WITy holds for F € Per(X']Y") with respect to ®, then F € <h.
(3) If F € 3, then ®°(F) = 0.
(4) If WIT, holds for F € Per(X'/Y") with respect to ®, then F € g~.

O

Proof. (1) By Lemma 5.1.1 in the appendix, we have an exact sequence
(2.41) F — 3°(32(F)) 2 9231 (F)) — 0.
By Lemma 2.5.6, degg, (ker$) < 0. Since ®0(D2(F)) is torsion free, ker ¢ is also torsion free. By our
assumption of F, we have ker ¢ = 0. Then ®°(®2(F)) = ®2(d!(F)) satisfies WITy and WIT,, which implies
that ®°(®?(F)) = &?(®1(F)) =2 0. Therefore ®2(F) = 0.

(2) Assume that there is an exact sequence
(2.42) 0—-F —F—F—0

such that Fy € T4 and F, € §%. By (1), we have ®2(F}) = 0. By a similar exact sequence to (2.37), we see
that WIT holds for F; and degg, (P°(F3)) = —degg, (F2) > 0. On the other hand, since WIT; holds for
®°(Fy), Lemma 2.5.5 implies that ®°(Fy) € §1. Hence degg, (9°(F)) = 0 and x(G1,P°(Fz)) < 0. Since
x(Gq, $O(F2)) = rk Fy, we have rk F» = 0. Since §4 contains no torsion object except 0, we conclude that
F, =0.

(3) By Lemma 5.1.1, we have an exact sequence

(2.43) 0— (3 (F)) L 0*(3°(F)) — F.
By (2), ®2(9°(F)) € T4, which implies that coker ¢y = 0. Then (9! (F)) =2 $2(9°(F)) satisfies WIT, and
WITsy, which implies that ®°(®!(F)) = ®2(®%(F)) =2 0. Therefore ®°(F) = 0.
(4) Assume that there is an exact sequence
(2.44) 0—-F —F—F—0

such that 0 # Fy € T4 and F, € §5. By (3), CT)O(FQ) = 0. By a similar exact sequence to (2.37), we see that

WIT, holds for Fy and degg, (B2(F1)) = — degg, (F1) < 0. Moreover if tk F; > 0, then dege, (®%(F1)) < 0.

On the other hand, since WIT( holds for </I;2(F1), Lemma 2.5.5 implies that 52(F1) € %y. Hencerk F; =0

and degg, (®2(Fy)) = 0. Then ®2(F}) € T implies that 0 < x(Gy, ®2(F})) = rk Fy, which is a contradiction.

Therefore 7 = 0. g
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Lemma 2.5.8. (1) Assume that E € 1. Then

(2) Assume that E € §1. Then

(a) ®°(E) = 0.

(b) ®X(E) € 3.

(c) ®*(E) € T4.
Proof. We take a decomposition
(2.45) 0—F — ®(E)— F, —0
with Fy € 5 and F» € §. Applying (f, we have an exact sequence

0 —— ¥F) —— $(@N(E) —— ¥(F)
(2.46) —— OYF) —— BYDL(E)) —— D(F)
— s B(F) —— D2(PY(E)) —— D(Fy) — 0.
By Lemma 2.5.7, we have ®0(Fy) = ®2(F}) = 0.
(1) Assume that E € ;. Then (a) follows from Lemma 2.5.7 (4), and (c) follows from Lemma 2.5.2 (4).

We prove (b). We assume that Fy # 0. By Lemma 5.1.1 and (c), we have ®2(®!(E)) = 0. Then WIT; holds
for Fy and degq, (®'(F3)) = degg, (F2) < 0. By Lemma 5.1.1, we have a surjective homomorphism

(2.47) E — dY(®(E)).

Hence <T>1(F2) is a quotient object of E. Since I/ € Ty, we see that degg, (51(F2)) > 0. Hence degg, (&31 (Fy)) =
0. If I'sz)l(Fg) > 0, then since X(Gl,(/f)l(FQ)) = —1kFy <0, we get E ¢ ¥;. Hence rkffl(Fg) = 0. Then
x(G1, C/I\>1(F2)) = —r1k F5 < 0 implies that the G;-twisted Hilbert polynomial of 51(}7‘2) is not positive. By
Lemma 2.4.2, this is impossible. Therefore F» = 0.

(2) Assume that F € §;. By Lemma 2.5.2 and Lemma 2.5.7, (a) and (c) hold. We prove (b). Assume
that F; # 0. By ®°(E) = 0 and Lemma 5.1.1, we have :I\)O((I)l(E)) = 0. Then WIT; holds for F; and we
have an injective morphism </151(F1) — 61(<I>1(E)) — FE. Assume that dim F} > 1. Since degGl(il(Fl)) =
degg, (F1) > 0, this is impossible. Assume that dim F; = 0. Then x(G2, F1) > 0, which implies that

rk ®!(F}) = —x(Ga, F1) < 0. This is a contradiction. Therefore Fy = 0. O
The following is a generalization of a result in [H] (see Remark 2.5.10 below).

Theorem 2.5.9. @ induces an equivalence Ay — AL [—1]. Moreover io(F) €3 if F e XY does not contain
a 0-dimensional object.

Proof. For E € 2, we have an exact sequence in 2l

(2.48) 0— HYE)1] - E— HE)— 0.

Then we have an exact triangle

(2.49) O(H(E))[2] — ®(B[1]) — (H(E))[1] — o(H(E))[3].
Hence ®*(E[1]) =0 for i # —1,0 and we have an exact sequence

- 0 —— SUH(E) —— B(E) —— W(HO(E))
2.50
—— ®*(HY(E) —— OUE[]) —— ONH(E)) —— 0.
By Lemme 2.5.8, ®~1(E[1]) € §, and ®°(E[1]) € T4. Therefore ®(E[1]) € 4.
Conversely for F € 5 and E; € 2y, ®(E1)[1] € A4 implies that

~

(2.51) Hom(®(F)[1], Ex[p]) = Hom(F, (®(E1)[1])[p]) = 0, p <0,
' Hom(E [p], ®(F)[1]) = Hom((®(E1)[1])[p], F) = 0, p > 0.

Hence @(F )[1] € /4. Therefore the first claim holds.
For the last claim, we note that there is an exact sequence

(2.52) 0 — ®°(B(F)) — ®*(¥°(F)) — F
by Lemma 5.1.1. By Lemma 2.5.2 (3), <I>0(</I\>1(F)) is torsion free. Hence <I>2(</I\>O(F)) does not contain a
0-dimensional object. Then Lemma 2.5.5 (2) implies the claim. (]
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Remark 2.5.10. In [Y5], we gave a different proof of [H, Prop. 4.2]. Since we used different notations in
[Y5], we explain the correspendence of the terminologies: ® corresponds to Fg in [Y5], 25 corresponds to
20, in [Y5, Thm. 2.1] and 2; corresponds to ™Ay or A5 in [Y5, Thm. 2.1, Prop. 2.7].

2.6. Fourier-Mukai duality for a K3 surface. In this subsection, we shall prove a kind of duality property
between (X, H) and (X', H). In other words, we show that X is the moduli space of some objects on X’
and H is the natural determinant line bundle on the moduli space.

Theorem 2.6.1. Assume that C, is 3-stable for all x € X (Assumption 2.1.1).
(1) Exrxia}y € Per(X'/Y")P is G3 — ®(B)Y -twisted stable for all x € X and we have an isomorphism
p: X — MSS_(D(B)V(wg) by sending x € X to & x/x{zy € Mgg'_q)(ﬁ)v(wg). Moreover we have
H = (f[) under this isomorphism.

(2) Assume that & (pyxx s a p-stable local projective generator of C for a general ' € X'. Then
Elx'x{z} is a p-stable local projective generator of Per(X'/Y")P for x € X \ U; Z;.

The proof is similar to that in [Y5, Thm. 2.2]. In particular, if £;,/3xx is a p-stable locally free sheaf
for a general 2’ € X', then the same proof in [Y5] works. However if & {,/}xx is not a p-stable locally free
sheaf for any =’ € X’, then we need to introduce a (contravariant) Fourier-Mukai transforms and study their

properties. We set
053 ¥(FE) :=RHom,_, (pk(E),&) = ®(E)"[-2], E € D(X),
(2.53) U(F) :=RHom,, (p (F),&), F € D(X').

We shall first study the properties of ¥ and ¥ which are similar to those of ® and .
We set

U(E;)[2] = Bj;, j>0
‘I’(Eio)m = Bgo'

Then the following claims follow from Definition 2.2.8 and Lemma 2.2.7.

(2.54)

Lemma 2.6.2. (1) Bjj = Oc; (=bj; —2) € Per(X'/Y")P and B}, = Ao(b'P)*[1] € Per(X'/Y")P
(2) Irreducible objects of Per(X'/Y")P

(2.55) Bj; (1<i<m,0<j<s)), Co(z' € X\U;iZ)).

Lemma 2.6.3. (1) Assume that E € Ty. Then Hom(E, &y« x) =0 for a general 2’ € X'.

(2) Assume that E € §1. Then Hom(& ;1 xx, E) =0 for all 2’ € X'.

Proof. We only prove (1). Let E be a Gi-twisted stable object of C. If degg, (E) > 0 or degg, (F) =
0 and x(G1,E) > 0, then Hom(E, £ f,yxx) = 0 for all ' € X'.  Assume that degg, (E) = 0 and
X(G1,E) = 0. Then a non-zero homomorphism E — &|(z/}xx is an isomorphism if 2’ ¢ U; Z]. Therefore
Hom(FE, &(z/3xx) = 0 for a general 2’ € X'. O

Lemma 2.6.4. Let E be an object of C.
(1) PHIW(E)) = 0 for g £0,1,2.
(2) HOCH(U(E))) = H*(U(E)).
(3) PHO(¥(E)) C H(V(E)). In particular, PH(V(E)) is torsion free.
(4) IfHom(E, E;;[2]) = 0 for alli,j and Hom(E, &z« x[2]) = 0 for all 2’ € X', then PH?(¥(E)) = 0.
In particular, if E € §1, then PH?(¥(E)) = 0.
(5) If E satisfies E € %1, then PHY(¥(E)) = 0.

Proof. Let W, be the complex in Lemma 2.5.2 (2). By Lemma 1.1.6, WY are local projective objects of
Per(X'/Y’)P. Since W(E) is represented by the complex W, [—2], (1), (2) and (3) follow.
By Lemma 2.6.2, F € Per(X'/Y")" is 0 if and only if Hom(F, Bj;) = Hom(F,C,/) = 0 for all 4, j and

e X'.

Since
56 Hom(E, By[2 - p))" = Hom(W(E)[2 — pl, U(E,;)[2),
' Hom(E, &)1z} xx[2 — p])* = Hom(¥(E)[2 - pl, U(&)1aryxx)[2)),
we have (4). (5) follows from (3) and Lemma 2.6.3 (1). O

As in the proof of Corollary 2.5.3, we have the following result by Lemma 2.6.4 (1).
Corollary 2.6.5. PHY(U(F)) =0 for ¢ # 0,1,2 and F € Per(X'/Y")P
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Definition 2.6.6. We set U'(E) := PH'(¥(E)) € Per(X'/Y")P and Vi(E) := PH(U(E)) € C.

Lemma 2.6.7. Let E be an object of C.

(1) If WITq holds for E with respect to W, then E € §L
(2) If WITy holds for E with respect to ¥, then E € %,. If V2(E) does not contain a 0-dimensional
object, then E € T;.

Proof. For an object E of C, there is an exact sequence
(2.57) 0—F —FE—FEy—0
such that £, € T; and Fy € ;. Applying ¥ to this exact sequence, we get a long exact sequence

0 —— ¥E)) —— VY(E) —— ¥OE))
(2.58) — UY(Ey) —— UY(E) —— U(E))

— U2(Ey) —— V2(E) —— V%(E) —— 0

By Lemma 2.6.4, we have UO(E;) = W2?(Ey) = 0. If WIT holds for E, then we get ¥(E;) = 0. Hence (1)
holds. If WIT, holds for E, then we get W(FEy) = 0. Thus the first part of (2) holds. Assume that U2(E)
does not have a non-zero 0-dimensional subobject. We take a decomposition
(2.59) 0—-F, —FE— FEy—0
such that Fy € T, and Ej is a Gi-twisted semi-stable object with degg, (F2) = x(G1,E2) = 0. Then
VO(Ey) = U9 (Ey) = U1(Ey) = 0. In particular, WIT, holds for Ey with respect to W. Then U?(FE,) is a
torsion object with degg, (¥?(E3)) = 0, which implies that ¥2(E,) is 0-dimensional. Our assumption implies
that W' (E;) & ¥2(Ey). By Lemma 5.1.2 and $O(WO(Ey)) = 0, we get By = W2(V2(Ey)) = W2(U1(E,)) =
0. O
Lemma 2.6.8. Let E be a p-semi-stable object with degg, (E) = 0. If WITq holds for E, then E = 0.

Proof. If WIT( holds for E # 0, then x(G1, E) = rk¥(F) > 0. On the other hand, Lemma 2.6.7 implies
that x(G1, E) < 0. Therefore E = 0. O

Lemma 2.6.9. If WIT\ holds for E with respect to ¥, then E € ?f

Proof. Assume that there is an exact sequence

(2.60) 0—FE —FEF— FEy—0
such that F; is a y-semi-stable object with degg (E1) =0 and E3 € 3. Then we have W2(E;) = 0. By the
exact sequence (2.58), WIT( holds for E;. Then Lemma 2.6.8 implies that Fq = 0. O

Lemma 2.6.10. If E € T, then ¥°(E) = 0.

Proof. We may assume that E is a p-semi-stable object or a torsion object. If degs, (£) > 0 or a torsion
object, then the claim holds by Lemma 2.6.4 (5). Assume that E is torsion free and degg, (E) = 0. By
Lemma 5.1.2, we have an exact sequence

(2.61) E — U (W°(E)) — W2(U(E)) — 0.
By Lemma 2.6.9, U°(¥°(E)) € §. Since F is a p-semi-stable object with degg, (F) =0, E — VO(UO(E))

is a zero map. Then UO(W0(E)) = U2(U!(E)) satisfies WIT, and WIT,, which implies that U°(¥°(E)) =
U2(VU1(E)) 22 0. Therefore ¥O(E) = 0. O
Lemma 2.6.11.

(2.62) degg, (PO(E)) <0, degg, (¥?(E)) > 0.

Proof. We note that

(2.63) degg, (U'(E)) = degg, (¥'(T'(E)))

for i = 0,2 by Lemma 5.1.2. Then the claim follows from Lemma 2.6.7. O

Proof of Theorem 2.6.1.
1) We first prove the G3-twisted semi-stability of & x/xs.1 for all z € X. It is sufficient to prove the
| X’ x{=}
following lemma.

Lemma 2.6.12. Let E be a 0-dimensional object of C. Then WITy holds for E with respect to ¥ and V2(E)
is a G-twisted semi-stable object such that degg, (¥?(E)) = x(G3, ¥?(E)) = 0. Moreover if E is irreducible,
then W2(E) is Gs-twisted stable.
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Proof. We first prove that E satisfies WIT, with respect to U. We may assume that F is irreducible. Then
we get Hom(E, &1y« x) = 0 for all 2’. Hence UY(E) = 0. We shall prove that U!(E) = 0 by showing

Vi(U(E)) =0 for i = 0,1,2. By Lemma 5.1.2, W2(U!(E)) = 0 and we have an exact sequence

(2.64) 0 — UO(WH(E)) — V2(U2(E)) — E — UH(W(E)) — 0.

By Lemma 2.6.7 and Lemma 5.1.2, \IIO( YE)) € §, and \112(\112( )) € Ti. Since E is O-dimensional,
\IIO(\III(E)) is pi-semi-stable and deg, (\I/O(\Ill( ))) = degg, (\P2(\I/2(E))) = 0. By Lemma 2.6.8, W(¥}(E)) =
0. Since F is an irreducible object, \112(\112(E)) 0 or \Ill(\Ill(E)) =0. If \112(\112(E)) =0, then ¥?(E) = 0.
Since x(G1,E) > 0, we get a contradiction. Hence we also have \Ill(\Ill(E)) 0, which implies that

U!(E) = 0. Therefore WIT; holds for E with respect to .
We next prove that W?(E) is G3-twisted semi-stable. Assume that there is an exact sequence

(2.65) 0— F — U*(E) = F, -0

such that Fy € Per(X'/Y")P, degg, (F1) > 0 and F, € Per(X'/Y”)P.  Applying U to this exact sequence,
we get a long exact sequence

0 —— UO(R) 0 TO(Fy)
(2.66) L UYR) 0 U(F)
— s V(R E V2(F) — 0.
By Lemma 5.1.2, WIT; holds for W2(Fy). Hence W2(Fy) € Ty, in particular, we have degg, (U2 (FQ)) > 0. By

Lemma 5.1.2, WIT, holds for U!(F,) 2 WO(Fy). Hence U (Fz) € 1, which implies that degg, (UL(Fy)) < 0.
Therefore degGl(\Tl(Fg)) > 0. On the other hand, degGl(\IJ( »)) = degg, (F2) < 0. Hence UL(F,) is a p-
semi-stable object with degGl(@l(Fg)) = 0 and degg, (F2) = 0. Then Lemma 2.6.8 implies that \/I\ll(Fg) = 0.
If x(Gs, F») <0, then rk (I\IQ(FQ) = x(Gs, F») implies that x(Gs, Fz) = 0 and \/I\JQ(FQ) is a torsion object. This
in particular means that W2(E) is Go-twisted semi-stable. We further assume that E is irreducible. Since
degGl(\iQ(FQ)) = 0, U2(F) is a O-dimensional object. Then WIT5 holds for W!(Fy), U2(F)) and W2(F)
with respect to ¥. Since W2(U!(F)) = 0, $X(F}) = 0. Then V2(F,) = 0 or U2(F}) = 0, which implies
that F; = 0 or Fy = 0. Therefore ¥2(FE) is G3-twisted stable. O

We continue the proof of (1). Assume that there is an exact sequence in Per(X’/Y")?
(2.67) 0—>F1—>5|X/X{w}—>F2—>O

such that degq, (F1) = x(G3, F1) = 0. By the proof of Lemma 2.6.12, WIT; holds for Fy and Fy. Thus we
get an exact sequence

(2.68) 0— U3(Fy) — Cp — U2(F) — 0

Since C, is (-stable, x(8, @2(F2)) < 0, which implies that x(—V¥(3),Fz) > 0.  Therefore & x/yx s} is

G3 — V(B)-twisted stable. Then we have an injective morphism ¢ : X — Mg mete (wg) by sending z € X

to 5|X/X{w}, where o/ = —U(5). By a standard argument, we see that ¢ is an isomorphism. We note
that [U(H + (H,&)/roox )] is the he pull-back of the canonical polarization on M *(wy). Hence under the

identification Mgw (wy) = X, (ﬁ) =H.

(2) Assume that &),13xx is a p-stable local projective generator for a general 2’ € X'. By Lemma
2.6.14 (2) below, we only need to prove the p-stability of & x/y (s} for # € X \ U;Z;. We shall study the
exact sequence (2.65) in Lemma 2.6.12, where ' = C,. We may assume that F, satisfies degg, (F) = 0
and x(Gs, Fy) > 0. Then WITy holds for Fy by the proof of Lemma 2.6.12. We shall first prove that
UL(Fy) does not contain a 0-dimensional object. Let T} be the 0-dimensional subobject of W!(F}). Then
we have a surjective morphism W2(W!(F,)) — W2(T}). Since WIT, holds for T; with respect to ¥ and
VO(WO(Fy)) — W2(WL(FY)) is surjective, we get Ty = 0. By Lemma 2.6.7, U2(F,) € T;. Then Lemma
2.4.9 and degg, (U2(F)) = 0 imply that W2(F,) is an extension of a G1-twisted semi-stable object E; with
degg, (E1) = x(G1,E1) = 0 by a 0-dimensional object T'. Since 7' N \Tll(Fl) =0,T =C, or 0. By our
assumption, W2(F;) is a torsion object. By the exact sequence

(2.69) V2(E)) — Fy — U(T) — 0,

we have tk Fy = (tk & x/x {5}) dim T, which implies that rk Iy = 1k £ x/x {5} or rk I, = 0. Therefore & x/y {41
is p-stable. (|
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Lemma 2.6.13. If (yyxx,2" € X' and Ey; are locally free on an open subset X0 of X, then E\x x{a} 15
a local projective generator of Per(X'/Y")P for x € X°.
Proof. We first note that & x/x{z3 € Coh(X’) by Theorem 2.6.1. The claim follows from the following
equalities:

Hom(5|X/X{w}, (Cx/ [k]) = HOHl(‘I/((Cz), \II(5|{L/}><X)U€]) = HOHl(EHw/}Xx, Cm[k]) = 0,

2.70

BT Hom(E s x oy, By 4]) = Hom(W(C,), (B[] = Hom(Eyy, Colk]) = 0

for x € X°, 2’ € X’ and k # 0. O
Lemma 2.6.14. (1) If X =Y and Y’ is not smooth, then & x:y (5 is a local projective generator of

Per(X'/Y")P for allz € X.
2) If Erpryxx 18 a p-stable local projective object of C for a general x' € X', then & x/y iz is a local
[{z’} H | X7 x{x}
projective generator of Per(X'/Y')P for all z € X.

Proof. (1) We first note that E;; € Coh(X) = C are locally free sheaves for all i, j. Assume that £ := &1y xx
is not locally free for a point 2’ € X’. Then we have a morphism from an open subscheme @ of Quotvv /X/C
to X', where n = dim(EYY/E). Since dim X’ = 2, this morphism is dominant. Hence &{,/}x x is non-locally
free for all 2’ € X'. Since &|(,/3xx is locally free if 2’ belongs to the exceptional locus, &£|,/3x x is locally
free for any 2’ € X’. Then the claim follows from Lemma 2.6.13.

(2) The claim follows from Lemma 2.4.9 (3), (4) and the proof of Lemma 2.6.13. O

In the remaining of this subsection, we shall prove the following result.
Proposition 2.6.15. ¥ : D(X) — D(X'),, induces an equivalence Ay [~2] — (As3)op-
We first note that the following two lemmas hold thanks to Theorem 2.6.1.
Lemma 2.6.16 (cf. Lemma 2.6.3, Lemma 2.6.4). (1) Assume that F € T3. Then Hom(F, & x/x(z}) =
0 for a general x € X. In particular, \/I\IO(F) =0.
(2) Assume that F € F3. Then Hom(Ex x4}, F) =0 for all x € X. In particular, ¥*(F) = 0.
Lemma 2.6.17 (cf. Lemma 2.6.7, Lemma 2.6.9, Lemma 2.6.10). Let F' be an object of Per(X'/Y")P.

(1) If WITq holds for F with respect to \i', then F' € @g(C Ts).

(2) If WITy holds for F with respect to \f/, then F € Z3. If \f/Q(F) does not contain a 0-dimensional
subobject, then F' € T3.

(3) If F € T3, then UO(F) = 0.

Lemma 2.6.18. (1) Assume that E € T). Then

(a) WO(E) =0.

(b) WL(E) € §s.

(c) W3(E) € T3. Moreover if E does not contain a non-trivial 0-dimensional subobject, then
\IJ2(E) € %s.

(2) Assume that E € . Then

(a) W(E) € §3

(b) VY(E) € %,

(c) ¥2(E) = 0.

Proof. We take a decomposition
(2.71) 0—F —UYE) - F,—0
with F} € T3 and F» € 5. Applying @, we have an exact sequence
0 —— W(F) —— V(TN (E) —— (R

~ ~

(2.72) — s VYR) —— VYUY(E)) —— TR
— s VYR) —— VX(UY(E)) —— U(F) —— 0.

By Lemma 2.6.16, we have WO(Fy) = W2(F,) = 0.

(1) Assume that deg,,;, ¢, (E) > 0, that is, F € T/, By Lemma 2.6.17 (2) and Lemma 2.6.10, (a) and
the first claim of (c¢) hold. For the second claim of (c), by Lemma 2.6.17 (2), it is sufficient to prove that
U2(W2(E)) does not contain a non-trivial 0-dimensional subobject. By the exact sequence

(2.73) 0 — U(U(E)) — VX(V*(E)) — E

and the torsion-freeness of WO(U1(E)), we get our claim.
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We prove (b). By Lemma 5.1.2 and (a), we have @2(\111(E)) = 0. Then WIT; holds for F;. We have a

surjective homomorphism
(2.74) E — Y (UY(E)).
Hence E has a quotient object @1(F1) with degg, (\Ill(Fl)) = —degg, (F1) <0. If degGl((I\ll(Fl)) < 0, then
we see that tk W' (F}) > 0 and E ¢ T,. Hence degG (UY(F)) = —degg, (F1) = 0. Then F; € T3 implies
that rk U1 (Fy) = —x(Gs, F1) < 0. Since x(G1, U1 (F})) = —rk F} < 0, the G;-twisted Hilbert polynomial of
Pl (Fy) is 0. Therefore F; = 0.

(2) Assume that deg,,.. ¢, (E) <0, that is E' € 3. By Lemma 2.6.4 and Lemma 2.6.17, (a) and (c) hold.
We prove (b). Since ¥2?(E) = 0, Lemma 5.1.2 implies that \TIO\Iﬂ(E) = 0. Hence WIT; holds for F; and
we have an injective morphism \Tll(Fg) — (I\ll(\lll(E)) — E. Since degGl(\/I\ll(Fg)) > 0, we have (I\ll(Fg) =0,
which implies that F» = 0. O

Proof of Proposition 2.6.15.
For E € Qlf, we have an exact sequence in Qlf

(2.75) 0— H YE)[1] - E— H°(E) — 0.
Then we have an exact triangle
(2.76) V(H(E))[2] — W(E[-2]) — $(H(E))[1] — ¥(H°(E))[3].

Hence Wi (E[-2]) = 0 for i # —1,0 and we have an exact sequence
0 —— VY(HYE)) —— Vv YE[-2]) —— VO (HYE))

(2.77)

— V}(HY(E)) —— 9Y%E[-2]) —— VY HYE) —— 0.
By Lemme 2.6.18, U~(E[-2]) € §3 and WO(E[-2]) € T5. Therefore W(E[—2]) € (A3),p- O
Definition 2.6.19. (1) Let Per(X’/Y’)g(Y be the full subcategory of Per(X’/Y’)P consisting of G3-

twisted semi-stable objects E with degq, (E) = x(G3, E) = 0.
(2) Let Co (resp. Per(X'/Y")P) be the full subcategory of C (resp. Per(X’/Y’)P) consisting of 0-
dimensional objects.
Proposition 2.6.20. ¥ induces the following correspondences:
Co =(Per(X'/Y") 0y )op,
Cup g(PG’T(XI/Y/)(?)op
Proof. By Lemma 2.6.12, W2(Cy) is contained in (Per(X’/Y’)Bg)Op. By the proof of Lemma 2.2.11, we see
that Per(X'/Y’)gov is generated by U?(A;;),i,j > 0 and ¥*(C,), z € X \ U;Z;. Thus the first claim holds.
We have an equivalence

(2.78)

Per(X'/Y")y — (Per(X'/Y")§)op
E —  RHomo, (E,Ox)[2].

Then the second claim is a consequence of Proposition 2.2.13 (1). O

(2.79)

2.7. Preservation of Gieseker stability conditions.

Proposition 2.7.1. Let E be a G:-twisted semi-stable object with degg (E) = 0 and x(G1,E) < 0. Then
WIT; holds for E and V(E) is Gz-twisted semi-stable. In particular, we have an isomorphism

(2.80) MG ()% = ME (=T (v))*

which preserves the S-equivalence classes, where v =lvyg + apx + (D + (D/rg,&0)ox), { > 0, a < 0.

Proof. We note that E € §; N ;. By Lemma 2.6.4 and Lemma 2.6.18, WIT; holds for E and ¥'(E) € 3s.
Assume that U!(F) is not G3-twisted stable. Then there is an exact sequence in Per(X’/Y")P
(2.81) 0—F —VYE) - F—0
such that Fy is a G3-twisted stable object with degg, (F1) = 0 and
x(Gs, ) x(G3, V' (E))
tkFy  — rtk9Y(E)
and Fy € 3. By Lemma 2.6.16, @Q(Fl) = @2(F2) = 0. Since Fi,F5 € ff,f, Lemma 2.6.17 implies \T'O(Fl) =
UY(Fy) = 0. Then we have an exact sequence

(2.83) 0— U(F) — E — U'(F) — 0.
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Since
X(Gh@l(Fl)) _ I‘kFl
rk(UL(F))  x(Gs, Fy)

(2.84)
tkUH(E)  x(Gi,E)
x(Gs, VY(E))  1kE
we have
(2.85) X(Gs, F1) _ x(Gs, ¥'(E))

rk F} rk U1 (E)

Hence U'(E) is Gs-twisted semi-stable. Thus we have a morphism M (v)* — M%S(flll(v))ss. It is easy
to see that this morphism preserves the S-equivalence classes. By the symmetry of the conditions, we have
the inverse morphism, which shows the second claim. Il

The following is a generalization of [Y5, Thm. 1.7].
Proposition 2.7.2. Let w € v(D(X')) be a Mukai vector such that (w?) > —2 and

(2.86) w = lwo + apx’ + <dH +D +— (dH +D fO)QX’)

where 1 >0, a >0 and D € NS(X) ® QN H+. Assume that
d > max{(41°r§ + 1/(H?)), 2rl({(w®) — (D?))}, if 1 > 0,

(2.87) ) ) .
a > max{(2rg + 1), ((w") — (D*))/2+ 1}, if I =0.

Then
(1) MG @)™ = ME ()
(2) Mg:(@(w))“ consists of local projective generators.
(3) If (H, G3) is general with respect to w, then Mgl( (w))®® = MHH((I)( w))*® for a sufficiently small
relatively ample divisor €.

Proof. (1) We first note that Fg in [Y5] corresponds to ®. Since [Y5, Thm. 2.1, Thm. 2.2] are replaced by
Theorem 2.5.9, 2.6.1 and since [Y5, Prop. 2.8, Prop. 2.11] also hold for our case, the same proof of [Y5,
Thm. 1.7] works for our case. More precisely, in order to show that ®(F), F € M (®(w)) does not contain
a 0-dimensional subobject, we use the fact that WIT( holds for 0-dimensional object E € Per(X’'/Y”) (see
Proposition 2.2.13 (1)).

(2) The proof is the same as in the proof of [Y5, Rem. 2.3]. Let E be a u semi-stable object of C such
that v(EF) = ( ). We shall apply Proposition 1.1.5 to show the claim. If Ext! (S, E) # 0 for an irreducible
object S of C, then a non-trivial extension

(2.88) 0-E—-FE —-85—-0

gives a p-semi-stable object E’ with x(G1, E') > x(G1, E). By Proposition [Y5, Prop. 2.8, Prop. 2.11],
we get a contradiction. Hence Ext'(E,S) = Ext!(S,E)Y = 0 for any irreducible object S of C. Since
Ext*(E,S) = Hom(S,E)Y = 0, it is sufficient to prove that x(S,E) > 0. We note that x(S,E) =
X(S, ®(w)) = ax(S, G1)+(c1(S), D). Since (H,¢1(S)) = 0, we have |(c1(S), D)?| < |(c1(8)2)(D?)| = —2(D?).
Since x(5,G1) > 0, it is sufficient to prove that a > /—2(D?).

We first assume that [ > 0. Then d(H?)—1 > 41?r3(H?) and d > 2r3l({(w?)—(D?)) = 2r31(d*(H?)—2lary).
Hence

2 2
(2.89) o> MAHED) =V @roD) o d ooy _oq2 g2,
27’0l 2l To

Hence a > 2(41%r3)ir2(H?) = 8ro(lro)®ro(H?) > 8. If —(D?) < 4, then a > 3 > \/—2(D?). If —(D?) > 4,
then (w?) — (D?) > —2 — (D?) > —(D?)/2. Hence

(2.90) a > 2dlrd(H?) > ro((w?) — (D?))4(Iro)*ro(H?) > \/—2(D?).

We next assume that [ = 0. Then a > 2ry + 1 and a > (w?)/2 + 1 — (D?)/2 > —(D?)/2. If —(D?) > 8,
then a > —(D?)/2 > \/—2(D?). If —(D?) < 8, then since a > 2r¢g + 1+ 1/rg, \/—2(D?) < 4 < a.

Therefore X(E,S) >0 and E isa local projective generator of C.

(3) By our assumption, M %! (D(w))* = MG (®(w))-=s ([Y5, Cor. 2.14]) and H is a general polarization.

Hence for E € M (®(w))** and a subobject E; of E, (ClgszH) (Clgfng) implies Crlk(? = Crlk(gll) Let E

be a p-semi-stable sheaf of v(E) = ®(w) with respect to H. We shall prove that E € C. We set

5 i= {Ay[-1]li, 5} N Coh(X)
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as in [Y7, Prop. 1.1.26]. We assume that Hom(E, F) # 0 for F' € ¥. Then there is a p-semi-stable sheaf
E' € C N Coh(X) with respect to H fitting in an exact sequence

(2.91) 0—-FE —FE—F —0,
where F' € C[-1] N Coh(X). Then we see that x(G1, E’) > x(G, E), which is a contradiction. Therefore
E € C. Then we can easily see that E is u-semi-stable in C. O

Corollary 2.7.3. If (G, H) is general with respect to v, then M§(v) is isomorphic to the moduli space of
usual stable sheaves on a K3 surface.

Proof. We first construct a primitive and isotropic Mukai vector w such that rku > 0 and (tk G)cy(u) —
(rku)e1 (GY) € ZH: We first take a primitive isotropic Mukai vector ¢ such that ¢ = [v(GY) + apx. Then
for a sufficiently small 7, T := Mgv+7(t) is a K3 surface. Let F be the universal family on T x X as
a twisted object. Then we have an equivalence ®% . : D(X) — DP(T). We consider II := @7}:(_%?) o
®%’ . : D(X) — D(X), n > 0, where we set D := H. Then II also induces a Hodge isometry II :
H*(X,Z) — H*(X,Z). By its construction, II preserves the subspace (Qt + QH + Qox) N H*(X,Z) and
rkII(gx) > 0 for n > 0. Hence u := II(gx) satisfies the claim. Since c¢;(u)/tku — ¢;(GY)/1kGY € QH,
x(u, A [2])/ tku = x(GY, A);[2])/ 1k G. By Proposition 1.1.5 (2), there is a local projective generator G., of
CP with v(G,) = 2u. Since (II(Ox),u) = —1, X7 := M}j77*(u) is a fine moduli space of stable objects of
CP. Since C satisfies Assumption 2.1.1, CP also satisfies Assumption 2.1.1. Let £ be the universal family
on X x X;. By Theorem 2.6.1, we can regard £ as a universal family of vy + y-twisted stable objects of
Per(X;/Y;)P with respect to Hy, where Y} := M;I(u), H, = IA{, vo = v(&|{z}xx,) and 7 is determined by
a. Then (M;_)fl+’y(v(])aﬁ1) = (X, H). For ® = %y, and M%vl (vemﬁl)ss = MY (ve™ )55 m > 0, we
shall apply Proposition 2.7.2. Then M}qv (v)** is isomorphic to a moduli stack of usual semi-stable sheaves
on X;. Since MY (v)** = MG (v)**, we get our claim. O

Since (2.87) is numerical, we can apply Proposition 2.7.2 to a family of K3 surfaces.

Ezample 2.7.4. Let f : (X, H) — S be a family of polarized K3 surfaces over S. Let vy := (r,dH,a),
ged(r,a) = 1 be a family of isotropic Mukai vectors. We set X' := M;O/ 5(v0). Then we have a family of

polarizations H’ on X”. Since ged(r, a) = 1, there is a universal family £ on X’ x g X and we have a family of
Fourier-Mukai transforms @‘E(H v D(X) — D(X’). Then we can apply Proposition 2.7.1 and Proposition
2.7.2 to families of moduli spaces over S.

We also give a generalization of [Y1, Thm. 7.6] based on Theorem 2.5.9 and Proposition 2.6.15. We set
(2.92) dmin := min{degg, (F) > 0|F € D(X)}.

Proposition 2.7.5. Assume that T3 = TY. Let v € H*(X,Z) be a Mukai vector of a complex such that
degg, (v) = dmin-
(1) If tk®(v) <0, then ® induces an isomorphism

(293) MG ()% — M (~(0))

by sending E to ®1(E).
(2) If tkU(v) > 0, then ¥ induces an isomorphism

(2.94) M (0)* — M (P (0))*
by sending E to V2(E).

The proof is an easy exercise. We shall give a proof in [MYY], as an application of Bridgeland’s stability
condition.

Remark 2.7.6. In [Y6], we constructed actions of Lie algebras on the cohomology groups of some moduli
spaces of stable sheaves. In particular, we constructed the action on the cohomology groups of some moduli
spaces of stable objects of ! Per(X/Y) in [Y6, Prop. 6.15]. Then a generalization of [Y6, Prop. 6.15] to
the objects in Per(X’/Y") corresponds to the action in [Y6, Example 3.1.1] via Proposition 2.7.5.

2.7.1. We shall consider the category of perverse coherent sheaves which appears in a family of moduli spaces
of stable sheaves.
Let T be a smooth manifold over C and we consider a flat family of polarized K3 surfaces f : (X, H) = T
such that
(i) (XegyHeo) = (X, H), to €T,
(ii) there are families of Mukai vectors v € R*m,Z, a € R*m,Q with vy, = v and
(iii) rkPic(X;) = 1 for a point ¢t € T,
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where (X, Hy) == (X @ k(t), H ® k(t)) and k(t) is the residue field at ¢t € T. Replacing T' by a suitable
covering of T, we assume that there is a section of 7 and a locally free sheaf G on X with v(G;) = vy,
t € T. We consider the relative quot-scheme g : Quotg( nr)eN jx 7 — 1 parametrizing all quotients

Gi(—nH)®N — F, t € T with v(F) = v;, where N := x(G, F(n'H;)). We set Q := Quotg_ppyen, x /7. We
denote the universal quotient sheaf by F. We set

(2.95) Q* = {x € Q| Fy := Flx,x{a} 15 Vs-twisted semi-stable with respect to H;, t = g(z) }.

For n > 0, we have a relative coarse moduli space ME,X,H)/T(V) := Q% /PGL(N) — T. Since T is defined
over a field of characteristic 0, MZXaH)/L(V)t = M;’;t (v¢) (cf. [MFK, Thm. 1.1]). Let ¢ : Q** — MZ’&H)/T(V)
be the quotient map. Assume that MZX,H)/T(V)% is singular. Then Fla, xqsz s a locally free sheaf.
Replacing T be an open neighborhood, we assume that F is locally free.

For a smooth curve C' and a morphism C — T, [OY, sect. 2.3] implies that M?Xcﬁc)/c(v) — Cis

flat over C. In particular the Hilbert polynomial of M;’_Zt (v¢) is independent of ¢t € T, which implies that
ME’X,H)/T(V) — T is flat.

Definition 2.7.7. We set G := PGL(N). For a G-linearized coherent sheaf E on X x7Q**, q.(F)® denotes
the G-invariant part of g.(E).

By [MFK, Thm. A.1.1] or [Se, Thm. 2|, ¢.(E)¢ is a coherent OXXTWZ’X H)/T(v)—module. Let V

be a GL(N)-equivariant locally free sheaf on Q** such that C*(C GL(N)) acts as a multiplication. For
B = q.(VV®V), weset A:= B A is a coherent OHE’ y-module. Let Spec(A) be an affine

X,H)/T(v

neighborhood of T" and I an ideal of A. By the exact sequence
(2.96) 0—-IB—B—B/IB—0
and the Reynolds operator R, we have an exact sequence

(2.97) 0— I(BY) — BS — (B/IB)“

Thus (B/IB)¢ = BY ®4 A/I. Since (B/IB)¢ is reflexive, it is torsion free as an A/I-module. In particular,
(B/IB)¢ is flat over A/I if Spec(A/I) is a smooth curve. Thus Ac is flat over C' for any smooth curve
C C T. Then A s flat over T. We also see that (1x x ¢).(F® V") is a coherent Ok Wy ey (v) MOduLE
on X X MZX.,H)/T(V) which is flat over T.

Let Q:(a;)®** C Q;® be the open subset such that F, (z € Q¢(a)®®) is v, + a;-twisted semi-stable and ¢’ :
Q(ay)® — M;H_af (v¢) be the quotient map. We have a projective morphism 7 : MH Yot (vy) — M;;: (V).
Then we have a homomorphism

(2.98) v (La, % @) (Fe @ V) = (La, x 1) (L, % ¢)«(Fe @ V,Y)).
Since (1x, X q)«(F, @ V)% is a reflexive O,, XTTY, (ve)” -module and (1y, X 7). ((1x, X ¢)«(F: @ V,Y)) is a

torsion free O X, X TTY (Vt)—module ¢ is isomorphic. “We also have an isomorphism
(2.99) ’
Vi (La x @) (F @ V)Y = (La x ) (Laey X )i (Fr @ VY)Y ) 2= (Laey x 1) (L, X ¢ (Fr @ V) 9)Y).

Let F¢* and V,* be the twisted sheaves on A} x M;H_ "(v¢) and MHH_ "(v;) defined by F; and V;. We

have an equivalence Z : D(X;) — DO‘(M;’:_at( ) = Dgnd(vta)(MHffat( +)) by

Fo)Y a_ p(lx N (Fe@V,)9)Y
-()(tjM t+8t( )(.) ® ‘/t = X il\th+5t (Vt) (.)
Hence we have an equivalence
= ttae Rﬂ'*
(2.100) D(X;) = Denacve) (M;t : (vi)) = Da, (MHf (ve))

(L, xa)- (Fr@V))
b (I)Xt—JVIH (ve)

Proposition 2.7.8. (1x x q).((F @ VV)V)Y defines a family of equivalences

(Lx, x@)+ (Fr@V,)V)C

2, —DMY, (ve) :D(X) — DAt(MH (Vi)
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3. FOURIER-MUKAI TRANSFORMS ON ELLIPTIC SURFACES.

3.1. Moduli of stable sheaves of dimension 2. Let Y — C be a morphism from a normal projective
surface to a smooth curve C such that a general fiber is an elliptic curve. Let 7 : X — Y be the minimal
resolution. Then p : X — C is an elliptic surface over a curve C'. We fix a divisor H on X which is the
pull-back of a very ample divisor on Y. As in section 2, let C be the category of perverse coherent sheaves
satisfying Assumption 2.1.1. We also use the notation A;; in section 2. Let G be a locally free sheaf on
X which is a local projective generator of C. Let e € K(X)iop be the topological invariant of a locally free
sheaf F of rank r and degree d on a fiber of p. Thus ch(e) = (0,rf,d), where f is a fiber of p. Assume that e
is primitive. Then M?f (e) consists of Gy-twisted stable objects, if G1 € K(X)op @ Q, tk Gy > 0 is general
with respect to e and H. From now on, we assume that y(G1,e) = 0. By [OY, sect. 1.1], we do not lose
generality.

Remark 3.1.1. We have Mf; (e) = Mf[:_nf (e) for all n.
Lemma 3.1.2. We set

(3.1) et = {E € K(X)iop|X(E,e) = 0}.
(1) —x( , ) is symmetric on e*.

(2) M := (Z7(Gy) + Z7(C,) + Ze)* /Ze is a negative definite even lattice of rank p(X) — 2.
Proof. (1) For a divisor D, we set

xX(G1,0x(D) - Ox)
rkG1

(3.2) v(D):=7(0x(D) - Ox) — T(Cy) € K(X)top ® Q.

Then v induces a homomorphism

(3.3) NS(X) ® Q = K(X)iop @ Q

such that rk(v(D)) =0, ¢1(v(D)) = D and x(G;1,v(D)) =0. For E € K(X) ® Q, we have an expression
(3.4) T(E)=Ir (Gl) +a7(Cy) +v(D)

where l,a € Q and D € NS(X) ® Q. If x(E,e) = 0, then D satisfies (D, f) = 0. Hence we have a
decomposition

(3.5) el ® Q = (Q7(G1) + Q7(Cy)) + v((Qf)™h).
For E,F € K(X), we have
(3.6) X(E,F)—x(F,E) = (tk Ec;(F) —tk Fei;(E), Kx).

Hence the claim (1) holds.

(2) By (3.5), the signature of e*/Ze is (1, p(X) — 1). We note that Q7(G;) + Qr(C,) — (el /Ze) @ Q is
injective and defines a subspace of signature (1,1). Hence M is negative definite. Since (Z7(C,) + Ze)*
an even lattice, we get our claim. (I

Lemma 3.1.3. (H,ci(e)) : K(X)iop — Z satisfies (H,c1(E)) > 0 for 1-dimensional objects E of C.

Lemma 3.1.4. (1) Assume that Gy is general with respect to e and H. Then le (e) is a smooth
elliptic surface over C and E® Kx = FE for all E € Mfll (e).

(2) Let E be a Gy-twisted stable object such that Supp(E) C p~t(c), ¢ € C. If x(G1,E) = 0 and
(c1(E),H) < (c1(e),H), then x(E,E) =2 and E® Kx 2 E.

Proof. (1) In [Brl, Thm. 1.2], Bridgeland proved that MHl (e) is smooth and defines a Fourier-Mukai
transform D(Mg1 (e)) = D(X), if G1 = Ox is general with respect to e and H. We can easily generalize
the arguments in [Brl, sect. 4] to the moduli space Mf,l (e) of G1-twisted semi-stable objects, if G is general
with respect to e and H. Then the claims follow.

(2) Since Supp(E) C p~i(c) and x(G1,E) = 0, we have E € (Z7(C,) + Z7(G1) + Ze)*. Since
0< (c1(E),H) < (c1(e),H), 7(F) € Ze. Then Lemma 3.1.2 (2) implies

(3.7) 2 < x(E, E) = dimHom(FE, E) + dim Hom(E, E ® Kx) — dimExt'(E, E).
Hence Hom(E, E® Kx) # 0. Since K™ € p*(Pic(C)) for an integer m, we see that £ ® Kx is a G1-twisted
stable object with 7(E) = 7(E ® Kx ), which implies that £ ® Kx = E and x(F, E) = 2. O

In the same way as in the proof of Theorem 2.1.6, we get the following results.

—G . . . —G
Corollary 3.1.5. (1) M (e) is a normal surface and the singular points qi,qs,...,q¢m of M (e)
correspond to the S-equivalence classes of properly G1-twisted semi-stable objects.
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(2) Let @;;:0 Efj-a” be the S-equivalence class corresponding to g;. Then the matriz (x(Eij, Eik))j.k>0
is of affine type A,D,E. We assume that a;o = 1 for alli. Then q1,q2,...,qm are Tational double
points of type A, D, E according as the type of the matrices (x(Eij, Eik))jk>1-

—G1+a

(3) We take a sufficiently small general o € K(X) ® Q such that x(«,e) =0. Then ©' : My

Mf,l (e) is the minimal resolution.
(4) Assume that ajy =1 for all i and x(o, E;;) <0 for all j > 0. We set

55) Cly = (I € MG(e)| Hom(Ey, E) # 0}
Cl/ /) = (EljvEl ’) andﬂ—/il(qi) = Z]>1 al]C/

’L_]'

(e) =

Then Cj; is a smooth rational curve such that (C};,

Remark 3.1.6. (1) In order to apply [Y7, Lem. 3.1.1], we need Lemma 3.1.3.

(2) In Theorem 2.1.6, we assume that x(«, E;;) > 0 for j > 0. So the definition of Cj; is different from
that in Lemma 2.2.4. For the smoothness of C};, we use the moduli of coherent systems (£, V),
where E € M5 (e) and V is a 1-dimensional subspace of Hom(E;;, E).

—Gi1+a

From now on, we take an « in Corollary 3.1.5 (3) and set X' := M, (e), Y’ := Mﬁl (e).

Lemma 3.1.7. X' is an elliptic surface over C. q: X' — C denotes the structure morphism of the elliptic
fibration.

Proof. For E € Mf,l (e), Div(E) € Hilbg(f depends only on the S-equivalence class of £. Hence we have a
morphism g : Y’ — HileXf. For a smooth fiber 771(c) (c € C), g~ (rm~1(c)) is the moduli of stable vector
bundles of rank r and degree d on 7~ 1(c). Hence g(Y”) is a curve in HllbrXf. Let ¢ : C — Hilb?{ be the
map sending ¢ € C to rn~1(c) € Hilbfff. Then ¢ is injective and g(Y”') N (C) # (. Since g(Y’) and +(C) are
irreducible, g(Y’) = +(C) and we have a morphism g : Y/ — C such that : o g = ¢g. Therefore we have an
elliptic fibration q: X' - Y’ — C.

We next show that Kx/ is numerically trivial along the fibration q. The proof is similar to that in [Brl,
Prop. 4.2]. For a reduced and irreducible curve D in a fiber of q, let E be a locally free sheaf on X’. Then
X(Ep,E) =x(E,Ep®Kx:/) =x(E,Ep)+ (tk E)*(Kx,D). Let £ be a universal family of stable objects
as a twisted object on X’ x X. Then Supp(H*(®%,_ x(E|p)) C p~'(q(D)) for all i implies that

X(E\DvE) - X(E7E|D)

(3.9) =X(®%— x (Ejp), ®5r x (B)) = X(% . x (B), ®% . x (E)p))
=(tk(P% . x (Ejp))er (D% x (B)) — k(@5 _ x (E))er (2% x (Ep)), f) = 0.
Hence (Kx/, D) =0, and the claim holds. O

Remark 3.1.8. It is easy to see that ¢ induces a injective homomorphism of Zariski tangent spaces. Hence ¢
is a closed immersion.

3.2. Fourier-Mukai duality for an elliptic surface. Let £ be a universal family as a twisted sheaf on

X’ x X. For simplicity, we assume that it is an untwisted sheaf. We set
(3.10) V(E) :=RHom, , (pX(E),£) = @XéX/(E ® Kx)'[-2], E € D(X),
' U(F) :=RHom,, (p (F),€), F € D(X).

Lemma 3.2.1. Replacing G1 by G1 —nCq, n> 0, we can choose det U(G41)Y € Pic(X') as the pull-back of
an ample line bundle on W. Let H be a divisor with Ox.(H) = det W(G;)Y.

Proof. We note that ¢, (¥(C;)) = rf. Hence det ¥(G; — nC,)Y = det U(G1)Y (nrf). We set
(3.11) € :=mrrkGy(H, f)(—GY + (tk Gy)n(n +m)(H?)/20x).

By [Y7, (1.112)], detpxn (€ ® p%(€)) is the pull-back of a polarization of Y’ for m > n > 0. Since
det U(¢Y) = det pxn (€ @ p% (§)) and —ch(§Y) = mrrk G1(H, f) ch(G1) mod Qox, we get our claim. O

Lemma 3.2.2. We set Aj; := V(E;;)[2].
1) There are b} := (b1, bls,...,b. ), i=1,...,m such that
( i i1y V42 is),
z] = OC;j (b;.])[]']a j>0
Ay = Ag(b).
(2) Irreducible objects of Per(X'/Y’,bl,....,bl.) are
(3.13) A;j(1§zgm,ogjgs;), Cor(a' € X'\ Ui Z)).
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Proof. 1t is sufficient to prove (1) by Proposition 1.1.4. By the choice of «, we have
EXt2(Eija5|{z’}><X) 207 j > 0)

(3.14)
Hom(E;o, £|{z1xx) =0

for all 2/ € X'. Then the claim for j > 0 follow from the proof of Corollary 3.1.5 (4). For 2/ € ©'~'(g;), we
have an exact sequence

(3.15) 0— F; — Eayxx — Eio — 0,

where F; is a Gi-twisted semi-stable object which is S-equivalent to € >0 Efjj “i Applying ¥, we have an
exact sequence

(3.16) 0— U(F)[1] — A,y — C, — 0.

It is easy to see that

(3.17) Hom(Aj, Aj;[-1]) = Ext' (A}, Aj;[~1]) = 0.

By Lemma 1.1.3, we get A}, = Ao(b}). O

We define Per(X’/Y’) and Per(X’/Y’)P as in subsection 2.2. Replacing G by G} with 7(G}) = 7(G1) —
n7(C,), we may assume that Gjp-1(+), t € C is a semi-stable vector bundle for a general ¢ € C. Indeed for
a torsion free object G with Ext*(G), G (—f))o = 0, a deformation of G satisfies the claim (cf. [Y7, Proof
of Prop. 2.1.1]). Then L, = ¥(G1)[1] is a torsion object of Per(X’/Y’) N Coh(X’) such that ¢;(L2) = H.
Indeed L is a coherent torsion sheaf on X'. Since Hom(L3, A};[~1]) = Hom(E;;,G1) = 0, Ly € Per(X'/Y’).
Lemma 3.2.3. Let Ly be a line bundle on a smooth curve C € |H| and set G := U(Lq)[1]. Then we have

Hom(G,,C,/[k]) =0, k#0,
(3.18) Hom(Go, Ajj[k]) =0, k#0,
dim Hom(Gy, Aj;) = (c1(Eij), H).
In particular Gy is a local projective generator of Per(X'/Y").

Proof. The claim follows from the following relations:

Hom(G?2, Cpr[k]) = Hom(W(L1)[1], ¥ (& {2y xx)[2 + k)
= Hom(& a1 x x, L1 [k +1]),

Hom (G2, Aj;[k]) = Hom(¥(Ly)[1], U(Eq;)[2 + k])
= Hom(E;;, L1[k + 1]).

(3.19)

O
For a conveniense sake, we summalize the image of C,[—2], £{21yxx, G1, L1 by ¥:
U(Cy[-2]) = &1 x/x {2}
(3.20) \Il(gl{ail’j}(gji ; S:[[__j}v
W(Ly) = Gol-1].
Lemma 3.2.4. (1) For E € C, there is a complex Wo : Wy — W1 — Wy of local projective objects W

of Per(X'/Y") such that U(E) = W,. In particular, PHY(U(E)) = 0 for ¢ # 0,1,2. We also have
PHI(U(F)) =0 for F € Per(X'/Y") and q #0,1,2

(2) For E € C, assume that Hom(E, &|(zyxx) = Hom(E, E;;) = 0 for all 2 € X' and i,j. Then there
is a complex W, : W{ — W} of local projective objects W/ of Per(X'/Y") such that ¥(E) = W/. In
particular, PH* (W (E)) = 0 and PH* (VU (E)) is a torsion free object of Per(X'/Y").

(3) For E € C, assume that Hom(E, £ 1,1yx x[q]) = Hom(E, E;;[q]) = 0 (¢ = 0,1) for all 2" € X’ and
i,j. Then W(E)[2] is a local projective object of Per(X'/Y").

Proof. (1) For E € C, we take a resolution 0 — V_y — V_; — Vj — E — 0 in the proof of Lemma 2.5.2.
Then Hom(Vy, &1y x x[q]) = Hom(Vy, Eyjlq]) = 0 (¢ # 0) for all k, 2’ € X’ and 4, j. By Corollary 3.1.5, we
have Kx/ € n'"(Pic(Y”)). Hence A}; ® Kx» = Aj;. For q # 0, we have

0 = Hom(Vk, Eij[q]) = Hom(¥(E;;)lq], ¥ (Vi)
(3.21) = Hom(¥(V4), Aj; @ Kx/[q])"

=Hom(¥(V), Aj;lq])"
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Thus ¥ (V) are local projective objects. Hence W, := WU(V_,) is a desired complex.

The last claim follows by a similar argument to the proof of Corollary 2.5.3.

(2) For the complex W, in (1), we shall prove that Wy — W is injective and Wy /W is a local projective
object of Per(X’/Y"). For this purpose, it is sufficient to show the surjectivity of W,’ — W} in Per(X'/Y")P
by Lemma 1.1.6. If it is not surjective, then Hom(W(E)Y, (A};)"[2]) # 0 or Hom(¥(E)Y,CY,[2]) # 0 by
Lemma 1.1.6. On the other hand, we see that

Hom(¥(E)Y, (A;j)V[Q]) = Hom(A};, V(F)[2]) = Hom(¥(E;;), ¥(E)) = Hom(E, E;;) = 0,
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B2 Hom(W(E)Y, C4[2)) = Hom(Cyr, W(E)[2]) = Hom(W(E pary e )s ¥(E)) = Hom(E, € x) = 0

by the assumption. Therefore our claim holds. (3) also follows from the proof of (2). O
Definition 3.2.5. We set U'(E) := PH(¥(E)) € Per(X’/Y’) and Vi(E) := PH(U(E)) € C.

Lemma 3.2.6. WITy with respect to W holds for all 0-dimensional objects E of C and V2(E) is Go-twisted
semi-stable. Moreover if E is an irreducible object, then U(E)[2] is a Ga-twisted stable object of Per(X'/Y").

Proof. 1t is sufficient to prove the claim for all irreducible objects E of C. Since &,;xx and E;; are
purely 1-dimensional objects of C, Hom(E, &(z3xx) = Hom(E, E;;) = 0 for all 2’ € X' and i,j. Hence
UO(E) =0 and U!(E) is a torsion free object of Per(X’/Y”) by Lemma 3.2.4. Since Hom(E, £y« x[1]) = 0
if Supp(E)Np~L(p(z’)) =0, Y1 (E) = 0. Therefore WIT; holds for all 0-dimensional objects of Per(X’/Y").

For the Go-twisted stability of ¥ (E)[2], we first note that Supp(¥(E) [2]) C q71(p(E)) and x(G2, ¥(E)[2]) =
VWL, W(B)[2]) = x(B, Li[1]) = 0. Since (e (W(E)[2]), 7) = —x(¥(E), B(G)[1]) = (G1,E) > 0,
U(FE) is a 1-dimensional object of Per(X’/Y”). Assume that there is an exact sequence

(3.23) 0— F — U*(E) - F, -0

such that 0 # F, € Per(X'/Y’) and F, € Per(X'/Y") with x(G2,F2) < 0. Applying ¥ to this exact
sequence, we get a long exact sequence

0 —— TO(F) 0 VO(Fy)
(3.24) L UYR) 0 VL)
— s V(R E V2(F)) — 0.
Since Supp(Fy) C Supp(¥(E)[2]), U (Vi (F)) are torsion object of Per(X’/Y’). By Lemma 2.5.2 (1),

1
@O(@O(Fl)) is torsion free. Hence @0(@0(F1)) = 0, which implies @O(Fl) =0 by Lemma 5.1.2. Then (3.24)
implies WIT, holds for Fy. Since 0 > x(Ga, Fy) = x(U(F), U(Gs)) = x(V(Fy), L1[-1]) = (H, c1(V2(F))) >
0, we get x(Gz, F3) = 0 and \/1;2(}7‘2) is a 0-dimensional object. Then W(E) is purely 1-dimensional and ¥ (F})
is 0-dimensional. Since E is an irreducible object of C, we have (i) @2(F1) = 0 or (i) @2(F1) & E. Since
WIT), holds for U (Fy) with respect to ¥, the first case does not hold. If \/132(}7‘1) >~ F, then @1(F1) >~ 2 (F3).
Since WO(Fy) = 0, Lemma 5.1.2 implies that \112(\/1\/1(F1)) = 0, which implies that F; = \112(@2(F2)) = 0.
Therefore W2(E) is Go-twisted stable. O

Theorem 3.2.7. We set f:=7(x/x{a}). Then & x/x (2} is G2 — V(B)-twisted stable for all x € X and we
have an isomorphism X — Mgrqj(ﬁ)(f) by sending x € X to & x/x{z) € Mgz_q}(’@)(f),

Proof. By Lemma 3.2.6, £ x/x{s} is Go-twisted semi-stable. If & x/xy;) is not Ga-twisted stable, then
& x1x{x} 18 S-equivalent to EBj U2(A;;)®%. Let Fy # 0 be a Go-twisted stable subobject of & x' %z} such
that x(G2, F1) = 0. Then F} is S-equivalent to €p; W2(A;;)®b and U(F})[2] is a quotient object of C,. Since

C, is B-stable, 0 < x(B,¥(F,)) = x(¥(3), Fy). Therefore E x'x{z} 18 Go — ¥(B)-twisted stable. Then we

have an injective morphism ¢ : X — M%_\I’(ﬁ) (f) by sending x € X to & x/x{z}- By a standard argument,

we see that ¢ is an isomorphism. (I

3.3. Tiltings of C, Per(X’/Y’) and their equivalence. We set €; := C and €3 := Per(X’/Y’). In
this subsection, we define tiltings 2, QAlg of €, €5 and show that ¥ induces a (contravariant) equivalence
between them. We first define the relative twisted degree of E € €; by degg, (E) := (c1(GY ® E), f), and
define fimax,c; (E), tmin,q; (F) in a similar way.

Definition 3.3.1. (1) Let T; be the full subcategory of €; consisting of objects E such that (i) E is a
torsion object or (i) E is torsion free and pimin,q, (E) > 0.
(2) Let §; be the full subcategory of €; consisting of objects E such that (i) E = 0 or (ii) F is torsion
free and pmax,¢,; () < 0.
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Definition 3.3.2. (1) Let T; be the full subcategory of €; consisting of objects E such that Supp(FE)
is contained in fibers and there is no quotient object E — E’ with x(G;, E') < 0.
(2) We set

3 =(3)*

(3.25) ~
={FE € ¢;] HOIH(E/,E) =0,F ¢ i}

Remark 3.3.3. We have @'Z O F; and @- C %
Definition 3.3.4. (T;,3;) and (%;,3;) are torsion pairs of ¢;. We denote the tiltings by 2; and 2; respec-
tively.
Then we have the following equivalence:
Proposition 3.3.5. VU induces an equivalence 2A;[—2] — (é\lg)op,
For the proof of this proposition, we need the following properties.

Lemma 3.3.6. (1) Assume that E € T;. Then Hom(E, Eltzyxx) = 0 for a general 2’ € X'.

(2) Assume that FE € 31. Then Hom(&|1yx x, E) = Hom(E;;, E) = 0 for all 2" € X'. In particular if

E € §1, then Hom (&1 x x, ) = Hom(E;;, E) = 0 for all 2’ € X'.

Proof. We only prove (1). If rk E = 0, then obviously the claim holds. Let E be a torsion free object on
X such that Ej; is a semi-stable locally free sheaf with x(G1, E|y) > 0 for a general f. Then if there is a
non-zero homomorphism ¢ : £ — &1« x, then x(G1, Ejf) = 0, ¢ is surjective and E|; is S-equivalent to
Elferyxx @ ker g, where f = p~'(q(2’)). Therefore Hom(E, £z}« x) = 0 for a general 2’ € q~'(p(f)) C
Y. O

Lemma 3.3.7. Let E be an object of C = &;.
(1) HOW(E)) = H*(V(E)).
(2) VO(E) C HY(Y(E)). In particular, ¥O(E) is torsion free.
(3) If Hom(E, E;;[2]) = 0 for all i, j and Hom(E, &1y« x[2]) = 0 for all 2’ € X', then V*(E) = 0. In
particular, if E € §1, then W2(E) = 0.
(4) If E satisfies E € Ty, then W°(E) = 0.
Proof. Tt is a consequence of Lemma 3.2.4 and Lemma 3.3.6. O

Corollary 3.3.8. If E € TN Ty, then PHI(V(E)) =0 fori # 1.

Lemma 3.3.9. Let E be an object of C.

(1) If WITq holds for E with respect to ¥, then E € F.
(2) If WITs holds for E with respect to ¥, then E € %5.

Proof. For an object E of C, there is an exact sequence
(3.26) 0—-FE —FE—FEy,—0
such that £, € T; and Ey € ;. Applying ¥ to this exact sequence, we get a long exact sequence
0 —— VOEy) —— VYE) —— VY(E))
(3.27) e W) —— WL(E) —— W)
— V}(Ey) —— V%(E) —— V3(E) —— 0.
(

By Lemma 3.3.7, we have W°(E;) = W?(Ey) = 0. If WIT, holds for E, then we get W(E;) = 0. Hence (1)
holds. If WIT; holds for F, then we get U(FE3) = 0. Thus E € 1. We take a decomposition

(3.28) 0—F —FE—FE;,—0
such that B} € T; and E} € §; NTy. Then Ui(E}) = 0 for i # 1 by Corollary 3.3.8. Since U0(E}) = 0, we
also get W!(E%) = 0. Therefore £} = 0. O

By Theorem 3.2.7, we have the following lemma.
Lemma 3.3.10. Similar claims to Lemma 3.5.7, Corollary 3.5.8 and Lemma 3.3.9 hold for .

Lemma 3.3.11. (1) If E € T4, then (1a) VO(E) =0, (1b) VL(E) € F2 and (1c) V2(E) € T,.
(2) If E €3y, then (2a) VO(E) € 3s, (2b) U(E) € T, and (2¢) W2(E) = 0.
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Proof. (1a) and (2c) follow from Lemma 3.3.7. (2a) is easy. (1c) By Lemma 5.1.2, WIT; holds for W?(E)

~

with respect to U. By a similar claim of Lemma 3.3.9 (2), we get W2(E) € 5.
We next study W!(E) for E € C. Assume that there is an exact sequence

(3.29) 0—F —VYE) - F,—0
such that F; € %2 and F; € @g. Applying \T!, we have a long exact sequence
0 —— V(F) —— VO(UH(E)) —— VO(F)
(3:30) —— V() —— VH(UN(E) —— V(R
—— VX(Fy) —— W(UY(E)) —— V2(F) —— 0.
By similar claims to Lemma 3.3.7, we have WO(Fy) = U2(F,) = 0.

Assume that E € T;. Since ¥O(E) = 0, Lemma 5.1.2 implies that W2(¥!(E)) = 0. Hence WIT; holds
for Fy. Since 0 < x(Ga, F1) = x(V}(F1), L1) = —(H, c1(P1(F1))) <0, U(Fy) is a 0-dimensional object. If
Fy # 0, then since U (F}) # 0, we see that 0 < x(G1, V! (F1)) = x(F1,La) = —(H, c1(F1)) < 0, which is a
contradiction. Therefore F; = 0. R

Assume that F € §;. Since ¥2?(E) = 0, Lemma 5.1.2 implies that WO(¥!(E)) = 0. Hence WIT; holds
for F5. We have an injection W!(U!(E)) — E. Since pmax,¢, (F) < 0, Hom(E, €,/yx x [1]) = 0 for a general
2/ € X'. Hence W!(E) is zero on a generic fiber of p. Then ! (W1 (E)) is a torsion object. Since E is torsion
free, U1 (V1(E)) = 0. Since WO(Fy) = 0, we get W (Fy) = 0, which implies that Fy = 0. O

Proof of Proposition 3.3.5.

It is sufficient to prove that ¥(T;[-2]), ¥(F,[-1]) C (ﬁg)op. Then the claims follow from Lemma 3.3.11.
O

3.4. Preservation of Gieseker stability conditions. We give a generalization of [Y1, Thm. 3.15]. We
first recall the following well-known fact.

Lemma 3.4.1. (1) Let E be a torsion free object of C. Then E is G1-twisted semi-stable with respect
to H-+nf, n> 0 if and only if for every proper subobject E' of E, one of the following conditions
holds:

(a)
(Cl(E)7f) (Cl(E/)af)
31

(3:31) kE kB
(b)

(3 32) (Cl(E)7f) _ (Cl(E,)af) (Cl(E)vH) > (Cl(El)vH)

' tk E tk B/ tk E tkE
(c)
- @(E).f) _(@E).D) (@E)H) _(@E) H xCLE) _ B
’ tk E tkE' tk E tkE' 7 tkE T rtkFE

(2) Let F be a I-dimensional object of Per(X'/Y") with (c1(F), f) # 0. Then F is Ga-twisted semi-
stable with respect to H + nf, n > 0 if and only if for every proper subobject F' of F', one of the
following conditions holds:

(a)
/ X(G2aF) /
(334) (Cl(F )7f) (Cl(F)7f) > X(G27F)
(b)
(3.35) (), H2C2E) 6, ), @), 5 X2 E) .

(cr(F), f) (c1(F), H)
Lemma 3.4.2. Let F be a purely 1-dimensional Ga-twisted semi-stable object such that (ci(F'), f) > 0 and
X(G2, F) < 0. Then WIT; holds for F with respect to W and W'(F) is torsion free.

Proof. By Lemma 3.4.1 (2), F € @’2. Then WIT; holds for F' by Lemma 3.3.10. Assume that there is an
exact sequence

(3.36) 0— FE, — UHF) = Ey — 0

such that Ey is the torsion subobject of W!(F). Since \T/l(F)‘f is a semi-stable vector bundle of deg(GY ®

\Tll(F)”c) = 0 for a general fiber f of p, Supp(F;) is contained in fibers. Since E; € T; and E; € 31, WIT,
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holds for Ey, Es and we have a quotient F' — W!(E;). By our assumption on F, we get x(Ga, V1(Ey)) > 0.
On the other hand, x(Ga, V'(E1)) = x(FE1,L1) = —(H,c1(E1)) < 0. Hence F; is a 0-dimensional object.
Then we get 0 < x(G1, E1) = x(¥Y(E1), L) = —(H,c1(P1(E;))) < 0, which is a contradiction. O

Lemma 3.4.3. Let F be a 1-dimensional object of Per(X'/Y"'). Then

o~

r(ei(F), f) = tk(U(F)[1]),
(3.37) (e1(F), H) = —X(F, Ly) = —x(G1, U(F)[1]),

~ ~

X(Ga, F) = x(U(F)[1], L1) = =(er (W(F)[1]), H) + tk(U(F)[1])x(L1).

Proposition 3.4.4. Let w € K(X')op be a topological invariant of a I-dimensional object. Assume that
X(Ga,w) < 0. Then for n>> 0, we have an isomorphism

(3.58) M (B (w))** = M2 (w)™,

which preserves the S-equivalence classes.

Proof. Let E be a Gy-twisted semi-stable object with 7(E) = W(—w). Then since E|; is a semi-stable locally
free sheaf with drk £/ — r deg(E|s) = 0 for a general fiber, we have E € TN §1. By Corollary 3.3.8, WIT,
holds for F with respect to W. Assume that there is an exact sequence

(3.39) 0— F — UYE) = F, —0.

By Lemma 3.3.11, ¥}(E) € §2, which implies that F; € §2. Since tk U1(E) = 0, Fy, F, € To. In particular,
F, € T3N F2. Then similar claim to Corollary 3.3.8 implies that WIT; holds for F;. Hence we get an exact
sequence

(3.40) 0— UNF) — E2 UH(F) — U3(F) — 0.
By Lemma 3.3.11, U2(F,) € T;. Hence tk U (F}) = rkim¢. By (3.37), we have the following equivalences.
(

64)  (aF), HXEYE) iy py e it () QB S (@1 my), m),

(er(F), f) rk E
o X(G2, VH(E)) N a1 X(Ga, V! (E))
(3.42) (e1(Fr), H) (e (V1 (E)). 1) < X(Go, 1) <= —x(G1, ¥ (1)) —(CL.E) < x(G2, F1).

If the equality holds in (3.41), then (G2, V1 (E)) < 0 implies that (3.42) is equivalent to

(G, UL(FY)) - rk UL (F))

(343) v(G,E) ~ 1kE

which is equivalent to

X(G1, 9 (F1)) _ x(G1,E)
(3.44) rklijl(Fl) <

by —x(G1, E) > 0. Since

X(G1,imp(nH)) _ X(G1, W' (Fy) (nH))
rkim ¢ - rk U1 (Fy)
we see that ¢ is surjective and the equalities hold for (3.41), (3.42).  Therefore W!(E) is Ga-twisted
semi-stable.
Conversely let F' be a Ga-twisted semi-stable object with 7(F) = w. By Lemma 3.4.2, WIT; holds for F'

with respect to ¥ and U!(F) is a torsion free object whose restriction to a general fiber is stable. If W1(E)
is not G1-twisted semi-stable, then we have an exact sequence

(3.46) O—>E1—>\/I\11(F)—>E2—>O

(3.45) ,n>>0,

such that E; € T; N §1. By using Lemme 3.4.3, we get the following equivalences:

(x(B(F)), H) _ (B, H) (G2, F) _ x(Gay W'(EY))

KOLUE) kB (@) D) C @@ B, )

NGLIYF) _ X(GLEB) | (eF) H) _ (W (£), H)

KOUF) S kB (@) ) © (e(Wi(E)),
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If the equality holds in (3.47), then (3.48) is equivalent to

X(Go, F)  x(G2, 1 (Fn))

(er(F), H) — (er(WH(En)), H)

by (G2, F) < 0. Therefore U!(F) is G;-twisted semi-stable. O

(3.49)

4. A CATEGORY OF EQUIVARIANT COHERENT SHEAVES.

4.1. Morita equivalence for G-sheaves. Let X be a smooth projective surface and G a finite group
acting on X. Assume that G — Aut(X) is injective and Stab(z), z € X acts trivally on (Kx)¢s}, that is,
Kx is the pull-back of a line bundle on Y := X/G. By our assumption, all elements of G have at most
isolated fixed points sets. Let R(G) be the representation ring of G and ( , ) the natural inner product.
Let Kg(X) be the Grothendieck group of G-sheaves and Kg (X )top its image to the Grothendieck group of
topological G-vector bundles. Since we are mainly interested in surfaces with trivial canonical bundles, we
denotes the topological invariant of E € Cohg(X) by v(E) € Kg(X)iop-
Definition 4.1.1. For G-sheaves E and F' on X,

(1) Exth(E, F) is the G-invariant part of Ext(E, F).

(2) xg(E,F) = Y ,(~1)"dimExt};(E, F) is the Euler characteristic of the G-invariant cohomology

groups of E, F. We also set xo(E) := xz(Ox, E).

Remark 4.1.2. (1) If Kx = Ox in Cohg(X), then xo( , ) is symmetric.

(2) xg(E,F) is invariant for flat deformations of E, F:

Let £ and F be a flat family of G-sheaves on X over S. By taking a suitable locally free resolution
of £, we see that RHom, (€, F) is represented by a complex 0 — Vy — V3 — --- = V,, — 0 of
locally free sheaves V; on S with G-actions, where n = dim X. Since S is a scheme over C, we have
a decomposition V; = ®;V;; ® p;, where p; are irreducible representations and V;; are locally free
sheaves on S with trivial G-actions. Hence xq(&|1syxx, Fl{sixx) = > (1) rk Vig, where py is the
trivial representation.

Let @w : X — Y be the quotient map. We set

(4.1) @ (Ox)[G] = D fo(@)g| fo(x) € w.(Ox)

geG

w.(Ox)[G] is an Oy-algebra whose multiplication is defined by

(4.2) St@g || D @ | = > fo@)fyo w)gg -

geG g'eG 9,9'€G
We note that € := # deG g satisfies ge = € for all g € G. By the injective homomorphism
(4.3) @+ (Ox) = @+ (Ox)e (C w.(Ox)[G),

we have an action of w,(Ox)[G] on w.(Ox):

(4.4) D So@g | f@) =) fola)flg ).

geG geG
Thus we have a homomorphism
(4.5) w.(Ox)[G] — Home,, (w.(Ox), w.(Ox)).
Lemma 4.1.3. @.(Ox)[G] 2 Home, (w.(Ox), w.(Ox)).
Proof. We first prove the claim over the smooth locus Y™ of Y. We note that #w~1(y) = #G, y € Y™,
We take a point z € @™ (y). Then @,(Ox)|y = Om-1(y) is identified with GyecCy. as C[G]-modules. Let
Xu(z) be the characteristic function of a point u € X. Then {x,4.|lg € G} is the base of @4eccCy. and
f(z) € Og-1(y) is decomposed into f(z) = >_ . f(92)x42(2). Since

(4.6) (xg=(2)(g'g™ ")) - (Z f(hZ)Xhz(x)> = f(92)xg2(2),

heG
we see that

(4.7) (@ (0x)[G])}y — Hom(w.(Ox))y, @(Ox)yy)
is an isomorphism. Since w,(Ox)[G] and Home, (w.(Ox), w.(Ox)) are reflexive sheaves on Y, we get the
claim. O

30



We set A := w,(Ox)[G] = Homo, (w.(Ox),w.(Ox)).
Lemma 4.1.4. We have an equivalence

ws: Cohg(X) = Cohy(Y)

(4.8) E — w.(E)

whose inverse is w1 : Coh4(Y) — Cohg(X). In particular, we have an isomorphism
(49) HOI’IIG(El, EQ) = I‘IOI’II_A(’(D>,<(.E1)7 w*(EQ)), E,E5 € COhG(X)

Proof. Since the problem is local, we may assume that Y is affine. Then X is also affine. For F' € Coh4(Y),
HO(Y,F) is a HO(Y, @, (Ox))[G]-module. Hence H°(X,w (F)) = H°(Y, F) is a H*(X, Ox)[G]-module,
which implies that @w~1(F) € Cohg(X). Then it is easy to see that ™! is the inverse of .. O

By Lemma 4.1.4, we have an equivalence w, : Dg(X) — D4(Y). In particular,
(4.10) Xc(E1, B) =Y (—1)" dim Homu(w.(E1), @, (E»)[i]), E1, By € Coha(X).

For a representation p : G — GL(V,) of G, we define a G-linearization on Ox ® V, in a usual way. Thus
we define the action of G on w,(Ox ® V) as

(4.11) g (f(z)®v):= fg"'z) @ gv, g € G, f(2) € w.(Ox),v € V,,.
Then Ox ® C[G] is a G-sheaf such that w.(Ox ® C[G]) = A and we have a decomposition
(4.12) Ox ©C[G] = P(Ox ®V,,) o™ r,

K2

where p; are irreducible representations of G.

Definition 4.1.5. For a G-sheaf E and a representation p : G — GL(V,), E ® p denotes the G-sheaf
E®oy (Ox ®@V,).

Since w,(Ox ® p;) are direct summands of A, we get the following lemma.
Lemma 4.1.6. (1) A; :=w.(0Ox ® p;) are local projective objects of Coha(Y).
(2) B, @w(Ox @ p;)®"i is a local projective generator of Coha(Y') if and only if r; > 0 for all 4.
For a local projective generator B of Coh4(Y), we set A" := Hom (B, B). Then we have an equivalence
Coha(Y) —  Cohu(Y)
E — Homa(B,E).
4.2. Stability for G-sheaves. Let o be an element of R(G) ® Q.

Definition 4.2.1. Let Ox(1) be the pull-back of an ample line bundle on Y. A coherent G-sheaf E is

a-stable, if I is purely d-dimensional and

Xa(F(n)®a) _ xe(Em) ©a’)
aq(F) ai(E)

for all proper subsheaf F' # 0, where a4(e) is the coefficient of n? of the Hilbert polynomial yg(e(n) ® V).

We also define the a-semi-stability as usual.

Remark 4.2.2. Assume that o = >, 7ip;, 1 > 0. We set B:= @, AY" and A’ := Hom (B, B). Under the

equivalence

(4.13)

(4.14) n>0

Coh(;(X) - COhA/ (Y)
(4.15) E  — Homa(B m.(E)),
(4.16) xa(E(n) @ o) = x(Hom (B, w.(E))(n))

implies that a-twisted stability of E corresponds to the stability of .A’-module Hom 4 (B, w.(E)).

For a coherent G-sheaf E of dimension 0, we also have a refined notion of stability, which also comes from
the stability of 0-dimensional objects in Coh4(Y).

Definition 4.2.3. Let p;s be the regular representation of G. A coherent G-sheaf E of dimension 0 is
(preg, a)-stable, if
Xe(F®aY) Xa(E®aY)

4.17
(4.17) X (F @ %) = Xa(E ® piy)

for a proper subsheaf F' # 0.

By [S, Thm. 4.7] and [Y7, Prop. 1.6.1], we get the following theorem.
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Theorem 4.2.4. We take v € Kg(X)top-
(1) Assume that na contains every irreducible representation for a sufficiently large n. Then there is
a coarse moduli space ngu)(v) of a-semi-stable G-sheaves E with v(E) = v. ngu)(v) is a
projective scheme. We denote the open subscheme consisting of a-stable G-sheaves by ng(l)(v).
(2) Assume that v is a 0-dimensional vector. Tkn thsre 1s a coarse moduli space M%j{g(f) (v) of (Preg, )~
semi-stable G-sheaves E with v(E) = v. ngf'(’l)(v) is a projective scheme. We denote the open
subscheme consisting of (preg, @t)-stable G-sheaves by M(pg‘j:(’f; (v).
(3) If Kx = Ox in Cohg(X), then Mg ) (v) and M(gr;g(vf; (v) are smooth of dimension —x¢(v,v) + 2
with holomorphic symplectic structures.

Remark 4.2.5. There is another construction due to Inaba [In].

4.3. Fourier-Mukai transforms for G-sheaves. For a smooth point y of Y, H°(X, Om-1(y)) = preg and
O -1(y) is an irreducible object of Cohg(X). Let v be the topological invariant of O -1(,).

Lemma 4.3.1. A 0-dimensional G-sheaf E is (preg, 0)-twisted stable if and only if E is an irreducible object
of Cohg(X).

Proof. Let E be a G-sheaf of dimension 0. Then x5 (E® pyeg)/ Xa(E ® pyeg) = 1. Hence the claim holds. [

Definition 4.3.2. Let G -Hilb% be the G-Hilbert scheme parametrizing 0-dimensional subschemes Z of X
such that H%(X,0z7) 2 V,,.

Let pg, p1,- .-, pn be the irreducible representations of G. Assume that pg is trivial. We take an a such
that (@, preg) = 0 and («, p;) < 0 for ¢ > 0.

Lemma 4.3.3. M(’;r;g(’f; (vo) = G-Hilb%*®. In particular, Mg;g(f; (vo) # 0.

Proof. Let E be a G-sheaf with v(E) = vg. Since xo(Ox ® po, E) = 1, we have a homomorphism ¢ : Ox ®
po — E. Then H°(im ¢) contains a trivial representation, which implies that yo(Ox ®po,im ¢) > 1. We note
that E belongs to Mg;g(’f; (vp) if and only if E does not contain a proper subsheaf F with x-(Ox ®po, F) > 1.
Hence if E € Mgf(’g (vo), then im ¢ = E, which implies that E € G -Hilb%**. Conversely, if E € G-Hilb5"*,
then for a subsheaf F with xo(Ox ® po, F) > 1, Homg(Ox ® po, F) — Homg(Ox & po, E) is isomorphic.
Hence ¢ factors through F. Since F is generated by the image of ¢, F' = E. Thus E is stable. O

We set X' := Mg;g(’f; (vo) and let £ = Oz be the universal family on X’ x X. Let ¢ : X' — Mg;g(’lo)(vo)

be the natural map.

Lemma 4.3.4. Let E, F be G-sheaves of dimension 0.
(1) Assume that E is simple and is S-equivalent to &, E; with respect to (preg, 0)-semi-stability. Then
there is a point y € Y such that Supp(FE;) = {y} for all i.
(2) XG(E\{z’}xX7E) =0,2'€ X"
(3) E® Kx 2 F in Cohg(X). In particular, Extl,(E, F) = ExtZ "(F, E)V.
(4) If E,F are (preg,0)-twisted stable and E 2 F, then xa(E, F) < 0. Moreover xg(E, F) = 0 implies
Exts(E, F) = 0.

Proof. (1) Assume that U; Supp(w.(F;)) = {y1,...,4+}. Then Supp(w.(F)) = {y1,...,y:} and we have a
decomposition E = ®!_, Fj, where F}, are G-sheaves with Supp(w.(F%)) = {yx}. If ¢t > 1, then E is not
simple. Therefore ¢t = 1 and the claim holds.

(2) Since xG(&jayxx,E) is independent of the choice of z', we may assume that Supp(w.(E)) N
Supp(@(&{z'}xx)) = 0. Then we have Homg(&|(1yx x, E[k]) = 0 for all k. Therefore the claim holds.

(3) Since Kx is the pull-back of a line bundle on Y and Supp(w.(F)) is a finite set, we get EQ Kx & F
(cf. Lemma 4.3.10). By the Serre duality, we have Exts (E, F) = Exté_i(F, E)V.

(4) By (3), Ext4(E, F) = Homg(F, E)V. If Homg(E,F) # 0 or Homg(F, E) # 0, then we see that
E = F. Hence Homg(F, F) = ExtZ(E, F) = 0, which implies that yg(E, F) = —dimExt,(E, F) <0. O

Remark 4.3.5. For £1,yxx, let y € Y be the support of @, (€(z}xx). Then y depends only on ¢(z').
Corollary 4.3.6. Let E be a G-sheaf of dimension 0. Then the pairing

Exty(E, E) x Ext(E, E) — Ext%(E,E) 2 Ext%(E,E® Kx) — H* (X, Kx)
is non-degenerate. In particular, diim Exty(E, E) is even.

Proof. By (3) and the Serre duality, we get the claim. O
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We consider the Fourier-Mukai transform:
®: Dg(X) — D(X")

(4.18) E  — Rpx.(E@pi(E)°.
Then
(4.19) #: D) - v,

F = RpX*(5V[2]®pf§(,(F))®KX/
is the quasi-inverse of ® (cf. [Br2]). In particular, ® induces an isomorphism Kg(X) — K(X’) such that
(4.20) Xa(E, F) = x(2(E), ®(F)).

We note that ®(vy) = ox/. Since xg( , ) is symmetric on p%, and %, /Zox- is isometric to (NS(X'), —(, )),
xc( , ) is symmetric on v(\{l and the signature of vgl/Zv(\{ is (dim K¢ (X) — 3,1), Let Cy,Cs € |Oy(n)],
n > 0 be two smooth connected curves on the smooth locus of Y*™. We set L := w*(O¢,) € vy-. Then
xa(L, L) = x(Oc,,0¢,) = —(C1,C3) < 0. Thus L+ Nvy™/Quy is negative definite. Therefore we get the
following.

Lemma 4.3.7. (1) xa( . ) is symmetric on vy and L+ Nvy ™ /QuY is negative definite.
(2) Let E be a G-sheaf of dimension 0. Then E € L+ N v(\)/J‘

Proof. (2) We find C € |Oy(n)| and 2’ € X' such that Supp(&|{/1xx) N Supp(E) = § and w(Supp(£)) N
C; = 0. Hence the claim holds. O

Let Y’ be the normalization of the image of ¢ : Mg“’g(f;( 0) — Mpreg(’l)(vo) Then we have a morphism
T X' =Y.

Proposition 4.3.8. (1) Y — Mpreg(’l)(vo) is a bijective morphism.
(2) Let {p1,p2,...,pi} be the set of singular points of Y'. Then each p; corresponds to S-equivalence
classes of properly (preg,0)-twisted semi-stable G-sheaves. Let @jzo Efja-aij be the S-equivalence
class corresponding to p;. Then the matriz (xa(Eij, Eijr));j >0 is of affine type A, D,E.
(3) We can assume that a;o =1 for all i. Then p; is a mtzonal double point of type A, D, E according
as the type of the matriz (xc(Eij, Eijr))jj'>1-
(4) We assume that a;g =1 for all i. For j #0,

(4.21) Cij = {x’ S Xll Homg(Eij,ng/}XX) 7é 0}
is a smooth rational curve and 7~ t(p;) = 2550 9iCij-

Proof. We first note that xg(Ox ®p, ®) : Kg(X) — Z satisfies xG(Ox @ preg, £) > 0 and xa(Ox ®@po, E) > 0
for all 0-dimensional G-sheaves E.

Assume that F € Mf;eg(f‘)( 0) is S-equivalent to ;L ES-“” with respect to (preg, 0)-twisted semi-
stability. By Lemma 4.3.4 (4), x¢(Eij, Eix) < 0if j # k. By Lemma 4.3.7, xg(E;;, E;j) > 0. Then
the simpleness of E;; and Corollary 4.3.6 imply xq(E;j;, Eij) = 2. By [Y7, Lem. 3.1.1], (xa(Eij, Eij’))j. >0
is of affine type A, D, E.

Since H°(X,0z,,) = C[G], ' € X', we have

(4.22) Zaij X (Ox ® po, Eij) = xa(Ox @ po, @Eeaa” =1L

J
Hence we may assume that a;o = 1, HO(X, Eip) = po and HO (X, Eij) does not contain a trivial representa-
tion, if j # 0. In particular, x¢(E;; ® @") < 0 for j > 0. Then the proof is similar to the proof of [Y7, Thm.
2.2.19] and [Y7, Lem. 2.2.22]. O

F 7Preg &

Remark 4.3.9. We can also show the claim (2) without using ®. Assume that E' € M (1) (vo) is S-equivalent
to @;;0 Ef;a” with respect to (preg, 0)-twisted semi-stability. By Lemma 4.3.4 (4), xq(Ei;, Eix) < 0 if
j # k. For any j, we shall find k£ # j such that xo(E;j, Eix) < 0. Assume that there is a decomposition
{0,1,... i} = I 11> such that x(E;;, E;x) = 0 for all (j,k) € Iy x I. By Lemma 4.3.4 (4), we have
Ext! (Eij, Ei) = 0 for all (j, k) € I; x I. Then we see that E = Fy & F,, where Fy is S-equivalent to
Djecr, E@a” and F3 is S-equivalent to Py, E;‘?a“. Since E is generated by H°(E)¢ and dim H°(E)¢ =1,
we get a contradiction Therefore there is k # j with xg(E;;, Eik) < 0. By using Lemma 4.3.4 (2), we
see that xc(Eij, Ei;) > 0. Then the simpleness of Ei; and Corollary 4.3.6 imply x¢(Eij, Ei;) = 2. By [Y7,

Rem. 3.1.2], (xg(Eij, Eijr))j jr>o0 is of affine type A, D, E.

Lemma 4.3.10. For a point 2’ € X', Kx is trivial in a neighborhood of ¢~*(¢(x")).
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Proof. We take a smooth section Cq € |m.(Kx(n))| withy ¢ C1. We also take a smooth section Cz € |Oy (n)].
Then D; := px/(ZN (X’ x w1(C;))) are closed subset of X’ such that D; "¢~ (¢p(2')) = 0 for i = 1,2. We
set U := X'\ (D1 U Ds). Then Cy and C5 define G-linearized homomorphisms £ ® Ox(—n) — £ ® Kx and
£ ® Ox(—n) — £. By our choice of U, they are isomorphic on U x X. We set &y := £y« x. Then we have

(4.23) EXtZQ)U <5U7 EU)G = EXtiU (5U7 Eu ® Kx)G = (HOI’nPU (gU; 5U>G>\/ ~ Oy.
Since Extf,U (Ev,Ev)C = K}, the claim holds. O

We note that px/«(Oz) is a locally free sheaf on X’ with a G-action. We have a decomposition of px:.(Oz)
as G-sheaves:

(4.24) px(0z) = ;®(0x ® pi) @ py .
For a G-sheaf E of dimension 0, EY = xt3, (E,Ox)[—2]. Hence E is an irreducible object if and only
if EV[2] is an irreducible object.
Lemma 4.3.11. We set Fj; := E}j[2] € Cohg(X).
(1)

(4.25) O(F,;) = {82 (j—i)[;], j >0,

where Z; := Zj ai;Cij is the fundamental cycle of p;.
(2) ®(Ox ® p;) is a locally free sheaf of rank dim p; on X'. In particular, (Ox ® po) = Ox:.

(3) ®(Ox ® p;) is a full sheaf ([E]).
Proof. We consider the homomorphism 9 : px/«(Ox/xx) — px«(Oz). For any point ' € X', 1, :
H°(Ox) — H%(Ogz,,) is injective. Since im1) C px++(Oz)%, ¢ is an isomorphism. Thus ®(Ox ® pg) = Ox-.
(2) is a consequence of (4.24). Then the proof of (1) is similar to the Fourier-Mukai transform on a K3
surface: We first show that ®(F;;) = Oc,;(bi;)[1] (j > 0) for some b;; € Z. Since 0 = xq(Ox ® po, Fij) =
X(®(Ox ®po), P(Fij)) = —(bi; +1), we get ®(Fy;) = Oc,,(—1)[1] for j > 0. Then we also get ®(Fjg) = Og,.
(3) We note that
Hom(®(Ox ® pi), Oc;, (=1)) = Hom(®(Ox @ pi), ®(Fjr)[—1])
= Homg(OX X pi>ij[_1D =0,

(4.26) Ext'(®(Ox ® p;), 0z,) = Ext'(®(Ox @ p;), ®(Fjo))
= Exté(OX ® pi, Fj0) = 0.
Hence ®(Ox ® p;) is a full sheaf. O
We have
(4.27) B(Ox ® pi)jcy, = O™ hit) g O, (1) &k,
where

kijk :==(c1(®(Ox @ pi)), Cjk)
(4.28) = dim Ext'(®(Ox ® p;), ®(Fj1))
=dim Homg(Ox ® p;, Fjk).
Proposition 4.3.12. ® induces an equivalence
(4.29) Cohg(X) — ~tPer(X'/Y").

Proof. Tt is sufficient to prove ®(E) € ! Per(X'/Y") for E € Cohg(X). We first prove that H*(®(F)) =0
for i £ —1,0. Let F be a G-sheaf on X. Then there is an equivariant locally free resolution of E:

(4.30) 0—-V.,o—=V_41—-Vy—FE—0.
Since ®(V;) are locally free sheaves on X’ and
(4.31) 0— ®(V_y) — &(V_1) — &(Vp)

is exact on X'\ U;Z;, we get H(®(E)) =0 for i # —1,0 and Supp(H 1 (®(E))) C U;Z,;. Then we have

(4.32) Hom(Oz,, H Y(®(E))) = Hom(®(Fy), ®(E)[-1])

= Homg(Fio, E[—l]) =0.

Hence ®(E) € ~! Per(X'/Y"). O
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Remark 4.3.13. By the proof of Proposition 4.3.12, H=}(®(E)) = 0 if E does not contain a non-zero
0-dimensional sub G-sheaf.

Proposition 4.3.14. For a =Y, rp;, ; > 0, we set P := @, ®(Ox @ p;)¥".

(1) P is a local projective generator of ~* Per(X'/Y").
(2) A G-sheaf E is a-twisted stable if and only if ®(F) is P-twisted stable.

Proof. Since

(4.33) X(P,@(Fj)) = Y rixa(Ox @ pi, Fyy) = Y rilps, H(X, Fji)) > 0

for all j,k, (1) holds by Lemma 4.3.11 (3) and Proposition 1.1.5 (1). (2) is obvious. O

Ezample 4.3.15. Let X be an abelian surface. Then G = Zs acts on X as the multiplication by (—1). Then
the moduli of stable G-sheaves on X is isomorphic to the moduli space of stable objects of ~! Per(Km(X)/Y),
where ¥ = X/G and Km(X) — Y is the Kummer surface associated to X. By [Y7, sect. 2.5], it is a
deformation of the moduli space of usual Gieseker semi-stable sheaves on a K3 surface.

Lemma 4.3.16. M?X(l)(vo) > Y' = X/G. In particular, M?X(l)(vo) is a normal surface with rational
double points.

Proof. We shall first show that M?X(l)(vo) >~ Y’'. By Proposition 4.3.14, Mvoox(l)(vo) is isomorphic to the
moduli of O-dimensional objects E of ~! Per(X’/Y") with v(E) = v(C,). By [Y7, Lem. 2.2.12], we have the
claim.

Let A C X x X be the diagonal. Then G := ©yecO(1xg)-(a) 18 a G-equivariant coherent sheaf on X x X
which is flat over X. Since v(Gjfz}xx) = vo, we have a morphism 7 : X — M?X(l)(vo) We note that
Glieyxx = G|{g(x)xx for all g € G and ng}Xx = Giqyyxx if and only if y € Gz. Hence 77 is G-invariant
and we get an injective morphism X/G — MO (1)(vo). It is easy to see that X/G — Mo (1)(vo) is an
isomorphism. (I

Corollary 4.3.17. We set P := ®(Ox ® C|G]) and A" := m.(PY ® P). Under the isomorphism Y’ 2Y,
we have an isomorphism m.(P) = w,.(Ox). Hence we have an isomorphism A= A" as Oy -algebras and we
have the following commutative diagram.

Cohg(X) —2— ~1Per(X'/Y")
(4.34) w*l lRﬂ'*(PVQg( )

Proof. We set R := Ox ® C[G]. Since ®(Ox ® C[G]) = @, ®(Ox ® p;)®4mri = py, (Oz), m.(P) =
T«(px'«(Oz)) is a reflexive sheaf. Since 7, (px/«(0Oz)) = w.(Ox) on the smooth locus, we get an isomor-
phism 7,(P) = w,(Ox). Since A’ is a reflexive sheaf on Y’, we have A" = Endo,,, (7.(P)). Therefore
A" = Endo,,, (7.(P)) = Endo, (w.(0x)) = A.

Since w,(R) = A and every G-sheaf F has a locally free resolution

(4.35) coo = R(—n_9)®N-2 = R(—n_1)®N1 = R(—no)®N - E -0,

we get the commutative diagram. O

Since ® induces an equivalence Cohg(X) — ~1!Per(X’/Y’) (Proposition 4.3.14), for FF € Cohg(X)
such that ®(F) € ~! Per(X’/Y’) is a local projective generator, we can define F-twisted semi-stability, by
replacing a by F' in Definition 4.2.1. Obviously F = Ox ® « coincides with the a-semi-stability in Definition
4.2.1. Then Theorem 4.2.4 is exytened for this bemi—stability. For a topological invariant vy € Kg(X)
such that v is primitive and xg(vo,v9) < 2, Mo (1y(v0) denotes the moduli space of F-twisted stable
G-sheaves E with the topological invariant vg. Assume that X’ is a K3 surface. Then for a general F,

~

ng(l)(vo) = Mggzl)(é(vo)) is smooth, projective and non-empty. In particular M} «(vo) is a K3

surface, if xg(vo,v9) = 0. We set X := Mgf()l)(@(vo)). If ®(vg) = (1,&, a) satisfies 0 < (§,C;;) and

(& 225 ai;Cij5) < r for all 4,5 and ®(F) € K(X') ® Q is sufficiently close to vo, then X' is a K3 surface.
Assume that there is a universal family F on X’ x X”. Then £ := ®(F) is a flat family of stable G-sheaves
and defines an equivalence ® : DY(X) — D(X") such that ® = @%,HX,, o ®. Thus there are many
moduli spaces X" of stable G-sheaves such that X are K3 surfaces and induce equivariant Fourier-Mukai
transforms.
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4.4. Irreducible objects of Cohg(X). By Proposition 4.3.12, we will be able to study irreducible objects
of Cohg(X). In this subsection, we shall describe irreducible objects of Cohg(X) by a more direct way.
Let E be a G-sheaf of dimension 0. We may assume that Supp(E) = Gz. Let H be the stabilizer of
x and F, the submodule of E whose support is . Then FE, is a H-sheaf. We have a decomposition
HY(X,E) = ®yec. H*(X, E,). Since gH*(X, E,) = H(X, E;;), we have an isomorphism

(4.36) H(X,E) = C[G] @ciu) H(X, E.)

as G-modules. Then we have an equality of invariant subspaces:

(4.37) H(X,E)¢ = H'(X,E,)".

We shall prove

Lemma 4.4.1. There is a bijection between

(a) 6 :={FE € Cohg(X)|Supp(F) = Gz, Stab(x) = H} and

(b) 9 :={F € Cohy(X)|Supp(F) = z}.
Proof. We definer : & — $ by sending £ € & to E, € §. For F € §), weset K := ker(H°(X,F)@0x — F).
Then

(4.38) s(F) := (C[G] @cim) HO(X, F)) ® Ox/ ) g(K)

geG
is a G-sheaf such that s(F), = F. Hence we have a map s : ) — & with r o s = idg. For E € &, we also
see that s(E,) = F, and hence s or = idg. Therefore our claim holds. (]

If HY(X, F) is the regular representation of H, i.e., H*(X,F) = C[H], then H°(X, E) is the regular
representation of G.

Lemma 4.4.2. Let E be a G-sheaf of dimension 0. Then E is irreducible if and only if Supp(F) = Gz and
E, = HY(X,E,)® C,.

Proof. For a G-sheaf of dimension 0, we take a point z € Supp(E). We set H := Stab(z). Then F ®
(Bgec/aOgs) is a quotient G-sheaf. If E is irreducible, then Supp(E) = Gz and E, = HY(X,E,) ® C,.
Moreover H°(X, E,) is an irreducible representation of H by Lemma 4.4.1. Conversely if Supp(E) = Gx and
E, & H%(X, E,)®C,, then for any irreducible quotient F', we have Supp(F) = Gz and F, & H°(X, F,)®C,.

Then FE is irreducible if and only if H°(X, E,) is an irreducible representation of H. Therefore our claim
holds. O

Lemma 4.4.3. Let Ey and Es be irreducible G-sheaves such that Supp(F1) = Supp(Fs2) = Gz and (E;), =
pi ® C,. Then
Xa(E1, Ba) = Xstab(z) (P1 @ Cqy p2 @ Cy)
= (2p1 — p1 @ pnat, p2),
where pnat : Stab(z) — SLa(C) is the natural representation of Stab(z) on the tangent space Tx at x.

(4.39)

Proof. We note that Xstab(z)((Pgea/ staba)Pi @ Cyaz)/pi @ Co, pj ® C;) = 0. By using an equivariant locally
free resolution of E; and (4.37), we see that

xc(E1, B2) =Xstab(z) (£1, (F2)x)
=XStab(z) ((El)ma (EQ)I)

Since 327 (—1)i€atl, (Cy,Cy) = Cy — (Tx)y + det(Tx )y, we have 37 (—1) dim Ext’(Cy, Cy) = 2ppiy —
Pnat, Where pyiy is the trivial representation of Stab(z). Hence

(441) XStab(r) (Pl & (C:vv P2 ® Cm) = (201 — pP1 & Pnat /)2)

(4.40)

O

Lemma 4.4.4. Let H be the stabilizer of v € X. Let ptl, pf, ..., pil be the irreducible representations of H.
Then the matriz (xu(pH ®(Cx,pf ®Cy))i,j is of affine type A, D, E. In particular, xg(p®Cq,p@Cy)) >0
and Xg(p @ Cy,p® C,) = 0 implies p € prgg, where p is a representation of H.

H H
Proof. Since H -Hilb%** is projective, ®ne gChz, 2 € X \{x} deforms to E € H -Hilb%** with Supp(E) = {z}.
. H
Then F is S-equivalent to @j(pf)@d‘m Pi @ C,. Hence the claims hold by Remark 4.3.9. O

Proposition 4.4.5. (1) Let E be a G-sheaf of dimension 0. Then xg(F,E) > 0 and the equality
implies H°(X, E) = C[G]®™.
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(2) Let E = @, EY* be a G-sheaf of dimension 0 such that H*(X, E) = C[G], where E; are irreducible
G-sheaves with E; # Ej (i # j). Then the matriz (xc(Es, Ej)):; is of affine type A, D, E.

Proof. (1) We may assume that F is a direct sum of irreducible G-sheaves. We have a decomposition
E = @;F; such that Supp(F;) = Gz; and Gz; # Gxj for i # j. Then xq(E,E) = >, xa(Fi, F;). Hence
we may assume that Supp(E) = Gz, v € X. Let H be the stabilizer of . Then E, = H°(X, E,) ® C,,
HY(X,E) = C[G] @cia) H*(X, E;) and x¢(E, E) = X1 (Ez, E;) by Lemma 4.4.3. Then the claim follows
from Lemma 4.4.4.

(2) Assume that we have a decomposition F = F} @ Fy with x¢(F1, Fz) = 0. Since xg(F1, F1) +
xa(Fo, Fy) = xa(E, E) = 0, (1) implies that F; = C[G]®™:, m; > 0 for i = 1,2. Thus E = C[G]®(mi+m2)
which is a contradiction. Then Remark 4.3.9 implies the claim. O

5. APPENDIX.

5.1. Spectral sequences. Since </IS[2] and U are the inverses of ® and ¥ respectively, we get the followng.

Lemma 5.1.1. We have spectral sequences

~ E =2
5.1 BP9 — oP(3UE)) = Erra = PTIT 2 ppaxt )y,
2 o]
0, p+qg#2,
- F =2
(5.2) BP9 — p(9(F)) = Erra =" PTI=2 poe
0, p+qg#2,

In particular,
(i) &7(3°E)) =0, p=0,1.
(i) ®P(®2(E)) =0, p=1,2.
(iii) There is an injective homomorphism ®°(®1(E)) — ®2(®°(E)).
(iv) There is a surjective homomorphism ®°(®2%(E)) — ®%(®1(E)).
For the claims (i) to (iv), we also use Lemma 2.5.2 (2) and Corollary 2.5.3.

Lemma 5.1.2. We have spectral sequences

~ E — =
(5.3) EP— wr(G9(E)) = Erre =0 PTU=% g poxrynp
07 p—9q # 07
F — =
(5.4) EP — (@ (F)) = Brre = 5 P a=0 po o
07 p—9q # 07

In particular,

(i) wP(V2(E)) =0, p=0,1.

(ii) UP(VO(E)) =0, p=1,2.

(iii) There is an injective homomorphism \I/O(\I/ (E)) — V2(V2(E)).

(iv) There is a surjective homomorphism W°(U0(E)) — W2(V!(E)).

For a convenience of the reader, we give a proof of Lemma 5.1.2.

Proof. By the exact triangles
(5.5) U=YE)[-1] - U(E) — V*(E)[-2] — U=Y(E)
and
(5.6) VO(E) — USY(E)[-1] — UY(E)[-1] — ¥O(E)[1],
we have exact triangles
(5.7) V(WS (E))[1] — U(U(E)) — U(V>(E))[2] — T(T=}(E))
and
(5.8) T(WO(E)) — W(W=(E))[1] — U(T(E))[1] — T(T(E))[-1].



Since \Tl(\II(E)) = E, we have exact sequences

0 WHUSHE)) — B — U2(V*(E)) — UO(P=1(E)) — 0,
VAH(USH(E)) = V(W2 (E)) = UO(V*(E)) =0,
(5.9) 0 — V2(UHE)) — VO(TO(E)) — UL (T=YE)) — UL (TY(E)) — 0,
BOWEL(E)) = B0 (E),
UHEO(E)) = v*(P°(E)) =0
These give the data of the spectral sequence. (Il
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