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A new proof of the

Abhyankar-Moh-Suzuki Theorem

Leonid Makar-Limanov

To the memory of Shreeram Abhyankar

whose sudden death was a profound shock

and a tremendous loss

Abstract

This note contains a complete proof of the Abhyankar-Moh-Suzuki

theorem (in characteristic zero case).

Introduction.

In the zero characteristic case the AMS Theorem which was independently

proved by Abhyankar-Moh and Suzuki (see [AM] and [Su]) and later reproved

by many authors (see [AO], [AB], [Es], [Gu], [GM], [Ka], [Mi], [Ri], [Ru], [Za];

the list is probably incomplete) states the following

AMS Theorem. If f and g are polynomials in K[z] of degrees n and m

for which K[f, g] = K[z] then n divides m or m divides n.
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Here is the plan of a proof. We start with an algorithm which produces the

monic irreducible dependence for any pair of polynomials f, g ∈ K[z] where

K is a field of any characteristic. This algorithm also produces a standard

linear basis of K(f)[g] over K(f) which consists of elements of K[f, f−1, g] of

pairwise different degrees. When characteristic is zero or when characteristic

does not divide the degree of g the standard basis consists of polynomials

from K[f, g] monic in g. After this is established the AMS Theorem follows

almost immediately.

Irreducible dependence of two polynomials.

In this section we describe an algorithm for finding the minimal algebraic

dependence between f, g ∈ K[z] where K is a field of any characteristic. The

algorithm seems to be new though it is not very different from the algorithm

suggested by David Richman and Barbara Peskin (see [PR], [R], [Es], and

[Ka]). In fact, when m and n are relatively prime this is the algorithm from

[PR] but when m and n are not relatively prime the algorithm from [PR]

requires more intermediate steps.

Let E = K(z) and F = K(f(z)) be the fields of rational functions in z

and f(z) correspondingly. Since F ⊂ E we can consider E as a vector space

over F . Denote by [E : F ] the dimension of this vector space.

The next two Lemmas may be skipped by a reader who knows that there

exists an irreducible polynomial dependence between f and g which is given

by a polynomial monic in g.
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Lemma 1. [E : F ] = n = deg(f) and {1, z, . . . , zn−1} is a basis of E

over F .

Proof. The degrees of αiz
i where αi ∈ K[f(z)] and 0 ≤ i < n are different

for different i’s. Hence the elements {1, z, . . . , zn−1} are linearly independent

over F . If [E : F ] > n take n + 1 elements linearly independent over F and

multiply them by a common denominator to obtain n + 1 elements of K[z]

linearly independent over F . On the other hand K[z] =
n−1⊕
i=0

ziK[f(z)] since

for any non-negative k a monomial zk is contained in
n−1⊕
i=0

ziK[f(z)]. Hence

K[z] cannot contain n + 1 elements linearly independent over F .✷

Let g ∈ K[z]. By the previous Lemma there exists a non-trivial relation
n∑

i=0

αig
i = 0, i.e. there exists a non-zero element P (x, y) ∈ A = K(x)[y]

for which P (f(z), g(z)) = 0. We will assume that k = degy(P ) is minimal

possible and that P is monic in y. Then P is an irreducible element of A and

if Q(f, g) = 0 for some Q ∈ A then Q is divisible by P (by the Euclidean

algorithm).

Lemma 2. P ∈ K[x, y].

Proof. Since P = yk +
k−1∑
i=0

pi(x)yi where pi ∈ K(x) we can multiply P by

the least common denominator D(x) ∈ K[x] of pi and obtain a polynomial

DP ∈ K[x, y] which is irreducible in K[x, y]. In order to prove that D = 1

it is sufficient to find an element Q ∈ K[x, y] such that Q(f, g) = 0 and Q

is monic in y. Indeed, Q must be divisible by DP in K[x, y] by the Gauss
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lemma, which is possible only if D = 1.

For a natural number l define Ql ∈ K[x, y] as Ql = yl + Rl where

degy(Rl) < l and degz(Ql(f, g)) is the minimal possible. Put el = degz(Ql(f, g))

when Ql(f, g) 6= 0. If a > b and ea ≡ eb (mod n) then ea < eb because oth-

erwise we can find j ∈ Z
+ and c ∈ K so that degz(Qa(f, g) − cf jQb(f, g)) <

degz(Qa(f, g)). Therefore we can have only a finite number of ea which means

that Qa(f, g) = 0 for a sufficiently large a.✷

Let us describe now a procedure which will produce P . First an informal

description. Raise g to the smallest possible power a so that by subtracting

some power of f (with an appropriate coefficient) the degree of ga can be

decreased. If the result has the degree which can be decreased by subtracting

a monomial in f and g, do it and continue until the degree of the result

cannot be decreased. Since different monomials in f and g can have the

same degree, use only monomials with power of g less than a. Then the

choice of a monomial with given degree is unique. If the result h is zero

it gives the dependence we are looking for. If not, raise h to the smallest

possible power a′ so that the degree of ha′ can be decreased by subtracting

a monomial in f, g and on further steps use for reduction purposes the

monomials in f, g, h with appropriately restricted powers of g and h. After

several steps like that an algebraic dependence will be obtained.

It is easy to implement this procedure and it works nicely on examples.

On the other hand why should it stop? If a monomial with a negative power

of f is used at some stage, we obtain a rational function and it is not clear

why the process stops after a finite number of the degree reductions. Also
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even if all monomials which are used in reductions have f in positive power,

and then it is clear that every step stops after a finite number of reductions

of the degree, since the degrees from a step to a step may increase, why the

number of steps is finite?

Here is an example where negative powers of f appear. Take f = z4,

g = z6 − z. We have to start with g2 − f 3 = −2z7 + z2 and h = −2z7 + z2.

Next, h2 − 4f 2g = z4 and h2 − 4f 2g − f = 0. So (g2 − f 3)2 − 4f 2g − f = 0.

Assume now that the ground field has characteristic 2. Then g2−f 3 = z2

and we can proceed with the degree reduction to get h = g2−f 3−f−1g = z−3

and a dependence h2 − f−3g − f−2h = 0 in which miraculously all negative

powers of f disappear: h2−f−3g−f−2h = g4−f 6−f−2g2−f−3g−f−2g2−

f − f−3g = g4 − f 6 − f .

formal description.

Below deg(h) denotes the z-degree of h ∈ K(z) defined as the difference

of the degrees of the numerator and the denominator of h.

First step.

Put g0 = g. Let deg(g0) = m0 and deg(f) = n. Find the great-

est common divisor d0 of n and m0. Take the smallest positive integers

a0 = n
d0
, b0 = m0

d0
for which deg(ga00 ) = deg(f b0). Find k0 ∈ K for which

m0,1 = deg(ga00 − k0f
b0) < deg(ga00 ). If m0,1 is divisible by d0 find a mono-

mial f ig
j0
0 with 0 ≤ j0 < a0 and deg(f ig

j0
0 ) = m0,1, find k1 ∈ K for which
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m0,2 = deg(ga00 − k0f
b0 − k1f

ig
j0
0 ) < m0,1 and so on.

If the procedure does not stop we failed.

If after a finite number of reductions m0,i which is not divisible by d0 is

obtained, denote the corresponding expression by g1 and make the next step.

If after a finite number of reductions zero is obtained, we have a depen-

dence and stop.

Generic step.

Assume that after s steps we obtained g0, . . . , gs where gs 6= 0. Denote

deg(gi) by mi and the greatest common divisor (n,m0, . . . , mi) of n,m0, . . . , mi

by di. The numbers di are positive while mi can be negative. Put d−1 = n

and ai = di−1

di
for 0 ≤ i ≤ s. (Clearly asms is divisible by ds−1 and as is the

smallest integer with this property.) Call a monomial m = f ig
j0
0 . . . gjss with

0 ≤ jk < ak s-standard.

Find an s−1-standard monomial ms,0 with deg(ms,0) = asms and k0 ∈ K

for which ms,1 = deg(gass − k0ms,0) < asms. If ms,1 is divisible by ds find

an s-standard monomial ms,1 with deg(ms,1) = ms,1 and k1 ∈ K for which

ms,2 = deg(gass −k0ms,0−k1ms,1) < ms,1 and so on. (We will check in Lemma

3 that any number divisible by ds is the degree of an s-standard monomial.)

If the procedure does not stop we failed.

If after a finite number of reductions ms,i which is not divisible by ds is

obtained, denote the corresponding expression by gs+1 and make the next
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step.

If after a finite number of reductions zero is obtained, we have a depen-

dence and stop.

Remark. If gi+1 is constructed then di+1 = (di, mi+1) < di since mi+1 is

not divisible by di; therefore d0 > d1 > . . . , > ds. ✷

To prove that failure is not an option we should know more about s-

standard monomials. In the sequel gi are considered as the elements of L =

K[f, f−1, g] where f, g are variables, as well as the elements of E = K(z).

Lemma 3. If the elements g0, g1, . . . , gs are defined then

(a) Any number divisible by ds = (n,m0, . . . , ms) is the degree of an s-

standard monomial and this monomial is uniquely defined;

(b) For any d < as degg(gs) there exists an s-standard monomial m with

degg(m) = d.

Proof. In this proof s-standard monomials do not contain f .

(a) The degrees of different s-standard monomials are different modn. In-

deed, if
s∑

k=0

jkmk ≡
s∑

k=0

ikmk (modn) then jsms ≡ isms (mod ds−1). Therefore

js = is because 0 ≤ is, js < as and |js − is|ms is not divisible by ds−1 if

0 < |js − is| < as by the definition of as. So js = is and we can omit them

from the sums and proceed to prove that js−1 = is−1, etcetera. There is
s∏

k=0

ak = d−1

ds
= n

ds
different s-standard monomials and there is n

ds
residues

modn divisible by ds. Hence any number divisible by ds is the degree of a

unique s-standard monomial f im.
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(b) The elements gi ∈ L = K[f, f−1, g]. It is easy to check by induc-

tion that degg(gt) = a0 . . . at−1 for t ≤ s. The base degg(g0) = 1 is clear

since g0 = g. Assume that degg(gk) = a0 . . . ak−1 for k < t + 1. For a

t-standard monomial m = g
j0
0 . . . g

jt
t the degree degg(m) =

t∑
l=0

jl degg(gl) ≤

t∑
l=0

(al−1) degg(gl) =
t−1∑
l=0

(degg(gl+1)−degg(gl))+(at−1) degg(gt) = degg(gt)−

1 + (at − 1) degg(gt) = at degg(gt) − 1 under the induction assumption.

Therefore degg(m) ≤ at degg(gt) − 1. Now, gt+1 = gatt − rt(f, g0, . . . , gt).

Since all monomials of rt are t-standard, degg(rt) ≤ at degg(gt) − 1 and

degg(gt+1) = degg(g
at
t ) = a0 . . . at−1at.

If m = g
j0
0 . . . gjss and degg(m) =

s∑
k=0

jk degg(gk) =
s∑

k=0

ik degg(gk) then

j0 ≡ i0 (mod a0) and j0 = i0 because 0 ≤ j0 < a0 and 0 ≤ i0 < a0; we

can proceed to prove that j1 = i1 since then j1 ≡ i1 (mod a1) etc.. Hence

different s-standard monomials have different g-degrees. There is exactly

a0 . . . as = as degg(gs) s-standard monomials and degg(m) < as degg(gs) for

s-standard monomials. Therefore we have an s-standard monomial with g-

degree equal to d for any d < as degg(gs).✷

Remark. A standard monomial m = f ig
j0
0 . . . gjss is completely deter-

mined by i and degg(m). ✷

Lemma 4. If the elements g0, g1, . . . , gs ∈ K(z) are defined and gs 6= 0

then gs+1 is also defined.

Proof. The field E = K(z) is a vector space over its subfield F = K(f(z)).

Denote by Vs the subspace of E generated over F by all s-standard mono-
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mials. There are two possibilities: gass 6∈ Vs and gass ∈ Vs.

Since the degrees of different s-standard monomials not containing f are

different modn (see the proof of Lemma 3 (a)) they are linearly independent

over F and form a standard basis Bs of Vs.

Assume that gass 6∈ Vs. As we know E is n-dimensional over F and

{1, z, . . . , zn−1} is a basis of E over F (Lemma 1). The standard basis Bs

of Vs contains
s∏

i=0

ai = d−1

ds
= n

ds
elements. The degrees of the elements of

Bs are divisible by ds. The elements {zimj | 0 ≤ i < ds}, mj ∈ Bs are

linearly independent over F since their degrees are different modn. Since

there is n of them they form a basis of E over F . Write gass =
∑

mj∈Bs

δjmj +

∑
mj∈Bs

ds−1∑
k=1

ǫk,jz
kmj where δj, ǫk,j ∈ F . The second sum is not zero and D =

deg(
∑

mj∈Bs

ds−1∑
k=1

ǫk,jz
kmj) is not divisible by ds.

A rational function δj can be approximated by a Laurent polynomial and

written as δj =
M∑

i=−N

cj,if
i + rj,N where cj,i ∈ K, rj,N ∈ F, deg(cj,if

imj) > D,

and deg(rj,Nmj) < D. Therefore gass −
∑

mj∈Bs

δjmj = gass −
∑

mj∈Bs

(
M∑

i=−N

cj,if
i +

rj,N)mj and gass −
∑

mj∈Bs

M∑
i=−N

cj,if
imj =

∑
mj∈Bs

(
ds−1∑
k=1

ǫk,jz
k + rj,N)mj where

deg(
∑

mj∈Bs

(
ds−1∑
k=1

ǫk,jz
k + rj,N)mj) = deg(

∑
mj∈Bs

ds−1∑
k=1

ǫk,jz
kmj) is not divisible by

ds. Hence gass −
∑

mj∈Bs

M∑
i=−N

cj,if
imj = gs+1.

If gass ∈ Vs then gass =
∑

mj∈Bs

δjmj for some δj ∈ F . Let us show

that in this case gs+1 = 0. Recall that every s-standard monomial be-

longs to L = K[f, f−1, g]. Consider P = gass −
∑

mj∈Bs

δjmj as an element

of F [g]. By the proof of Lemma 3 (b) degg(mj) < as degg(gs). Hence
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degg(P ) = as degg(gs) and P is a monic polynomial in g. Similarly, gi for

i ≤ s and elements of Bs are monic polynomials in F [g]. In Lemma 3 (b)

we checked that g-degrees of elements of Bs are pairwise different and that

for any d < as degg(gs) there is an element bd ∈ Bs with degg(bd) = d. If P

is reducible in F [g] then P = Q1Q2 where degg(Qi) < degg(P ) and Q1, Q2

are non-zero elements of F [g]. Hence Q1, Q2 can be presented as non-zero

linear combinations (over F ) of elements from Bs. But Bs is a basis of Vs

and Qi(f(z), g(z)) 6= 0 while P (f(z), g(z)) = 0, a contradiction. Hence P is

irreducible and P (f, g) ∈ K[f, g] by Lemma 2. Now, gass ∈ L since gs ∈ L.

Therefore
∑

mj∈Bs

δjmj = gass − P ∈ L and all δj ∈ K[f, f−1]. (A presentation

of
∑

mj∈Bs

δjmj through the standard basis is unique since the elements of the

standard basis have different g-degrees, also elements of Bs are monic poly-

nomials in L.) Consequently
∑

mj∈Bs

δjmj can be presented as a finite sum of

s-standard monomials with the coefficients from K and the algorithm will

produce zero after a finite number of steps. The monic irreducible relation

P (f, g) is also produced. ✷

Lemma 5. After a finite number of steps the algorithm produces zero

and a relation.

Proof. If the elements g0, . . . , gn+1 are defined and gn+1 6= 0 then dim(Vn+1) >

n since by the previous Lemma dim(Vi) < dim(Vi+1) if gi+1 6= 0. But

dim(Vi) ≤ dim(E) = n. Hence gs+1 = 0 for some s < n and P =

gass −
∑

mj∈Bs

δjmj is a relation. ✷

So the algorithm works and we even know that P ∈ L does not contain
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negative powers of f .

Proof of AMS.

Now we are ready to prove the AMS Theorem.

If gs+1 = 0 then by Lemma 3 (b) and since mj ∈ Bs ⊂ K[f, f−1, g] are

elements monic in g, any element h ∈ K[f, g] can be presented as a sum

h =
∑

mj∈Bs

δjmj where δj(f) ∈ K(f).

Lemma 6. If characteristic of K is zero then all gi are polynomials in f

and g.

Proof. Order the monomials f igj of L = K[f, f−1, g] lexicographically by

degg, degf . Call a monomial negative if its f -degree is negative, otherwise

call it positive. For an element h ∈ L introduce a function gap as follows. If

h 6∈ K[f, g] then gap(h) = h ÷ h̃ where h is the largest monomial of h and

h̃ is the largest negative monomial of h; if h ∈ K[f, g] then gap(h) = ∞.

Define ∞ to be larger than any monomial.

We will use the following properties of gap which are easy to check:

(a) gap(h1h2) ≥ min(gap(h1), gap(h2));

(b) gap(hd) = gap(h) if h is monic in g and the characteristic is zero;

(c) gap(fh) ≥ gap(h).

The plan is to show that gap(gj+1) ≤ gap(gj). Since we know that the last

gs+1 which gives an irreducible dependence of f(z) and g(z) is a polynomial

in f and g, this will imply that gap(gj) = ∞ for all j and hence the Lemma
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because gap(h) = ∞ is equivalent to h ∈ K[f, g].

Let us use induction. The base of induction gap(g1) ≤ gap(g0) is obvious

since gap(g0) = ∞. Assume that gap(gj+1) ≤ gap(gj) if j < k. If gk ∈ K[f, g]

then gap(gk+1) ≤ gap(gk). So let gk ∈ L \K[f, g]

Since gk+1 = gakk − rk and gap(gakk ) = gap(ak) it is sufficient to check that

the largest negative monomial of rk cannot cancel out the largest negative

monomial of gakk : then the largest negative monomial of gk+1 is not smaller

than the largest negative monomial of gakk while their largest monomials are

the same.

As above, call a k-standard monomial negative if its f -degree is negative

and positive otherwise. Let m = f ig
j0
0 . . . g

jk
k be a k-standard monomial.

From the properties of gap mentioned above it follows that gap(gj00 . . . g
jk
k ) ≥

gap(gk). Indeed gap(gjii ) = gap(gi) since gi is monic in g, gap(h1h2) ≥

min(gap(h1), gap(h2)), and gap(gi) ≥ gap(gk) by the induction assumption.

Also if i ≥ 0 then gap(f ih) ≥ gap(h), so gap(m) ≥ gap(gk) for a positive

k-standard monomial m. If i < 0 then gap(m) = 1 since g
j0
0 . . . g

jk
k is monic

in g and the largest monomial of m = f ig
j0
0 . . . g

jk
k is negative.

Recall that rk is defined as a linear combination of k-standard monomials.

Let m be a positive monomial of rk. Even if m ∈ L is not a polynomial, the

negative monomials of m are smaller than the largest negative monomial of

gakk since degg(m) < degg(g
ak
k ) and gap(m) ≥ gap(gk). So if e.g. rk does not

contain negative k-standard monomials then gap(gk+1) = gap(gk).

In what follows j-standard monomials are ordered lexicographically by

their g-degree and f -degree, i.e. mi < mk if mi < mk. This order is well

defined since m determines m by Remark to Lemma 3.
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To make reading less unpleasant we consider two cases: (i) gap(gk) <

gap(gk−1) and (ii) gap(gk) = gap(gk−1).

(i) gap(gk) < gap(gk−1). Since gk = g
ak−1

k−1 − rk−1 and gap(g
ak−1

k−1 ) =

gap(gk−1) > gap(gk) we can conclude that the largest negative monomial

of rk−1 is larger than negative monomials of g
ak−1

k−1 . Since all k − 1-standard

monomials have different g-degrees this monomial is νk−1 for the largest neg-

ative k − 1-standard monomial νk−1 of rk−1. So gap(gk) = g
ak−1

k−1 ÷ νk−1.

Next, gk+1 = (g
ak−1

k−1 − rk−1)
ak − rk = g

ak−1ak
k−1 −Rk − rk. Since degg(Rk) <

degg(gk+1) we know that Rk ∈ Vk (see Lemma 3). Present Rk through the

standard basis as a sum of k-standard monomials.

The largest negative k-standard monomial in Rk turns out to be νk−1g
ak−1

k .

Indeed gap(g
ak−1ak
k−1 −Rk) = gap(gakk ) = gap(gk) < gap(gk−1) and gap(g

ak−1ak
k−1 ) =

gap(gk−1); hence the largest negative monomial of g
ak−1ak
k−1 is smaller than the

largest negative monomial µ of Rk. Therefore g
ak−1

k−1 ÷ νk−1 = gap(gk) =

g
ak−1ak
k−1 ÷ µ. Since g

ak−1

k−1 = gk we have µ = gak−1

k νk−1 and a k-standard

monomial µ = νk−1g
ak−1

k .

Let us compute its z-degree: deg(νk−1g
ak−1

k ) = deg(νk−1) + (ak − 1)mk >

akmk because νk−1 is a k − 1-standard monomial of rk−1 and deg(νk−1) >

mk = deg(gk). But deg(rk) = akmk and all k-standard monomials in rk

have z-degree not exceeding akmk. So νk−1g
ak−1

k is not a summand of rk and

cannot be canceled.

(ii) gap(gk) = gap(gk−1). Since gap(g0) = ∞ and gap(gk) < ∞ we can

find such a p that gap(gk) = gap(gk−1) = . . . = gap(gp) < gap(gp−1). Just

as above, gk+1 = g
ap−1...ak
p−1 − Rk − rk where Rk ∈ Vk. Since gap(g

ap−1...ak
p−1 ) =
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gap(gp−1) > gap(g
ap−1...ak
p−1 − Rk) = gap(gk) = gap(gp) we can conclude that

the maximal negative k-standard monomial in the standard representation

of Rk is νp−1g
ap−1
p . . . gak−1

k , where νp−1 is the largest negative p− 1-standard

monomial in rp−1. But deg(νp−1g
ap−1
p . . . gak−1

k−1 ) = deg(νp−1) + (ap − 1)mp +

. . . + (ak − 1)mk > akmk = deg rk since deg(νp−1) > mp and ajmj > mj+1.

So again this monomial cannot be canceled by a monomial from rk.✷

Remark. Negative powers of f can appear in the finite characteristic

case because though the function gap satisfies properties (a) and (c), prop-

erty (b) should be modified. If h is monic in g, char(K) = p 6= 0, and

d = pαd1 where (p, d1) = 1 then gap(hd) = (gap(h))p
α

≥ gap(h). ✷

If char(K) = 0 then, by Lemma 6, Bs ⊂ K[f, g] and h ∈ K[f, g] can be

presented as a sum h =
∑

mj∈Bs

δjmj where δj(f) ∈ K[f ]. (A similar descrip-

tion of K[f, g] is obtained in [SU] when f, g ∈ K[z1, z2, . . . , zt] and are alge-

braically independent.) Since the degrees of different s-standard monomials

from Bs are different modn (see the proof of Lemma 3 (a)), the semigroup

Π(f, g) of degrees of non-zero elements of the subalgebra K[f, g] is spanned

by n, m0, ..., ms, i.e. Π(f, g) = Πs = span{n, m0, ..., ms}.

If 1 ∈ Π(f, g) then the smallest of n, m0, ..., ms is 1. If mi = 1 then

di = 1. As we observed, di+1 < di, hence i = s and 1 = ms = ds. Now we can

prove by (reverse) induction that dj ∈ Πj = span{n,m0, . . . , mj+1) for j ≥ 0.

Assume that dj+1 ∈ Πj+1 and j > −1. Since dj+1 = (n,m0, . . . , mj+1) ∈ Πj+1

it is a linear combination of {n, m0, ..., mj+1} with non-negative coefficients

and dj+1 = min(n, m0, ..., mj+1). If this minimum is mi where i < j + 1
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(here n = m−1) then di ≤ mi = dj+1 which is impossible because di+1 < di

for 0 < i < s. Therefore mj+1 = dj+1 and
dj

dj+1
mj+1 = dj ∈ Πj. So d0 ∈ Π0

which proves the AMS. ✷

Also a beautiful result of David Richman that either n
m0

or m0

n
is an

integer if K[f, g] contains an element h with the degree d0 = (n,m0) (see [Ri],

Proposition 1) follows from the presentation of K[f, g] trough the standard

monomials. Indeed, d0 = am0 + bn where 0 ≤ a < a0 and the standard

monomial which has the degree d0 must be f bga0 . Since b ≥ 0 either n = d0

or m0 = d0.

Remark. If char(K) = p and d0 = (n,m) is not divisible by p the proof

above is applicable verbatim: just assume that m 6≡ 0 (mod p) (switching

f and g if necessary); then ai 6≡ 0 (mod p) for 0 ≤ i ≤ s, and all gi are

polynomials of f and g since gap(gaii ) = gap(gi). ✷

Conclusion.

In fact we proved a bit more: if 1 ∈ Π(f, g) then all mi

mi+1
, i = 0, 1, . . . , s−1

are integers as well as n
m0

or m0

n
. We can call such a sequence 1-admissible.

It is easy to show that any 1-admissible sequence can be realized by a pair

of polynomials.

Question. Assume that d is the smallest positive number in Π(f, g).

Describe all pairs f, g for which this condition is satisfied.

If d = 2 and up to a change of variable K[f, g] = K[z2] then the

15



question is already answered by the AMS Theorem. Another possibility

is f = zh(z2), g = z2 where deg(h) > 1. By the Richman’s result mentioned

above if (n,m) is divisible by 2 then min(n,m) = (n,m). In a more inter-

esting case when min(n,m) 6= (n,m) and hence (n,m) is not divisible by 2

we may assume that n is odd and show with the approach used above that a

2-admissible sequence should be given by n = (2bt +1) · . . . · (2b0 +1) · (2b−1 +

1), m0 = 2(2bt + 1) · . . . · (2b0 + 1), m1 = 2(2bt + 1) · . . . · (2b1 + 1), . . . , mt =

2(2bt + 1), mt+1 = 2 where bi are positive integers. The smallest non-

trivial example 9, 6, 2 of a 2-admissible sequence is realized by polynomials

f = z9 + 6z5 + 6z, g0 = z6 + 4z2 since g1 = g30 − f 2 + 8g0 = −4z2. This

pair is unique up to a change of variable (and multiplying polynomials by

constants to make them monic). Wen-Fong Ke showed using computer that

the sequences (15, 6, 2), (21, 6, 2), (27, 6, 2), and (15, 10, 2) cannot be realized.

Conjecture. If 2 is the smallest positive number in Π(f, g) and n > m

is odd, m > 2 is even then n = 9, m = 6.
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