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VIRTUALLY SYMPLECTIC FIBERED 4-MANIFOLDS

R. İNANÇ BAYKUR AND STEFAN FRIEDL

Abstract. We mostly determine which closed smooth oriented 4-manifolds
fibering over lower dimensional manifolds are virtually symplectic, i.e. finitely
covered by symplectic 4-manifolds.

Introduction

Given a closed smooth oriented 4-manifold X , one can ask the following:

Q1: Is X symplectic, i.e. does it admit a closed non-degenerate 2-form?
Q2: Is X virtually symplectic, i.e. does it admit a finite cover that is symplectic?

A well-known consequence of X admitting a symplectic form is that it admits non-
trivial Seiberg-Witten invariants by the work of Taubes [29, 30], which in turn
prevents X or any finite cover from being a connected sum of 4-manifolds with
b+ > 1.

A finite cover of a symplectic 4-manifold can always be equipped with a symplec-
tic form, but the converse is false, i.e. not every 4-manifold that is finitely covered
by a symplectic 4-manifold is necessarily symplectic itself. For example, if N is a
non-fibered hyperbolic 3-manifold, then by work of Agol [2] N admits a finite cover

Ñ which is fibered, and it follows from [31] that S1 × Ñ is symplectic whereas by
[12] the manifold S1 × N is not symplectic. (Also see Proposition 6 below.) Al-
though these two questions are strongly interrelated, it is clear that one has more
freedom when showing that X is virtually symplectic and less when showing that
it is actually symplectic.

In this paper we will restrict ourselves to 4-manifolds which fiber over a smaller
non-zero dimensional manifold. The recent dramatic increase in our understanding
of 3-manifolds due to the work of Agol [1, 2], Przytycki-Wise [27] and Wise [35, 36]
now makes it possible to settle Q1 and Q2 for many such 4-manifolds. For example
Q1 has been completely answered for 4-manifolds which fiber over a 3-manifold in
[12, 16] and for those which fiber over a surface in [31, 18, 33]. To the best of our
knowledge, the case of 4-manifolds which fiber over S1 has not been dealt with in
any detail. In this paper we will now mostly focus on Q2. Our goal is to determine
when X is virtually symplectic, in terms of the data provided by the fiber bundle
structure, in particular by the topology of the base and the fiber.

We will say a 4-manifoldX is fibered if it admits a smooth bundle map f : X → Z
where the fiber Y and the base Z are non-zero dimensional orientable smooth

manifolds. We will often encode this information in the form Y →֒ X
f
→ Z.

Following the usual convention, we will call a 3-manifold Y fibered if it fibers overS1.
1
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Our study naturally breaks down into three different cases corresponding to the
possible dimensions of the base (and the complementary dimensions of the fiber),
which we will take on in separate sections below. Our results can be reorganized
and summarized in a pair of theorems as follows, which answer the existence ques-
tion in the positive and in the negative, respectively:

Theorem A. Let X be a 4-manifold and A →֒ X
f
→ B be a fiber bundle. X is

virtually symplectic if one of the following conditions is satisfied:

(1) B is an irreducible 3-manifold which is not a graph manifold;
(2) A is a homologically essential surface in X, or B is a 2-torus;
(3) A is an irreducible 3-manifold which has only hyperbolic pieces in its JSJ

decomposition.

As a partial converse to Theorem A we can now formulate the following theorem:

Theorem B. Let X be a 4-manifold and A →֒ X
f
→ B be a fiber bundle. X is not

virtually symplectic if:

(1) B is a not prime 3-manifold or if B is a non-virtually fibered graph mani-
fold;

(2) A is homologically inessential and either A or B is not a torus;
(3) A is a connected sum of non-spherical 3-manifolds and the monodromy of

f preserves the separating 2-sphere.

More generally, the statement of the theorem holds for any X finitely covered by a
fibered 4-manifold as above.

Remark 1. (1) We almost completely determine which 4-manifolds fibering over
a 3-manifold are virtually symplectic. Our results make essential use of the recent
work of Agol, Przytycki and Wise [1, 2, 35, 36, 27], and rely on [16, 15]. The only
case we can not address completely is when the base manifold is a (virtually) fibered
graph manifold: see the example and the discussion in Section 1.5.
(2) The case of surface bundles over surfaces is an almost immediate consequence
of the work by Thurston [31], Geiges [18] and Walczak [33]. In particular we will
see that a 4-manifold that fibers over a surface is virtually symplectic if and only
if it is symplectic: see Theorem 11.
(3) In [22, Section 13.6], QuestionsQ1 and Q2 for fibered 4-manifolds are discussed
by Hillman in terms of the 4-manifold geometries.

We see that when X admits a fiber bundle structure such that either the base or
the fiber is an irreducible 3-manifold Y , then X is virtually symplectic, unless Y has
at least one Seifert fibered piece in its JSJ decomposition. Moreover, when X fibers
over a surface, it fails to be symplectic only if it is an S1-bundle over an S1-bundle
over a surface, i.e. a trivial Seifert fibered 3-manifold. Hence a heuristic conclusion
we can make is that a fibered 4-manifold X fails to be virtually symplectic only
if the fiber bundle structure “contains a Seifert fibered 3-manifold in an essential
way” as above.

Conventions. All manifolds in this article are assumed to be smooth, closed, con-
nected and oriented, unless we say explicitly otherwise. Similarly, all covering and
bundle maps are assumed to be smooth. A graph manifold is an irreducible 3-
manifold such that all JSJ components are Seifert fibered spaces, in particular a
Seifert fibered space is a graph manifold.
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1. Fibering over a 3-manifold

In this section we will prove the following theorem which is precisely part (1) of
Theorem A and Theorem B.

Theorem 2. Let X be a 4-manifold which is a fiber bundle over a 3-manifold N .
Then the following hold:

(A) X is virtually symplectic if N is prime and if N is not a graph manifold.
(B) X is not virtually symplectic if N is not virtually fibered, e.g. if N is not

prime.

Theorem 2 settles the question which S1-bundles over a 3-manifold are virtually
symplectic except for the case that the base manifold is a virtually fibered graph
manifold. In Section 1.5 we will see that the latter case is in fact more delicate
and does not allow a simple statement. In particular we will see that there exists a
fiber bundle X over a virtually fibered graph manifold such that X is not virtually
symplectic.

Before moving on to the proof of Theorem 2, let us note the following corollary:

Corollary. Let X be a 4-manifold which is a fiber bundle over a 3-manifold B. If
B is irreducible and not a graph manifold, then X admits a finite cover X̃ which is
symplectic with b+2 (X̃) > 1.

Recall that this implies in particular that X̃ , and hence X , is not the connected
sum of 4-manifolds with b+ > 1.

Proof. Let B be a 3-manifold which is irreducible and not a graph manifold and let
X be a 4-manifold which is a fiber bundle over B. We have to show that X admits
a finite cover X̃ which is symplectic with b+(X̃) > 1.

By Theorem 2 (A) there exists a finite cover X ′ of X which is symplectic. Note
that X ′ is again an S1-bundle over a 3-manifold B′, where B′ is a finite cover of
B. In particular B′ is a 3-manifold which is irreducible and not a graph manifold.
On the other hand, by Theorem 7 (1) of Agol-Przytycki-Wise quoted below, the

manifold B′ admits a finite cover B̃ with b1(B̃) ≥ 3. We denote by X̃ the cover of

X ′ corresponding to the cover B̃ → B′.

The signature of any S1-bundle over a 3-manifold is zero, in particular
sign(X̃) = 0. It furthermore follows from the Gysin sequence that b2(X̃) = 2b1(B̃)

(if the Euler class e of the S1-bundle X̃ → B̃ is torsion) or b2(X̃) = 2b1(B̃)− 2 (if
e is non-torsion). In either case we conclude that

b+(X̃) =
1

2
b2(X̃) ≥ b1(B̃)− 1 ≥ 2.

Finally note that X̃ inherits a symplectic structure from X ′. �

1.1. Symplectic 4-manifolds and fibered 3-manifolds. Let N be a 3-manifold
and let φ ∈ H1(N ;Z) = Hom(π1(N),Z). We say φ is a fibered class if there exists
a surface bundle map p : N → S1 such that φ = p∗ : π1(N) → Z = π1(S

1). We
furthermore say that a rational class φ ∈ H1(N ;Q) is fibered, if a non-zero integer
multiple is fibered. Note that a 3-manifold is fibered if and only if it admits a
fibered class.
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We can now formulate the following theorem which is a key ingredient to the
proof of Theorem 2.

Theorem 3. Let N be a 3-manifold and let p : X → N be an S1-bundle over N .
We denote by p∗ : H

2(X ;Q) → H1(N ;Q) the map that is given by integration along
the fiber. Then X is symplectic if and only if the image of p∗ contains a fibered
class.

Remark 4. (1) The ‘if’ direction of the theorem was proved in [5, 10, 15, 31] and
the ‘only if’ direction was proved in [16], extending earlier work in [26, 8, 9, 6, 12, 13].
This theorem was recently extended to 4-manifolds with a fixed point free S1-action
by Bowden [7].
(2) Any finite cover of X is again an S1-bundle over a finite cover of B. Theorem
2 (B) is therefore an immediate consequence of Theorem 3.

Note that if X is of the form S1 ×N , then the map p∗ : H
2(X ;Q) → H1(N ;Q)

is an epimorphism. We thus obtain the following special case of Theorem 3, which
we record here for later reference:

Corollary 5. Let N be a 3-manifold. Then X = S1 ×N is symplectic if and only
if N is fibered.

We can now show that the questions Q1 and Q2 in the introduction are indeed
different questions.

Proposition 6. There exist fibered 4-manifolds which are not symplectic but which
are virtually symplectic.

Proof. Let N be a 3-manifold which is not fibered but which is virtually fibered.
(In Theorem 7 we will see that N could in fact be any non-fibered hyperbolic 3-
manifold, but more ‘hands on’ examples can also be given by graph manifolds.) It
now follows from Corollary 5 that X = S1 × N is not symplectic but that X is
virtually symplectic. �

1.2. The virtual fibering theorem. Let N be a 3-manifold. In the following we
say that a class φ ∈ H1(N ;Q) is quasi–fibered if any neighborhood of φ in H1(N ;Q)
contains a fibered class. Note that in particular fibered classes are quasi–fibered.
We furthermore say that φ is virtually quasi–fibered if N admits a finite cover
p : N ′ → N such that p∗(φ) ∈ H1(N ′;Q) is quasi–fibered.

We can now formulate the following theorem which is the second key ingredient
to the proof of Theorem 2.

Theorem 7. (Agol–Przytycki-Wise) Let N be an irreducible 3-manifold which
is not a graph manifold. Then the following hold:

(1) Given any k ∈ N there exists a finite cover Ñ of N with b1(Ñ) > k.
(2) Any class in H1(N ;Q) is virtually quasi-fibered.

Proof. Let N be an irreducible 3-manifold which is not a graph manifold. If N is
hyperbolic then it follows from work of Agol [2], building on earlier work of Wise
[34, 35, 36] that π1(N) is ‘virtually special’ which implies that ‘π1(N) is virtually
RFRS’, see also [3] for detailed references. (The precise meaning of ‘virtually RFRS’
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is of no concern to us.) The same conclusion in the non-hyperbolic case has been
obtained by Przytycki and Wise [27].

The fact that π1(N) is virtually RFRS and not virtually solvable readily implies

that given any k ∈ N there exists a finite cover Ñ of N with b1(Ñ ) > k. We refer
to [1] or [3] for details. (Note that if N is not hyperbolic, then conclusion (1) also
follows from earlier work of Luecke and Kojima [23, 25].)

Furthermore Agol [1, Theorem 5.1] (see also [11, Theorem 5.1]) showed that if
N is an irreducible 3-manifold such that π1(N) is virtually RFRS, then given any

class in H1(N ;Q) there exists a finite cover p : Ñ → N such that p∗φ sits in the
closure of a fibered face of the Thurston norm ball [32]. This implies in particular
that φ is virtually quasi-fibered. �

Remark 8. Let N be an irreducible 3-manifold which is not a graph manifold. The
combination of statements (1) and (2) of the theorem implies in particular that N
is virtually fibered.

Let N be an irreducible 3-manifold which is not a graph manifold. It follows im-
mediately from Corollary 5 and Theorem 7 that X = S1×N is virtually symplectic,
thus proving Theorem 2 (A) in the product case.

The case of a non-trivial S1-bundle over N is more delicate though. In Section
1.3 we will first recall the main properties of the Thurston norm before we can give
a proof of the general case of Theorem 2 (A) in Section 1.4.

1.3. The Thurston norm and fibered classes. Let N be a 3-manifold and let
φ ∈ H1(N ;Z). It is well–known that any class in H1(N ;Z) is dual to a properly
embedded surface. Now recall that the Thurston norm of φ is defined as

xN (φ) := min{χ−(Σ) |Σ ⊂ N properly embedded and dual to φ}.

Here, given a surface Σ with connected components Σ1 ∪ · · · ∪ Σk we define its

complexity by χ−(Σ) :=
∑k

i=1
max{−χ(Σi), 0}. Thurston [32] showed that xN is

a seminorm on H1(N ;Z) which thus can be extended to a seminorm on H1(N ;Q)
which we also denote by xN . Thurston furthermore proved that the Thurston norm
ball

B(N) := {φ ∈ H1(N ;Q) |xN (φ) ≤ 1}

is a (possibly non–compact) finite convex polytope.

Moreover, Thurston [32] showed that there exist open top–dimensional faces
F1, . . . , Fr of B(N) such that the set of fibered classes in H1(N ;Q) equals the
union of the open cones on F1, . . . , Fr. The faces F1, . . . , Fr are referred to as the
fibered faces of B(N).

Now let p : Ñ → N be a finite cover of degree k and let φ ∈ H1(N ;Q). Then

(1) xÑ (p∗φ) = k · xN (φ),

furthermore φ is fibered if and only if p∗φ is fibered. We refer to [17, Corollary 6.18]
for a proof of (1), while the statement regarding finite covers of fibered classes can
be proved using Stallings’ theorem [28].
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1.4. The proof of Theorem 2 (A). We will now provide the proof of Theorem
2 (A). Let N be an irreducible 3-manifold which is not a graph manifold and let X
be any S1-bundle over N . We have to show that X is virtually symplectic.

We denote by e the Euler class of the S1-bundle X → N . If e = 0, then
X = S1 ×N and, as we pointed out above, the theorem follows immediately from
Corollary 5 and Theorem 7. If e is torsion, then it is well-known that there exists
a finite cover of N such that the pull-back S1-bundle has trivial Euler class. We
refer to [6, Proposition 3] and [14, Proof of Theorem 2.2] for details. It thus follows
again from Theorems 3 and 7 that X is virtually symplectic.

We now suppose that e is non-torsion. We denote by p∗ : H
2(X ;Q) → H1(N ;Q)

the map that is given by integration along the fiber. The Gysin sequence then says
that the following is an exact sequence:

(2) H2(X ;Q)
p∗
−→ H1(N ;Q)

∪e
−−→ H3(N ;Q).

Since e is non-torsion it follows that p∗(H
2(X ;Q)) ⊂ H1(N ;Q) is a codimension

one subspace.

We now note that it follows from the work of Agol [2] that N admits a finite
cover such that the Thurston norm ball of the finite cover has at least three different
top dimensional faces. We refer to [3, Proposition 8.12] for details. Since we only
care about virtual properties we can now without loss of generality assume that the
Thurston norm ball of N has at least three different top dimensional faces.

Since the Thurston norm ball of N has at least three different top dimensional
faces and since p∗(H

2(X ;Q)) is a codimension one subspace of H1(N ;Q) it now
follows that p∗(H

2(X ;Q)) intersects a top-dimensional face F of the Thurston norm
ball of N . Note that the intersection is necessarily a codimension one intersection.
We pick a class φ in the intersection.

It now follows from Theorem 7 that there exists an n-fold regular cover g : Ñ →
N , such that φ̃ := g∗φ ∈ H1(Ñ ;Q) is quasi–fibered.

We denote by f : X̃ → X the induced cover. We thus get the following commu-
tative diagram

X̃

f

��

p̃
// Ñ

g

��

X
p

// N.

We now consider the map

1

n
g∗ : H1(N ;Q) → H1(Ñ ;Q).

It is well-known that this map is injective, and by (1) this map is furthermore an

isometry of vector spaces with a seminorm. In particular F̃ := 1

n
g∗(F ) is a face of

the Thurston norm ball of Ñ .

Since φ̃ := g∗φ ∈ H1(Ñ ;Q) is quasi–fibered it follows that F̃ sits on the boundary

of a fibered face G̃ of the Thurston norm ball of Ñ . Recall that the intersection
of p∗(H

2(X ;Q)) and F is of codimension one in F . It follows from the above

discussion that the intersection of p∗(H
2(X̃;Q)) and F̃ is also of codimension one

in F̃ . Since p∗(H
2(X̃;Q)) is of codimension one in H2(Ñ ;Q) and since G̃ is a
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top-dimensional face it now follows that the intersection of p∗(H
2(X̃ ;Q)) with the

interior of G̃ is also non-trivial.

We thus showed that p∗(H
2(X̃;Q)) contains a fibered class, which implies by

Theorem 3 that X̃ is symplectic. This concludes the proof of Theorem 2 (A).

1.5. The case when the base manifold is S1 × Σ. A key ingredient in the
proof of Theorem 2 was that for the given N any class in H1(N ;Z) is virtually
quasi-fibered. This information on its own is not enough though to guarantee that
any S1-bundle over N is virtually symplectic. Indeed, consider N = S1 ×Σ where
Σ is a surface. We denote by c = [S1 × ∗] ∈ H1(S

1 × Σ;Z) the class represented
by the S1-factor. It is well-known that a class φ ∈ H1(S1 × Σ;Q) is fibered if
and only if φ(c) 6= 0. In particular any class in H1(S1 × Σ;Q) is quasi-fibered.
Given e ∈ H2(S1 × Σ;Z) we now denote by p : Xe → S1 × Σ the S1-bundle which
corresponds to the Euler class e.

We can now formulate the following lemma.

Lemma 9. Let N = S1 ×Σ where Σ is a surface and let e ∈ H2(S1 ×Σ;Z). Then
the following are equivalent:

(1) Xe is symplectic,
(2) Xe is virtually symplectic,
(3) e is not a non-zero multiple of PD(c) ∈ H2(N ;Z).

Proof. Let e ∈ H2(S1 × Σ;Z). Note that the Gysin sequence implies that

p∗(H
2(Xe;Q)) = Ker(∪e : H1(S1 × Σ;Q) → H3(S1 × Σ;Q)).

It follows easily that

p∗(H
2(Xe;Q)) ⊂ {φ ∈ H1(S1 × Σ;Q) |φ(c) = 0} = {non-fibered φ}

if and only if e a non-zero multiple of PD(c). The equivalence of statements (1)
and (3) is now an immediate consequence of Theorem 3.

It is obvious that (1) implies (2). It remains to show that (2) implies (3). Let
S1 × F be a product manifold where F is a surface and let e ∈ H2(S1 × F ;Z). In
the following we say that the S1-bundle Xe → S1 ×F is good if e is not a non-zero
multiple of PD(c) ∈ H2(S1 × F ;Z).

Let X̃ be a finite cover of Xe. Note that X̃ is naturally an S1-bundle over a
finite cover of S1 × Σ. It is straightforward to see that the S1-bundle X̃ is good if
and only if Xe is good.

In particular, if Xe admits a finite cover X̃ which is symplectic, then by the
equivalence of (1) and (3) it follows that X̃ is good, which by the above implies
that Xe is good. �

We conclude with the following question:

Question 10. Are there any other (virtually) fibered graph manifolds besides S1×Σ
that admit S1-bundles which are not virtually symplectic?
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2. Fibering over a surface

Let F →֒ X
f
→ B be a surface bundle over a surface with F ∼= Σg and B ∼= Σh.

It follows from a classical argument of Thurston’s [31] that if the homology class of
the fiber [F ] 6= 0 in H2(X ;R), then X can be equipped with a symplectic structure
— which moreover makes all fibers symplectic. The first Chern class of an almost
complex structure associated to the fibration f gives a class in H2(X ;R) evaluating
on [F ] as χ(F ) = 2−2g, which implies that X always admits a symplectic structure
when g 6= 1.

When the fiber genus g = 1, there are three cases to consider, depending on the
base genus h of the fibration:

(i) h = 0: X is either S2×T 2, which can be equipped with the product symplectic
form, or otherwise it is S1 × S3 or S1 × L(p, 1); see [4, Lemma 10]. The latter
manifolds all have b+ = 0, so do their finite covers, implying that none is virtually
symplectic.

(ii) h = 1: This case is analyzed in detail by Geiges [18], who showed that for all
possible T 2-fibrations over T 2, the total space X is symplectic, even if the fibration
is not necessarily symplectic, i.e if the fiber is not homologically essential.

(iii) h ≥ 2: This last case was studied by Walczak in [33], from which we can
deduce that the following statements are equivalent:

(1) X is not symplectic,
(2) [F ] = 0 in H2(X ;R),
(3) X is either an S1-bundle over a non-trivial S1-bundle over B, or X is a

non-trivial S1-bundle over S1 ×B such that e(X) is a non-zero multiple of
the Poincaré dual of [S1] ∈ H1(S

1 ×B;Z).

Here, the equivalence of (1) and (2) is stated in [33, Theorem 4.9]. We now show
the equivalence of (1) and (3). First, if the T 2-bundle over B does not admit a free
fiber preserving S1 action, then it follows from [33, Proof of Theorem 4.9] that X
is symplectic, and it is clear that (3) does not hold. We can thus turn to the case
that B admits a free fiber preserving S1 action. Put differently, X is an S1-bundle
over a 3-manifold N , that in turn is an S1-bundle over B. If N is a non-trivial
S1-bundle over B, then it follows from [33, Theorem 3.1] that X is not symplectic.
So we are left with the case that N = S1 × B. But this case was dealt with in
Section 1.5 above.

If X is a manifold as described in (3), then any finite cover is also of the same
type. This implies that if X is not symplectic, then X is also not virtually sym-
plectic.

Combining all the results we have spelled out above, we get:

Theorem 11. Let F → X
f
→ B be a surface bundle over a surface with F ∼= Σg

and B ∼= Σh. Then the following are equivalent:

(1) X is virtually symplectic,
(2) X is symplectic,
(3) g 6= 1; or g = 1 = h, or g = 1 6= h and [F ] 6= 0 ∈ H2(X ;R),
(4) [F ] is a homologically essential surface in X, or g = 1 and h = 1.
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We thus see that by the work of Geiges and Walczak we completely understand
which surface bundles over surfaces are virtually symplectic. In particular this
theorem implies Theorem A (2) and Theorem B (2).

3. Fibering over the circle

Let M →֒ X
f
→ S1 be a fiber bundle where M is a 3-manifold. Equivalently, X

is the mapping torus ofM for some orientation preserving self-diffeomorphism φ of
M . We will call the element in the mapping class group of M represented by this
self-diffeomorphism of M , the monodromy of the fibration f . It is well-known that
the diffeomorphism type of X only depends on the monodromy of the fiber bundle.

Our first observation is the following:

Proposition 12. Let M →֒ X
f
→ S1 be a fiber bundle where M is an irreducible

3-manifold. If the monodromy of f has finite order in the mapping class group of
M and if M is not a graph manifold, then X is virtually symplectic.

Proof. Let φ be an orientation preserving self-diffeomorphism of M representing
the monodromy of f . By assumption, there is a finite iteration φk = idM . Pulling
back the bundle f : X → S1 via the k-fold covering of S1, we get another bundle

M →֒ X̃
f̃
→ S1, where X̃ = M × S1 is a finite cover of X . It then follows from

Theorem A (1), applied to A = S1 and B = M , that X̃ is virtually symplectic, so
X is virtually symplectic. �

From this proposition we obtain the following corollary which is precisely the
statement of Theorem A (3).

Corollary 13. Let M be an irreducible 3-manifold such that all JSJ pieces are
hyperbolic, then any fiber bundle over S1 with fiber M is virtually symplectic.

Proof. Let M →֒ X
f
→ S1 be a fiber bundle where M is an irreducible 3-manifold

such that all JSJ pieces are hyperbolic. Let φ be an orientation preserving self-
diffeomorphism of M representing the monodromy of f . The JSJ tori of M are
unique up to isotopy, it follows that φ permutes the isotopy classes of the JSJ
tori, in particular there exists a k such that φk fixes the isotopy class of each JSJ
torus. We now pick an orientation preserving self-diffeomorphism ψ of M which is
isotopic to φk and which fixes each JSJ torus setwise. In particular ψ restricts to a
self-diffeomorphism of each JSJ component.

It is a consequence of Mostow rigidity that the mapping class group of a hyper-
bolic 3-manifold is finite. It follows that there exists an l such that ψl is isotopic
to the identity. We thus showed that the mapping class group of M is finite.

It now follows from Proposition 12 that X is virtually symplectic. �

We can now state and prove our final theorem, which should be regarded as an
analogue of McCarthy’s main theorem in [26].

Theorem 14. Let M →֒ X
f
→ S1 be a fiber bundle, where M is a 3-manifold.

If X is virtually symplectic, then M does not admit a non-trivial decomposition
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M =M1#M2 preserved by the monodromy of f whereM1 andM2 are non-spherical
3-manifolds.

We will use the following lemma in the proof of our theorem, coming from
Seiberg-Witten theory:

Lemma 15. Let X be a 4-manifold with b+ > 1 splitting as X = X1 ∪X2, where
∂X1 = −∂X2 =

∐
Mj is a (disjoint) union of closed 3-manifolds and b+(Xi) > 0.

If each Mj is a connected sum of spherical 3-manifolds and S1×S2s, then X cannot
be symplectic.

Proof. We can turn the splitting 3-manifold into a connected one by tubing along
embedded arcs in X2 with end points on different Mj components. It is easy to see
that both new 4-manifold pieces, obtained by adding 1-handles to X1 and carving
them inX2, still have b

+ > 0. One can see this for instance by noting that by general
position any element in H2(X2;Z) can be represented by a surface disjoint from
the chosen arcs. We therefore get a new splitting X = ∂X ′

1 ∪X
′

2 with b+(X ′

i) > 0
such that

∂X ′

1 = −∂X ′

2 = S3/Γ1# · · ·#S3/Γk#mS1 × S2 ,

for some k,m ≥ 0, with Γi, i = 1, . . . , k, is a finite subgroup of SO(4) acting on S3

freely. Here we use the convention that k = 0 is #mS
1 × S2, and k = m = 0 is S3.

Let us take this splitting instead, and label the components again as X1 and X2.

The proof will now follow from a combination of fine results by Kronheimer-
Mrowka and Taubes. In the case of k = m = 0, the desired conclusion is a classical
result: a connected sum ofXi with b

+(Xi) > 0 would have vanishing Seiberg-Witten
invariants, which however is not possible for a symplecticX with b+(X) > 0 by [29].
The case k = 0 and m = 1 is given in [6, Proposition 1], which we will generalize
to any k,m ≥ 1 (and any Γi) in what follows.

As shown in [24, Proposition 36.1.3], for any connected 3-manifold Y admit-
ting positive scalar curvature, the monopole Floer invariants HM•(Y ) = 0. (Here
HM• is defined as the image of the j map in the long exact sequence relating
the three flavors of the monopole Floer groups, which is observed to be zero in
Proposition 36.1.3.) Since all the summands of Y listed above admit positive scalar
curvature1, so does Y per connected sum being a codimension ≥ 3 operation [19].
By [24, Proposition 3.11.1(i)], the vanishing of these Floer groups for the con-
nected 3-manifold splitting X into two pieces with b+ > 0 as above implies that the
Seiberg-Witten monopole invariant of X is zero for any Spinc structure ξ. Here
the monopole invariant of ξ is defined as a sum of the Seiberg-Witten invariants of
Spinc structures which differ from ξ by torsion.

Suppose that X admits a symplectic structure ω, then by [29], for ξ0 = c1(X,ω),
the canonical class, the Seiberg-Witten invariant evaluates as SW (X, ξ0) = ±1.
Furthermore, Taubes shows in [30] that there is no other ξ ∈ Spinc with ξ − ξ0
torsion and SW (X, ξ) 6= 0. As observed in [6, Proposition 1], this means that
the vanishing of the monopole invariant above for ξ0 would imply the vanishing of
SW (X, ξ0), leading to a contradiction. This completes the proof. �

1Since a 3-manifold with a K(π, 1) summand does not admit a positive scalar curvature [20],
by prime decomposition and geometrization of 3-manifolds, any closed 3-manifold Y admitting a
positive scalar curvature would indeed be a connected sum of spherical 3-manifolds and S1

×S2s.
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Proof of Theorem 14. LetM =M1#M2 be a 3-manifold and let φ be an orientation-
preserving diffeomorphism which preserves the connected sum decomposition. This
means that there exist open balls Di ⊂ Mi and a separating 2-sphere S in M so
that

M = (M1 \D1) ∪S (M2 \D2),

and such that φ preserves the two parts Mi \Di, i = 1, 2 and such that φ restricts
to the identity on S. For i = 1, 2 we henceforth write M ′

i =Mi \Di and we denote
the restriction of φ to M ′

i by φi. Let X be the mapping torus corresponding to M
and φ.

We will first prove the following claim:

Claim 1. There exists a finite cover q : N → M , an orientation-preserving diffeo-
morphism ψ of N , and n ∈ N such that the following diagram commutes:

(3) N

q

��

ψ
// N

q

��

M
φn

// M

and such that the following hold:

(1) ψ restricts to the identity on q−1(S),
(2) there exists a component T of q−1(S) which separates N into N1#N2,
(3) for i = 1, 2 the span of the components of q−1(S) ∩ Ni has rank at least

three in H2(Ni;Z).

Let i ∈ {1, 2}. Since π1(Mi) is residually finite (see e.g. [21]) we can find an
epimorphism αi : π1(Mi) → Gi, onto a group of order at least ten. By a standard
argument we can arrange that Ker(αi) ⊂ π1(Mi) is characteristic. This implies

that if M̃i denotes the corresponding cover of Mi, then φi lifts to an orientation-

preserving diffeomorphism φ̃i of M̃
′

i := M̃i \ p
−1
i (Di). We denote the degree of the

covering map by di. Note that φ̃i permutes the boundary components of M̃ ′

i . For

an appropriately chosen ni ∈ N we then see that φ̃ni

i restricts to the identity on

each boundary component of M̃ ′

i . We now write n = n1n2 and ψi = φ̃ni , i = 1, 2.

We then consider the disjoint union

2d2+2⋃

i=1

M̃ ′

1

︸ ︷︷ ︸
=:W̃1

∪

2d1⋃

i=1

M̃ ′

2 ∪

2d1⋃

i=1

M ′

2

︸ ︷︷ ︸
=:W̃2

.

Note that W̃1 admits a d1(2d2 + 2)-covering q1 : W̃1 → M ′

1 and that W̃2 admits

a d1(2d2 + 2)-covering q2 : W̃2 → M ′

2. In particular both manifolds have precisely
d1(2d2 + 2) boundary components.

We now partition W̃1 into two parts W̃ a
1 and W̃ b

1 which each consist of d2 + 1

components. We then glue a copy of M̃ ′

2 to W̃1 such that precisely one boundary

component of M̃ ′

2 gets glued to W̃ a
1 and all other components get glued to W̃ b

1 .
We refer to this one boundary component henceforth as T . Finally we glue the
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remaining components of W̃2 either to W̃ a
1 or to W̃ b

1 and we denote the resulting
closed manifold by N .

Note that T is a separating sphere in N . Also note that we can arrange the
above gluings such that N is connected. We now summarize the properties of N :

(1) there exists a covering map q : N →M which restricts to qi : W̃i →Mi for
i = 1, 2,

(2) there exists a component T of q−1(S) separating N into two components
N1 and N2,

(3) there exists a self-diffeomorphism ψ of N which restricts to ψ1, ψ2 and φn2
on the components of W̃1 and W̃2, this self-diffeomorphism turns (3) into
a commutative diagram,

(4) for i = 1, 2 the number of components of q−1(S) in Ni is at least d1d2.

We are left with showing that for i = 1, 2, the components of q−1(S) which lie in
Ni span a subspace of H2(Ni;Z) of rank at least three. Given i = 1, 2 we denote

by Γi the graph which has one vertex for each component of W̃1 which lies in Ni
and one vertex for each component of W̃2 which lies in Ni and one edge for each
component q−1(S) which lies in Ni. We view these vertices and edges as a graph
with the obvious attaching map. Note that Γi is connected and that

b1(Γi) = 1− χ(Γi) = 1−#vertices in Γi +#edges in Γi
≥ 1− ((2d2 + 2) + 4d1) + d1d2 ≥ 3,

where we now used that d1 and d2 are at least ten. Note that we have a canonical
projection map gi : Ni → Γi. It is obvious that p∗ : H1(Γi;Z) → H1(Ni;Z) is
injective and that its image is exactly the subspace of H2(Ni;Z) which is the span
of the Poincaré duals of the components of p−1(S). We thus showed that the
components of p−1(S) span a subspace of H2(Ni;Z) of rank at least three. This
concludes the proof of the claim.

We now denote by Y the mapping torus of (N,ψ). Note that Y is a finite cover
of the mapping torus of (M,φn), which in turn is a finite cover of X . We now
denote by Yi, i = 1, 2 the mapping tori of (Ni, ψ|Ni

). Note that Y1 and Y2 are
precisely the components of Y cut along S1 × T .

Claim 2. For i = 1, 2 we have b+2 (Yi) ≥ 1.

Let i ∈ {1, 2}. We denote the restriction of ψ to Ni by ψi. The Mayer-Vietoris
sequence corresponding to the decomposition of Ni arising from writing the base
S1 of the bundle as the union of two intervals gives us a long exact sequence

. . .→ 0 → H3(Yi;Z) → H2(Ni;Z)
ψi−id
−−−−→ H2(Ni;Z) → H2(Yi;Z) → . . .

We denote by V the subspace of H2(Ni;Z) spanned by the components of q−1(S)
lying in Ni. Note that V is invariant under ψi and that it has rank at least three.
It follows from the long exact sequence that b3(Yi) ≥ 3.

On the other hand the signature and Euler characteristic of any bundle over S1

are zero. It follows now easily from b3(Yi) ≥ 3 that b+2 (Yi) ≥ 2. This completes the
proof of our claim.

We now suppose that X is symplectic. It follows immediately that the finite
cover Y also admits a symplectic structure ω. In the above discussion we showed
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that Y has b+(Y ) > 1, and decomposes as Y = Y1∪Y2 with ∂Y1 = −∂Y2 = S1×S2,
for b+(Yi) > 0. This however is impossible by our Lemma 15 above.

Finally we have to consider the case that X is only covered by a symplectic
4-manifold X̃ . For Y → X the covering we constructed above, let p : Ỹ → Y be
the pull-back of X̃ → X . We write Ỹi = p−1(Yi), i = 1, 2. Note that p−1(S1 × S2)
is a (possibly) disjoint union of copies of S1 × S2. We now pick an identification

∂Ỹi = #mS
1 × S2 for an appropriate m, which separates X̃ with b+(X̃) > 1 as

X̃ = X̃1 ∪ X̃2 and b+(X̃i). Once again, this is impossible by Lemma 15. �

Remark 16. In the above proof, our assumption on each componentMi being non-
spherical was only used to get an epimorphism from π1(Mi) onto a finite group of
order at least 10, for i = 1, 2. This is in fact satisfied by most spherical 3-manifolds
as well, but not all, and some condition on finite quotients is necessary: for example
if Mi = RP3, then X = S1 × (RP3#RP3) is finitely covered by S1 × S1 × S2 which
is symplectic.
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