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Abstract. The classical Riemann–Roch theorem for projective irreducible curves over perfect fields
can be elegantly proved using adeles and their topological self-duality. This was known already to
E. Artin and K. Iwasawa and can be viewed as a relation between adelic geometry and algebraic
geometry in dimension one. In this paper we study geometric two-dimensional adelic objects,
endowed with appropriate higher topology, on algebraic proper smooth irreducible surfaces over
perfect fields. We establish several new results about adelic objects and prove topological self-duality
of the geometric adeles and the discreteness of the function field. We apply this to give a direct proof
of finite dimension of adelic cohomology groups. Using an adelic Euler characteristic we establish an
additive adelic form of the intersection pairing on the surfaces. We derive the first adelic proof of the
adelic Riemann–Roch theorem, which is also direct and relatively short. Combining with the relation
between adelic and Zariski cohomology groups, this also implies the Riemann–Roch theorem for
surfaces.

The adelic point of view in one-dimensional algebraic and arithmetic geometry not only
leads to proofs of key properties but often explains underlying reasons for these properties
to hold. In particular, adeles for a proper curve over a field can be used to prove and explain
several geometrical properties of the curve. Topological self-duality of adeles and the
structure of their subquotients essentially imply the Riemann–Roch theorem and what was
later called Serre’s duality for projective smooth irreducible curves. A nice presentation
can be found in Artin’s lectures for function fields over finite fields [A, Ch.XIV]. This
was extended in [Iw2], [Iw3] to projective smooth irreducible curves over any field, and in
[G] to projective irreducible curves over any field. One can also use appropriate portions
of the zeta integral theories of [Iw1], [T, 4.2], [W], where one works not only with the
adelic objects but with non-linear functions on them, to get longer proofs of the Riemann–
Roch theorem which use translation invariant measure and integration, Fourier transform
and elements of harmonic analysis on appropriate spaces of functions on adeles and their
subquotients. The proof in the book [W, Ch.VI] is essentially measure and integration free.

Higher-dimensional geometric rational adeles (i.e. every component in the function
field) for algebraic varieties over fields were first described in [P1] and full adeles were
outlined in [B1]. Their further theory and applications have already led to many interesting
development. More recently, it was discovered that there are other adelic structures in higher
dimensions [F3]. In particular, on schemes of dimension two there are two different adelic
structures. One structure is of more geometric nature, closely related to 1-cocycles. While
the geometric adelic structure is good for an adelic proof of the Riemann–Roch theorem, the
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other structure is of more analytic nature, [F3, Ch.2], [F4, Ch.1], closely related to 0-cycles,
and it is here that one has a generalisation of translation invariant measure, integration and
harmonic analysis, and a generalization of the Iwasawa–Tate theory to two-dimensional
adelic zeta integrals over the analytic adeles, with many applications to the zeta functions
of arithmetic schemes, [F3], [F4]. Unlike the classical case of dimension one, there seems
to be no single adelic structure which can cover both the 1-cycles and 0-cycles aspects on
surfaces. Geometric and analytic aspects on surfaces are quite different worlds, unlike the
case of curves, and often interactions between these aspects, such as the BSD conjecture,
can be viewed as a nontrivial relation between the two adelic structures.

The paper [P1] posed a problem to find an adelic proof of the Riemann–Roch theorem
for divisors on projective smooth irreducible surfaces. A sketch of one potential approach
to solve this problem was recently announced in [OP2] without proofs of several key
statements. In addition to the old foundational papers [P1], [B1], [P2], the incomplete
argument in [OP2] fundamentally relies on [OP1]. The method of [OP1–2] is indirect
and exceedingly lengthy; in addition, the papers [P1], [OP1-2] contain mistakes, gaps and
incorrect definitions.

Artin’s adelic proof of the Riemann–Roch theorem in dimension one is very short, see
section 0 for a compact presentation. For further developments of adelic geometry, as
well as for applications of the two-dimensional zeta integral to the study of fundamental
properties of zeta functions [F4], [F5], it is important to have a direct and relatively short
proof of the Riemann–Roch theorem in dimension two. This paper addresses this need. The
method of this paper can be viewed as an extension of both the one-dimensional topological
adelic method and the foundations of the two-dimensional theory in the old papers [P1] and
[B1]. In comparison to [P1] we use intensive topological considerations which are quite
powerful when combined with arithmetic and geometric issues. It is essentially topological
self-duality of the full geometric adeles which underlies the Riemann-Roch theorem and
Serre duality. We hope that this paper may appeal to a wider class of readers interested
in adelic geometry and its applications. This papers gives new short proofs of key results,
without using any material of [OP1-2].

Some of results in this work are extensions of those in [P1] for rational geometric
adeles to the full geometric adeles. Such extensions can sometimes be quite nontrivial
and in those cases we include proofs, discussions and corrections. Novel issues in this
paper include the following: several new results about the topology of the geometric adeles
and their subobjects, the study of topological self-duality of the geometric adeles and its
applications, a proof of the discreteness of the function field in the geometric adeles, a direct
proof of finite dimension of adelic cohomology groups without using Zariski cohomology
groups, a definition of adelic Euler characteristic independently of Zariski cohomology
Euler characteristic, an additive adelic form of the intersection pairing on surfaces, a
proof of the equality of the adelic intersection pairing and the usual intersection pairing, a
direct and short proof of the adelic Riemann–Roch theorem and finally an adelic proof of
the Riemann–Roch theorem for proper smooth irreducible surfaces over arbitrary perfect
fields.

Basic prerequisites about two-dimensional local fields and the geometric adeles for this
paper are standard, they are referred to in appropriate places of this paper. For main results
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about higher local fields relevant for this work, see papers in the volume [FK] and the recent
compact survey [M3] which also includes a short presentation of algebraic aspects of the
geometric adeles.

After main definitions in section 1, we study a number of useful properties of the
geometric adeles in section 2 and 3. Then we show how topological self-duality of the
geometric adeles and the moving lemma, i.e. an approximation property, imply the new
adelic description of the intersection pairing. The latter easily gives, as corollary, a short
proof of the adelic Riemann–Roch theorem in dimension two. By applying only at the end
the known relation between Zariski cohomologies and adelic complex cohomology from
[P1], [B1], [H] we immediately see that the adelic Riemann–Roch theorem implies the
classical Riemann–Roch theorem on surfaces.

The adelic description of the intersection index in this paper involves the additive group
of the geometric adeles only, and not K-groups of the adelic objects which are in use in
[P2]. This opens a number of further opportunities to use and apply the results of this paper.

One of advantages of adelic methods is their uniform applicability in different char-
acteristics. An extension of this work to the case of arithmetic surfaces is expected to
provide an adelic interpretation of the Arakelov intersection pairing and another proof of
the Faltings–Riemann–Roch theorem.

0. Here is a sketch of how the classical one-dimensional proof can be conducted. The
exposition in this section is essentially based on [A] , [Iw2], [G].

Let k be the function field of a smooth proper irreducible curve C over a perfect field F.
We work with F-linear topologies and F-linear compactness, the notions from the classical
text [Le,II,§6]. The field F is endowed with the discrete topology, the local fields associated
to closed points ofC are endowed with the topology of local fields and their rings of integers
are linearly compact. Adeles are endowed with the restricted product topology. The adelic
F-algebra Ak contains the F-algebra Ak(0) which is the product of the completions of the
local rings of C at its closed points. For a divisor d on the curve we have an adelic complex

Ak(d) : k⊕ Ak(d) −→ Ak, (a, b) 7→ a− b

where Ak(d) = αdAk(0) for any αd ∈ A×k such that v(αd) = −v(d), v runs through all
discrete valuations on k, i.e. all closed points of the curve C, and d =

∑
v(d)dv, dv is the

class of the valuation/closed point in the divisor group.
This complex is quasi-isomorphic to the complexes

Ak(d) −→ Ak/k, k −→ Ak/Ak(d).

We have H0(Ak(d)) = k ∩ Ak(d), H1(Ak(d)) = Ak/(k + Ak(d)).
Define a map (αv) 7→

∑
v Trk(v)/F resv(αvω) for a differential form ω ∈ Ω1

k/F, where
k(v) is the residue field of the local ring at v. Composing with the multiplicationAk×Ak −→
Ak we get the differential pairing

Ak × Ak −→ F, (α, β) 7→
∑
v

Trk(v)/F resv(αvβvω).
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Using self-duality of the F-space of a local field it is easy to prove that the space Ak is
(non-canonically) self-dual: the F-linear space of continuous linear maps from the F-space
Ak to F is non-canonically algebraically and topologically isomorphic to the F-space Ak.

If C is a projective line over F, so k = F(t), it is easy to see that Ak is the direct sum of k
and a linearly compact space R where R is the product of the rings of integers of the local
fields for all discrete valuations different from that one which has t−1 as a prime element,
for the latter its component of R is the maximal ideal of the corresponding local field. This
property extends to the general case using the trace map from k down to F(t). Hence the
space Ak/k is linearly compact. The complement k⊥ of k with respect to the differential
pairing is a k-space which contains k; k⊥/k is a closed subspace of Ak/k, hence linearly
compact, on the other hand, k⊥ is the space of continuous linear maps from the linearly
compact Ak/k to F, hence it is discrete, then k⊥/k is discrete and linearly compact, hence
of finite F-dimension, since k is of infinite F-dimension, we deduce k⊥ = k (the argument
in this sentence is from [T, Th.4.1.4]).

For an F-subspace H of the adeles denote H⊥ = {β ∈ Ak : (H,β) = 0}. The
complement Ak(0)⊥ of Ak(0) with respect to the pairing is Ak(c), c is the divisor of ω and
is called the canonical divisor. We get Ak(d)⊥ = Ak(c− d), hence the space of continuous
linear maps from H0(Ak(d)) to F is isomorphic to Ak/H

0(Ak(d))⊥, i.e. to H1(Ak(c− d)).
The space Ak(0) and hence Ak(d) are linearly compact, and their intersection with k is
discrete, which implies that H0(Ak(d)) is of finite F -dimension and so is H1(Ak(d)). We
get dimFH

0(Ak(d)) = dimFH
1(Ak(c − d)). So for the Euler characteristic we obtain

χAk (d) = dimFH
0(Ak(d))− dimFH

1(Ak(d)) = χAk (c− d).
We will use the virtual dimension of two F-commensurable spaces G,H (which means

G ∩ H is of F-finite codimension in each of them), dimF(G : H) = dimFG/(G ∩ H) −
dimFH/(G∩H). Noting it is additive on short exact sequences and comparing Ak(d) and
Ak(0), we obtain degF d = dimF(Ak(d) : Ak(0)) = χAk (d)− χAk (0).

Using the two formulas

degF d = χAk (d)− χAk (0), dimFH
0(Ak(d)) = dimFH

1(Ak(c− d))

we get

− degF d = dimFH
0(Ak(0))− dimFH

0(Ak(c))− dimFH
0(Ak(d)) + dimFH

0(Ak(c− d)).

We derive dimFH
0(Ak(d)) = dimFH

0(Ak(c− d)) + degF d + χAk (0), the adelic Riemann–
Roch theorem. If C is geometrically irreducible then dimFH

0(Ak(0)) = 1 and χAk (0) =
1− g where g is the genus dimFH

1(Ak(0)).
It is not difficult to see that the adelic cohomology spaces Hi(Ak(d)) are isomorphic

to the Zariski cohomology spaces Hi(C,OC(d)) and then the previous equality gives the
classical Riemann–Roch theorem.

A differential map in the terminology of [A, Ch.XIII §4]) is a continuous linear map
from Ak to F which vanishes on k. One easily shows that the space of differential maps is
algebraically and topologically isomorphic to the space Ω1

k/F. Moreover, one can start with
differential maps, without using differential forms, prove that they form a one-dimensional
space over k, e.g. [A, Ch.XIII], and apply them to derive all the results in this section.
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Above we used several times the classical argument to deduce finiteness of F-dimension
by establishing discreteness and linear compactness. The same argument will be applied
later in the proof of the theorem in section 3.

This proof is presented in such a way that it immediately further extends to a projective
integral curve C over a perfect field F ([G]). The adelic object AC(0) is defined as the
product of the completions of the local rings of C at its closed points, it is an order of Ak,
k is the function field of C. For every Cartier divisor d on C one defines AC(d) similarly.

The adelic complex for C is

AC(d) : k⊕ AC(d) −→ Ak,

quasi-isomorphic to the complexes AC(d) −→ Ak/k, k −→ Ak/AC(d). Using the differ-
ential pairing for Ak and the associated duality one similarly derives the Riemann–Roch
theorem. In particular, for Gorenstein curves (e.g. curves lying on smooth surfaces) the
complement AC(d)⊥ of AC(d) with respect to the differential pairing is AC(c − d) where
AC(c) = AC(0)⊥. Similarly to the case of smooth curves, degF d = χAC

(d) − χAC
(0)

and dimFH
0(AC(d)) = dimFH

1(AC(c− d)), hence dimFH
0(AC(d)) = dimFH

0(AC(c−
d)) + degF d + χAC

(0). If C is geometrically irreducible then χAC
(0) = 1 − g′ where

g′ = dimFH
1(AC(0)) = g + δ, g = dimFH

1(Ak(0)), δ = dimF(Ak(0) : AC(0)).

1. Let S be a proper smooth irreducible surface over a perfect field F, hence projective.
Denote byK its function field and assume that no nontrivial finite extension ofF is contained
inK. For an irreducible proper curve y (we will often call them just curves) on S we denote
by Dy the divisor of y and by Ky the fraction field of the completion Oy of the local ring
at y. For a closed point x of S we denote by Ox the completion of the local ring at x.

For a closed point x ∈ y consider the localisation of Ox at the local equation of y and
complete it with respect to the intersection of its maximal ideals, denote the result by Ox,y

and let Kx,y be its quotient ring. The ring Ox,y (resp. Kx,y) is isomorphic to the product
of all Ox,z (resp. Kx,z) where z runs through all minimal prime ideals of the completion
of the local ring of y at x, i.e. through all formal branches y(x) of y at x. The ring Ox,z

is the ring of integers with respect to the discrete valuation of rank 1 on Kx,z . Denote its
residue field by Ex,z , which is a one-dimensional local field and denote its residue field, a
perfect field, by kz(x). One can also describe how to get the ring Ox,y from the ring Oy

using the closed point x ∈ y, the procedure being a two-dimensional version of taking the
completion of k(y) with respect to x, see [KS]. See [F4, §24] and [M3, sect. 7–8] for more
information. Choosing a local parameter t of Kx,z with respect to its discrete valuation of
rank 1, for example a local parameter ty of y on S, the field Kx,z can be viewed as the
formal power series field Ex,z((t)).

Denote by Kx be the minimal subring of Kx,y which contains K and Ox. We have
KOy = Ky,KOx = Kx.

For every curve y on S define the space OAy as consisting of elements (αx,y) ∈∏
x∈y Ox,y such that for every m > 0 for almost all x ∈ y the element αx,y is in Ox +

Mm
y Ox,y, where My is the maximal ideal of Oy. Define Ay as the minimal subring of∏
x∈yKx,y which contains K and OAy. Put Ar

y = tryOAy = Mr
yOAy. This definition is

equivalent to the definition of Ay = ∪Ar
y given in [F4, §25] if F is finite. The space Ay is



6 Ivan Fesenko Geometric adeles and the Riemann–Roch for 1-cycles

the two-dimensional adelic commutative algebra associated to the curve y on the surface
S. One way to think about Ay as Ak(y)((ty)), the formal power series in ty which is a local
parameter of y on S, over the adelic space of the one-dimensional function field of y (Ay

does not depend on the choice of the formal variable ty, due to the previous description),
then OAy = A0

y = Ay ∩
∏

x∈y Ox,y = Ak(y)[[ty]].
Similarly to [F4, §28] define the geometric adelic space AS as the restricted product of

Ay with respect to OAy. Equivalently, A = AS is the subalgebra of all {(αx,z), αx,z ∈
Kx,z)} such that the following two restricted conditions are satisfied: for almost every y
the element αx,y ∈ Ox,y for all x ∈ y and there is r such that (αx,y)x∈y ∈ Ar

y for all y. The
adelic object A equals A012 defined in [P2, §2.1]. The space A is the union of subspaces
A(D) where D runs through all 1-cycles (divisors) of S and A(D) = {(αx,y)x∈y ∈
A

ry
y for all y} where ry = −vy(D), D =

∑
−ryDy.

The space A is a subset of
∏

x∈yKx,y. Denote

B =
∏

Ky ∩A, C =
∏

Kx ∩A,

OA =
∏

Ox,y ∩A, OB =
∏

Oy ∩A =
∏

Oy, OC =
∏

Ox ∩A =
∏

Ox.

the intersections are taken inside
∏
Kx,z .

We have the diagrams of the spaces

Kx,y

��� ???

Kx

??
? Ky

���

K

A

��
�� ??

??

C
???

? B

���
�

K

We call the adelic spaces in bold font two-dimensional full geometric adeles or simply
adeles. The reason why we use the bold font for these geometric adelic objects is that the
bbb-notation is employed for the second adelic structure of analytic adelic objects A,B on
relative surfaces in [F4]. In dimension one the geometric and analytic adelic structures are
the same.

See [B1], [Y], [F4, §28], [M2], [M3] for more general definitions of geometric adelic
objects.

Motivated by definitions in [B1], define the geometric adelic complex in the equal
characteristic case as

AS = AS(0) : K ⊕OB⊕OC→ B⊕C⊕OA→ A.

In more compatible with the underlying symplectic structure on flags of scheme points of
S and more convenient for computations notation we can write it as

AS = AS(0) : A0 ⊕A1 ⊕A2 −→ A01 ⊕A02 ⊕A12 −→ A012

Define the adelic complex for a 1-cocycle D as

AS(D) : A0 ⊕A1(D)⊕A2(D) −→ A01 ⊕A02 ⊕A12(D) −→ A012
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where A∗(D) = A0∗ ∩A(D). The maps are (a0, a1, a2) 7→ (a0 − a1, a2 − a0, a1 − a2) and
(a01, a02, a12) 7→ a01 + a02 + a12, and the fact that AS(D) is a complex is obvious. Note
that A02 is incorrectly defined in [P2].

Define two-dimensional rational geometric adeles Art as the intersection of
∏

x∈yK

with A inside
∏

x∈yKx,y. Some first theory of such adeles was developed in [P1] as a two-
dimensional generalisation of the classical study described in [S]. Put Brt = B∩Art,Crt =
C ∩Art.

Topology. Now we define an appropriate linear topology on A. The topology we use
below on A will have more open subspaces than that which is used in [F4, Ch.1].

The field F is endowed with the discrete topology, fields Ex,z are endowed with the
topology of a local field, i.e. with the discrete valuation topology.

There are several approached to work with relevant topologies defined on higher local
fields, e.g. [Y], [Z], [F1]. Among them the strongest is the sequential saturation of each of
them. Each of them has the same set of open F-subspaces, so for the purposes of this paper
they all give the same output.

Using a subfield E′x,z of Ox,z which maps isomorphically onto Ex,z = Ox,z/Mx,z with
respect to the residue map, where Mx,z is the maximal ideal of Ox,z . Choose a local
parameter ty. The corresponding linear topology on equal characteristic two-dimensional
local fields, in line with [Z] and [F1], has the following fundamental system of open
neighbourhoods of 0: {

∑
ait

i
y : ai ∈ Gi} where Gi are open subspaces of local fields

E′x,z such that Gi = E′x,z for all sufficiently large i. The quotient topology on tryOx,z is the
linear projective limit of the topologies on tryOx,z/t

r
yM

m
x,z homeomorphic to the direct sum

of finitely many copies of E′x,z . The linear topology of Kx,z is the linear inductive limit
(but not the inductive limit) of the topologies of tryOx,z , i.e. a subspace of Kx,z is open iff
its intersection with tryOx,z is open there for all r. This topology does not depend on the
choice of a uniformizer of Ox,z . It does not depend on the choice of the subfield E′x,z if the
latter is of positive characteristic, while it does depend in characteristic zero unless E′x,z is
algebraic over Q. Using the geometric origin of the field Kx,z , endow it with its canonical
linear topology in all characteristics: an open base of Ox,z/M

m
x,z is a(Ox + Mm

x,z), a runs
through regular elements of Ox,z/M

m
x,z , the topology of Ox,z is the linear projective limit

of the topologies on Ox,z/M
m
x,z and the topology of Kx,z is the linear inductive limit of

bOx,z with the scaled topology of Ox,z , b ∈ Kx,z .
Recall that even if F is finite, two-dimensional local fields are not locally linear compact

with respect to these topology. See also [C2] for a new recent characterisation of the
topology on two-dimensional local fields, which uses bornology.

The topology on Ay and Ar
y are the linear induced topology of the linear product

topology on
∏

x∈yKx,y. The topology of Ar
y is the linear projective limit topology of

the linear topology on Ar
y/M

m
y Ar

y, m > 1. The linear topology on Ar
y coincides with

the linear topology in which subspaces try
(∏

x∈y
∏

z∈y(x) Wx,z + Mm
y Ay

)
, m > 1, form

an open base of 0. Here Wx,z are open linear subspaces of Ox,z containing Mm
y Ox,z and

almost everyWx,z is equal toOx+Mm
y Ox,z . The topology ofAy is the linear inductive limit

of the topologies on Ar
y which are its closed subspaces. When viewing Ar

y as tryAk(y)[[ty]],
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the latter is isomorphic, via the coefficients of powers of ty, to
∏∞

i=r Ak(y) endowed with
the linear product topology of the topological spaces of the one-dimensional adeles.

The topology of the restricted product
∏′

i∈I Gi of linear topological spaces Gi with
respect to their closed subspaces Hi is defined as the linear inductive limit topology of
G = lim−→GJ , GJ =

∏
i∈J Gi

∏
i 6∈J Hi endowed with the product topology, J runs through

finite subsets of I .
Applying toGy = Ay,Hy = A0

y, we get the linear topology on A which coincides with
the induced topology from the product topology on

∏
x∈yKx,y. The space A is complete

and is not locally linear compact. Its definition shows that it is the iterated linear inductive
and projective limits of linear topologies of objects of smaller dimension, which is also how
the topology defined in [Y, 3.2].

Each of F-subspaces of the participating objects of AS(D), including A∗, A∗(D), is
endowed with the induced topology. The induced topology on Ky is the topology defined
similar to the topology on Ay but using functions k(y) endowed with the discrete topology
instead of adeles Ak(y) with their topology. We can view Kx as a subspace of A by adding
0s at x′ 6= x, then the induced topology on Kx is the linear inductive limit of the topologies
on aOx, a ∈ K, where the topology of Ox is the linear projective limit topology of the
discrete topologies on Ox/M

n
x , Mx is the maximal ideal of Ox.

We deduce that A(D) =
∏

A
−vy(D)
y is a closed (but not open) subspace of A and

has the topology of the direct product of A
−vy(D)
y . It is easy to see that the topology

on A is the linear inductive limit topology of A(D). The topology on A(D) is also the
linear projective limit topology of A(D)/A(D′) where D′ runs through 1-cycles 6 D and
A(D)/A(D′) '

∏
A
−vy(D)
y /A

−vy(D′)
y endowed with the finite product topology of the

one-dimensional topologies on Ak(y).
We endow the spaces of rational adeles with the induced topology from A. It is easy to

see thatK is dense inKy,Kx,Kx,y, hence Brt,Crt,Art are respectively dense in B,C,A.

2. For two topological linear spaces X,Y denote by Homc
F(X,Y ) the linear space of

continuous linear maps endowed with the linear-compact–to–open topology. The space
Homc

F(X,F) is called the space of F-characters of X . Since F has discrete topology, the
basis of open linear subspaces of the space Homc

F(X,F) is formed by finite intersections of
{f ∈ Homc

F(X,F) : f (K) = 0} where K is a linear compact subset of X . Recall that if X
is discrete (resp. linear compact) then Homc

F(X,F) is linear compact (resp. discrete), see
e.g. [Le,II,§6], [Ko]. We call a topological linear space self-dual if it is algebraically and
topologically isomorphic to the space of its F-characters.

There are two general constructions which extend the class of self-dual topological
linear spaces occurring in geometry and number theory.

1. Let R be a commutative F-algebra. If the space R is endowed with a translation
invariant topology with respect to which it is a self-dual topological linear space, then
the space of the formal power series ring R((t)), endowed with the linear inductive limit
topology of the direct product topology on tiR[[t]] using the topology of R similarly to
the previous section, is also self-dual. To show algebraic self-duality, fix a nontrivial



Geometric adeles and the Riemann–Roch for 1-cycles Ivan Fesenko 9

F-character ψ0 from R((t)) to F which has conductor R[[t]]. Let an F-character ψ of
R((t)) have conductor tiR[[t]], i.e. i is the minimal such that ψ(tiR[[t]]) = 0. Then the
restriction of ψ on ti−1R[[t]] induces an F-character on R, so there is an a0 ∈ R such
that ψ1(α) = ψ(α)− ψ0(a0t

−iα) is trivial on ti−1R[[t]]; similarly by induction, for j > 1
there is aj ∈ R such that ψj+1(α) = ψj(α) − ψ0(ajt−i+jα) is trivial on ti−1−jR[[t]]; we
conclude that ψ(α) = ψ0(aα) with a =

∑+∞
j=0 ajt

−i+j . It is easy to check that for every
open linear subspace U and a linear compact subset C there is an open linear subspace V
such that V C ⊂ U (use that C is contained in some tiR[[t]]). This implies that the map
a 7→ (α 7→ ψ0(aα)) is a non-canonical homeomorphism between the linear topological
spaces R((t)) and Homc

F(R((t)),F), it depends on the choice of ψ0.
In particular, for every equal characteristic two-dimensional local field F with last

residue field F, e.g. Kx,z , the linear topological space F is (non-canonically) self-dual (see
also [F2, Lemma 3]).

Similarly, the linear topological space Ay is (non-canonically) self-dual.
2. The second general construction is of restricted products. Vaguely speaking, if

topological linear spaces Gi are self-dual, then for a certain choice of their closed linear
subspaces Hi satisfying natural conditions, the restricted product of Gi with respect to Hi

is self-dual. For a concrete application of this principle see (2) of the next theorem.

A differential map is defined for a form ω ∈ Ω2
K/F as

dω:A −→ F, (αx,z) 7→
∑
y

∑
x∈y

Trk(x)/F
( ∑
z∈y(x)

Trx,z resx,z(αx,zω)
)
.

Here y runs through all proper irreducible curves on S, x runs through all closed points
of y. The map resx,z: Ω2

Kx,z/F → kz(x) is the two-dimensional local residue which takes

the coefficient of t−1
2 t−1

1 dt2 ∧ dt1 where t2, t1 are local parameters of Kx,z , this does not
depend on their choice. The map Trx,z: kz(x)→ k(x) is the trace to the residue field k(x)
of Ox. The adelic condition immediately implies that for each element of A there are only
finitely many non-zero terms in the sum. See [P1], [Y], [HY1], [HY2], [F4,§27-§29], [M1],
[M2] for more detail about basic properties of dω and its generalizations.

Remark-caution. Note that there is a gap in [P1] and [OP2]: essentially, these papers
‘forget’ that the second residue field kz(x) is not necessarily equal k(x) and the trace map
Trx,z does not appear there in the definition of the map dω at singular points x ∈ y; thus,
all the results of those papers work only for surfaces with all irreducible curves on them
being smooth. Fortunately, it is relatively straightforward to extend the arguments on [P1]
to the general situation by incorporating the trace maps Trx,z .

If ω is a non-zero form denote by C its divisor, its class in Pic(S) is uniquely determined.
The composite of the multiplication A×A −→ A and dω gives the differential pairing

A×A −→ A −→ F, (α, β) 7→ dω(αβ).

For a subspace B of A denote by B⊥ = {γ ∈ A : dω(Bγ) = 0} the subspace which
complements B with respect to dω.
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Define, similarly to the one-dimensional case, e.g. [A, Ch.XIII, §4], a differential map
as a linear continuous homomorphism from A to F, which vanishes at the lower level
A01 +A02 = B + C.

Theorem.

(1) The differential pairing is symmetric, continuous and non-degenerate.
(2) Every F-character of A is equal to β 7→ dω(αβ) for a uniquely determined adele

α ∈ A. The space A is (non-canonically) self-dual. In addition, if F is finite then every
character of the additive group of A is equal to β 7→ TrF/Fp

dω(αβ) composed with a fixed
nontivial homomorphism Fp → C×, for a uniquely determined adele α ∈ A.

(3) For every linear subspace its complement is a closed linear subspace. For every
closed linear subspaceB of A we have (B⊥)⊥ = B andB is isomorphic algebraically and
topologically to the linear space of continuous linear maps fromA/B⊥ toF. For two linear
subspaces B,C we have (B +C)⊥ = B⊥ ∩C⊥. For two closed linear subspaces B,C we
have (B ∩ C)⊥ = B⊥ + C⊥ and B + C is closed. For two closed linear subspaces B ⊃ C
the linear space of continuous linear maps from B/C to F is isomorphic algebraically and
topologically to the space C⊥/B⊥.

(4) We have A12(D)⊥ = A12(C−D), A⊥01 = A01, A⊥02 = A02. A01, A02, A12 are closed
linear subspaces.

(5) Ai = Aij ∩Aik for every 0 6 i 6 2, where i, j, k is a permutation of 0, 1, 2 and we
set Aij = Aji.

(6) Each of A∗, A∗(D) and any of their sums is closed in A.
A⊥0 = A01 +A02, A1(D)⊥ = A01 +A12(C−D), A2(D)⊥ = A02 +A12(C−D).
(7) TheK-space of differential maps on A is isomorphic to the 1-dimensionalK-space

of differential forms {dω : ω ∈ Ω2
K/F}.

Proof. Continuity and non-degenerate property follow immediately from the definitions.
To construct α in (2), use a natural modification of the classical argument in [T, Lemma
3.2.1, Lemma 3.2.2], namely, restrict the character on y, find an appropriate αy, then
α = (αy) ∈ A, since the character vanishes on almost all OAy. An argument similar to [T,
Th. 3.2.1] implies that A is self-dual with respect to the pairing A×A→ F.

Proof of (3) follows from a generalisation of the classical argument, e.g. of [Le,II,§5],
[Bo], [Ko]. Alternatively, it is easy to check that all the properties in (3) are preserved
when one applies the two general constructions of section 2. For instance, note that the
two general constructions of section 2 produce from self-dual topological groups, with
characters separating closed subgroups and points and characters extending from closed
subgroups, the same type of groups, e.g. arguing similar to proofs of [Ka, Th.1,Th.2]. Then
proofs of [BHM, Prop.8, Prop.11, Prop.12] imply the property in second sentence of (3),
which then implies the properties in the third and fourth sentences of (3). The last property
in (3) follows from the previous properties in (3) and Homc

F(A/C,F)/Homc
F(A/B,F) '

Homc
F(B/C,F).

(4) The first equality follows from the definitions. The property A01 ⊂ A⊥01 is the
reciprocity law on curves, the way how it is proved for rational geometric adeles in [P1], by
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reducing to the one-dimensional case, extends immediately to full geometric adeles, and so
does the proof of the opposite inclusion. The property A01 ⊂ A⊥01 can also be proved by
using a version of the argument in [M1], appropriately modified for the geometric situation
of this paper.

The inclusionA02 ⊂ A⊥02 is the reciprocity law for points and its proof is reduced to one
point x. Multiplying ω by a regular element ofKx one can assume that ω near x is dt∧du,
where t, u are generators of local equations of two global curves y1, y2 with transversal
intersection, and Ox = k(x)[[u, t]]. Then the proof of dω(Kx) = 0 is an easy verification.
Alternatively, one can use the longer route of detailed computations in [M1]. For the oppo-
site inclusion one can use a two-dimensional version of the argument in [W, Ch.IV§2] as fol-
lows. We have Ox,y1 = k(x)((u))[[t]],Kx,y1 = k(x)((u))((t)) = Ox,y1 + t−1k(x)[[u]][t−1] +
t−1u−1k(x)[t−1, u−1]. Put Ry1 := u−1k(x)[u−1][[t]] + t−1u−1k(x)[t−1, u−1]. Then
resx,y1 (Ry1Ry1 ) = 0 since Ry1Ry1 ⊂ u−2k(x)[u−1]((t)). We also have Ry1 + Ox =
Ox,y1 + t−1u−1k(x)[t−1, u−1], since Ox,y1 = Ox + u−1k(x)[u−1][[t]]. Then Ry1 + Kx ⊃
Ry1 + Ox + t−1k(x)[[u]][t−1] = Kx,y1 , so Ry1 + Kx = Kx,y1 . For every global curve
y 6= y1, x ∈ y1, put Ry = Ox,y, and denote R =

∏
y Ry. From the previous we deduce

R + Kx ⊃ Kx,y1 ×
∏

y 6=y1
Ox,y. Due to the approximation theorem the sum of the latter

space andKx equals to Ax, the x-part of A. HenceR+Kx = Ax. Now let α ∈ Ax∩K⊥x .
Write α = β + a with β ∈ R, a ∈ Kx. Then β ∈ K⊥x . Since β ∈ R⊥, we obtain β ∈ A⊥x .
Thus, using (1) we get β = 0, α ∈ Kx.

The other properties follow, using (3).
(5) The property for i = 1, 2 follows from the definitions. To prove the property for

i = 0, i.e. to show that K equals to the K-space B ∩C, the following argument looks the
shortest. The previous parts of the theorem imply that the K-space B ∩C is algebraically
and topologically isomorphic to the K-space Homc

F(A/(B + C),F). The kernel of every
element of the latter space is an open subspace of A, whose sum with rational adeles Art

equals A. Therefore the linear map Homc
F(A/(B + C),F) → Homc

F(Art/(Brt + Crt),F),
associated to Art/(Brt + Crt)→ A/(B + C), is injective. Now one can use rational adelic
versions of (3) and (4), proved exactly in the same way, or [P1,§2], to deduce that the
complement of Brt ∩Crt in Art is Brt + Crt and the K-space Homc

F(Art/(Brt + Crt),F) is
isomorphic to the K-space Brt ∩Crt. Elements of the latter do not depend on x and y, so
this space is K. We conclude B ∩C = K.

(6) follows from the previous.
(7) The action of K on differential maps d is k ∗ d : α 7→ d(kα). The property follows

from the previous properties.

Remarks.

1. This theorem together with its proof does not seem to be in the published literature, but
some of its statements may have appeared elsewhere. Parts of (4)–(6) of this theorem for
full adeles for surfaces over finite fields were stated in [OP2, Prop.2] without proof. The
topological aspects, including self-duality, seem to have not yet been published elsewhere.

2. [P1,§3] contains a proof of (7) for rational adeles which uses a different topology on
adeles in which the open base is A(D) for divisorsD (it also uses the isomorphism between
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the rational adelic cohomologies and Zariski cohomologies, which we try to avoid to use
till almost the end of this paper). The space A/(B + C + A(D)) is of finite F-dimension
and hence discrete (see the theorem in the next section). An open subspace in the topology
of A contains some A(D), and the space Homc

F(A/(B+C),F) is the linear inductive limit
of the discrete spaces Homc

F(A/(B + C + A(D)),F) = HomF(A/(B + C + A(D)),F), and
similarly for rational adeles. Thus, the topology of the space Homc

F(Art/(Brt + Crt),F) in
this paper is the same as its topology in [P1,§3].

3. One can think about an even better version of the theory. Namely, similarly to the
one-dimensional approach by Artin in [A, Ch.XIII], one can start with the definition of
differential maps on adeles, given before the theorem, and without using differential forms
and their properties (a) prove existence of differential maps on adeles, (b) establish that
they form a one-dimensional space over K, and then derive all the results in this paper.

The notion of differential map is also related to a more general notion of locally
differential operator in [Y, Def 3.1.8].

4. Self-duality of the adelic spaces in this paper, which are not locally compact, leads to
a natural question about an extension of general duality theory for linear locally compact
abelian spaces to a larger class of linear topological spaces which contains those appearing
in higher number theory. There are already several categorical approaches ([B2], [Kt],
[Kp], [Pr]), but precise relations between them and the topological point of view are not yet
fully clear.

3. There are natural maps from the complex AS(D) to the following complexes

C1(D) : A0 −→ A01/A1(D) −→ A012/(A12(D) +A02),
C2(D) : A2(D) −→ A12(D)/A1(D) −→ A012/(A01 +A02),
C3(D) : A0 −→ A02/A2(D) −→ A012/(A12(D) +A01).

They are described as follows:
AS(D)→ C1(D) is given by the projection to the first term, the projection to the first term
and quotient, the quotient;
AS(D) → C2(D) is given by the minus projection to the third term, the projection to the
third term and quotient, the quotient;
AS(D) → C3(D) is given by the projection to the first term, the projection to the second
term and quotient, the quotient.

Let Hi(AS(D)) be the cohomology spaces of the complex AS(D). Using the previous
theorem (5), it is immediate to deduce that these maps of complexes induce algebraic
isomorphisms between the appropriate cohomology spaces of the complexes.

The maps from AS(D) to the other complexes are clearly continuous. It is easy to see
that they are also open maps, using that the projection on components is an open map. Hence
the maps from AS(D) to the other complexes are algebraic and topological isomorphisms
from the cohomologies of AS(D) to the cohomologies of Cj(D) are continuous.
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Thus, we get algebraic and topological isomorphisms

H0(AS(D)) ' A0 ∩A12(D) = A0 ∩A1(D) = A0 ∩A2(D) = A1(D) ∩A2(D),

H1(AS(D)) ' (A01 ∩ (A12(D) +A02))/(A1(D) +A0)
' (A12(D) ∩ (A01 +A02))/(A1(D) +A2(D))
' (A02 ∩ (A12(D) +A01))/(A2(D) +A0),

H2(AS(D)) = A012/(A12(D) +A01 +A02).

Theorem.

(1) There are algebraic and topological isomorphisms

Homc
F(Hi(AS(D)),F) ' H2−i(AS(C−D)) for 0 6 i 6 2.

(2) Each dimFH
i(AS(D)) is finite and an invariant of the class of D in Pic(S). The

space A/(B + C) is F-linear compact and K is discrete.
(3) Denote by χAS

(D) =
∑

(−1)i dimFH
i(AS(D)) the Euler characteristic of the

complex AS(D). Then χAS
(D) = χAS

(C−D) and is finite.

Proof. By the previous theorem

H0(AS(D))⊥ ' (A0 ∩A12(D))⊥ = A01 +A02 +A12(C−D),

so the space of F-characters of H0(AS(D)) is algebraically and topologically isomorphic
to

A012/H
0(AS(D))⊥ ' H2(AS(C−D))

and the space of continuous linear maps from H2(AS(D)) to F is algebraically and topo-
logically isomorphic to H0(AS(C−D)).

The space of continuous linear maps from the spaceH1(AS(D)), which is algebraically
and topologically isomorphic to (A01∩ (A12(D)+A02))/(A1(D)+A0), to F is algebraically
and topologically isomorphic to

(A1(D)⊥ ∩A⊥0 )/(A⊥01 + (A12(D)⊥ ∩A⊥02))
= ((A01 +A12(C−D)) ∩ (A01 +A02))/(A01 +A02 ∩A12(C−D))

which is equal to

((A01 +A12(C−D)) ∩ (A01 +A02))/(A01 +A2(C−D))

by the previous theorem.
We have a natural map, induced by embeddings, from

(A12(C−D) ∩ (A01 +A02))/(A1(C−D) +A2(C−D))

to the latter and it is easy to see it is an algebraic isomorphism. It is also continuous
and by the previous theorem (3) the image of a closed space is a closed space, so it is
a homeomorphism. Thus, the space of F-characters of H1(AS(D)) is algebraically and
topologically isomorphic to H1(AS(C−D)).
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The description of Hi above and A∗(Div(f ) + D) = A∗(D) − f for any f ∈ K×, ∗ is
1, 2, 12, implies that dimFH

i(AS(D)) is an invariant of the class of D in Pic(S).
We get H0(AS(0)) ' K ∩ OA = F. Finiteness of F-dimension of H0(AS(D)) will

follow from finiteness of F-dimension ofH0(AS(D))/H0(AS(D−Dy)): using the moving
lemma [Li, 9.1.10], find a linearly equivalent divisorD′ toDwhose support does not include
y. The quotient (K ∩A12(D′))/(K ∩A12(D′ −Dy)) is isomorphic to k(y) ∩Ak(y)(D′|y),
hence is of finite F-dimension by 0. Due to the first isomorphism H2(AS(D)) is also of
finite F-dimension.

The quotient OAy/(Ky ∩OAy) ' Ak(y)[[ty]]/k(y)[[ty]] is algebraically and topolog-
ically isomorphic to the direct product of linear compact spaces Ak(y)/k(y) and hence is
linear compact. Therefore the quotient A12(0)/A1(0) and then A12(D)/A1(D) are linear
compact. Since the space A12(D)/A1(D) is linear compact and H2(AS(D)) is of finite
F-dimension, using C2(D) we obtain A012/(A01 +A02) is linear compact. The space A0 is
algebraically and topologically isomorphic to the space ofF-characters ofA012/(A01+A02),
hence A0 is discrete. The space H1(AS(D)) is algebraically and topologically isomorphic
to the closed subspace of the quotient of A12(D)/A1(D), therefore, H1(AS(D)) is linear
compact. By (1), H1(AS(D)) is algebraically and topologically isomorphic to the space of
F-characters of the linear compact space H1(AS(C −D)), hence H1(AS(D)) is discrete.
Being both discrete and linear compact, H1(AS(D)) is of finite F-dimension.

(3) follows immediately.

Remarks.

1. Proof of property (1) for rational adeles can be found in [P1]. (2) gives the first direct
adelic proof of finite dimensionality of cohomologies of the adelic complex, without using
Zariski cohomologies of OS(D) and its properties.

2. The previous theorem gives the first adelic proof of the discreteness of K in A. The
discreteness of K as a topological subspace of A is a two-dimensional version of the well
known similar fact in dimension one: the discreteness of a global field k as a topological
subspace of the one-dimensional adeles Ak. The discreteness of K inside A is used in
the study of an interplay between the geometric and analytic adelic structures on elliptic
surfaces in [F5] in relation to the BSD conjecture. Unlike the compactness of the quotient
Ak/k, the quotient A/K is not compact but the quotient A/K⊥ = A/(B + C) is.

3. The cohomology spaces Hi(AS(D)) for full adeles are naturally homeomorphic to the
cohomology spaces Hi(Art

S(D)) for rational adeles via the maps induced by Art −→ A.
This is obvious for i = 0 and it follows for i = 2 due to (1) of the previous theorem and the
similar statement for rational adeles. Using C1 and its rational adeles version Crt

1 , the map
f : (Art

01 ∩ (Art
12(D) + Art

02))/(Art
1 (D) + A0) −→ (A01 ∩ (A12(D) + A02))/(A1(D) + A0) is

the map between theirH1s. Denote the numerator and denominator of the second space by
V and W . Then this map is (V ∩Art)/(W ∩Art) −→ V/W . The difference of the finite
F-dimensions of these spaces is the dimension of the space (V + Art)/(W + Art). Hence
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the latter is discrete, on the other hand its denominator is dense in the numerator, hence this
space is 0 and f is a homeomorphism.

4. The adelic Euler characteristic χAS
(D) is not an additive function of D. Define a

pairing on divisors

[E,D] := χAS
(0)− χAS

(−D)− χAS
(−E) + χAS

(−D − E).

We will use defining properties of the intersection pairing to deduce that the pairing [ , ]
coincides with the intersection pairing ( , ).

But first, a useful natural property which relates the dimension two and dimension one
theories, it is an extension of a property of rational adeles [P1, §2, Prop.3].

Lemma. Let Dy be a prime divisor of an irreducible proper curve y on S. Let D be a
divisor on S whose support does not include y.

For a divisor d on y denote by Cy(d) the complex Ay(d) −→ Ak(y)/k(y) in degree 0 and
1 and with 0 in degree 2, quasi-isomorphic to the complex Ay(d) from section 0.

Using the complex C2(D) from section 3, quasi-isomorphic to the complex AS(D), we
have an exact sequence of complexes

0 −→ C2(D −Dy) −→ C2(D) −→ Cy(D|y) −→ 0

with the maps defined below in the proof.
Hence

χAS
(D) = χAS

(D −Dy) + χAy (D|y).

Proof. We have a natural commutative diagram

A2(D) //

��

A12(D)/A1(D) //

��

A012/(A01 +A02)

��
Ak(y)(D|y) // Ak(y)/k(y) // 0

where the vertical maps are defined as follows: A12(D) −→ Ak(y) is obtained via the
projection to the y-component which gives an element of OAy, since the support of
D does not contain y, and then the projection py to the residue level OAy → Ak(y);
A1(D) −→ k(y) is obtained via the projection to the y-component which gives an element
of OBy and then the projection to the residue field OBy → k(y); A2(D) −→ Ak(y)(D|y)
is induced by A12(D) −→ Ak(y). All these maps are surjective. The interesting case is
that of the map A2(D) −→ Ak(y)(D|y). Its surjectivity follows from an adelic description
of the local multiplicity. Namely, for x ∈ y the x-part py,x of the projection py of
KOx ∩OAy ∩A(D) ⊂ OAy is py,x(t−1

D )Oy,x where ty, tD in the local ring Ox at x are
local equations of y,D near x, Oy,x is the completion of the local ring Oy,x = py,x(Ox)
of y at x; the local intersection multiplicity of y and D at x is dimk(x) (Ox : (ty, tD)Ox) =
dimk(x) (Ox : (ty, tD)Ox) = dimk(x)(Oy,x : py,x(tD)Oy,x) equal to the local multiplicity
of D|y at x, and py,x(t−1

D )Oy,x coincides with the x-part of Ak(y)(D|y). The kernel of
C2(D) −→ Cy(D|y) is C2(D −Dy).
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Theorem (adelic interpretation of the intersection pairing).

(1) The pairing [ , ]: Div(S)× Div(S)→ Z is a bilinear symmetric form.
(2) It is invariant with respect to translation by principal divisors.
(3) If D is a divisor whose support does not contain a proper irreducible curve y, then

[D,Dy] is equal to degF(D|y).
(4) The pairing [ , ] coincides with the intersection pairing ( , ), in particular,

(E,D) = χAS
(0)− χAS

(D)− χAS
(E) + χAS

(D + E).

Proof. The second property follows from invariance of χAS
with respect to translation by

principal divisors.
To prove the third property, apply the previous lemma to−D and the zero divisor. Then

we obtain [Dy, D] = χAy
(0) − χAy

(−D|y). By section 0 the latter is equal to virtual
dimension dimF(Ay(0) : Ay(−D|y)), i.e. to degF(D|y) =

∑
x∈y dimF (OD|y,x : 0).

To prove the first property, we first use a standard argument applied to the adelic
intersection pairing. For divisors E1, E2, the moving lemma [Li, 9.1.10] allows to find
linearly equivalent to them divisors E′1, E′2 such that their support does not contain y.
Therefore, by the previous paragraph and additivity of the degree, [Dy, E1+E2] = [Dy, E

′
1+

E′2] = [Dy, E
′
1] + [Dy, E

′
2] = [Dy, E1] + [Dy, E2]. It is easy to check that for three divisors

D1, D2, D3, the difference [D1 +D2, D3]− [D1, D3]− [D2, D3] is symmetric inDi. Since
it is 0 when D3 = Dy, it is zero when D2 = Dy, i.e. [Dy, E] + [C,E] = [Dy +C,E] for all
divisors C,E. The rest is automatic: then [Dy + Dy′ , E] + [C,E] = [Dy, E] + [Dy′ , E] +
[C,E] = [Dy+C,E]+[Dy′ , E] = [Dy+Dy′ +C,E] and so on, so for everyD > 0, C,E we
have [D,E]+[C,E] = [D+C,E]. Write an arbitraryD asD1−D2 withD1, D2 > 0. Then
[D2, E] + [D,E] = [D1, E] and [D + C,E] + [D2, E] = [D1 + C,E] = [D1, E] + [C,E],
so [D,E] + [C,E] = [D + C,E].

The properties (1), (3), (2) and the use of the moving lemma uniquely characterize the
intersection pairing.

Thus, we can compute the intersection number of two divisors entirely in terms of adelic
objects associated to the adelic complexes for the divisors.

Remarks.

1. The previous presentation was chosen to use as little nontrivial results from algebraic
geometry as possible. If one decides to use Bertini’s theorem which implies that every
divisor is represented as Dy1 − Dy2 modulo a principal divisor, where yi are smooth
irreducible curves, then [D,E] = [Dy1 , E] − [Dy2 , E] and each of the terms on the right
hand side is linear in E, hence so is [D,E]. As remarked by one of the referees, one then
needs to be careful about the use of Bertini’s theorem in the case of finite field F. One
can notice that for a finite extension F′ of F there is a straightforward relation between the
adelic complexes AS and AS′ where S′ = S ×F F′. Denote j:S′ −→ S. For divisors
D,E on S we get χAS′ (j∗D) = |F′ : F|χAS

(D), [j∗D, j∗E]S′ = |F′ : F|[D,E]S . For a
given D find a finite extension F′ of F such that j∗(D) is the difference of the divisors of
smooth proper irreducible curves on S′ modulo principal divisors and deduce the linearity
of [D,E]S with respect to E.
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2. Another K-theoretic adelic interpretation of the intersection index is given in [P2,§2].
That approach seems to be more difficult to apply to derive a short proof of the following
corollary.

Adelic Riemann–Roch theorem for 1-cycles on S.

(D,C−D) = χAS
(0)− χAS

(D)− χAS
(C−D) + χAS

(C) = 2(χAS
(0)− χAS

(D)).

Finally, similar to dimension one and the argument at the end of section 0, we use the
isomorphisms Hi(AS(D)) ' Hi(S,OS(D)) established in [P1, Th1] (for rational adeles),
[B1], [H] for full geometric adeles, to get another corollary

Riemann–Roch theorem for 1-cycles on S.

(D,C−D) = 2(χ(S,OS(0))− χ(S,OS(D)))

5. Several more remarks and problems.

1. Study functorial properties of the adelic complex with respect to morphisms of surfaces
and their applications. Extend the argument in this paper to the case of a quasi-coherent
sheaf F on S and the associated adelic complex AS(F) defined in [B1]. Find an adelic
proof of the Noether formula and the Hodge index theorem.

2. Theorems for 1-cocycles and 0-cycles. The adelic proofs of the Riemann–Roch theorems
for 1-cocyles on curves and surfaces over fields do not actually require more than adelic
duality. In contrast, the study of 0-cycles on surfaces is more in need of such a harmonic
analysis theory. See [F4,§3.6] for the theory of analytic adeles A, measure, integration and
harmonic analysis on associated objects, and a two-dimensional theta-formula on elliptic
surfaces. The latter is closely related to the Riemann–Roch theorem for zero cycles on
surfaces [F4,§56, Rk 3].

3. On arithmetic extension. Let S → SpecOk be a regular proper scheme of relative
dimension one, k a number field. The objects A,B,C were defined in [F4,§28] and their
properties were listed. In particular, A are self-dual with respect to a homomorphism
A −→ C×1 . See [M2] for details of the proof of two additive reciprocity laws B⊥ ⊃ B,
C⊥ ⊃ C. It is a fundamental problem to find an analogue AS of the adelic complex in the
arithmetic case and an extension of the adelic Euler characteristic, which gives in particular
an adelic description of the Arakelov intersection index and another proof of the Faltings
Euler characteristic theorem [Fa].

4. On Galois equivariant theorems. Galois equivariant adelic Riemann–Roch theorem
for certain noncommutative finite group bundles on arithmetic surfaces flat over Z, whose
proof uses K-delic structures, are studied in the recent [CPT]. It is an interesting problem
to develop an approach to equivariant Riemann–Roch theorems using the additive adelic
structures approach in this paper.
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