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Infinite-dimensional p-adic groups, semigroups

of double cosets, and inner functions on

Bruhat–Tits buildings

Yury A. Neretin1

We construct p-adic analogs of operator colligations and their characteristic func-

tions. Consider a p-adic group G = GL(α+k∞,Qp), its subgroup L = O(k∞,Zp), and

the subgroup K = O(∞,Zp) embedded to L diagonally. We show that double cosets

Γ = K \ G/K admit a structure of a semigroup, Γ acts naturally in K-fixed vectors

of any unitary representations of G. For each double coset we assign a ’characteristic

function’, which sends a certain Bruhat–Tits building to another building (buildings

are finite-dimensional); image of the distinguished boundary is contained in the dis-

tinguished boundary. The latter building admits a structure of (Nazarov) semigroup,

the product in Γ corresponds to a point-wise product of characteristic functions.

1 Degeneration of Iwahori–Hecke type algebras

in the infinite dimensional limit

1.1. Hypergroups of double cosets. Consider a group G and its compact
subgroup K. Consider double cosets K \ G/K, i.e., the quotient of G with
respect to the equivalence relation

g ∼ k1gk2, where k1, k2 ∈ K.

Each double coset g = KgK is equipped with a unique probability measure µg,
which is invariant with respect to left and right translations by elements of K.
Convolution of measures µg, µh can be represented in the form

µg ∗ µh =

∫

K\G/K

µr(r)dσg,h(r),

where σg,h is a positive probability measure on K \G/K. Thus we get a map

(g, h) 7→ σg,h

from K \G/K×K \G/K to the space of measures on K \G/K. Such algebraic
structures are called hypergroups2. Also the map g 7→ g−1 induces an involution
µ 7→ µ∗ on the hypergroup,

(µg ∗ µh)
∗ = µ∗

h ∗ µ
∗
g.

Remark. We reformulate this in two forms.

1Supported by the grants FWF, P22122, and FWF, P25142.
2See, e.g., [1].
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a) Denote by M(K \ G/K) the set of all (sign-indefinite) compactly sup-
ported measures on G, which are invariant with respect to left and right trans-
lations by elements of K. Then M(K \G/K) is an algebra with respect to the
convolution.

b) Let G be a locally compact group with two-side invariant Haar measure
dg. Consider the set C(K \G/K) of compactly supported left-right K-invariant
continuous functions on G. Then C(K \G/K) is an algebra with respect to the
convolution. Sometimes it is called (generalized) Iwahori–Hecke algebra. ⊠

Let ρ be a unitary representation of G in a Hilbert space H . Denote by HK

the space of K-fixed vectors, by PK the projection operator to HK . Let g ∈ g.
Define the operator HK → HK given by

ρ(g) := PKρ(g)
∣∣∣
HK

. (1.1)

It is easy to see that ρ(g) depends on the double coset and not on a representative
g. The operators ρ(g) also can be expressed as

ρ(g) =

∫

K×K

ρ(k1gk1)dk1 dk2

∣∣∣∣
HK

=

∫

K

ρ(kg) dk

∣∣∣∣
HK

.

Also, we have a representation of the hypergroup in HK in the following sense:

ρ(g ∗ h) =

∫
ρ(r)dσg,h(r).

Several special cases of this construction are widely used in representation the-
ory, in particular for the following pairs G ⊃ K:

— G is a real semisimple Lie group andK is the maximal compact subgroup;
or G is a compact Lie group and K is a symmetric subgroup, [2], [3];

— G is a finite Chevalley group, K is a Borel subgroup, [4];

— G is a p-adic semisimple group and K is the Iwahori subgroup, [5].

Even for (G,K) = (SL(2,R), SO(2)) the explicit expression for σg,h is non-
trivial, see [6].

For smaller subgroups K ⊂ G in semisimple groups, the hypergroups K \
G/K became too complicated objects. For a noncompact subgroup K there is
no finiteK×K-invariant measure onK\G/K. On the other hand, a convolution
of infinite measures is not defined (except few exotic cases).

In 1970s R.S.Ismagilov and G.I.Olshanski observed that the situation can
drastically change for infinite-dimensional groups. Now we discuss a real archetype
of our p-adic construction.

1.2. Colligations. Denote by U(∞) the group of all finitary3 infinite
unitary matrices g . Denote by O(∞) ⊂ U(∞) the group of real orthogonal

3An infinite matrix g is finitary, if g− 1 has only finite number of nonzero matrix elements
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matrices. We also use notation U(n+∞) for the group of block finitary unitary

matrices

(
a b
c d

)
of size (n+∞)× (n+∞). Consider double cosets

K \G/K = O(∞) \U(n+∞)/O(∞),

i.e., matrices

(
a b
c d

)
∈ U(n+∞) determined up to the equivalence

(
a b
c d

)
∼

(
1 0
0 u

)(
a b
c d

)(
1 0
0 v

)
, where u, v ∈ O(∞).

We call such equivalence classes by colligations4.
There is no Haar measure on K, therefore there are no natural measures on

double cosets KgK, therefore we can not repeat the construction of a hyper-
group K \G/K.

However, there is a natural multiplication

K \G/K × K \G/K → K \G/K

given by

(
a b
c d

)
◦

(
p q
r t

)
=



a b 0
c d 0
0 0 1






p 0 q
0 1 0
r 0 t


 =



ap b cq
cp d cq
r 0 cq


 . (1.2)

The matrix in the right-hand side has size (n+∞+∞), we regard it as a matrix
of size (

n+ (∞+∞)
)
×
(
n+ (∞+∞)

)
= (n+∞)× (n+∞).

Proposition 1.1 The ◦-multiplication is a well-defined associative operation
on K \G/K.

We also define an involution g 7→ g∗ on K \G/K induced by the map g 7→ g∗

(taking of adjoint operator). It is easy to verify the identity

(g ◦ h)∗ = h∗ ◦ g∗.

Consider a unitary representation of G = U(n +∞) in a Hilbert space H .
As above consider the space HK of K-fixed vectors in H and operators (1.1).
The following multiplicativity theorem holds:

Theorem 1.2 (see [7], [8], Section IX.4) For any g, h ∈ K \G/K,

ρ(g)ρ(h) = ρ(g ◦ h).

4This is a term from operator theory, a colligation (node) is the conjugacy class (1.10)
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Also, for any g,
ρ(g∗) = ρ(g)∗

These phenomena (semigroup structure onK\G/K and the multiplicativity)
have no finite-dimensional analogs. However, for infinite-dimensional groups
they are usual, see a discussion in Subsection 1.8.

1.3. Characteristic functions. We wish to describe the ◦-multiplication

on more usual language. For a matrix g =

(
a b
c d

)
we write the following

equation 


q+
λy
q−
y


 =




(
a b
c d

)

(
a b
c d

)t−1







p+
x
p−
λx


 , (1.3)

where λ ∈ C, x, y ∈ ℓ2, p±, q± ∈ Cn.
Eliminate variables x, y from this system of equations, this is possible if

det(λ2d− d)

is not identical zero. We get a dependence
(
q+
q−

)
= χg(λ)

(
p+
p−

)
,

where λ 7→ χg(λ) is a matrix-valued rational function on C. It is called a
characteristic function.

A characteristic function χg(λ) depends only on a double coset g containing
g and not on g itself.

Theorem 1.3 If χg(λ) and χh(λ) are well-defined, then

χg◦h(λ) = χg(λ)χh(λ). (1.4)

Also,
χg∗(λ) = χg∗(λ−1)−1.

1.4. Reformulation. The language of Grassmannians. Fix λ. Con-
sider the set Xg(λ) of all (q+, q−; p+, p−) ∈ C2n ⊕ C2n such that there are x, y
satisfying (1.3). Evidently, Xg(λ) is a linear subspace. Notice, that at a non-
singular point of the function χg(λ), the subspace Xg(λ) is the graph of the
operator χg(λ) : C

n → Cn.
Next, we extend the function Xg(λ) to the Riemann sphere C = C ∪ ∞ in

the following way. We write the equation



q+
y
q−
0


 =




(
a b
c d

)

(
a b
c d

)t−1







p+
0
p−
x


 , (1.5)

and consider the set Xg(∞) of all (q+, q−; p+, p−) ∈ C2n ⊕ C2n such that the
equation (1.5) has a solution.
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Theorem 1.4 a) dimXg(λ) = 2n for all λ ∈ C.

b) For any g the map λ 7→ Xg(λ) is holomorphic on C.

Emphasize that the characteristic function Xg(λ) is well-defined for all dou-
ble cosets g.

Next, we explain how to interpret formula (1.4) on the language of Grass-
mannian.

Let V , W be linear spaces. We say that a linear relation L : V ⇒ W is a
subspace L ⊂ V ⊕W .

Example. Let A : V →W be a linear operator. Then its graph graph(A) ⊂
V ⊕W is a linear relation. The set of all linear subspaces in V ⊕W consists
of dimV + dimW components. Graphs of operators constitute an open dense
subspace in one of components. ⊠

Consider two linear relations L : V ⇒W , M : W ⇒ Y . Define their product
LM : V ⇒ Y as the set of (r, p) ∈ V ⊕ Y such that there exists q ∈ W such
that (r, q) ∈ L, (q, p) ∈M .

Also, for a linear relation L : V ⇒ W we define the kernel kerL ⊂ V and
the indefinity indef L ⊂W ,

kerL := L ∩ (V ⊕ 0), indef L := L ∩ (0⊕W ).

Theorem 1.5 For any g, h and each λ ∈ C,

Xg◦h(λ) = Xg(λ)Xh(λ).

1.5. Conditions for characteristic functions. We equip the space Cn⊕
Cn with a standard skew-symmetric bilinear form determined by the matrix(

0 1
−1 0

)
. We regard vectors (p+, p−) and (q+, q−) as elements of Cn ⊕ Cn.

Denote by Sp(2n,C) the group of operators preserving this form.
Equip the space (Cn ⊕Cn)⊕ (Cn ⊕Cn) by the difference of skew-symmetric

forms, i.e. by the form with matrix



0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0




We regard vectors (p+, p−, q+, q−) as elements of this space.

Proposition 1.6 (see [8], IX.4)
a) Outside poles, values of χg(λ) are contained in the complex symplectic

group Sp(2n,C).

b) The characteristic function Xg(λ) takes values in the Lagrangian Grass-
mannian5.

5Recall that a subspace L in a 2m-dimensional linear space equipped with a nondegenerate
skew-symmetric bilinear form is Lagrangian if the form vanishes on L and dimL = m, see,
e.g., [9], Section 3.1.
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Second, consider the Hermitian form M on Cn ⊕ Cn determined by the

matrix

(
0 i
−i 0

)
. Denote by U(n, n) the group of matrices preserving M .

We say that a linear operator A in Cn ⊕ Cn is an M -contraction (see, e.g.,
[9], Section 2.7), if for all vectors v we have

M(Av,Av) 6M(v, v).

We say that A is an M -dilatation if M(Av,Av) >M(v, v).
Also, equip the space (Cn⊕Cn)⊕(Cn⊕Cn) with the difference of Hermitian

forms, i.e. with a form M̃ given by




0 i 0 0
−i 0 0 0
0 0 0 −i
0 0 i 0




Proposition 1.7 (see [8], Section IX.4) Let χg(λ) be well-defined. Then:

a) If |λ| = 1, then χg(λ) ∈ U(n, n).

b) If |λ| < 1, then χg(λ) is an M -contraction.

c) If |λ| > 1, then χg(λ) is an M -dilatation.

Proposition 1.8 (see [8], Section IX.4)

a) If |λ| = 1, then the subspace Xg(λ) is M̃-isotropic.

b) If |λ| < 1, then the form M̃ is positive semi-definite on the subspace
Xg(λ).

c) If |λ| > 1, then the form M̃ is negative semi-definite on the subspace
Xg(λ).

d) If |λ| < 1, then the from M is strictly positive definite on6 kerXg(λ).
Also M is negative definite on indef Xg(λ).

Characteristic functions also satisfy to the following condition of symmetry
at 0

χg(−λ) =

(
1 0
0 −1

)
χg(λ)

(
1 0
0 −1

)−1

. (1.6)

On the language of Grassmannians this means

(p+, p−, q+, q−) ∈ X (λ) ⇔ (p+,−p−, q+,−q−) ∈ X (λ). (1.7)

Theorem 1.9 Any holomorphic map X from C to the Lagrangian Grassman-
nian satisfying the conditions of Proposition 1.8 and condition (1.7) is a char-
acteristic function of a double coset g.

6This condition contains additional information only at points λ, where X (λ) is not a graph
of an operator. By statement b) M is positive semi-definite on the kernel.
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1.6. Central extension. A characteristic function is not sufficient for a
reconstruction of a double coset, in fact matrices of the form



a b 0 }n
c d 0 }∞
0 0 e }∞




with fixed a, b, c, d and arbitrary e have the same characteristic function. Let
us introduce an additional invariant. We write the equation




0
λy
0
y


 =




(
a b
c d

)

(
a b
c d

)t−1







0
x
0
λx


 ,

as an equation for x, y. Denote by ng(λ) the dimension of the space of solutions
of this equation. Then

— ng(λ) = 0 for all but a finite number of values of λ;

— ng(λ) = 0 if |λ| 6= 1;

— ng(λ) = ng(−λ);

— ng(±1) = ∞.

Thus we get a finite set with multiplicities (we call it divisor).

Theorem 1.10 7 A double coset is uniquely determined by its characteristic
function X and the divisor n.

Theorem 1.11 [8], IX.4.5)

ng◦h(λ) = ng(λ) + ng(h;λ) + dim
(
indef Xh(λ) ∩ kerXg(λ)

)
.

Double cosets corresponding matrices



1 0 0 }n
0 1 0 {∞
0 0 e }∞




is the center of the semigroup K \G/K. The quotient of K \G/K with respect
to the center is isomorphic to the semigroup of rational matrix-values functions
described above.

7This and previous statements are given in [8], .IX.4.8 without formal proof. In fact, a
proof is contained in the same book, Addendum E. Precisely, in Subsection E.4 it is shown
how to reduce our statements to the standard theorem (see [10]) ’pure unitary operator node
is determined by its characteristic function’. In fact, we only need this theorem for finitary
matrices and rational characteristic functions.
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1.7. Degeneration of hypergroups of double cosets. Let N > k.
Embed U(n+ k) to U(n+ k +N) by

ιN :

(
A B
C D

)
7→



A B 0
C D 0
0 0 1


 .

Embed U(k +N) to U(n+ k +N) by

(
α β
γ δ

)
7→



1 0 0
0 α β
0 γ δ


 .

Fix matrices g =

(
q b
c d

)
, h =

(
p q
r t

)
∈ U(n + k). Then for N > k a matrix

ιN (g)◦ ιN (h) is well-defined as an element of U(k+N)\U(n+k+N)/U(k+N).
We equip the group U(n+ k +N) with the metric induced by the operator

norm in Euclidean Cn+k+N .

Proposition 1.12 Fix g, h ∈ U(n + k) as above. Consider the corresponding
double cosets

gN , hN ∈ U(k +N) \U(n+ k +N)/U(k +N)

and the measure
κN = µgN

∗ µhN

Then for each ε > 0, δ > 0 there exists N such that the measure κN of ε-
neighborhood of ιN (g) ◦ ιN (h) is > 1− δ.

See [7], [11], [12].

1.8. Semigroups of double cosets. The first example of multiplica-
tion of double cosets was discovered by Ismagilov [13], he considered the group
G = SL(2, k) over a non-Archimedian normed non locally compact field k. The
subgroup K is the group SL(2, o) over integer elements of k. The double cosets
are parametrized by non-negative integers Z+, and the operation ◦ is the usual
addition. The multiplicativity theorem allows to classify spherical functions (see
also [14]). Olshanski [15] showed that this semigroup is a limit of hypergroups
SL(2,Zp) \ SL(2,Qp)/SL(2,Zp) as p→ ∞.

Next, consider a series of Riemannian symmetric spaces G(n)/K(n) (an
example is U(n)/O(n)). Olshanski [7], [11] showed that the same phenomena
hold for any pair G(k + ∞) ⊃ K(∞). Also he described such semigroups for
infinite symmetric groups. As far as we know description of such objects, they
became a tool of the representation theory. On the other hand, it seems that
such structure are interesting by themselves.

In [8], Section 8.5, the author observed that multiplications on K \ G/K
are quite usual for infinite-dimensional groups (see also [16], [17]). In fact this
happened more-or-less always if K is one of the following groups:

8



1) K is a complete infinite unitary group, orthogonal group, or symplectic
(quaterninic unitary) group (or a product of several copies of such groups);

2) K is the infinite symmetric group S(∞);

3) K is the group of automorphisms of a measure space;

These groups are infinite-dimensional imitation of compact groups (but they
are neither compact, nor locally compact) apparently some other examples also
exist (for instance, below we discuss K = O(∞,Zp)).

For precise general theorems, see [16], [17]. To explore them we need explicit
descriptions of K \G/K, such descriptions recently were obtained in [18], [20],
[16], [17].

1.9. Inner functions. Recall a definition of inner functions.

1) A holomorphic function f(z) in a unit disk |z| < 1 is called inner, if
|f(z)| < 1 for |z| < 1 and

lim
r→1−

|f(reiθ)| = 1 a.s. θ ∈ [0, 2π], (1.8)

where z = reiθ and r, θ are real8. On this topic, see, e.g., [21]. It can be shown
that limit (1.8) can be replaced a.s. by the nontangential limit

lim
z→eiθ,

∣∣∣arg eiθ−z

eiθ

∣∣∣6π/2−ε

f(z), (1.9)

where ε > 0 is fixed (in fact we consider a limit over the angle whose vertex is
eiθ, the bisector is teiθ, and the value of the angle is π − 2ε.

2) A homomorphic matrix-valued (operator-valued) function f(z) in the unit
disk is called inner if ‖f(z)‖ 6 1 for |z| < 1 and boundary values of f on the
circle are unitary (see Livshits [22], Potapov [23]). Consider an operator d
closed to unitary (one of possible variants rk(dd∗ − 1) = rk(d∗d− 1) <∞) with
‖d‖ = 1. We are interested its properties up to conjugations d 7→ udu−1, where

u is unitary. Build a larger unitary matrix g =

(
a b
c d

)
including d as a block.

We consider g up to the equivalence
(
a b
c d

)
∼

(
1 0
0 u

)(
a b
c d

)(
1 0
0 u−1

)
, where u ∈ U(∞). (1.10)

Assign to g the expression (characteristic function) by

χ(λ) = a+ λb(1− λd)−1c.

Such functions (under some conditions on d) are inner functions θ(z) in the unit
disk. Invariant subspaces of d are in one-to-one correspondence with divisors of
θ in the class of inner functions. The product of inner functions corresponds to
the product of conjugacy classes (1.10) by formula (1.2).

8We can not write a limit as z → eiθ, an inner function can be discontinuous at all points
of the circle.
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3) More generally, consider a pseudo-Euclidean space. We say that a mero-
morphic matrix-valued function f in the disk is inner if it is indefinite contractive
in the disk and pseudo-unitary on the unit circle. Such functions arise in the
same context but the condition ‖d‖ 6 1 is omitted.

The characteristic function of double cosets defined above are inner in this
sense.

4) Denote by Bn the set of all n× n complex symmetric matrix with norm
< 1; Bn also is an Hermitian symmetric space

Bn = U(n, n)/U(n)×U(n),

its distinguished boundary (Shilov boundary) consist of unitary matrices.
In [20], [16] there were considered various semigroups of double cosets on

infinite-dimensional classical groups. For instance, consider group G = U(α +
k∞) consisting of block unitary matrices of size α + ∞ + · · · + ∞. Consider
its subgroup L = U(∞) embedded to G in the block diagonal way. Consider
the subgroup K = O(∞) ⊂ L embedded to U(∞) in the natural way. Then
K \ G/K is a semigroup. Characteristic functions [20] are inner functions in
Bk×Bk taking values at the space of 2α×2α-matrices. This means that values
of a function are M -contractions inside Bk ×Bk and are pseudounitary on the
Shilov boundary U(n)×U(n). The product of double cosets corresponds to the
product of characteristic functions.

It is possible to vary the definition and to regard a characteristic function
as a map Bk ×Bk → B2α.

1.10. Infinite-dimensional p-adic groups. Representation theory of
infinite-dimensional classical groups (see, e.g., [24], [25], [7], [8], [26], [27], [16])
and infinite symmetric groups (see, e.g., [28], [29], [18]) exists and is well-
developed. There were several recent works concerning infinite-dimensional
classical groups over finite fields (see [30], [31], [32]).

Few is known about infinite-dimensional p-adic groups. There are the fol-
lowing works:

1) Work of Nazarov [33], [34] on the Weil representation of an infinite-
dimensional group Sp(2∞,Qp). Existence of such representation is more-or-less
evident. However, the Weil representation of Sp(2n,R) and Sp(2∞,R) admits
a continuation to a certain complex domain Γ (if n <∞, then Γ is a semigroup
parametrized by complex symmetric 2n× 2n matrices with norm < 1, see, e.g.,
[8], Section 4.2, [9], Section 5.1). Nazarov constructed an analog of Γ for p-adic
case, see below Section 3 (for more details, see [9], Sections 10.7, 11.2)

2) A construction of Hua measures on p-adic Grassmannians and on the
inverse limit of p-adic Grassmannians in [35]. This is an analog of inverse limits
of compact symmetric spaces (see [36]) and of symmetric groups (see [29]).
Recall that in latter two cases there exists a substantial harmonic analysis on
such inverse limits, see [27], [29].

3) The group of diffeomorphisms of p-adic projective line is an object similar
to the group of diffeomorphisms of the circle (many constructions of represen-
tations of the latter group survive in p-adic case, [37]).

10



1.11. A p-adic example. Here we briefly discuss a p-adic object, which is
related to the topic of this paper but more simple. Let Qp be a p-adic field, Zp ⊂
Qp be the ring of p-adic integers. Denote by GL(∞,Qp) the group of finitary
invertible matrices over Qp. Consider conjugacy classes of GL(α+∞,Qp) with
respect to the subgroup GL(∞,Zp),

(
a b
c d

)
∼

(
1 0
0 u

)(
a b
c d

)(
1 0
0 u−1

)
, where u ∈ GL(∞,Zp). (1.11)

Such conjugacy classes admit a natural ◦-multiplication by formula (1.2), this
multiplication is a well-defined associative operation on the space of conjugacy
classes. We wish to construct an analog of characteristic functions.

First, choose a sufficiently large m such that a matrix

(
a b
c d

)
is actually

contained in GL(α +m,Qp). Consider a lattice9 R ⊂ Q2
p. For this lattice we

consider the lattice

R ⊗ Zm
p ⊂ Q2

p ⊗Qm
p ≃ Qm

p ⊕Qm
p .

We write an equation (
v
y

)
=

(
a b
c d

)(
u
x

)
. (1.12)

Next, consider the set χ(R) of all pairs (v, u) ∈ Qα
p ⊕Qα

p for which there exists
y ⊕ x ∈ R ⊗ Zm

p such that the equality (1.12) is satisfied. Then χ(R) is a Zp-
submodule in Qα

p ⊕ Qα
p , which can be regarded as a relation Qα

p ⇒ Qα
p . The

◦-product corresponds to point-wise product of functions χ(R) with values in
relations.

We also point out that these functions are compatible with the structure of
Bruhat–Tits buildings and are inner in a reasonable sense. Both phenomena
are discussed below for more sophisticated objects.

1.12. Purpose of the paper. We wish to describe multiplication of dou-
ble cosets on p-adic groups and to obtain analogs of characteristic functions.
For a double coset we assign a simplicial map from a Bruhat–Tits building Ω
to a Bruhat–Tits building Ξ such that the image of the distinguished boundary
is contained in the distinguished boundary. We also have a structure of a semi-
group on the set of vertices of the building Ξ (the Nazarov semigroup) and the
product of double cosets corresponds to pointwise product of functions Ω → Ξ.

Our construction is not a final solution of the problem10

1.13. A non-properly understood link. In fact our main construction
below is organized as an extension of rational maps of p-adic Grassmannians
to simplicial maps of Bruhat–Tits buildings. Also, our construction admits an

9see a definition in Subsection 3.1
10 First, we do not introduce an analog of the ’divisor’. Secondly, [19] suggests that complete

data separating double cosets must contain a sequence of characteristic functions determined
on the increasing sequence of buildings. A construction of complete data in a real case in [19]
is based on classical invariant theory, which does not valid over the ring Zp.
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automatic pass to algebraic extensions. Constructions of such type are investi-
gated in theory of Berkovich analytic spaces, see, e.g., [39], [40]. However their
extensions are rigid, and our extensions depend on additional data11. So I can
not understand relations of our constructions and Berkovich theory.

1.14. Notation. Let

— At be the transposed matrix;

— 1α, 1V be the unit matrix of order α, the unit operator in a space V ;

— Qp be the p-adic field;

— Zp be the ring of p-adic integers;

— Q×
p , C

× be multiplicative groups of Qp, C.

We denote the standard character Qp → C× by exp{2πia}. For a =∑
>−N ajp

j , where aj = 0, 1, . . . , p− 1, we set

exp{2πia} = exp
{
2πi

∑

j>−N

ajp
j
}
:= exp

{
2πi

∑

j:−1>j>−N

ajp
j
}

Below we define:

— the groups GL(n,Qp), Sp(2n,Qp), Sp(2n,Qp), O(n,Zp), GL(∞,Zp),
Sp(2∞,Qp), etc., Subsection 2.1;

— V±, formula (2.1);

— groups G = GL(α+ k∞,Qp), K = O(∞,Zp), Subsection 2.2;

— g ⋆ h, the product of double cosets, Subsection 2.2;

— g∗, the involution on double cosets, Subsection 2.5;

— R↓, R
↑, , Subsection 3.1;

— Rj ր R, rigid convergence, 3.4;

— LMod(V ), LLat(V ), LGr(V ), spaces of Lagrangian submodules, Subsec-
tion 3.5;

— ∆(V ), Bd(V ), buildings, Subsections 3.6, 3.8;

— P : V ⇒W , kerP , indef P , domP , imP , P�, Subsection 3.9;

— Naz, Naz, Naz, the Nazarov category, Subsections 3.12; 3.14;

— We, the Weil representation, Subsection 3.16;

— χg(Q, T ), a characteristic function, Subsection 4.1.

11Below rational maps of Grassmannians originate from double cosets

O(∞,Qp) \GL(α+ k∞,Qp)/O(∞,Qp)

(see Proposition 4.11) maps of Bruhat–Tits buildings from double cosets

O(∞,Zp) \GL(α + k∞,Qp)/O(∞,Zp).

Therefore we get many maps of Bruhat–Tits buildings with the same restriction to a distin-
guished boundary, i.e., to the Grassmannian.
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2 Multiplication of double cosets

2.1. Groups. By V = Qn
p we denote linear spaces over Qp. Denote by

GL(n,Qp) = GL(V ) the group of invertible linear operators in Qn
p ; by GL(n,Zp)

the group of all matrices g with integer elements, such that g−1 have integer
elements.

Consider a space V = Q2n
p equipped with a non-degenerate skew-symmetric

bilinear form BV , say

(
0 1
−1 0

)
. The symplectic group Sp(2n,Qp) is the group

of matrices preserving this form, Sp(2n,Zp) is the group of symplectic matrices
with integer elements. We also denote

V+ := Qn
p ⊕ 0, V− = 0⊕Qn

p . (2.1)

Also, consider a space Qn
p equipped with the standard symmetric bilinear

form (v, w) =
∑
vjwj . We denote by O(n,Qp) the group of all matrices pre-

serving this form12.
By GL(∞,Qp) we denote the group of all infinite invertible matrices over

Qp such that g − 1 has only finite number of non-zero elements. We call such
matrices finitary. We define GL(∞,Zp), Sp(2∞,Qp), Sp(2∞,Zp), O(∞,Zp) in
the same way.

2.2. Multiplication of double cosets. Let

G := GL(∞,Qp) := GL(α+ k∞,Qp)

be the group of finitary block (α+∞+ · · ·+∞)× (α+∞+ · · ·+∞)- matrices
(there are k copies of ∞). By K we denote the group

K = O(∞,Zp)

embedded to G by the rule

I : u 7→




1α 0 . . . o
0 u . . . 0
...

...
. . .

...
0 0 . . . u


 , (2.2)

where 1α denotes the unit matrix of order α.

Remark. Certainly, G := GL(∞,Qp). But the notation of the type G :=
GL(α+ k∞,Qp) allows us to indicate certain subgroups in G. ⊠

We wish to define a structure of a semigroup on double cosets K \G/K.
Set

ΘN :=




0 1N 0
1N 0 0
0 0 1∞


 ∈ K. (2.3)

12There are several non-equivalent non-degenerate quadratic forms and several different
orthogonal groups over Qp, however we consider only this group.
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Let g, h ∈ K \ G/K. Choose their representatives g, h ∈ G. Consider the
sequence

fN := gI(ΘN )h

and double coset fN containing fN .

Theorem 2.1 a) The sequence fN of double cosets is eventually constant.

b) The limit f := limN→∞ fN does not depend on a choice of representatives
g, h.

c) The product g ⋆ h in K \G/K obtained in this way is associative.

These statements are simple, see proofs of parallel real statements in [16].
Also, it is easy to write an explicit formula for the product. For definiteness,
set k = 2. Then



a b1 b2
c1 d11 d12
c2 d21 d22


 ⋆



a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22


 =

=




a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1







1α 0 0 0 0
0 0 1∞ 0 0
0 1∞ 0 0 0
0 0 0 0 1∞
0 0 0 1∞ 0







a′ b′1 0 b′2 0
c′1 d′11 0 d′12 0
0 0 1 0 0
c′2 d′21 0 d′22 0
0 0 0 0 1




Since a result is double coset, we can write the final matrix in different forms,
say

f =




aa′ | b1 ab′1 b1 ab′1
− + − − − − −
c1a

′ | d11 c1b
′
1 d12 c1b

′
2

c′1 | 0 d′11 0 d′12
|

c2a
′ | d21 c2b

′
1 d22 c2b

′
2

c′2 | 0 d′21 0 d′22




(2.4)

or

f =




aa′ | ab′1 b1 ab′2 b2
− + − − − −
c1a

′ | c1b
′
1 d11 c1b

′
2 d12

c′1 | d′11 0 d′12 0
|

c2a
′ | c2b

′
1 d21 c2b

′
2 d22

c′2 | d′21 0 d′22 0




.

2.3. Multiplicativity theorem. Let ρ be a unitary representation of G,
denote byHK the subspace of allK-fixed vectors. Denote by PK the operator of
orthogonal projection toHK. For g ∈ G consider the operator ρ(g) : HK → HK

given by

ρ(g) := PKρ(g)
∣∣∣
HK

.
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Obviously, ρ(g) is a function on double cosets K \G/K, therefore we can write
ρ(g).

Theorem 2.2 For any unitary representation ρ, for all g, h ∈ K \ G/K the
following equality (the “multiplicativity theorem”) holds,

ρ(g)ρ(h) = ρ(g ⋆ h).

We give a proof in Section 6.

Remark. Apparently the analog of Proposition 1.12 for p-adic case does
not hold. �

2.4. Sphericity.

Proposition 2.3 Let α = 0. Then the pair (G,K) is spherical, i.e., for any
irreducible unitary representation of G the dimension of the space of K-fixed
vectors is 6 1.

We omit a proof, it is the same as for infinite-dimensional real classical
groups, see [16].

2.5. Involution. The map g 7→ g−1 induces an involution g 7→ g∗ on
K \G/K. Evidently,

(g ⋆ h)∗ = h∗ ⋆ g∗.

Also, for any unitary representation ρ of G we have

ρ(g∗) = ρ(g)∗.

2.6. Purpose of the work. Our aim is to describe this multiplication in
more usual terms. More precisely, we wish to get p-adic analogs of multivariate
characteristic functions constructed in [16], [20].

2.7. Structure of the paper. Section 3 contains preliminaries (lattices,
Bruhat–Tits buildings, relations, the Weil representation of the Nazarov cate-
gory). A main construction (characteristic functions of double cosets and their
properties) is contained in Section 4. Proofs are given in Section 5.

In Section 6 we prove the multiplicativity theorem. Section 7 contains some
constructions of representations. Theorem 7.5 shows a link between the charac-
teristic function and operators ρ(g).

3 Preliminaries. Submodules, relations, Bruhat–

Tits buildings, Nazarov category, and Weil

representation

A. Submodules and convergence
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3.1. Modules. Below the term submodule means an Zp-submodule in a
linear space V = Qk

p. For each submodule R ⊂ Qk
p there is a (non-canonical)

basis ei ∈ Qk
p such that

R = Qpe1 ⊕ · · · ⊕Qpej ⊕ Zpej+1 ⊕ · · · ⊕ Zpel. (3.1)

If j = k then R is a linear subspace. If j = 0, l = k, then we get a lattice. A
formal definition is: a lattice R is a compact Zp-submodule such thatQpR = Qk

p.
For details, see, e.g., [41].

Denote by Mod(V ) the set of all submodules in V , by Lat(V ) the space of
all lattices. It is easy to see that

Lat(V ) ≃ GL(V,Qp)/GL(V,Zp).

For any submodule R denote by R↓ the maximal linear subspace in R. By
R↑ we denote the minimal linear subspace containing R,

R↓ ⊂ R ⊂ R↑

The image of R in the quotient space R↑/R↓ is a lattice.
Conversely, let L ⊂ M be a pair of subspaces, π : L → L/M be the pro-

jection. Let P ⊂ M/L be a lattice. Then π−1P is a submodule in Qk
p and all

submodules have such form.

3.2. Duality. For a p-adic linear space V we denote by V ′ the space of linear
functionals on V . For a submodule L ⊂ V define the dual module L♦ ⊂ V ′ as
the set of all linear functionals ℓ ∈ V ′ such that

ℓ(v) ∈ Zp for all v ∈ L

Notice that L♦♦ = L.
If L is a lattice, then L♦ is a lattice.

3.3. The Hausdorff convergence on Mod(V ). Let V = Qn
p . We define

a norm on V as
‖x‖ = max

j
|xj |.

Denote by B(pl) the ball with center at 0 of radius pl.

Let K be a metric space, A, B be closed subsets. Define the Hausdorff
deviation ηB(A) as the supremum of distance between a ranging in A and B (a
number ηB(A) is a nonnegative real or ∞). The Hausdorff ∞13 on the space of
closed subset is defined by

h(A,B) = max(ηA(B), ηB(A)).

Its restriction to the space of compact subsets is a metric. If K is compact then
the space of its closed subsets is compact.

13We allow distance = +∞
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Now we introduce the topology on Mod(V ). We say that Rj converges to
R if for each l we have a convergence B(pl) ∩ Rj → B(pl) ∩ R in the sense of
Hausdorff metric. Notice that this convergence is metrized, a (non-canonical)
metric is given by

d(L,M) =
∞∑

j=1

(2p)−jh
(
L ∩B(pl),M ∩B(pl)

)
.

Lemma 3.1 a) The space Mod(V ) is compact with respect to the Hausdorff
topology.

b) The space Lat(V ) is a discrete dense subset in Mod(V ).

Let us prove a). Choose a convergent subsequence from arbitrary sequence
of submodules Lj. First, we choose a subsequence Ljk such that Ljk ∩ B(p0)
converges. From the latter sequence we choose a subsequence such that inter-
sections with B(p1) converges. Etc.

3.4. Analog of the radial limit. We need an analog of the radial limit
(1.8). Say that a sequence Rj of submodules rigidly converges to a submodule
R (notation Rj ր R) if

(A) for any compact subset S ⊂ R we have S ⊂ Rj starting some place.

(B) for each ε > 0, for sufficiently large j the set Rj is contained in the
ε-neighborhood of R.

Example. Let V = Q2
p. Let Rj = p−kZpe1 ⊕ pkZpe2. Then Rj rigidly

converges to a line Qpe1. Now let

Sj = Zp(p
−ke1 + e2)⊕ pkZpe2.

Then Sj converges to the line Qpe1 in Hausdorff sense but not rigidly. ⊠

Evidently, we can reformulate the condition (A) as

ηR(Rj) → 0.

Lemma 3.2 The condition (B) is equivalent to

ηR♦(R♦
j ) → 0.

Proof. Let us equip V ′ by the dual norm. Let S, Sj ∈ V ′ and ηS(Sj) → 0.
For small ε > 0 we have

Sj ⊂ S +B(ε). (3.2)

Passing to the duals, we get

S♦
j ⊃ S♦ ∩B(ε−1). (3.3)

But S♦ ∩ B(ε−1) is an exhausting sequence of compact subsets in S♦. Also,
(3.3) implies (3.2). �
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Lemma 3.3 If Rj ր R, then (Rj)↓ ⊂ R↓ and (Rj)
↑ ⊃ R↑ starting some j.

Proof. The first claim. For sufficiently large k we have R ⊂ R↓ + B(pk),
also B(pk) +B(ε) = B(pk) for ε 6 pk. Therefore for a large j we have

R↓ +B(pk) ⊃ Rj ⊃ (Rj)↓

But a subspace, which is contained in a tube neighborhood of a subspace R↓, is
contained in R↓.

The second claim. We consider a compact subset K ⊂ R generating R↑ as
a Qp-subspace. Then (Rj)

↑ contains K for sufficiently large j and therefore
(Rj)

↑ ⊃ R↑. �

In particular, a ր-convergent sequence of linear subspaces is eventually con-
stant.

Lemma 3.4 a) Let L ⊂ V be a linear subspace. If Rj ր R, then (L ∩ Rj) ր
(L ∩R).

b) Let M ⊂ V be a linear subspace, denote by π the natural map V → V/M .
If Rj ր R then π(Rj) ր π(R).

Proof. a) Only condition (B) requires a proof, i.e., for each ε > 0 there
exists N such that for j > N

Rj ∩ L ⊂ (R ∩ L) +B(ε).

It is easy to shown that there is a basis em in Qn
p such that R has canonical

form (3.1) and L is a linear span of several basis elements. Then for sufficiently
big N we have

(R + pN ⊕ Zpej) ∩ L ⊂ (R ∩ L) + pN ⊕ Zpej.

Passing from the basis em to the standard basis in Qn
p we get

(R+B(δ)) ∩ L ⊂ (R ∩ L) +B(Cδ).,

where C = C(R,L) is a constant. Now we take δ = ε/C and choose number k,
starting which Rj ⊂ R+B(δ).

b) follows from a) by the duality. �

Remark. ր-convergence is not metrizable. ⊠

B. Bruhat–Tits buildings

3.5. Self-dual modules. For details, see [9], Sections 10.6–10.7. Consider
a p-adic linear space V ≃ Q2n

p equipped with a nondegenerate skew-symmetric
bilinear form BV (·, ·) (as above). We say that a subspace L is isotropic if
BV (v, w) = 0 for all v, w ∈ V . By LGr(V ) we denote the set of all maximal
isotropic (Lagrangian) subspaces in V (their dimensions = n).
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By L⊥ we denote the ortho-dual of a subspace L, i.e set of all vectors w such
that BV (v, w) = 0 for all v ∈ L.

If P is a submodule, denote by P⊥⊥ the dual submodule, i.e., the set of vectors
w such that B(v, w) ∈ Zp for all v ∈ P . If P is a subspace, then P⊥⊥ = P⊥.

We say that a submodule R ⊂ V is isotropic if BV (v, w) ∈ Zp for all v,
w ∈ R.

Example. If R is a linear subspace, then R is isotropic in the usual sense.
On the other hand, the lattice Z2n

p is isotropic (and self-dual, see below). ⊠

We say that a submodule R is self-dual if it is a maximal isotropic submodule
in V . Equivalently, P⊥⊥ = P . Denote by LMod(V ) the set of all self-dual
submodules in V , by LLat(V ) the set of all self-dual lattices. It is easy to show
that Sp(2n,Qp) acts on LLat(V ) transitively and

LLat(V ) = Sp(2n,Qp)/Sp(2n,Zp).

Lemma 3.5 a) For any self-dual submodule R the subspace R↓ is isotropic, and
R↑ is the ortho-dual of R↓.

b) Let L ranges in the set of isotropic subspaces. Denote by π : L⊥ → L⊥/L
the natural projection map. Any self-dual submodule R has the form π−1S,
where S is a self-dual lattice in L⊥/L.

c) The unique Sp(V )-invariant of a self-dual module R is dimR↓.

These statement is obvious.

Sometimes it is convenient to reformulate a definition of an isotropic module.
Define a bicharacter β on V × V by

β(x, y) = exp
{
2πiB(x, y)

}
. (3.4)

We say that a module P is isotropic if β(x, y) = 1 on P × P .

3.6. Almost self-dual modules. Let V and B be same as above. A
submodule L in V is almost self-dual if it contains a self-dual module M and
B(v, w) ∈ p−1Zp for all v, w ∈ L (see, e.g., [8], Section 10.6). Notice that
L/M ≃ (Z/pZ)k with k = 0, 1, . . . , n. .

Lemma 3.6 a) Any almost self-dual module can be reduced by a symplectic
transformation to the form

(p−1Zpe1 ⊕ Zpen+1)⊕ · · · ⊕ (p−1Zpek ⊕ Zpen+k)⊕

⊕ (Zpek+1 ⊕ Zpen+k+1)⊕ · · · ⊕ (Zpem ⊕ Zpen+m)⊕

⊕Qpem+1 ⊕ · · · ⊕Qpen. (3.5)

b) The only Sp(V )-invariants of an almost self-adjoint module R are dimR↓

and the number k (rank of an Abelian group R/S, where S is a self-dual submod-
ule in R. For almost self-dual lattices the only Sp(V )-invariant is the volume of
R, it is equal p−k.
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3.7. Graph ∆(V ). Consider a p-adic linear space V equipped with a
nondegenerate skew-symmetric bilinear form B as above. We draw an oriented
graph ∆(V ). Vertices are almost self-dual modules in V . If R ⊃ R′, then we
draw an arrow from R to R′.

If R, R′ are connected by an arrow, then R↓ = (R′)↓ and R↑ = (R′)↑.
Any pair of lattices can be connected by a (non-oriented) way. Denote the

subgraph whose vertices are all lattices by ∆0(V ).
More generally, fix an isotropic subspace L and consider the subgraph ∆L(V )

whose vertices are almost self-dual modules R such that R↓ = L, R↑ = L⊥. We
get a connected subgraph, moreover

∆L(V ) ≃ ∆0(L
⊥/L).

By definition,

∆(V ) =
⊔

L is isotropic subspace

∆L(V ).

If L ⊂ M , then ∆M is contained in the closure of ∆L in the sense of ր-
convergence.

3.8. Bruhat–Tits buildings, for details, see [42], [8]. Now we consider
all k-plets of vertices of ∆(V ) that are pairwise connected by edges. For any
such k-plet we draw a (k− 1)-simplex with given vertices and edges. Faces of a
simplex correspond to subsets of the k-plet. Thus we get a simplicial complex,
denote it by Bd(V ).

Consider the subgraph ∆0. It can be shown that k 6 n+1 and each simplex
is contained in an n-dimensional simplex. In this way we get a structure of an
n-dimensional simplicial complex, it is called a Bruhat–Tits building. We denote
it by Bd0(V ).

For a subgraph ∆L we get a simplicial complex complex BdL(V ) isomorphic
Bd(L⊥/L).

Below we use term ’distinguished boundary of a building’ for the Lagrangian
Grassmannian, this is an counterpart of Shilov boundary.

C. Relations and Nazarov category

3.9. Relations. Let V , W be linear spaces. We say that a relation P :
V ⇒W is a submodule in V ⊕W .

Example. Let A : V →W be a linear operator. Then its graph is a relation.
⊠

Let P : V ⇒ W , Q : W ⇒ Y be relations. We define their product
S = QP : V ⇒ Y as the set of all v ⊕ y ∈ V ⊕ Y for which there exists w ∈ W
such that v ⊕ w ∈ P , w ⊕ y ∈ Q.

For a relation P : V ⇒W we define its kernel kerP ⊂ V as

kerP = P ∩ (V ⊕ 0),
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Figure 1: A reference to Subsections 3.4, 3.6. A subcomplex (’apartment’) of
the building Bd(Q4

p) corresponding to lattices of the form R1 ⊕ · · · ⊕R4, where
Rj is a submodule in the line Qpej.
1) Vertices of the central piece of the subcomplex are almost self-dual lattices of
the form L = pk1Zpe1 ⊕ pk2Zpe2 ⊕ pl1Zpe3 ⊕ pl2Zpe4. They are almost self-dual
iff k1 + l1, k2 + l2 are 0 or −1.
2) Four boundary pieces. Each piece corresponds to almost self-dual submodules
containing a line Qpej, where j = 1, 2, 3, 4. For instance, for j = 1 such
submodules have a form M = Qpe1 ⊕ pm2Zpe2 ⊕ pl2Zpe4, where m2 + l2 = 0
,1. A sequence of lattices ր-converges to M only if k1 → −∞ and k2 = m2

starting some place.
3) Four extreme points correspond to Lagrangian planes spanned by pairs of
vectors (e1, e2), (e1, e4), (e2, e3), (e3, e4). A sequence of lattices ր-converges to
Qpe1 ⊕Qpe4 iff k1 → +∞, k2 → −∞.
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the indefiniteness indef P ⊂W ,

indef P = P ∩ (0⊕W ),

the domain of definiteness

domP = projection of P to V ,

and the image
imP = projection of P to W.

We define the pseudo-inverse relation P� : W ⇒ V being the same submodule
in W ⊕ V ≃ V ⊕W . Evidently,

(PQ)� = Q�P�.

3.10. The definition of product. A reformulation. We keep the same
notation. Consider the space Z := V ⊕W ⊕W ⊕ Y and following submodules
of Z:

— the subspace H consisting of vectors v ⊕ w ⊕ w ⊕ y;

— the subspace A consisting of vectors 0⊕ w ⊕ w ⊕ 0;

— the submodule P ⊕Q ⊂ (V ⊕W )⊕ (W ⊕ Y ).

Then we do the following operations:

— take the intersection R = H ∩ (P ⊕Q);

— take the map θ : H → H/A ≃ V ⊕ Y .

Then QP = θ(R).

3.11. Action on Mod(V ). Let P : V ⇒W be a relation, T be a submodule
in V . We define the submodule PT ⊂ W as the set of w ∈ W such that there
is v ∈ T satisfying v ⊕ w ∈ P .

Remark. We can consider a submodule T ⊂ V as a relation 0 ⇒ V .
Therefore we can regard PT : 0 ⇒ W as the product of relations T : 0 ⇒ V
and Q : V ⇒W . ⊠

3.12. The Nazarov category. For a pair V ,W of symplectic linear spaces
we define a skew-symmetric bilinear form B⊖ on V ⊕W by

B⊖(v ⊕ w, v′ ⊕ w′) = BV (v, v
′)−BW (w,w′).

Denote by

— Naz(V,W ) the set of all self-dual submodules of V ⊕W ;

— Naz(V,W ) the set of P ∈ Naz(V,W ) such that kerP and indef P are
compact.

Theorem 3.7 Let P ∈ Naz(V,W ), let T be a self-dual submodule in V . Then
the submodule PT ⊂W is self-dual.
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In [9], Theorem 10.7.2, the same statement is established under slightly
stronger condition P ∈ Naz(V,W ). In fact, a proof remains valid for P ∈
Naz(V,W ).

Theorem 3.8 a) If P ∈ Naz(V,W ), Q ∈ Naz(W,Y ), then QP ∈ Naz(V, Y ).

b) If P ∈ Naz(V,W ), Q ∈ Naz(W,Y ), then QP ∈ Naz(V, Y ).

c) If P ∈ Naz(V,W ), Q ∈ Naz(W,Y ) are lattices, then QP is a lattice.

The statement a) was proved in Nazarov [33] (see also [9], Section 10.7), c)
is obvious. The statement b) is a corollary of Theorem 3.7, see [9], Subsection
10.7.4.

Thus we get two similar categories14, Naz and Naz. The group of automor-
phisms of an object V is the symplectic group Sp(V,Qp) (for both categories),
an operator V → V is symplectic iff its graph is isotropic with respect to the
form B⊖.

For P ∈ Naz(V,W ), we have

(kerP )⊥⊥ = domP, (indef P )⊥⊥ = imP
(
(kerP )↓

)⊥
= (domP )↑,

(
(indef P )↓

)⊥⊥
= (imP )↑,

3.13. Action of the Nazarov category on buildings.

Proposition 3.9 a) Let P ∈ Naz(V,W ), let T be an almost-self-dual lattice.
Then PT ⊂W is an almost self-dual lattice.

b) Let P ∈ Naz(V,W ), let T be an almost-self-dual submodule. Then PT ⊂
W is an almost self-dual submodule.

The statement a) is [9], Proposition 10.7.5, a proof remains to be valid for
the statement b) also.

Now, let Ξ, Σ be simplicial complexes, let Vert(Ξ), Vert(Σ) be their sets
of vertices. We say, that a map15 Vert(Ξ) → Vert(Σ) is simplicial, if for any
simplex ∆ ⊂ Ξ images of its vertices are are contained in one simplex of Σ.
Notice, that we can extend a simplicial map to a map of complexes Ξ → Σ
assuming that a map is affine on each face.

The following statement is a corollary of Proposition 3.9.

Theorem 3.10 a) A morphism P ∈ Naz(V,W ) induces simplicial map

Bd(V ) → Bd(W )

sending
Bd0(V ) → Bd0(W ).

14The Nazarov category is an analog of Krein–Shmulian type categories, see [8], [9]
15generally, non-injective.
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b) A morphism P ∈ Naz(V,W ) induces a simplicial map Bd(V ) → Bd(V ),
sending Bd(V ) to

Bd(V ) →
⊔

M is isotropic subspace in W

M ⊃ indef(P )↓

Bd[M⊥/M ]. (3.6)

Remark. The map T → PT is contractive in an essentially stronger sense,
see [43]. ⊠

Theorem 3.11 Let P ∈ Naz(V,W ). The the induced map Bd(V ) → Bd(W )
is ր-continuous, i.e., for a convergent sequence Tj ր T of almost self-dual
modules, we have PTj ր PT .

Proof. We evaluate PTj according procedure described in Subsection 3.10.
By Lemma 3.4, both steps of the evaluation are continuous. �

D. Weil representation

The Weil representation is used below only in Section 7.

3.14. Extended Nazarov category. Now we add to the Nazarov category
an infinite-dimensional object V2∞. This is the space of vectors

(x+1 , x
+
2 , . . . , x

−
1 , x

−
2 , . . . ), where x±j ∈ Qp and x±j ∈ Zp for almost all j.

Notice that V2∞ is not a Qp-linear space but is a Zp-module.
We introduce a bicharacter β(·, ·) on V2∞ ⊕ V2∞ by

β(x, y) = exp
[
2πi

∞∑

j=1

(x+j y
−
j − x−j y

+
j )

]
:=

∞∏

j=1

exp
{
2πi(x+j y

−
j − x−j y

+
j )

}
.

Notice that almost all factors of the product equal to 1. The sum in square
brackets defining a symplectic form is not well defined, more precisely it is well
defined modulo Zp.

Objects of the extended Nazarov category Naz are

— finite-dimensional spaces V equipped with skew-symmetric non-degenerate
bilinear forms BV and with the corresponding bicharacters βV , see (3.4);

— the space V2∞.

Let V , W be two objects. We equip their direct sum with a bicharacter

βV ⊕W (v ⊕ w, v′ ⊕ w′) =
βV (v, v

′)

βW (w,w′)
.

A morphism of the category Naz is a self-dual submodule P ⊂ V ⊕W such that
kerP and indef P are compact.
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Group Sp(2∞,Qp) of automorphisms of V2∞ consists of 2∞× 2∞ matrices

r =

(
a b
c d

)
such that

— all but a finite number of matrix elements are integer;

— matrix elements aij , bij , cij , dij tend to 0 as i→ ∞ for fixed j; also they
tend to 0 as j → ∞ for fixed i;

— matrices r are symplectic in the usual sense,

rt
(

0 1
−1 0

)
r =

(
0 1
−1 0

)
= r

(
0 1
−1 0

)
rt.

3.15. Heisenberg groups. For the sake of simplicity, set p > 2. Denote
by Tp ⊂ C× the group of complex roots of unity of degrees p, p2, p3,. . . . Let V
be an object of the extended Nazarov category. We define the Heisenberg group
Heis(V ) as a central extension of the Abelian group V by Tp in the following
way. As a set, Heis(V ) ≃ V × Tp. The multiplication is given by

(v, λ) · (w, µ) =
(
v + w, λµ · βV (v, w)

)
.

Decompose V = V+ ⊕ V− as in (2.1). For a finite dimensional V we define a
unitary representation Ψ of Heis(V ) in L2(Qn

p ) by the formula

Ψ(v+ ⊕ v−, λ)f(x) = λf(x+ v+) exp
{
2πi

(∑
v+j xj +

1

2

∑
v+j v

−
j

)}
. (3.7)

Next, consider the space E∞ consisting of sequences z = (z1, z2, . . . ) such
that |zj | 6 1 for all but a finite number of j. This space is an Abelian locally
compact group, it admits a Haar measure. On the open subgroup Z∞

p ⊂ E∞,
the Haar measure is a product of probability Haar measures on Zp. The whole
space E∞ is a countable disjoint union of sets u+ Z∞

p .
We define the representation of the group Heis(V2∞) in L2(E∞) by the same

formula (3.7).

3.16. The Weil representation of the Nazarov category. Formal
definition. See [33], [34], for finite-dimensional case, see [9], Chapter 11.

Theorem 3.12 For a 2n-dimensional object of the category Naz we assign the
Hilbert space H(V ) := L2(Qn

p ). For the object V2∞, we assign the Hilbert space
H(V2∞) := L2(E∞).

a) Let V , W be objects of Naz. Let P : V ⇒ W be a morphism of category
Naz. Then there is a unique up to a scalar factor bounded operator

We(P ) : H(V ) → H(W )

such that
Ψ(w, 1)We(P ) = We(P )Ψ(v, 1) for all v ⊕ w ∈ P .
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b) Let V , W , Y be objects of Naz. Let P : V ⇒ W , Q : W ⇒ Y be
morphisms of Naz. Then

We(Q)We(P ) = s ·We(QP ),

where s = s(P,Q) ∈ C× is a nonzero scalar. In other words, we get a projective
representation of the category Naz. Also,

We(P�) = t ·We(P )∗, t ∈ C×.

For symplectic groups Sp(2n,Qp) = Aut(Q2n
p ) the representation We(g) co-

incides with the Weil representation.

3.17. Explicit formulas for operators for some morphisms.
1) Let V =W and P be a graph of a symplectic operator. There are simple

formulas for some special symplectic matrices:

We

(
A 0
0 At−1

)
f(z) = | detA|1/2f(zA); (3.8)

We

(
1 B
0 1

)
f(z) = exp{πizBzt};

We

(
0 1
−1 0

)
f(z) =

∫

Qn
p

f(x) exp{2πixzt} dx.

Any element of Sp(2n,Qp) can be represented as a product of matrices of such
forms, this allows to write an explicit formula for We(g) for any element g ∈
Sp(2n,Qp).

Denote by I(x) the function on Qp defined by

I(x) =

{
1, |x| 6 1;

0, otherwise.

Next, we need some special non-invertible morphisms.

2) Let V = Q2n
p , W = V ⊕Y , where Y = Q2n

p or V2∞. Denote by Y (Zp) the
lattice Z2n

p or Z2∞
p respectively. Denote by

λVW : V ⇒W

the direct sum of the graph graph(1V ) of the unit operator 1V : V → V and the
lattice Y (Zp) ⊂ Y . Then

We(λVW ) f(v1, . . . , vn, y1, y2, . . . ) = f(v1, . . . , vn) I(y1)I(y2) . . .

3) Preserving the previous notation denote by

θVW :W ⇒W
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the direct sum

graph(1V )⊕ (Y (Zp)⊕ Y (Zp)) ⊂ (V ⊕ V )⊕ (Y ⊕ Y ).

Then
θVW = λVW

(
λVW

)∗
,

(
θVW

)2
= θVW ,

(
λVW

)∗
λVW = 1V . (3.9)

The operator We(θVW ) is the orthogonal projection to the space of functions of
the form

f(v1, . . . , vn) I(y1)I(y2) . . .

3.18. General case. Any morphism of the category Naz can be repre-
sented as a product of morphisms of the types described above. Moreover, for
finite dimensional V , W , any P : V ⇒W can be represented as

P = (λWZ )∗ · g · λVZ , g ∈ Sp(Z),

where Z is sufficiently large (dimZ > 2max(dim V, dimW )). In fact, the same
decomposition holds for morphisms Q : V2∞ → V2∞, any Q can be represented
as

Q = θV2∞

V2∞⊕V2∞
· g · θV2∞

V2∞⊕V2∞
, g ∈ Sp(V2∞ ⊕ V2∞).

4 Characteristic function

Here we define characteristic functions of double cosets K\G/K and formulate
several theorems. Proofs are in the next section.

4.1. Construction. Consider the group

GL(α+ k∞,Qp) := lim
j→∞

GL(α+ kj,Qp).

Let g ∈ GL(α+ k∞,Qp) actually be contained in GL(α+ km,Qp),

g =




a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk


 ∈ GL(α+ km,Qp). (4.1)

We write the following equation (this is an analog of (1.5), the analogy is im-
portant)




v+

y+1
...
y+k
v−

y−1
...
y−k




=




a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0




a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk




t−1







u+

x+1
...
x+k
u−

x−1
...
x−k




. (4.2)
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Here u±, v± ∈ Qα
p and x±j , y

±
j ∈ Qm

p .
Before the exploring of this identity as (1.5), we need some preparations.

Define 3 spaces, V , H, ℓm:

1) Denote V := Qα
p ⊕Qα

p . We regard u = u+ ⊕ u−, v = v+ ⊕ v− as elements

of V . Equip V with the standard skew-symmetric bilinear form

(
0 1
−1 0

)
.

2) Denote
H := H+ ⊕H− = Qk

p ⊕ Qk
p (4.3)

and equip this space with the standard skew-symmetric bilinear form.

3) Denote by ℓm the space Qm
p equipped with the standard symmetric bilin-

ear form
(z, w) =

∑
zjwj .

We regard x±j , y
±
j as elements of this space.

Consider the tensor product H⊗Qp
ℓm, vectors

(
x+1 . . . x+k x−1 . . . x−k

)
,

(
y+1 . . . y+k y−1 . . . y−k

)

are regarded as elements of H⊗ ℓm. We equip H⊗ ℓm with the tensor product
of bilinear forms, this form is a skew-symmetric with matrix16





















0 . . . 0 1m . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . 1m

−1m . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . −1m 0 . . . 0





















.

Thus the operator in (4.2) is an operator

V ⊕ (H⊗ ℓm) → V ⊕ (H⊗ ℓm)

We equip the spaces V ⊕ (H⊗ ℓm) with a skew-symmetric bilinear form that is
a direct sum of forms in V and H⊗ ℓm. The matrix of this form is




0 1α 0 0
−1α 0 0 0
0 0 0 1km
0 0 −1km 0




Evidently, operators (4.2) preserve this form, i.e., they are contained in Sp
(
2(α+

km),Qp

)
.

Now we start a description of characteristic functions.

16A tensor product of a symmetric and a skew-symmetric bilinear forms is a skew-symmetric
bilinear form.
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For any self-dual module Q ⊂ H we consider the self-dual module

Q⊗Zp
Zm
p ⊂ H ⊗ ℓm.

Notice, that Q⊗ Zm
p is a direct sum of m copies of Q.

Definition 4.1 Fix g. Fix self-dual submodules Q, T ⊂ H. We define a rela-
tion

χg(Q, T ) : V ⇒ V

as the set of all u ⊕ v ∈ V ⊕ V for which there exist x ∈ Q ⊗ Zm
p , y ∈ T ⊗ Zm

p

such that (4.2) holds.

4.2. An auxiliary definition.

Definition 4.2 We say that some property of a double coset holds in a general
position if for any sufficiently large m the set of points g ∈ GL(α + km,Qp),
where the property does not hold, is a proper algebraic subvariety in GL(α +
km,Qp).

4.3. Basic properties of characteristic functions.

Lemma 4.3 χg(Q, T ) does not depend on a choice of m.

Theorem 4.4 If g1, g2 are contained in the same double coset K \G/K, then
χg1(Q, T ) = χg2(Q, T ).

Thus, for any double coset g ∈ K \G/K we get a well-defined map

χg : LMod(H)× LMod(H) →
{
space of relations V ⇒ V

}
.

Therefore, we can write

χg(Q, T ), where g ∈ K \G/K.

We say that χg(·, ·) is the characteristic function of the double coset g.

Theorem 4.5 χg(Q, T ) ∈ Naz(V ,V).

Theorem 4.6 The following identity holds

χg⋆h(Q, T ) = χg(Q, T )χh(Q, T ),

in the right-hand side we have a product of relations
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4.4. Refinement of Theorem 4.5. Fix a double coset g. Substituting
x± = 0, y± = 0 to the equation (4.2), we get an equation for u ⊕ v ∈ V ⊕ V .
The explicit form (see equation (5.3)) is





v+ = au+

0 = cju
+, for all j

u− = atv−

0 = btjv
−, for all j

(4.4)

Denote by Λ(g) ⊂ V ⊕ V the linear subspace of solutions of this system.
Notice that

kerΛ(g) = 0, indef Λ(g) = 0

(since g is an invertible matrix).
For g being in a general position Λ(g) = 0.

Proposition 4.7 a) For any self-dual Q, T ∈ LMod(H),

χg(Q, T )↓ ⊃ Λ(g), χg(Q, T )
↑ ⊂ Λ(g)⊥.

b) If Q, T are self-dual lattices, then

χg(Q, T )↓ = Λ(g), χg(Q, T )
↑ = Λ(g)⊥.

Corollary 4.8 For g being in a general position, we get a map

LLat(H)× LLat(H) → LLat(V ⊕ V).

4.5. Values of characteristic functions on the distinguished bound-
ary.

Theorem 4.9 Let Q, T range in the Lagrangian Grassmannian LGr(H). Then

a) χg(Q, T ) is a Lagrangian subspace in V ⊕ V.

b) The map
χg : LGr(H)× LGr(H) → LGr(V ⊕ V)

is rational.

c) For g being in a general position, χg(Q, T ) ∈ Sp(V ,Qp) a.s. on LGr(H)×
LGr(H).

A precise description of the subset of K \ G/K, where the last property
holds, is given below in Subsection 5.9.

There is a more exotic statement in the same spirit.

Proposition 4.10 For all g for almost all (Q, T ) ∈ LGr(H) × LGr(H), the
condition (u+ ⊕ u−)⊕ (v+ ⊕ v−) ∈ χg(Q, T ) can be written as an equation

(
v+

u−

)
= Z(Q, T )

(
v−

u+

)

there Z(Q, T ) is a symmetric matrix.
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Figure 2: A reference to Subsection 4.6. A product of two simplices and addi-
tional arrows.

Point out that this can done for all g.

Proposition 4.11 Let

g1, g2 ∈ K \G/K = O(∞,Zp) \G/O(∞,Zp)

be contained in the same double coset

O(∞,Qp) \G/O(∞,Qp),

then the restrictions of χg1
and χg2

to LGr(H)× LGr(H) coincide.

4.6. Extension of characteristic function to buildings. Next, con-
sider two almost self-dual submodules Q, T and apply to them the definition of
characteristic function Q, T .

Proposition 4.12 If Q, T are almost self-dual modules, then χg(Q, T ) is al-
most self-dual.

Now we construct an oriented graph ∆(H ⋊⋉ H). Vertices are ordered pairs
(Q, T ) of almost self-dual submodules in H. We draw an arrow from (Q, T ) to
(Q′, T ′) if Q ⊃ Q′, T ⊃ T ′.

Consider the product of simplicial complexes Bd(H)×Bd(H). It is polyhe-
dral complex, whose cells are products of simplices. Two vertices (of this com-
plex) (Q, T ) and (Q′, T ′) are connected by an arrow if Q ⊃ Q′ and T = T ′ or
Q = Q′ and T ⊃ T ′. However, our rule from the previous paragraph produces
more arrows, this provides a simplicial partition of each product of simplices
(see, e.g., [44], Section 3.B). Finally, we get a 2k-dimensional simplicial complex
Bd(H ⋊⋉ H) (it also is a subcomplex of the complex Bd(H⊕H)).

Let Φ, Ψ be two oriented graphs, assume that number of edges connecting
any pair of vertices is 6 1. We say that a map σ : Vert(Φ) → Vert(Ψ) is a
morphism of graphs if for any arrow a→ b in Φ we have σ(a) = σ(b) or there is
an arrow σ(a) → σ(b).
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Figure 3: A reference to Subsection 4.6. A morphism of oriented graphs

Theorem 4.13 A characteristic function χg is a morphism of oriented graphs

∆(H ⋊⋉ H) → ∆(V ⊕ V). (4.5)

4.7. Continuity.

Theorem 4.14 Let Qj, Q, Tj, T be almost self-dual modules. If Qj ր Q,
Tj ր T , then

χg(Qj , Tj) ր χg(Q, T ).

Notice that characteristic function can be discontinuous with respect to the
Hausdorff convergence. Moreover, the restriction of χg to LGr(H) × LGr(H)
can be discontinuous in the topology of Grassmannian.

4.8. Involution.

Proposition 4.15 If u⊕ v ∈ χg(Q, T ), then v ⊕ u ∈ χg∗(T,Q).

4.9. Additional symmetry. For a nonzero λ ∈ Q×
p = Qp, we define an

operator M(λ) in H given by

(
λ 0
0 λ−1

)
, by the same symbol we denote the

operator

(
λ 0
0 λ−1

)
in the space V .

Theorem 4.16

χg

(
M(λ)Q,M(λ)T

)
=M(λ−1)χg(Q, T )M(λ).

4.10. Remark. Another semigroup of double cosets. Consider the

group G̃ = Sp(2α+2k∞,Qp) of symplectic matrices

(
a b
c d

)
of size (α+k∞)+

(α + k∞), G̃ ⊃ G. Consider its subgroup G = GL(α + k∞,Qp) consisting of

matrices

(
g 0
0 gt−1

)
, consider the same K = O(∞,Zp) ⊂ GL(α + k∞,Qp).

Consider the semigroup of double cosets K \ G̃/K, the multiplication is deter-
mined as in Theorem 2.1.
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We define characteristic function χg̃(Q, T ) in the same way, in formula (4.2)

instead the matrix

(
g 0
0 gt−1

)
we write a symplectic matrix

(
a b
c d

)
∈ Sp(2α+

2k∞,Qp).

Theorem 4.17 All the statements of this section hold for χg̃(Q, T ) except The-
orem 4.16 and Proposition 4.1017.

5 Proofs

5.1. Independence of representatives. To shorten expressions, set k = 2.
Let h ∈ O(m,Zp), let I(h) be given by (2.2). Then characteristic function of
gI(h) is determined by




v+

y+1
y+2
v−

y−1
y−2




=




a b1h b2h
c1 d11h d12h
c2 d21h d22h

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0



a b1h b2h
c1 d11h d12h
c2 d21h d22h




t−1







u+

x+1
x+2
u−

x−1
x−2



.

or 


v+

y+1
y+2
v−

y−1
y−2




=




a b1 b2
c1 d11 d12
c2 d21 d22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0



a b1 b2
c1 d11 d12
c2 d21 d22




t−1







u+

hx+1
hx+2
u−

hx−1
hx−2



.

We introduce new variables x̃±1 = hx±1 , x̃
±
2 = hx±2 and come to the equation for

χg. Notice that modules Q⊗Zp
Zm
p are invariant with respect to O(m,Zp).

5.2. Proof of Proposition 4.11. Proof is the same, we only take h ∈
O(m,Qp). If Q ⊂ H is a subspace, then Q ⊗ ℓm = Q ⊗ Qm

p is a subspace, it is
O(m,Qp)-invariant.

5.3. Reformulation of definition. The equation (4.2) determines a linear
subspace in (

V ⊕ (H⊗ ℓm)
)
⊕
(
V ⊕ (H⊗ ℓm)

)
.

We regard it as a linear relation

ξ :
(
(H⊗ ℓm)⊕ (H⊗ ℓm)

)
⇒

(
V ⊕ V

)
.

Then χg is the image of the submodule

ηQ,T = (Q ⊗Zp
Zm
p )⊕ (T ⊗Zp

Zm
p )

17the system (4.4) also must be modified.
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under ξ.

5.4. Immediate corollaries. The relation ξ is a morphism of the category
Naz. A module ηQ,T is self-dual. By Theorem 3.7 the module ξ ηQ,T is self-dual.
Theorem 4.5 is proved.

The same argument implies Theorem 4.9.a and Proposition 4.12.

Also Lemma 4.3 became obvious.

5.5. Continuity (Theorem 4.14). We refer to Theorem 3.11.

5.6. Products. Proof of Theorem 4.6. To shorten notation, set k = 2.
Let

g =





a b1 b2
c1 d11 d12
c2 d21 d22



 ∈ GL(α+2l,Qp), h =





a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22



 ∈ GL(α+2m,Qp).

Let v ⊕ w ∈ χg(Q, T ), u ⊕ v ∈ χh(Q, T ). Then there are x ∈ Q ⊗Zp
Zm
p ,

y ∈ T ⊗Zp
Zm
p such that

















v+

y+

1

y+

2

v−

y−

1

y−

2

















=

















a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0





a′ b′1 b′2
c′1 d′11 d′12
c′2 d′21 d′22





t−1

































u+

x+

1

x+

2

u−

x−

1

x−

2

















. (5.1)

Also there are X ∈ Q ⊗Zp
Zl
p, Y ∈ T ⊗Zp

Zl
p such that

















w+

Y +

1

Y +

2

w−

Y −

1

Y −

2

















=

















a b1 b2
c1 d11 d12
c2 d21 d22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0





a b1 b2
c1 d11 d12
c2 d21 d22





t−1

































v+

X+

1

X+

2

v−

X−

1

X−

2

















. (5.2)

We write (5.2) as


































w+

Y +

1

y+
1

Y +

2

y+
2

w−

Y −

1

y−
1

Y −

2

y−
2



































=

































a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1











t−1



































































v+

X+

1

y+
1

X+

2

y+
2

v−

X−

1

y+
1

X−

2

y−
2



































.
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Applying (5.1) we come to


































w+

Y +

1

y+
1

Y +

2

y+
2

w−

Y −

1

y−
1

Y −

2

y−
2



































=

































a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a b1 0 b2 0
c1 d11 0 d12 0
0 0 1 0 0
c2 d21 0 d22 0
0 0 0 0 1











t−1

































×

×

































a′ 0 b′
1

0 b′
2

0 1 0 0 0
c′1 0 d′11 0 d′12
0 0 0 1 0
c′
2

0 d′
21

0 d′
22

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0











a′ 0 b′1 0 b′2
0 1 0 0 0
c′1 0 d′11 0 d′12
0 0 0 1 0
c′
2

0 d′
21

0 d′
22











t−1



































































u+

X+

1

x+

1

X+

2

x+

2

u−

X−

1

x+

1

X−

2

x−

2



































Now
X ⊕ x ∈ Q ⊗ (Zl

p ⊕ Zm
p ), Y ⊕ y ∈ T ⊗ (Zl

p ⊕ Zm
p ),

and we get u⊕ w ∈ χg⋆h(Q, T ). Thus,

χg⋆h(Q, T ) ⊃ χg(Q, T )χh(Q, T ).

But both sides are self-dual, therefore they coincide.

5.7. Morphisms of graphs (Theorem 4.13). Consider the map

LMod(H)× LMod(H) → LMod(H⊗ ℓm)× LMod(H⊗ ℓm)

given by (Q, T ) 7→ (Q⊗Zp
Zm
p , T ⊗Zp

Zm
p ).

Lemma 5.1 This map is a morphism of graphs

∆(H ⋊⋉ H) → ∆
(
(H⊗ ℓm) ⋊⋉ (H⊗ ℓm)

)
.

This statement is obvious.

Next, we have an embedding of complexes

Bd
(
(H⊗ ℓm) ⋊⋉ (H⊗ ℓm)

)
→ Bd

(
(H⊗ ℓm)⊕ (H⊗ ℓm)

)
.

On the other hand, the linear relation ξ is a morphism of the category Naz.
Therefore it induces a morphism of graphs ∆

(
(H⊗ℓm)⊕(H⊗ℓm)

)
→ ∆(V⊕V),

see [9], Proposition 10.7.6.

5.8. Proof of Proposition 4.7. We have

indef ξ = Λ(g).
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Therefore Λ(g) ⊂ ξ ηQ,T ⊂ Λ(g)⊥. This is the statement a) of Proposition 4.7.
Also, if R is a relation V ⇒W , Y ⊂ V is a lattice, then (RY )↓ = (indef R)↓.

This implies b).

5.9. Values on the distinguished boundary. Now let Q, T be La-
grangian subspaces in H.

Proof of Proposition 4.10. Decompose H = H+ ⊕ H− = Qα
p ⊕ Qα

p .
A Lagrangian subspace Q ⊂ H of general position is a graph of an operator
H+ → H−, and matrix of this operator is symmetric (see, e.g., [9], Theorem
3.1.4). To shorten notation, set k = 2. The equation (4.2) can be written in the
form




v+

y+1
y+2
u−

t11x
+
1 + t12x

+
2

t12x
+
1 + t22x

+
2







a b1 b2 0 0 0
c1 d11 d12 0 0 0
c2 d21 d22 0 0 0
0 0 0 at ct1 ct2
0 0 0 bt1 dt11 dt21
0 0 0 bt2 dt12 dt22







u+

x+1
x+2
v−

q11y
+
1 + q12y

+
2

q12y
+
1 + q22y

+
2



, (5.3)

We denote

κ :=

(
q11 q12
q12 q22

)
, τ :=

(
t11 t12
t12 t22

)

and write (5.3) as

v+ = au+ + bx+ (5.4)

y+ = cu+ + dx+ (5.5)

u− = atv− + ctκy+ (5.6)

τx+ = btv− + dtκy+. (5.7)

We regard lines (5.5),(5.7) as a system of equations for x+, y+. The matrix of
the system is

Ω(κ, τ) =

(
−d 1
τ −dtκ

)
.

Evidently, the polynomial detΩ(κ, τ) is not zero. Indeed, fix κ and take
τ = p−N · 1. If N is sufficiently large, then the determinant is 6= 0. Thus,
outside the hypersurface

detΩ(κ, τ) = 0

we can express x+ and y+ as functions of u+, v−. After substitution of x+, y+

to (5.4),(5.6), we get a dependence of u−, v+ in u+, v−. �

This also proves Theorem 4.9.b (rationality of characteristic function).

Proof Theorem 4.9.c. Denote

(
a b
c d

)−1

=

(
A B
C D

)
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and write the equation (4.2) in the form




v+

y+1
y+2
v−

q11y
+
1 + q12y

+
2

q12y
+
1 + q22y

+
2







a b1 b2 0 0 0
c1 d11 d12 0 0 0
c2 d21 d22 0 0 0
0 0 0 At Ct

1 Ct
2

0 0 0 Bt
1 Dt

11 Dt
21

0 0 0 Bt
2 Dt

12 Dt
22







u+

x+1
x+2
u−

t11x
+
1 + t12x

+
2

t12x
+
1 + t22x

+
2



,

or

v+ = au+ + bx+ (5.8)

y+ = cu+ + dx+ (5.9)

v− = Atu− + Ctτx+ (5.10)

y+ = Btu− +Dtτx+. (5.11)

We consider lines (5.9), (5.11) as equations for y+, x+. The matrix of the
system is

Ξ(κ, τ) =

(
1 −d
κ −Dtτ

)
.

Its determinant equals

det Ξ(κ, τ) = det(−Dtτ + κd).

If it is nonzero, we get a linear operator u 7→ v. We come to the following
statement:

Proposition 5.2 If there exists a pair of symmetric matrices κ, τ such that
det(−Dtτ + κd) 6= 0, then χg(Q, T ) ∈ Sp(V ,Qp) a.s. on LGr(H)× LGr(H).

5.10. Involution. Proof of Proposition 4.15. We write the defining
relation for χg−1 ,




v+

y+

v−

y−


 =




(
a b
c d

)−1
0 0
0 0

0 0
0 0

(
a b
c d

)t







u+

x+

u−

x−


 ,

represent this in the form




u+

x+

u−

x−


 =




a b
c d

0 0
0 0

0 0
0 0

(
a b
c d

)t−1







v+

y+

v−

y−




and come to desired statement.
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5.11. Proof of Theorem 4.16. We write (4.2) as









u+

x+

u−

x−









=









λ−1

λ−1

λ
λ

















a b
c d

0 0
0 0

0 0
0 0

(

a b
c d

)t−1

















λ
λ

λ−1

λ−1

















v+

y+

v−

y−









or 


λu+

λx+

λ−1u−

λ−1x−


 =




a b
c d

0 0
0 0

0 0
0 0

(
a b
c d

)t−1







λv+

λy+

λ−1v−

λ−1y−




5.12. Another reformulation of the definition of characteristic
functions. Consider the space W = V ⊕ (H ⊗ ℓm). For any self-dual sub-
module Q ⊂ H, consider the linear relation Λ : V ⇒W defined by

ΛQ = 1V ⊕ (Q ⊗ Zm
p ) ⊂ (V ⊕ V)⊕ (Q⊗ ℓm).

Then χg is a product of linear relations

χg(Q, T ) = (ΛT )
�

(
g 0
0 gt−1

)
ΛQ.

6 Multiplicativity theorem

Theorem 2.2 (multiplicativity theorem) formulated above is a representative of
wide class of theorems, their proofs are standard, below we refer to proofs [8],
Chapter VIII.

6.1. Corners of orthogonal matrices.

Lemma 6.1 Let A be a m×m matrix with elements ∈ Zp. Then there exists

N and a matrix

(
A B
C D

)
∈ O(m+N,Zp).

Proof. Denote by Bm the set of all possible m ×m left upper corners of
matrices g ∈ O(∞,Zp).

1) The set Bm is closed with respect to matrix products. Indeed, let

(
A B
C D

)
∈ O(m+N,Zp),

(
A′ B′

C′ D′

)
∈ O(m+N ′,Zp).

Then


A B 0
C D 0
0 0 1






A′ 0 B′

0 1 0
C′ 0 D′


 =



AA′ . . . . . .
. . . . . . . . .
. . . . . . . . .


 ∈ O(m+N +N ′,Zp).

2) If A ∈ Bm, A′ ∈ Bn, then

(
A 0
0 A′

)
∈ Bm+n.
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3) It is more-or-less clear that for any z ∈ Zp we have

(
z
)
∈ B1,

(
1 z
0 1

)
,

(
1 0
z 1

)
∈ B2.

4) Bm contains matrices of permutations.

Now we can produce any matrix with integer elements. �

6.2. Admissible representations. Denote by Km the subgroup in K

consisting of matrices of the form

(
1m 0
0 ∗

)
.

Let τ be a unitary representation ofK in a Hilbert spaceH . Denote byH(m)
the subspace of Km-fixed vectors. Denote by P (m) the operator of orthogonal
projection to H(m). We say, that τ is admissible if ∪mH(m) is dense in H .

We say, that a representation of G is K-admissible if its restriction to K is
admissible.

6.3. Continuation of representations. Denote by B∞ the semigroup of
all infinite matrices A such that:

a) aij ∈ Zp;

b) for each i the sequence aij tends to 0 as j → ∞; for each j the sequence
aij tends to 0 as i→ ∞.

We say that a sequence of matrices A(j) ∈ B∞ weakly converges to A if we

have convergence of each matrix element, a
(j)
kl → akl.

Denote by O(∞,Zp) the group of all orthogonal matrices ∈ B∞.

Lemma 6.2 The group O(∞,Zp) is dense in O(∞,Zp) and in B∞.

Proof. Let S ∈ B∞. Consider its left upper corner of size m×m. Consider
gm ∈ O(∞,Zp) having the same left upper corner. Then gm weakly converges
to S, �

Theorem 6.3 a) Let τ be a unitary representation of K = O(∞,Zp). The
following conditions are equivalent:

— τ is admissible;

— τ admits a weakly continuous extension to the group O(∞,Zp);

— τ admits a weakly continuous extension to a representation τ̃ of the semi-
group B∞ such that τ̃ (At) = τ̃(A)∗, ‖τ̃(A)‖ 6 1 for all A.

b) For an admissible representation τ ,

P (m) = τ̃

(
1m 0
0 0

)
.

This is a statement in the spirit of [24]. We omit a proof, since it is a
one-to-one repetition of proof of [8], Theorem VIII.1.4 about symmetric groups
(admissibility implies semigroup continuation), the only new detail is Lemma
6.1). Admissibility follows from continuity by [8], Proposition VIII.1.3.
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Corollary 6.4 Denote

Θ
(m)
N =




1m 0 0 0
0 0 1N 0
0 1N 0 0
0 0 0 1∞


 .

The projector P (m) is a weak limit of the sequence

P (m) = lim
N→∞

τ(Θ
(m)
N ). (6.1)

Proof. The sequence Θ
(m)
N ∈ O(∞,Zp) weakly converges to the matrix(

1m 0
0 0

)
∈ B∞. We refer to the statement b) of the theorem. �

6.4. Proof of Theorem 2.2. We keep the notation of Subsection 2.3. Let
v ∈ HK, g ∈ Gj = GL(α + km,Qp), let q ∈ Kj. Then

ρ(q)ρ(g)v = ρ(g)ρ(q)h = ρ(g)h,

i.e., v ∈ H(j). Thus the subspace ∪jH(j) is G-invariant. Its closure is an

admissible representation of G. In
(
∪jH(j)

)⊥
Theorem 2.2 holds by a trivial

reason (the space of fixed vectors K is zero).
Thus, without loss of generality we can assume that ρ is admissible.
Now let g, h ∈ G, let g, h ∈ K \G/K be the corresponding double cosets.

Let P = P (0) be the projector to K-fixed vectors. Applying Corollary 6.4, we
obtain

ρ(g)ρ(h) = Pρ(g)Pρ(h) = lim
N→∞

Pρ(g)ρ(I(Θ
(0)
N ))ρ(h) = lim

N→∞
Pρ(gI(ΘN)h),

here J : K → G is the embedding (2.2). By the definition (Θ
(0)
N is ΘN from

Subsection 2.3), we get ρ(g ⋆ h).

6.5. Variation of construction. Train. We can define multiplication of
double cosets

Kp \G/Kq × Kq \G/Kr → Kp \G/Kr.

In the definition of product of double cosets (Subsection 2.2), we simply change

ΘN by Θ
(q)
N . An explicit formula of the product is the same (2.4). Thus we get

a category (train T (G,K) of the pair (G,K)).
Next, for any unitary representation ρ of the group G, a double coset g ∈

Kp \G/Kq determines an operator ρ(g) : H(q) → H(p) by the formula

ρ(g) := P (q)ρ(g), g ∈ g.

For any
g ∈ Kp \G/Kq h ∈ Kq \G/Kr,
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the following identity holds

ρ(g)ρ(h) = ρ(g ⋆ h),

i.e., we get a representation of the category T (G,K). Also,

ρ(g∗) = ρ(g)∗, ‖ρ(g)‖ 6 1. (6.2)

Also it can be shown that

Theorem 6.5 This construction is a bijection between the set of K-admissible
unitary representations of G and the set of representations of the category
T (G,K) satisfying (6.2).

We omit a proof, since it is the same as in [16]. �

Also the construction of characteristic functions and their properties survive
for double cosets Kp \G/Kq.

7 Representations of the group G

7.1. Existence of representations. Let



a b1 . . . bk
c1 d11 . . . d1k
...

...
. . .

...
ck dk1 . . . dkk


 ∈ GL(α + k∞,Qp).

Consider embedding GL(α+ k∞,Qp) → Sp(2(α+ k∞),Qp) given by

ι : g 7→

(
g 0
0 gt−1

)
.

For any

r =



r11 . . . r1 2n

...
. . .

...
r2n 1 . . . r2n 2n


 ∈ Sp(2k,Qp)

consider the matrix σ(r) = 12α ⊕ (r ⊗ 1∞),

σ(r) :=




1α 0 . . . 0 0
0 r11 · 1∞ . . . 0 r1k · 1∞
...

...
. . .

...
...

0 0 . . . 1α 0
0 r11 · 1∞ . . . 0 r1k · 1∞




This matrix is not contained in Sp(2(α+k∞),Qp), because it is not finitary.
However, the map

q 7→ σ(r−1) q σ(r) (7.1)
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is an outer automorphism of Sp(2(α+ k∞),Qp). Emphasize that this automor-
phism fixes the subgroup K = O(∞,Zp).

We consider the representation ρ(r) of GL(α+k∞,Qp) given by the formula

ρr(g) = We
(
σ(r−1)ι(g)σ(r)

)
,

where We(·) is the Weil representation, see Subsection 3.16.
Recall that the Weil representation is projective.

Lemma 7.1 The representation ρr is equivalent to a linear representation, i.e.,
there is a function (a trivializer) γ : G → C× such that γ(g)ρr(g) is a linear
representation.

Proof. First, the restriction of the Weil representation of Sp(2n,Qp) to
GL(n,Qp) is linear, see (3.8). Therefore, restricting the Weil representation
to each finite-dimensional group Gj = GL(α + kj,Qp) we get a representa-
tion equivalent to a linear representation (for finite-dimensional groups the
automorphism (7.1) is inner). Denote by γj(g) the trivializer for Gj . Ratio
γ(g)j/γ(g)j+1 of two trivializers is a character Gj → C×. All characters of
Gj → C× has the form ϕ(det h), where ϕ is a character Q× → C×. Correcting
γj+1(g) 7→ γj+1(g)ψ(det g), we can assume that γj+1(g) = γj(g) on Gj .

In this way we choose a trivializer γ on the whole group G. Restriction of
γ to O(∞,Zp) must be a character on O(∞,Zp) → C×. The only non-trivial
character is det(u) = ±1. We change the trivializer γ(g) to det(g)γ(g). �

Lemma 7.2 In the model of Subsection 3.16, the subspace L2(Eα+k∞)K of K-
fixed vectors of ρr coincides with the space of functions of the form

f(z1, . . . , zα)I(zα+1)I(zα+2) . . .

Proof. Without loss of generality, we can set α = 0. We regard Ek∞ as
the space of ∞ × k matrices Z = {zij} with elements in Qp (all but a finite
number of matrix elements are in Zp). The group K = O(∞,Zp) acts by left
multiplications

We(u)f(Z) = f(Zu).

We must show that
∏

ij I(zij) is a unique O(∞,Zp)-invariant function in

L2(Ek∞). Equivalently, Zk∞
p is a unique invariant subset of finite positive mea-

sure.
The group O(∞,Zp) contains the group S(∞) of finitely supported permu-

tations of the set N. According zero-one law (see, e.g., [45], §4.1), the action of
S(∞) on the set Zk∞

p ⊂ Ek∞ is ergodic. Let Ω ⊂ Ek∞ be an invariant set. Let

ξ ∈ Ek∞ \ Zk∞
p . Assume that the measure of the set Ω ∩ (ξ +Zk∞

p ) is non-zero,

say ν0. Since Ω is S(∞)-invariant, for any s ∈ S(∞), the set Ω ∩ (ξs + Zk∞
p )

has the same measure ν0. However there is a countable number of disjoint sets
of the form ξs+ Zk∞

p , therefore the measure of Ω is infinite. �

42



Corollary 7.3 Let α = 0. Then the representation ρr contains a unique irre-
ducible K-spherical representation of G.

Proof. We take the G-cyclic span of the unique K-fixed vector. �

Next, consider the subgroup GL(1,Qp) ⊂ Sp(2k,Qp) consisting of matrices(
λ · 1k 0
0 λ−1 · 1k

)
, where λ ∈ Q×

p .

Lemma 7.4 If r, r′ ∈ Sp(2k,Qp) are contained in the same double coset

GL(1,Qp) \ Sp(2k,Qp)/Sp(2k,Zp),

then ρr ≃ ρr′ .

Proof. First, if q ∈ GL(1,Qp), then the automorphism (7.1) fixes the
subgroup GL(α+ k∞,Qp).

Second, if t ∈ Sp(2k,Zp), then σ(t) is contained in the group Sp of automor-
phisms of the infinite object of the Nazarov category. Therefore the operator
We(σ(t)) is well-defined, it intertwines ρr and ρrt. �

7.2. Relation of characteristic functions and representations. By
Lemma 7.2, we can identify the space of K-fixed vectors of ρr and the space of
the Weil representation of Sp(2α,Qp).

Theorem 7.5 The representation of the semigroup K \ G/K in the space of
K-fixed vectors of ρr is given by the formula

ρr(g) = s ·We
(
χg(rZ

2k
p , rZ2k

p )
)
, s ∈ C×.

Proof. We use the notation and statements of Subsection 3.16. Let V and
H be the same as in Section 4. Let Y = V2k∞, W = V ⊕ Y . The operator of
projection H(V ⊕ Y ) to H(V ⊕ Y )K ≃ H(V ) is We(θVW ). Therefore

ρ(g) = s′ ·We(θVW )We(σ(r−1)ι(g)σ(r))We(θVW )

as an operator L2(Eα+k∞)K → L2(Eα+k∞)K. The operator

We(λVW ) : L2(Qα
p ) → L2(Eα+k∞)

is an operator of isometric embedding, the image is H(V ⊕ V2k∞)K. Therefore
we can write ρ(g) as

ρ(g) = s
′′

·We(λVW )∗We(θVW )We(σ(r−1)ι(g)σ(r))We(θVW )We(λVW ) =

= s
′′′

·We(λVW )∗We(σ(r−1)ι(g)σ(r))We(λVW ) =

= s
′′′′

·We
[
(λVW )∗σ(r−1)ι(g)σ(r)λVW

]
. (7.2)

Next, σ(r)λVW : V ⇒ V ⊕ Y is a direct sum of 1V ⊂ V ⊕ V and the lattice in Y
given by

σ(r)Y (O) = σ(r)(H(O) ⊗O∞) = (rH(O))⊗O∞).
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We apply Subsection 5.12 for the expression in square brackets in (7.2).

7.3. A more general construction. Consider the embedding

ιl : GL(α+ k∞,Qp) → Sp(2lα+ 2lk∞,Qp)

given by

g 7→




g . . . 0 0 . . . 0
...

. . .
...

...
. . .

...
0 . . . g 0 . . . 0
0 . . . 0 gt−1 . . . 0
...

. . .
...

...
. . .

...
0 . . . 0 0 . . . gt−1




.

This is a 2l × 2l block matrix, each block of this matrix has size (α + k∞) ×
(α+ k∞).

Next, for a matrix r ∈ Sp(2kl,Qp) we take

σ(r) := 12αl ⊕ (r ⊗ 1∞)

and consider the representation of GL(α+ k∞,Qp) given by

ρr(g) = We(σ(r)−1ιl(g)σ(r)).

Set α = 0. As above, each representation ρr of G = GL(k∞,Qp) contains a
unique K-spherical subrepresentation.

Conjecture 7.6 Any K-spherical representation of GL(k∞,Qp) is a subrepre-
sentation in ϕ(det(g)) ρr(g), where ϕ = ϕr : Q×

p → C× is a character. Repre-
sentations ρr are parametrized by the set

⋃

l

GL(l,Qp) \ Sp(2kl,Qp)/Sp(2kl,Zp).
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