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Abstract

We investigate further alebro-geometric properties of commutative rings of partial differ-
ential operators continuing our research started in previous articles. In particular, we start
to explore the most evident examples and also certain known examples of algebraically inte-
grable quantum completely integrable systems from the point of view of a recent generaliza-
tion of Sato’s theory which belongs to the second author. We give a complete characterisation
of the spectral data for a class of ”trivial” rings and strengthen geometric properties known
earlier for a class of known examples. We also define a kind of a restriction map from the
moduli space of coherent sheaves with fixed Hilbert polynomial on a surface to analogous
moduli space on a divisor (both the surface and divisor are part of the spectral data). We
give several explicit examples of spectral data and corresponding rings of commuting (com-
pleted) operators, producing as a by-product interesting examples of surfaces that are not
isomorphic to spectral surfaces of any (maximal) commutative ring of PDOs of rank one. At
last, we prove that any commutative ring of PDOs, whose normalisation is isomorphic to the
ring of polynomials k[u,t], is a Darboux transformation of a ring of operators with constant
coefficients.

1 Introduction

1.1

In this paper we continue the study of algebro-geometric properties of commutative algebras of
partial differential operators (PDO for short) in two variables started in [23]. Everywhere in this
paper we assume that & is a field of characteristic zero.

Recall that one of very complicated questions appearing in the theory of algebraically in-
tegrable systems is: how to find explicit examples of certain commutative rings of PDOs or
how to classify them (see [23], Introduction] for an extensive history). This question can also be
reformulated in the following way. In [5] the quantum analogue of the classical definition of an
integrable Hamiltonian system was defined. By a quantum completely integrable system (QCIS)
on an algebraic variety X the authors understand a pair (A, ), where A is an irreducible n -
dimensional affine algebraic variety, and 6 : Oy, — D(X) is an embedding of algebras (here the
algebra D(X) of differential operators on X is the quantum analogue of the Poisson algebra
OT*X)).

By definition, a QCIS S = (A, ) is said to be algebraically integrable if it is dominated by
another QCIS S" with rk(S’) =1 (see loc. cit.), where the rank of QCIS is the dimension of
the space of formal solutions of the system

0(9) = g\, g€ Oy

near a generic point of X . In [5] these definitions were also generalized to the case of integrable
systems on a formal polydisc. Thus, in this case X is Spec(k[[z1,x2,...,2z,]]) and the symbols
Ox,k(X),D(X) denote respectively k[[z1,...,z]], k((z1,...,2y)), Ox[01,...,0,], where
0; = 0/0z; . In this situation for n = 1 even the classification of all algebraically integrable
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commutative subalgebras B = 6(A) C D(X) in terms of the spectral data is known since the
work of Krichever [20], [19]. In [5] the criterion for algebraic integrability of QCIS’s is given in
terms of the corresponding Galois groups.

1.2

In this paper we continue to explore geometric properties of commutative rings of PDOs in
D = k[[z1, x2]][01, 2] started in [23] (the restriction n = 2 seems to be basically not essential,
but in general case one needs to do some work to generalize a number of statements from our
previous papers). Recall that even in this case there is still no classification of algebraically
integrable (in the above sense) commutative subalgebras in terms of spectral data, though there
is a classification of subalgebras in a completed ring of differential operators (see [39], cf. [23]
Introduction]) in terms of Parshin’s modified geometric data (which include algebraic projective
surface, an ample Q-Cartier divisor, a point regular on this divisor and on the surface, a
torsion free sheaf on the surface and some extra trivialisation data). Moreover, up to now only
a few examples of such algebras are known. Probably the first nontrivial (in certain sense, see
discussion below) examples appeared in [§], [9], [I0]. The examples were connected with the
quantum (deformed) Calogero-Moser systems (cf. [30]). Later the ideas of these constructions
were developed in a series of papers (see e.g. [13], [14], [TI1]) in order to construct more examples
(for review see e.g. [7] and references therein; cf. also [5], [3], [4]). Let’s also mention that the
idea to construct a free BA-module (the module consisting of eigenfunctions of the ring of PDO)
was developed later by various authors (see e.g. [29], [25], [7]) to produce explicit examples of
commutative matrix rings of PDO.

In [39], [23] several properties of the above mentioned geometric data were investigated.
In particular, all algebraically integrable commutative rings of PDOs correspond to rank one
geometric data with X Cohen-Macaulay, C rational and C? =1, F torsion free of rank one
and Cohen-Macaulay along C'. In this paper we strengthen the last property: namely, we show
that any commutative subalgebra of PDOs (satisfying as in [23] certain mild conditions) leads
to a sheaf F on X which is Cohen-Macaulay (theorem [BT]).

Cohen-Macaulay rank one torsion free sheaves appearing as sheaves from geometric data
classifying commutative subalgebras of (completed) operators with fixed spectral surface can be
parametrized by a moduli space which is an open subscheme of the projective scheme parametris-
ing semistable sheaves with fixed Hilbert polynomial (see remark 2.15]). We introduce in this
paper a kind of restriction map ¢ from this moduli space to the moduli space of coherent torsion
free rank one sheaves on the divisor C' (see section 2.4] remark [ZT5]) and formulate a conjecture
that this morphism is surjective (remark [Z10]). It is important to study this moduli space in or-
der to find new examples of algebraically integrable systems or to classify commutative algebras
of PDOs. We hope to return to this question in future works.

This moduli space can be thought of as another analogue of the Jacobian of the curve in
the context of the classical KP theory. Recall that in the work [32] Parshin offered to consider
a multi-variable analogue of the KP-hierarchy which, being modified, is related to algebraic
surfaces and torsion free sheaves on such surfaces as well as to a wider class of geometric data
consisting of ribbons and torsion free sheaves on them if the number of variables is equal to two
(see [37], 22, Introduction]). In the work [22] we described the geometric structure of the Picard
scheme of a ribbon. This scheme has a nice group structure and can be thought of as an analogue
of the Jacobian of a curve in the context of the classical KP theory. In particular, generalized
KP flows are defined on such schemes (flows defined by the multi-variable analogue of the KP-
hierarchy). The disadvantage of the Picard scheme of a ribbon is its infinite-dimensionality. The
moduli space we have mentioned above is finite dimensional. The generalized KP flows are also
defined on it. It is not difficult to show that it can be embedded into the Picard scheme of a
ribbon.



Investigating already existing examples of commutative algebras mentioned above we prove
a theorem (B.3]) about algebraically integrable commutative rings of PDOs whose affine spectral
surface is rational. Such rings appeared, for example, in papers [13], [14], [L1], [4]. In the examples
from these papers the normalisation of the affine spectral surface is known to be A?. In [4] the
authors gave a method of producing new non-trivial examples of commutative rings of PDOs
using the Darboux transformation. We show in theorem that all rings with this property
of the affine spectral surface are Darboux transformations of rings of operators with constant
coefficients. As a by-product we also give a geometric characterisation of certain completion of
A2 (see theorem B2): a completion of A2, whose divisor at infinity is an ample irreducible
Q-Cartier divisor with self-intersection index 1, is P?. This result could be probably proved
by classical methods of algebraic geometry using old results of Morrow ([26]) or relatively new
results of Kojima, Takahashi ([18]) (we would like to thank M.Gizatoulline and T.Bandman for
pointing out these works), but we used instead only some ideas from our theory of ribbons and
(or alternately) the construction of the generalized Krichever-Parshin map.

It is reasonable to ask if there are examples of algebraically integrable commutative rings of
PDOs whose spectral surface is isomorphic to a given one. We give here two counterexamples
(3.1 A1), both for affine and projective spectral surfaces.

Another natural question is: how to characterise those commutative algebras which consist
of operators not depending on x1 or x5 . We call these algebras "trivial”, because one can easily
construct such algebras taking commutative subalgebras of one-variable operators and adding
a derivation with respect to another variable. Surprisingly the geometry of spectral data is not
so trivial for these algebras. We give a description (theorem ET]) of such algebras in terms of
geometric data.

At last, we give examples (A1l 2] of surfaces for which it is possible to describe all sheaves
from the moduli space mentioned above and calculate all corresponding rings of commuting
(completed) operators. All these rings are ”trivial”.

1.3

The paper is organized as follows:

In section 2] we recall basic definition of geometric data from [39] and give also an alternative
definition of these data.

In section we recall the construction of Schur pairs associated with geometric data.

In section 2.4] we introduce the restriction map ¢ and prove several technical lemmas.

In section we recall basic definitions and properties of the ring of completed operators,
recall the classification theorem from [39] and prove additional technical lemmas needed in the
rest of the paper.

In section 6] we recall and prove some properties of Schur pairs corresponding to geometric
data with sheaves whose Hilbert polynomial is fixed. For understanding the map (¢ the most
important properties are formulated in proposition We also formulate a conjecture about
the map (.

In section 3 we prove theorems about CM-property, completion of plane and Darboux trans-
formations mentioned above.

In section 4 we give the description of "trivial” algebras and examples.
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2 Preliminaries

In this work we usually use standard notation from algebraic geometry used e.g. in the book
[16]. We also use some notation from our previous papers [39], [23].

On the two-dimensional local field k((u))((t)) we will consider the following discrete valua-
tion of rank two v : k((u))((t))" = Z & Z:

v(f) = (m,1) it f=tu"fo, where fo € k[[u]]” + th((w))[[t]].

(Here Kk[[u]]* means the set of invertible elements in the ring k[[u]] .) We also define the discrete
valuation of rank one

l/t(f) = l

2.1 Geometric data

In this subsection we recall definitions from [39], [23]; we slightly change some definitions from
loc.cit. to simplify the exposition and to avoid explaining certain technical details.

For any n-dimensional irreducible projective variety X over the field &k, and any Cartier
divisors Ej,...,E, € Div(X) on X one defines the intersection index (Ey-...-E,) € Z on
X (see, e.g., [15], [24, ch. 1.1].) Let (E™) = (E -...- E) be the self-intersection index of a
Cartier divisor E € Div(X) on X, and F be a coherent sheaf on X . There is the asymptotic
Riemann-Roch theorem (see survey in [24] ch. 1.1.D]) which says that the Euler characteristic
X(X, F ®0, Ox(mE)) is a polynomial of degree <n in m, with

X(X, F ®o, Ox(mE)) =1k(F) - (]ZL) -m" 4+ O(m™ 1), (1)

where rk is the rank of the sheaf.

There is the cycle map: Z : Div(X) — WDiv(X) from the Cartier divisors to the Weil
divisors on X (see [23, Appendix A]). If Ey, E» € Div(X) such that Z(E,) = Z(FE2) , then the
self-intersection indices (ET) = (E%) on X (see [23] §2.4]).

The cycle map Z restricted to the semigroup of effective Cartier divisors Div'(X) is an
injective map to the semigroup of effective Weil divisors WDiv™(X) not contained in the sin-
gular locus. We will say that an effective Weil divisor C' on X , not contained in the singular
locus, is a Q -Cartier divisor on X if IC' € Im (Z |p;,+(x)) for some integer I >0.

Definition 2.1. Let C be a Q-Cartier divisor on X . We define the self-intersection index
(C™) on X as
(") = (G, (2)
where G = [C' is a Cartier divisor for some integer [ > 0.
We note that if [ > 0 is minimal such that [C is a Cartier divisor, then for any other I’ > 0
with the property that I'C' is a Cartier divisor we have that [ | I’. Therefore, using the property

(E}) = m™(EY) for any Ey = mEsy, Ey € Div(X), m € Z we obtain that formula ([2)) does
not depend on the choice of appropriate [.



Definition 2.2. We call (X,C,P, F,7,¢) a geometric data of rank r if it consists of the
following data (where we fix the ring k[[u,t]] for all data):

1. X is a reduced irreducible projective algebraic surface defined over a field k;
2. C is a reduced irreducible ample Q-Cartier divisor on X ;

3. Pe(C isaclosed k-point, which is regular on C' and on X ;

7:Op —> k[[u, ]]

is a local k-algebra homomorphism satisfying the following property. If f is a local
equation of the curve C' at P, then w(f)k[[u,t]] = t"k[[u,t]] and the induced map
7 : Ocp = Op/(f) — K[[u]] = E[[u,t]]/(t) is an isomorphism. (The definition of 7
does not depend on the choice of appropriate f. Besides, from this definition it follows
that 7 is an embedding, k[[u,]] is a free Op-module of rank r with respect to 7.
Moreover for any element ¢ from the maximal ideal Mp of Op such that elements g
and f generate Mp we obtain that v(n(f)) = (0,r), v(w(g)) = (1,0).)

5. F is a torsion free quasi-coherent sheaf on X .

6. ¢ : Fp — K[[u,t]] is an Op-module embedding subject to the following condition for
any n > 0 (we note that by item Ml of this definition, k[[u,t]] is an Op-module with
respect to 7). By item [ there is the minimal natural number d such that C’ = dC
is a very ample divisor on X . Let =, : H(X, F(nC")) < F(nC')p be an embedding
(which is an embedding, since F(nC’) is a torsion free quasi-coherent sheaf on X ). Let
€n : F(nC")p — Fp be the natural Op-module isomorphism given by multiplication
to an element f"? € Op, where f € Op is chosen as in item @l Let 7, : k[[u,t]] —
E[[u,t]]/(u,t)"¥+1 be the natural ring epimorphism. We demand that the map

Th 0 ¢ o€y 0, : HY(X, F(nC")) — k[[u, t]]/(u, t)"¥+1

is an isomorphism. (These conditions on the map ¢ do not depend on the choice of the
appropriate element f.)

Remark 2.1. The rank of the sheaf is greater or equal to the rank of the data, cf. [23, Rem.3.3].
If the sheaf F is coherent of rank one, then 7 is an isomorphism and ¢ induces the isomorphism
¢ Fp ~ k[[u,t]], see [39, Rem. 3.7]. Note that any two trivialisations ¢1,ds : Fp ~ k[[u, t]]
differ by multiplication on an element a € k[[u, t]]* . In some cases the conditions on the map ¢
in last item of the definition can be rewritten in purely algebro-geometrical terms, see proposition
below.

2.1.1 Alternative definition of geometric data

In this section we would like to give an alternative definition of the geometric data. This definition
seems to be more ”geometric”.

Let’s introduce the following notation: T' = Speck|[u,t]] D Ty = Speck[[u]] (defined by
t=0), O=Spec(k) €Ty, R=El[u,t]], M= (u,t) CR.

Definition 2.3. A geometric data is a triple (X,j,F), where X is an integral projective

surface,
j: T =X

is a dominant k-morphism and F C j,Op is a quasicoherent subsheaf subject to the following
conditions:



1. u(I1)=CC X isa curvd] (automatically integral), and P = j(O) is a point neither in
the singular locus of C' nor of X .

2. Ty xx {P} ={0}, Txx C =rTy (the fiber product is a subscheme of T" and 7} is an
effective Cartier divisor on 7'), r is called the rank of (X,j,F).

3. There exists an effective, very ample Cartier divisor ¢’ C X with cycle Z(C’) = dC and
for all n > 0 the induced map (from the embedding F C j.Or)

H(X, F(nC")) = H*(X, j.0p(nC")) = H(T,Op(ndrTy)) = Rt™"" — Rt [ pradrttyndr

is an isomorphism.
We left to the reader the proof of equivalence of these two definitions.

Remark 2.2. With the data above we have the following properties:
1) C is a Q-Cartier divisor and C? = (C'-C)/d = (C")?/d?.
2) H°(X,F)~k (by @) hence we have a canonical embedding Ox C F.
3) F is a torsion free sheaf on X , and if F is coherent then

rk(F)(C?) = r2.
Indeed, for F as above we have

W(F(nC") = (ndr + 1)2(ndr + 2)'

If F is coherent of rank m then F ~ O% (~ means that the highest terms of the Hilbert
polynomials of sheaves coincide). For any coherent sheaf G on X the function x(G(nC")) is
a polynomial of degree dim(G) =1 with positive leading coefficient (€ Z/I!), so x(F(nC")) ~
mx(Ox(nC’)) and n?d*r?/2 = m(C")?/2.

Proposition 2.1. If the embedding Ox p — Fp is an isomorphism, then r = 1. Furthemore,
Ox = F if and only if X =P? and C is a straight line in P?.

Proof. If C is defined by f =0 in a small neighbourhood of P (by ([I) Ox, p is regular, and
also Oc,p = Ox p/fOxp), then fR=1"R (by @) and F(nC’)p = (Fp)ma . By @) we have

Rt—ndr _ HO(X, ]:(’I’LC/)) D Mndr—l—lt—ndr,

so Rt—Mdr = Fpt—nd p pMrdrtly=ndr and if Fp = Ox p we get R = k[[u, t"]] + M@+ (for the
proof we may assume that wu,t” are generators of M x,p = Mx, p@ x,p ). This is only possible
for = 1.1f Ox = F we get a canonical basis for each H°(X,Ox(nC’)) of the form wv;;,
0<i<i+j<nd,and v;jvpm = Vithjim in H'(X\C,Ox) =1 A (v;; corresponds to u't’
under the isomorphism in ([@)). Thus A = k[z,y] with z =v19, y =ve1 (then v;; = 2y’ ).
Since
X = Proj @nZOHO(Xa Ox (TLC/)) - Proj(@nZOAnSn)a

where Ap, =3, o4 kxz'y? | we get (by substituting @ = a'/z, y=19'/z, s = 2%)
Bn>0Ans" = E[(2) (Y 25]i + § + k = m),

i.e. X =P? with the d-th Veronese embedding. Since C? =1, we get C is a straight line. O

!'Notation: for a morphism of noetherian schemes f: X — Y and a closed subscheme Z C X, f.Z CY is
the closed subscheme defined by the ideal ker(Oy f—> f+Ox — f.O0z)



2.2 Associated Schur pairs
Given a geometric data (X,C, P, F, 7, ¢) of rank r we define a pair of subspaces
W, A C K[[ull((2)),
where A is a filtered subalgebra of k[[u]]((¢)) and W a filtered module over it, as follows (cf.

[39, Def.3.15]):

Let f% be alocal generator of the ideal Ox(—C")p, where C’ = dC' is a very ample Cartier
divisor (cf. definition 22 item B)). Then v(7(f9)) = (0,7¢) in the ring k[[u,t]] and therefore
7(f4~1 € k[[u]]((t)) . So, we have natural embeddings for any n > 0

H(X, F(nC") = F(nC")p = f~"Fp) — k[ul]((1),

where the last embedding is the embedding f~"¢Fp 2, K [u, t]]—k[[u]]((t)) (cf. definition
22| item [6]). Hence we have the embedding

X1+ HY(X\C,F) = lim H°(X, F(nC")) < k[[u])((t)).
n>0
We define W & x1(H°(X\C,F)) . Analogously the embedding H°(X\C,0) — k[[u]]((t)) is

defined (and we’ll denote it also by xi ). We define A e x1(HY(X\C,0)).
As it follows from this construction,

A CE[[W(() < El[u)(®), 3)

where t' = 7(f), u' = 7(g) (see also definition 22 item H]). Thus, on A there is a filtration
A, induced by the filtration ¢'~"k[[«/]][[t']] on the space k[[u']]((¥')):

An = A0t R[] = A0t k[ [ul] [[2] (4)

We have X ~ Proj(A), where A= @ A,s" (see also [39, lemma 3.3, lemma3.6, th.3.3]). The
n=0

similar filtration is defined on the space W C k[[u]]((¢)) :
Wa =W Ot E[[ul][[] (5)

And the sheaf F ~ Proj(W)lg, where W = @ W,s" . Note that we have W4 ~ H(X, F(nC"))
n=0

by definition 2.2 item 6 and by construction of the map x; .

2.2.1 Associated Schur pairs for alternative geometric data

The same pair of subspaces (W, A) can be defined also in terms of the alternative definition.
Namely, to each geometric datum (X, j,F) we associate a pair (A, W) with A C R[t7!] =
E[[u]]((t)), W C R[t™'], where A = H°(X\C,Ox) ~ liﬂn>0 H(X,0x(nC")) embedded via

§*  HY(X,0x(nC") = H*(X, j,0p(nC")) = H(X, j,Op(ndrT))) = R -t~

and analogously for F C j,Or. A is a filtered subring with the filtration A4, = ANR-t~"",
and W is a filtered A-module with the filtration W,, = ANR-¢t~™".

This pair (A, W) determines the geometric data (X, j, F), where X and F are defined as
above, and the morphisms j : T — X, F C j,Or come from the embeddings A C k[[u]]((¢)) ,
W C E[[u]]((?)) -

2Here and later in the article we use the non-standard notation Proj for the quasi-coherent sheaf associated

with a graded module. If M is a filtered module, then we use the notation M = @ M;s' for the analog of the
i=0

Rees module, as well as for filtered rings.



2.3 Category of geometric data

In this section we recall definition of a category Q of geometric data from [39] and give its
alternative definition. Formally we need this section only to recall the content of theorem
We write it for the sake of completeness.

Definition 2.4. We define a category Q of geometric data as follows:

1. The set of objects is defined by

onQ - | o
reN

where Q, denotes the set of geometric data of rank r.

2. A morphism
(5#@ : [(X17C17P17~F177T17¢1)] — [(X27027P27~F277T27¢2)]

of two objects consists of a morphism [ : X; — Xo of surfaces and a homomorphism
Y Fo — B F1 of sheaves on X5 such that:

(a) Blo, : C1 — Cy is a morphism of curves and 371(X3\Ca) = X1\C1 ;

(b)
B(P1) = P,.

(c) There exists a continuous k -algebra isomorphism h : k[[u, t]] — k[[u,t]] (in a natural
linear topology, where the base of neighbourhoods of zero is generated by the powers
of the maximal ideal) such that

h(u) =u mod (u?)+(t), h(t)=t mod (ut)+ (t?),

and the following commutative diagram holds:

HO(X 7 g
2\02,02) —— H (Xl\Cl,Ol)
I I ()

where h denotes the natural extension of the map h to a k-algebra k[[u]]((t))
automorphism.

(d) There is a k[[u,t]] -module isomorphism & : k[[u, t]] ~ h.(k[[u,t]]) (which is given just
by multiplication of a single invertible element & € k[[u,t]]* ) such that the following
commutative diagram holds:

HY(X2\C2, F) SN HO(X5\Cy, By F1) = HY(X1\C1, F1)

o J

M)  — A G[al((0) = k().



2.3.1 Alternative definition of the category

We can give an alternative definition of the category as follows. The set of objects is defined as
before, i.e. an object from Q, denotes the geometric datum (X, j, F) of rank r.

We define a morphism of two objects (Xi,j1,F1) — (X2,72,F2) as a pair (5,v) with
5 : X1 — X5 a dominant morphism of surfaces, ¢ : Fo — B«JF1 a morphism of quasicoherent
sheaves subject to the following conditions:

L (87'C%)rea = Ch
2. there exists h € Auty(T) with h(Th) =T,

h*(u) =u mod (u?)+(t), Rh*(t)=t mod (ut)+ (t?),

such that the diagram
T L) X1

[l
T L) X2
is commutative;

3. there exists £ € Autp, (Or) (i.e. an element from R*) such that the diagram

(Fa)p, —— (F)p,

is commutative.

The composition with a second morphism (3,1)’) is given by (3',4")o(8,%) = (88, (8")«(¥)¢') .

Remark 2.3. It is interesting to note that, in general, a morphism of pairs § : (X1,C1) —
(X3, C3) induces an embedding HY(X3\Csq, Ox,) — H°(X1\C1,Ox,) if and only if (371C%),cq =
Cy.

The ”if” part is obvious, let’s show the ”only if” part. Without loss of generality let d > 0
be an integer such that C{ = dC; and C} = dCs are effective very ample Cartier divisors.
Then *C] =mCy+ E, where E =0 or E is an effective Cartier divisor.

If A= HX;\C1,0x,), ¢ = H°(X;\C1,0x,(—FE)) (so, q is an invertible ideal), then
Spec(A) = X;\C1, Spec(N,g™™) = X1\B87HCs). If B = H%(X3\Cs,Ox,), then we have
AC N ™, Npg™™ is finite over B . If B C A, then from the exact triple

0—A/B— (Npg")/B— (Npg ")/JA—0
it follows that (N,q~"™) must be a finite A-module, a contradiction if E # 0.

Remark 2.4. The condition in item 2 on h*(u), h*(¢) is important to establish a categorical
equivalence with the category of Schur pairs from [39]. The reason is that automorphisms of
the form h*(u) = ciu, h*(t) = cot applied to a Schur pair will lead (after application of the
quasi-inverse functor from [39, Th.3.3]), to a datum with another sheaf F (i.e. to a datum not
isomorphic to the original one). This effect was known already in the classical KP theory as a
scaling transform (cf. [36, §4,57]).



2.4 The restriction map (

To construct the map ¢ mentioned in Introduction we need to extend the constructions from
previous section to a wider set of sheaves. Let X,C,C’, P and Ox p C R (for the embedding
7 or for the morphism j: T — X ) be as before. Let also A C k[[u]]((t)) = R[t™'] be as before.
We start with the following remark.

Remark 2.5. Let’s note that we can construct the analogous spaces W,, W for any torsion
free sheaf F (not only for sheaves from data) endowed with a Op-module embedding Fp —
E[[u,t]] . The most important example of such sheaf with an embedding is a coherent torsion
free rank one Cohen-Macaulay sheaf 7 on X (or, more generally, F is locally free of rank one
at P), where we additionally assume that the rank of data » =1 (i.e. the embedding 7w gives
an isomorphism Ox p ~ R). In this case the stalk Fp is a free Op-module. Let ¢’ : Fp ~ Op
be a trivialisation; we can define the embedding ¢ by composing a trivialization ¢’ with the
isomorphism 7. Note that, if we choose another trivialisation of such sheaf F, then the new
space W will differ from the old one by multiplication on an element a € k[[u,t]]* and the
space A will not change. Note also that the property W,q ~ H°(X, F(nC’)) might not be true
in general.

Further we will use the following notation. If W C R[t™1] is an A-module, we get a filtration
W, =t"""RNW (compatible with the filtration on A) and a fortiori graded A-modules

A() (A = Api), W) (W(i)e = Wi)

and quasicoherent sheaves on X :

Bi = Proj(A(i)), F; = Proj(W(i))
with B; C Bi—l—l , Fi C ]:i—l—l . Note that

L. Big~ Ox(iC"), and if W comes from a geometric datum, then F;4 ~ F(iC") . In general,
Fna = Fo(dC'") , because by [I2] prop.2.4.7] we have F,,q = Proj(W (nd)) ~ Proj(W (@ (n))
and Proj(W @ (n)) ~ Proj(W @) (n) ~ Fo(nC") for any n.

2. If F is a quasicoherent sheaf with an embedding F C 7,07 (equivalently Fp C R)
inducing W = H°(X\C,F) C R[t™!], then F(iC") C Fig.

3. If F is a torsion free quasicoherent sheaf and if Fp is a free module of rank one, we can
find an embedding Fp C R (by a choice of a generator Fp ~ Ox p C R). The resulting
sheaves F; do not depend on the choice of the generator, up to isomorphisms compatible
with the embeddings F C F; C Fit1 -

4. From (3)), @) it easily follows that the sheaves
Bi/Bi-1 = Proj(ED Airn/Aitn-1),  Fi/Fie1 = Proj(@D Wisn/Wisn-1)
n=0 n=0

are torsion free coherent sheaves on C' ~ Proj(By/ B_l)ﬁ.

3We mean here and below the pull-backs of the factor-sheaves on C'. Note that that these pull-backs are
canonically isomorphic to the sheaves Proj(@D, , Aitn/Aitn-1), Proj(B,_ s Witn/Witn-1) , where the graded
modules are considered as Bo/B-1 -modules. Indeed, for any f € Ag and any graded A-module M we have
(M ®z (Bo/B-1))5) ~ My ®A(f) (Bo/B-1)(), where from the pull-backs of the sheaves B;/Bi—1, Fi/Fi-1
are isomorphic to the sheaves Proj(M), Proj(N) on C, where M = (@2, Aitn/Aitn-1) @z (Bo/B-1),
N = (B, Witn/Witn-1) ®; (Bo/B-1) . But the modules M, N are isomorphic to the Bo/B_1-modules
(Do Aitn/Aitn-1), (BploWitn/Witn-1).
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Definition 2.5. For any torsion free sheaf F endowed with a Op-module embedding Fp —
E[[u,t]] we define a map (a kind of a "restriction” map):

CZ‘FF—)]:(]/]:_l (6)
from the set of torsion free sheaves on X to the set of torsion free sheaves on C'.

Remark 2.6. For sheaves F satisfying the property W4~ H°(X, F(nC")) for all n>> 0 we
have F ~ Fy by [33] Lemma 9] and [16l Ch.2, ex. 5.9]. If F is a torsion free sheaf of rank
one locally free at P, then by remark for another choice of trivialisation at P there are
isomorphisms Fj, ~ F, for any k. So, in this case definition of ¢ don’t depend on trivialisation.
In fact, in this case it depends only on F (see remark 2.8 below).

On the other hand, for any torsion free sheaf F and any m > 0 we also have the exact

sequences
0— F®0y Ox(—mC’) = F = F ®0, (Ox/Ox(—mC")) — 0.

Thus the pull-back of the sheaf Fy on the scheme (C,i~1(Ox/Ox(—mC"))) (where i:C — X
denotes the embedding) is isomorphic to the pull-back of the sheaf Fo/F_ 4.

Further we will denote the pull-back of a sheaf F on the scheme (C,i~'(Ox/Ox(—mC")))
as F ’mC’ .

Note that the scheme (C,i~!'(Ox/Ox(—m(C"))) is an irreducible scheme since C' is irre-
ducible. Hence the nilradical of the ring A/A(—md) is prime. From (@), @) it again follows
that Ass(W /W (—md)) coincides with this nilradical. Therefore, the restriction Fo|mcr is pure
of dimension one (cf. [I7, p.3]), because any restriction of a non-zero section a € Fo|mcr(U)
(where U is any open subset of C') to a smaller open subset is not zero. Thus, for any torsion
free sheaf of rank one locally free at P the sheaf F|,,cv C Fo|mcr is pure of dimension one.

Notably, we have the following property for any torsion free sheaf F such that its restriction
Flmer on the scheme (C,i~1(Ox/Ox(—mC"))) is pure of dimension one:

Lemma 2.1. Let F be a torsion free sheaf on X endowed with a Op -module embedding
Fp — k[[u,t]] satisfying the following condition: if w € Wy, then w € f~"4(Fp). Assume
that its restriction F|y,cr is pure of dimension one for all m > 0.

Then we have H(X,F(nC")) =~ Wyq for all n>0.

Remark 2.7. The condition on a Op-module embedding from lemma is satisfied for example
for all rank one torsion free sheaves locally free at P (see remark [2Z]) and for coherent sheaves
of rank r from the geometric data (where r coincides with the rank of the data), because Op
is a regular factorial ring. Other examples see in theorem [B.11

Proof. By definition of the space W we have
Wha = {w € W|f"w € k[[u]][[t]} = {w € Wy (f*w) > 0}.

We also have by definition x1(H°(X, F(nC")) C Wyy. Let w € Wyq, w # 0. Let’s show that
w € x1(HY(X, F(nC")) . We have

w € x1(HY(X, F(mC"))
for some m . Since F is a torsion free sheaf and C’ is a Cartier divisor, we have embeddings
1 (HY (X, F(kC")) C xa(H*(X, F(nC"))

for all k < n. Suppose that m > n. Assume the converse: w ¢ xi1(H°(X,F(nC")). Let
be H(X, F(mC")) be the preimage of w: w = x1(b) .
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There is a neighbourhood U(P) of the point P, where the ample Cartier divisor C’
is defined by the element f¢. Since w € W,q4, we have w € f~"4(Fp), thus blupy €
L(U(P),F(nC’)) and blyp) # 0 (since F is torsion free). Now we have the following commu-
tative diagram:

b s HO(C, F(mC")|(m—nyc")
il I ;
0= T(U(P),F(nC")) = LUP),F(mC")) = HYUP)NC,F(mC")|m-nycr)

where the vertical arrows are embeddings. Indeed, the right vertical arrow is an embedding since
F(mC")|gm-nycr is pure of dimension one by assumption.
But a(b) =0, a contradiction. Thus, b € H°(X, F(nC")). O

By [23 Cor. 3.1] all sheaves F of rank one appearing in the geometric data from definition
22 are Cohen-Macaulay along C'. As it easily follows from definition [2.2] (item 6) all such sheaves
fulfil the property Ox C F, P ¢ Supp(F/Ox).

Lemma 2.2. Let F be a torsion free rank one sheaf on X . Assume that F is Cohen-Macaulay
along C'. o
Then for some trivialisation ¢ : Fp ~ k[[u,t]] (see remark [23)

Wnd = HO(X7 ]:(ncl))
for all n >0, or, equivalently, Fo >~ F .

Proof. The proof follows immediately from remarks 2.6] 2.7 and lemma 211 since F is locally
free at P. O

Remark 2.8. If F is a torsion free sheaf of rank one locally free at P, then ((F) ~ i*(F),
where 7 is the same as in remark Indeed, F ~ Fy by lemma 2], remarks 2.6 271 By
the arguments from footnote 3 i*(Fy) ~ Proj(W ® z (AJA(—1))). It is easy to see that the
(A/A(-1)) -modules (W @ ; (A/A(~1))) and (W/W(~1)®; (A/A(~1))) are isomorphic. But
again by the arguments from footnote 3 i*(Fy/F_1) ~ Proj(W /W (-1) ® 3 (AJA(-1))).

Corollary 2.1. For any k >0 we have H°(X, Fi(nC")) =~ Wyarr for all n>0.

The proof is obvious.

2.5 Commutative rings of operators

In this paper we will work mainly with commutative k-algebras of PDOs B C D =
E[[z1, x2]][01,02] that satisfy the following condition:

B contains the operators P, (Q with constant principal symbols such that

the intersection of the characteristic divisors of P, @ is empty. (7)

Recall that the symbol o(P) of an operator P € D is called constant if o(P) € k[{1,&2].
The characteristic divisor is given by the divisor of zeros of o(P) in Pz_l . It is unchanged by
a k-linear change of coordinates z1,...,z, . Recall also that any operator ) from the ring B
satisfying condition () has constant principal symbol (see e.g. [23, Lemma 2.1]) and all such
rings are finitely generated k-algebras of Krull dimension 2 (see e.g. [23, Th.2.1]).

In the work [39] was shown that such algebras are a part of a wider set of commutative k-
algebras B’ C D, and all algebras from this set can be classified in terms of geometric data from
subsection 2.1l To explain what is going on we need to recall several definitions and statements

from [39].
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Definition 2.6. We define the order function on the ring k[[x1,x2]] by the rule
ordys(a) = sup{nla € (z1,22)"}.

Definition 2.7. ([39, Sect.2.1.5]) Define

Dy ={a= Zaq(‘)‘f lag € k[[z1,22]] and for any N € N there exists n € N such that
920

ordas(an,) > N for any m > n}. (8)

Define

D=Di[d), Ey=Di((85).
Definition 2.8. ([39, Def.2.12])

We say that an operator P € D has order ordr(P) = (k1) if P = zlszopsﬁg, where
ps € Dy, p € K[[x1,22]][01] = D1, and ord(p;) = k (here ord is the usual order in the ring of
differential operators D; ). In this situation we say that the operator P is monic if the highest
coefficient of p; is 1.

We say that an operator Q = 3 ¢;;0:9} € E, satisfies the condition Ay(m) if ordp(qij) >
i+7—m forall (i,7). '

An operator P € D, P =Y p;;0i9 with ordp(P) = (k,l) satisfies the condition A if it
satisfies Aq1(k+1).

Definition 2.9. ([39, Def.2.18]) The ring B C D of commuting operators is called quasi elliptic
if it contains two monic operators P, such that ordp(P) = (0,k) and ordp(Q) = (1,1) for
some k,l € 7.

The ring B is called 1-quasi elliptic if P,Q satisfy the condition A; .

Definition 2.10. ([39, Def.3.4]) The commutative 1-quasi elliptic rings By, By C D are said
to be equivalent if there is an invertible operator S € Dy of the form S = f + .57, where
ST e D0y, f€ k[[wl,xg]]* , such that B; = SBQS_l .

Definition 2.11. ([39, Def.3.1]) The subspace W C k[z;']((22)) is called 1-space, if there
exists a basis w; in W such that w; satisfy the condition A; for all i (we identify here and
below the ring k[z;]((22)) with the ring k[01]((05 1)) via 21 ¢ 07!, 20 ¢ 05 ")

Using the identification 21 <+ 0 Loz o 0y 1 we can extend the definition of the order
function ordr from definition 2Z:8 on the field V' = k((21))((22)) . Using the anti-lexicographical
order on the group Z @ Z we define the lowest term LT'(a) of any series a from V to be the
monomial of a with the lowest order.

Definition 2.12. ([38]) The support of a k-subspace W from the space V is the k-subspace
Supp(W) in the space V generated by LT (a) for all a € W.

Definition 2.13. ([39] Def.3.2]) We say that a pair of subspaces (A,W), where AW C
E[z7'((22)) and A is a k-algebra with unity such that W - A C W, is a 1-Schur pair if A
and W are 1-spaces and Supp(W) = k[z; ", 2, ]

We say that 1-Schur pair is a 1-quasi elliptic Schur pair if A is a 1-quasi elliptic ring.

Consider the ring E, = 1?1((82_1)) . Tt has a natural action on the space k[z;']((22)) via
the isomorphism E. /(x1,29)Ey =~ k[2;']((22)) which endows this space with the structure of
a right E -module.
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Definition 2.14. ([39, Def.3.3]) An operator 7' € E, is said to be admissible if it is an invertible
operator of order zero such that TO,T~', TOT~" € k[01]((05")). The set of all admissible
operators is denoted by Adm .

An operator T € . is said to be 1-admissible if it is admissible and satisfies the condition
A; (the definition of the condition A; for operators from E‘+ is literally the same as for
operators from D ). The set of all 1-admissible operators is denoted by Adm; .

We say that two 1-Schur pairs (A, W) and (A’,W’') are equivalent if A’ = T~'AT and
W'=WT, where T is an admissible operator.

Remark 2.9. In [39] a more general growth condition A,, o > 1, was introduced. In the
present paper we use only the condition A;. This is the only case when the classification
theorems from [39] (see also below) work.

Let’s recall here one more notion from [39].

Consider the set in F,

M={PeckEy 3 meZ, s that P satisfies A;(m)}.

It is an associative subring with unity (see [39, Corol.2.2]).
We note that II D D. Recall that by [39, lemma 2.10, lemma 2.11] it follows that any
1-quasi elliptic ring B belongs to II.

Remark 2.10. By [39, Lemma 2.11] any two operators with constant coefficients Li, Ly of the
form

o0 o0

L1:81+qu82_q, L2:82+Zuq82_q
q=1 q=1

and satisfying condition A; can be obtained as L; = S710,5, Ly = S719,S, where S =

1+ S~ € K[z, 2]][01]((95 1)) is an invertible zeroth order 1-admissible operator.
On the other hand, as one can easily check, for the operator

To = coexp(c1z201) exp(caxy + c3x1) € Dy, (9)
where cg,c1,co,c3 € k, we have
Ty 0Ty =01 +c3, Ty 0aTy =+ 101+ cics + co.
So, any 1-admissible operator can be written in the form 7T = ST .

Theorem 2.1. ([39, Th.3.2]) There is a one to one correspondence between the classes of
equivalent 1 -quasi elliptic Schur pairs (A, W) with Supp(W) = <21_Zz2_f li,j > 0) and the

classes of equivalent 1 -quasi elliptic rings of commuting operators B C D .

The proof of the theorem is constructive; the spaces A and W are obtained as follows:
A=S8"'BS, W = k[zl_l,zgl]S, where S is a monic operator of special type satisfying the
condition A; . It is defined by a pair of normalized operators from B (see [39] §2.3.4] or definition
below) using the analogue of Schur’s theorem in dimension one (see [39, Lemma 2.11]).

Definition 2.15. We say that commuting monic operators P,Q € E, with ordr(P) = (0,k) ,
ordr(Q) = (1,1) are almost normalized if

k—1 -1
P=05+ > p05 Q=010+ > q:05,

where ps,qs € Dy .
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We say that P, are normalized if

k—2 -1
P=05+ > po5 Q=0+ Y q.5,
§=—00 S§=—00

where ps,qs € Dy .

Recall that by [39, lemma 2.10] any two commuting operators of order (0,%) and (1,l) can
be normalized by conjugating with an invertible operator S &€ Dy . The space A from theorem
2.Tldepends only on the choice of the pair of normalized operators from B, and don’t depend on
the choice of the operators S from [39, Lemma 2.11]. If one chooses another pair of normalized
operators from B, then the resulting Schur pair from theorem 2] will be equivalent to the
first one. The following lemma clarifies the structure of elements in a ring that has a pair of
normalized operators and in any equivalent ring.

Lemma 2.3. i) If the ring B C 1IN D of commuting operators contains a pair of normalized
operators P,Q with ordp(P) = (0,k), ordr(Q) = (1,1) (k > 0), then all operators in B
have constant highest coefficients, i.e. if L =) 105, then ly is an operator with constant
coefficients. In particular, In € Dy (i.e. it has a finite order).

Moreover, any operator P’ € B with ordp(P’') = (0,m) has the form

m
P = Zp’sag, where pl, € k and pl,_| has constant coefficients
s=0

and any operator Q' € B with ordr(Q') = (1,n) has the form

n
Q = Zqé@i, where ¢}, = 101+ ¢o, co,c1 € k.
s=0

i) If B = S™'BS, S ¢ Dy is an equivalent 1 -quasi elliptic ring containing a pair of
normalized operators P',Q" with ordr(P") = (0,k"), ordp(Q’) = (1,I') (k' > 0), then S has
the form

S = ¢cpexp(c1220) exp(caxa + c3x1) € Dy,

where ¢y, c1,c2,c3 €k (cf. remark[210).

Proof. 1) We have

0= [P, P'] = kOy(pl,) 05T 4 kDo (pl,_1) 05T 2+ [pr_2, Pl ]OST™ 2+ terms of lower degree.
(10)
Hence 0y(p,) =0, ie. p,, don’t depend on z5. Then we have

0=1[Q, P =[01,0,]05 " +[01, plr_ 105 ™ 1t qr_1, Pl ]O5T™ 1+ terms of lower degree. (11)

Hence [01,p),] = 0 and therefore p/, must be an operator with constant coefficients. So,
P, € D1 (and clearly these arguments work for any operator from B ). Since ordp(P’') = (0,m),
pl, is a constant, and since ordp(Q’) = (1,n), ¢, must be a linear polynomial. But then
from () we have [01,p), 4] = 0, i.e. p/,_, don’t depend on z1, and from (I0) we have
Oa(pl,_1) =0, ie. pl _; must be an operator with constant coefficients.

ii) We have P’ = S~'PS, Q' = S~'QS for some operators P, Q € B. Since S is
invertible, we obviously have

S=cek” mod (z1,x2).
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Therefore, since by item i) the highest terms of operators P,(Q are constant-coefficient operators,
we must have ordr(P) = (0,%") and ordr(Q) = (1,1') . From remark ZI0 we know that there
exists an operator Sy of the form exp(czi) such that Sy Y3/Sy = 01 (here Gy is a linear
polynomial with constant coefficients). Then obviously the operator S' = SS; 1 don’t depend
on x1.S0, S=25'8,.

From remark we know that P,Q € II and from item i) we know that pp/,pr—1 are
operators with constant coefficients (and py = 85, ). Thus, S’ has the form

S = exp(F(x2,01)),

where [' is a polynomial in xg,d; . This polynomial is linear iff py/—; is linear. But if it is not
linear, then the operator (S’)™'PS’ will not satisfy the condition A; (as P satisfies A; for
some (k,l)), a contradiction. So, it is linear and we are done. O

Remark 2.11. As this lemma shows, if there is a pair of normalized operators in B, then any
equivalent ring B’ that has a pair of normalized operators is obtained from B by conjugation
with an operator of special form, and this conjugation is equivalent to a linear change of variables

Oy o +coy+b, 01— 01+d (12)

with ¢,b,d € k. The Schur pair corresponding to such a ring B’ will be equivalent to the first
one as well.

Conversely, if one starts from any Schur pair (A, W) in a given equivalence class, then the
ring B can be constructed as B = SAS~!, where S now comes from the analogue of the Sato
theorem (see theorem below). If (A’,W') is an equivalent Schur pair, then A’ = T—'AT,
W' = WT for some 1-admissible operator 7', which can be written (see remark [ZI0]) in the
form T = T'Ty, where Ty has the form @), and 7’ = 1+ T, where T~ € D:[[0;']]05 " .
Then it is easy to see that the corresponding Sato operator for the space W’ from theorem
is S" =Ty 'ST'Ty . So, the corresponding ring B’ = S'A'(S")~' = Ty ' BTy, i.e. it is obtained
from B by the linear change (I2]). It will automatically contain a pair of normalized operators.

To find a pair of normalized operators in a given ring B we need sometimes to replace B
by an equivalent ring (see [39, Lemma 2.10]).

Theorem 2.2. ([39, Th.3.1]) Let W be a k -subspace W C k[z;*]((22)) with Supp(W) = Wy .
Let {w;j,i,5 > 0} be the unique basis in W with the property w;; = zfiz;j +w

i ? where
I

w,; ;€ k27 [[22]]72 - Assume that all elements w;; satisfy the condition Ay .

Then there exists a unique operator S =1+ S~ satisfying Ay, where S~ € Dl[[agl]]agl ,
such that WpS =W .

The Schur pairs from theorem [2.1] one to one correspond to pairs of subspaces in the space
E[[u]]((t)) via an isomorphism

Py : k[zl_l]((ZQ)) NIT ~ E[[u]]((t)) 22+ t, 21_1 s ut T (13)

where k[27']((22)) NTI denotes the k-subspace generated by series satisfying the condition A;
(see [39], Cor.3.3]). We will denote these pairs by the same letters (A, W) . Obviously, W-A C W .

Definition 2.16. ([39], Def.3.5,3.6]) For the ring A C k[[u]]((¢)) define
Nao=GCD{v(a), a€ A suchthat v(a)=(0,%)},
where * means any value of the valuation. Define
Na = GCD{v(a), ac A}.
We'll say that the ring A is strongly admissible if there is an element a € A with v(a) = (1,%)
and Ng=Ngy4.
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Definition 2.17. ([39, Def.3.8]) For 1-quasi elliptic commutative ring B C D we define num-
bers Ng, Np to be equal to the numbers N4, N4, where A is the ring corresponding to B
by theorem 2] (after applying the isomorphism (I3])). We say that B is strongly admissible if
A is strongly admissible.

For a strongly admissible ring B we define the rank of B as

rk(B) = N = Np

Remark 2.12. If the ring B in the definition 217 is a ring of PDO’s, then the numbers Np,
Np and the rank can be defined similarly to definition

Np = GCD{ord(Q), Q € B such that ordp(Q) = (0,%)}.

Define
Np = GCD{ord(Q), Q € B},

where ord means the usual order in the ring D .

Analogously, B is strongly admissible if there is an element @ € B with ordr(Q) = (1, %)
and Np = Np. Its rank rk(B) = Np = Ng.

We would like to emphasize that the rank of the ring B defined as Np = Np is less or equal
to the rank of the sheaf of common eigenfunctions of the operators from B (cf. [23] Rem.2.3],
this notion of rank is often used in various papers). This follows from [23], Prop. 3.3, Prop. 3.2,
Th.2.1].

Below we will write rk(B) to denote the rank in the second sense.

Theorem 2.3. ([39, Th.3.4]) There is a one to one correspondence between the set of classes
of equivalent 1 -quasi elliptic strongly admissible finitely generated rings of operators in D N 11
of rank r and the set of isomorphism classes of geometric data M, of rank r .

If we have aring B C D of commuting PDOs satisfying the property [T then by [39, Lemma
2.6] and by [39] Prop.2.4] (cf. also the beginning of section 3.1 in loc. cit.) there is a linear
change of variables making this ring 1-quasi elliptic strongly admissible. Moreover, as it follows
from the proofs of [39, Lemma 2.6, Prop.2.4], almost all linear changes of variables preserve the
property of the ring to be 1-quasi elliptic strongly admissible. In particular, for almost all linear
changes we have the following extra property of the operators P, from definition

k +1
o(P) =& +> heeleh™ e #0; o(Q) =&+ cfleT T i #£0. (14)
q=1 q=2

Remark 2.13. From the construction in [39, Sec.3] explaining the correspondence between
geometric data and 1 -quasi elliptic strongly admissible rings it follows that the ring after such
linear change of variables corresponds to the data with the same surface and divisor, but with
probably other sheaf, other point P and trivializations m, ¢ (cf. also remark 24 and [23] Th.2.1,
Prop.3.3]).

Remark 2.14. If the ring B of PDOs is 1-quasi-elliptic strongly admissible, then, obviously,
there exist two operators P, @ as in definition with £ =1+ 1 = ord(P). In this situation,
examining the arguments from the proof of Lemma 2.10, item 1 in [39], we see that there are
some B € k and f € k[[x1,22]]* such that the operators f~1(P+3Q)f, f~'Qf are normalized
(in the sense of [39, Def. 2.19]). Thus, in the equivalent class of B we can find a ring of PDOs
with a pair of normalized operators.

As the arguments from remark 2.11] show, any Schur pair equivalent to the Schur pair as-
sociated with B leads to a ring B’ obtained from B by the linear change of variables (I2)).
Thus, B’ is also a ring of PDOs!
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There is another nice property of 1-quasi elliptic subrings of partial differential operators
claiming the ”purity” of such rings:

Proposition 2.2. ([39, Prop.3.1]) Let B C D C D be a 1-quasi elliptic ring of commuting
partial differential operators. Then any ring B’ C D of commuting operators such that B’ D B
is a ring of partial differential operators, i.e. B' C D .

2.6 Schur pairs, ribbons and moduli space

We would like to recall that in the classical KP theory there are well known geometric data
classifying the commutative rings of ordinary differential operators. These data consist of a
projective curve over a field k£ plus a line bundle (or a torsion free sheave if the curve is
singular) plus some additional data (a distinguished point p of the curve plus a formal local
parameter at p , and a formal trivialization at p of the sheaf). Also there is a map which
associate to each such data a pair of subspaces (A, W) (”Schur pair”) in the space V = k((2)),
where A 2 k is a stabilizer k-subalgebra of W in V: A-W C W, and W is a point of
the infinite-dimensional Sato grassmannian (see e.g. [28] for details). This map is usually called
as the Krichever map in the literature. In works [34], [33] (see also [3I]) Parshin introduced
an analogue of the Krichever map which associates to each geometric data (which include in
that works a Cohen-Macaulay surface, an ample Cartier divisor, a smooth point and a vector
bundle) a pair of subspaces (A, W) in the two-dimensional local field associated with the flag
(surface, divisor, point) k((w))((t)) (with analogous properties). He showed that this map is
injective on such data. In works [33], [31I] some combinatorial construction was also given. This
construction helps to calculate cohomology groups of vector bundles in terms of these subspaces
and permits to reconstruct the geometric data from the pair (A, W). The difference of this new
Krichever-Parshin map from the Krichever map is that the last map is known to be bijective.

To extend the Krichever-Parshin map and to make it bijective we introduced in the work [21]
new geometric objects called formal punctured ribbons (or simply ribbons for short) and torsion
free coherent sheaves on them, we extended this map on the set of new geometric data which
include these objects and showed the bijection between the set of geometric data and the set of
pairs of subspaces (A, W) (also called generalized Schur pairs) satisfying certain combinatorial
conditions. We also showed that for any given Parshin’s geometric data one can construct a
unique geometric data with a ribbon, and the initial Parshin’s data can be reconstructed from
the new data with help of the combinatorial construction mentioned above. In the work [23] we
extended this construction to the modified Parshin’s data from definition

2.6.1 Properties of the Krichever map in dimension one

First let’s recall some properties of the classical Krichever map for torsion free sheaves of rank
one (see [27], [28] for details; we change slightly some notation from these papers here). In
this case the geometric data is a quintet (C, P, F,u,¢), where C is a projective curve, P is
a smooth point on C', F is a torsion free sheaf of rank one, u is a local parameter at the
point P (in particular, there is an isomorphism 7 : Ocp =~ k[[u]]), and ¢ : Fp =~ k[[u]] is
a trivialisation. Obviously, any two such trivialisations differ by multiplication on an element
a € k[[u]]*. The Schur pair A,W C k((u)) is constructed in analogous way as in section 21k
A is the image of the group H°(C\P,O¢) in the space k((u)) (which is obtained using the
trivialisation 7 ), and W is the image of the group H°(C\ P, F) in the space k((u)) (which is
obtained using the trivialisation ¢ ). If we choose another trivialisation of the sheaf F then the
new space W will differ from the old one by multiplication on the element a € k[[u]]* and the
space A will not change.
In this case we also have the following properties in terms of spaces A, W :

F(nP) ~ Proj(W(n)), (15)
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where W = @ (W,s", W, = W Nnu™ - k[[u]] ;

0 N 1 k()
HY(C, F) W nklu]], H(C,F)x~ Wt k] (16)
Recall that all torsion free rank one sheaves with fixed Euler characteristic can be divided into
the union of orbits of the group Pic®(C). Namely (see [36, Sec.6]) there are maximal torsion
free sheaves, i.e. sheaves not isomorphic to a direct image of a torsion free sheaf on a (partial)
normalisation of the curve C', and not maximal torsion free sheaves, i.e. sheaves isomorphic to
direct images of torsion free sheaves on partial normalisations of C'. If the sheaf is maximal
then the action of the group Pic’(C) is free on it. Thus, every orbit of a torsion free sheaf of
rank one is a torsor over Pic’(C’), where C’ is a partial normalisation of C'. This torsor has
a topology induced by the topology of Pic%(C”).
Further we will need the following fact: if the Euler characteristic of a sheaf F on a projective
curve C is k > 0, then there exists a dense open subset V' in the orbit of this sheaf such that
for each L€V

HYC,L)=0, Rn°(C,L)=k, HYC L(-kP))=0, H°C,L(-kP))=0 (17)

for some point P € C'. This fact can be proved by induction on k as follows. For any torsion
free sheaf F with Euler characteristic k£ > 0, any fixed smooth point (7 and n > 0 we have
HY(C,F(nQ)) =0, h°(C,F(nQ)) = k+n > 0. For any fixed global section a € H°(C, F(nQ))
there is a dense open subset U C C' such that for any P € U the image of an embedding of
a in Oc,p (with help of any trivialisation) is invertible. Then from properties (15 and (I6) it
follows that

R(C,F(nQ — P))=n+k—1, HY(C,F(nQ — P))=0.

Thus, by induction there exists an open subset U’ C C' such that for any P € U’
HY(C,F(nQ — (n+k)P)) =0, H'(C,F(nQ - (n+k)P)) =0,

H'Y(C,F(n(Q - P))) =0, (C,F(n(Q—P))) = k.
The rest of the proof follows from [16, Th.12.8] for the morphism f : Pic’(C) x C — Pic%(C)
and the Poincare sheaf P .
2.6.2 Three properties of the pair (A, W)

Now we would like to recall three properties of the pair (A, W) . First we recall (see, for exam-
ple, [21]) that a k-subspace W in k((u)) is called a Fredholm subspace if

dimy W N E[[u]] < oo and dimy, #Z%[)u]] < 0.

For a k-subspace W in k((u))((t)), for n € Z let

W k((w)[[H]
W(n) = W N1k ((u)[[t]]

be a k-subspace in k((u)) = % .
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2.6.3 The first property

Let the pair (A, W) be the image of the ribbon’s data corresponding to some geometric data of
rank one from definition with F being coherent of rank one (for details see [23, Sec.3.5]).
Recall (see definition [ remark [2.0]) that for such rank 1 torsion free sheaves the map ¢ () was
defined. Then (see the proof of theorem 1 in [21])

A(nd) ~ the image of the quintet (C, P,Oc(nC’),u,id) in k((u)) under the Krichever map,
(18)
where C’ = dC' is the ample Cartier divisor as above (note that O¢(nC’) ~ ((Ox(nC"))), and

W(nd+k) ~ the image of the quintet (C, P, ((Fx(nC")),u,$) under the Krichever map, (19)

where 0 < k < d and ¢ is some trivialization of the sheaf ((Fi(nC”)) at the point P on C
(note that ((Fx(nC")) =~ (Fi/Fr_1)(nC")). Thus, from one-dimensional KP theory (see (IG))
we have

H°(C, (Fy/Fi—1)(nC")) = W(nd + k) 0 k|[u]],
HY(C, (Fi/Fu-1)(nC")) = k((w))/(W (nd + k) + k[[u]]) (20)

2.6.4 The second property
Assume that the pair A, W € k((u))((t)) comes from a geometric data of rank one. Then

HO(X, Ox (nC")) ~ A - % 1 K{[u])(£)) O k() [[1]). (21)
1 A R[)(®) + k(@)E)
HAXOx (nC) = 5 e Rl ((0) + A - 07 1 k((w) ] (22)

A E[[ul) () 4 R ((u) ]

For the proof see remark 3 and lemma 1 from [22] (remark 3 refers for the proof to papers
[31, B3], where C' was assumed to be a Cartier divisor; in general case it is not difficult to
improve the proof from these papers; nevertheless, we will need this property in our paper only
for such cases when C' is known to be Cartier). In particular, if C' is a Cartier divisor, it follows
that

Ox(nC) ~ Ox ., ((Ox(nC)) =~ Oc(nC) (24)

for any n (cf. remark [2.0]).

2.6.5 The third property

If A is Cohen-Macaulay ring then A = A N k[[u]]((¢)), (25)

where A, W are the subspaces in k[[u]]((t)) constructed above starting from the geometric
data. This claim was proved in [23] Remark 3.4]. In the introduction to the loc.cit. the analogous
property for the space W was also announced (though imprecise):

W =W kf[u]]((£)).

We are going to clarify it here.
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Proposition 2.3. Let F be a coherent rank one torsion free sheaf on a projective surface
X defined over an uncountable algebraically closed field k. Assume that there is an ample
irreducible Q -Cartier divisor C C X not contained in the singular locus such that C? = 1.
Let C' = dC be a very ample Cartier divisor. Suppose that the following conditions hold (see
remark 2.3, definition[6]):

(nd+ 1)(nd + 2)
2 Y

X(X, F(nC")) = HO(C,¢(Fi)(—(k+1)Q)) = H'(C,{(Fr)(—(k+1)Q)) =0

for a smooth point Q € C', n>0, where 0 < k <d. Then
i) there exists a point P € C regulqr in C and X such that the conditions from item 6 of
definition [2.2 hold for a trivialisation ¢ : Fp ~ k[[u,t]], i.e. the homomorphisms

HO(X, F(nC")) — k[[u,t]]/(u, t)"d+?

are isomorphisms for all n >0 H
i1) for this trivialisation
W =W N E[[u]]((£);

ii1) for this trivialisation

A R[)(0) + k())

H(X,F) = kanun«wwwma DI (26)
F((w)(9) o

BT = Wkl (@) + k@]~ (27)

iv) the sheaf F is Cohen-Macaulay on X .
Proof. i) For any sheaf Fj, and m > 0 we have the short exact sequences
0 = C(Fr) = C(Fk) ®oc Ox(mC")|c = ((Fr) ®oc (Ox(mC")|c/Oc) — 0,

since Ox(mC")|c is an invertible sheaf. Hence we have H'(C,((F;) ®0. Ox(mC’)|c) =0 for
all m > 0. Since C? =1 (i.e. deg(Ox(C")|c) = d), by the asymptotic Riemann-Roch theorem
we have

X(C(Fr) @0 Ox(mC")|c) = h*(C, {(Fi) ®o, Ox(mC')|c) =md + k + 1. (28)
For each m > 0 by the property (I7) there is an open subset U, in C such that
H(C,((Fr) ®oe Ox(mC')|c @0 Oc(—(md + k + 1)P)) =
HY(C,{(Fk) ®0, Ox(mC')|c ®o, Oc(—(md+k+1)P)) =0 (29)

for any P € U,,. Therefore, since the ground field is uncountable, there exists a point P €
Noo_gUpm regular in C' and X such that these properties hold simultaneously for all m > 0
and 0 < k < d. Since for any n > 0 by lemma 21l we have

Wdit/ Wadsk—1 =~ H* (X, Fy(nC") /H* (X, Fy—1(nC")) — H°(C,{(Fy) ®o. Ox(nC")|c),

4For reader who prefer the alternative definition this item can be reformulated as follows. There exist j :
T — X with j(O) = P € C\(C*™9 U X*™9) and j7'(C) =T (ie. R=k[u,t]] ~ Oxp, R/IR ~ Ocp)
such that for a choice of generator of Fp as Ox, p-module the embedding F < j5.Or (corresponding to
(1" Flo =R®ox p F ~ Fp ) condition Blis satisfied, i.e. the maps H°(X, F(nC")) — R-t "¢ /M™+L .47 are
isomorphisms.
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and x1(HY(X,F(nC"))) C Wpq by definition, we have that for all n > 0

WX, F(nC") = x(F(nC")) = 24 Dd +2)

2
d—1 n—1
D BACL(F) ®o Ox(mC')|e) + B0 (C, {(Fi) @0 Ox (nC)|c).  (30)
k=0 m=0

By ([@28) these inequalities are equalities. Therefore, H(X,F(nC’)) ~ W,y for any n > 0.
Hence F ~ Fy and

HY (X, F(nC")) =~ Wna, Whark/Wadrk—1 ~ H(C,((Fi) @0, Ox(nC")|c) (31)

for all n > 0 by remark[2Z.6land by lemma[21l Together with (29)) this implies that the conditions
from item 6 of definition hold for some trivialisation at the point P .

ii) By ([If) and (I9) we have
H(C,¢(Fr) ®oc Ox (nC")|c) = W(nd + k) N k|[u]).
From this and from (BI]) follows that W =W N E[[u]]((¢)) .
iii) By assumption on the Euler characteristic of the sheaf F and from (BI]) it follows

Y (X, F) —h*(X,F) = 0. From @9) we know that h'(C,{(F;) ®o. Ox(nC’)|c) =0 for any
0<k<d and n > 0. Recall that we have exact sequences

0 — Fi = Frg1 — ((Fry1) = 0

for any 0 < k. So, from the induced long exact cohomological sequences and from (BII) we obtain
HY (X, Fy,) ~ HY(X, Fyy1) forany k > 0. Thus, all these groups are zero, since H(X, Fyynd) =
HY(X, F,(nC")) =0 for all n>>0. Hence H*(X,F) = 0. From item ii) we get

W (k[[u]) (@) + E(u)[[E]]) € W N E[u]](() + W N E((w)][],
where from

W (E[[u]}(®)) + k()]
WA E[[u]}((®) + W E((w)[[H]

=0.
By (@) and (I9) we have
0= H'(C.C(Fy) Bop Ox (ne) = gl

for all £ > 0. Hence
E(()((1) i
W+ k[[u])((¢) + k()]

iv) By [23] Cor.3.1] the sheaf F is Cohen-Macaulay along C'. The same arguments show that
the sheaves Fj are Cohen-Macaulay along C'. Consider the Macaulaysation C'M(F) of the
sheaf F (see [23, Appendix B]). Consider the image W’ = x1 (H*(X\C,CM (F))) in k[[u]]((t)),
where we use the same embedding ¢ of the sheaf F to define x; (cf. section 2.]). Let’s note
that CM (F)|mecr = Flmer is pure of dimension one for any m > 0, since F is Cohen-Macaulay
along C'. Then by lemma 2] we have H°(X,CM (F)(nC")) ~ W/, for all n > 0.

Directly from definition of a Cohen-Macaulay sheaf follows that the sheaves CM (F)g
are Cohen-Macaulay for all k. Note that CM(F,) ~ CM(F)i. Indeed, by definition of
Cohen-Macaulaysation we have CM(F;) C CM(F),. If CM(Fy) # CM(F)i, then this
would mean CM (Fi)—r # (CM(F)i)—r ~ CM(F). But CM(F;)—r ~ CM(F), since
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CM(Fi)—r C (CM(F)k)—r ~ CM(F) and CM(Fi)_r is a Cohen-Macaulay sheaf contain-
ing F (cf. 23, Rem.B.2]).

In particular, we can apply the construction from [23, Sec.3.5] and construct a torsion free
sheaf N on the ribbon (C,.A) (the ribbon constructed by our geometric data). Then we can
construct a space W' C k((u))((t)) by the sheaf N . Since the construction depends only on
sections of the sheaves C'M(Fy) along the curve C, we get W' = W . Hence from item ii) we
obtain F ~ CM(F).

U

Remark 2.15. Torsion free sheaves of rank one on the projective surface X with fixed Hilbert
polynomial x from proposition are stable in the sense of standard definition from [I7, Ch.2].
Stable sheaves are parametrized by a projective scheme Mx(x) (see Chapter 4 in loc.cit.).

On the other hand, all sheaves we are interested in satisfy the assumptions of lemma
(and in view of theorems Bl and [£.]] even more strong assumption: they are Cohen-Macaulay
on X ). By [6, Prop.1.2.16] the Cohen-Macaulayness is an open condition. So, it is reasonable
to consider an open subscheme M& of the moduli space M x () parametrising such sheaves.
Then the map ¢ from section 2.4l induces the morphism

¢ Mx — Me(g),

where M¢(g) is the moduli space of rank one torsion free sheaves of degree g = p,(C) on C
(cf. [35]). We conjecture that this morphism is surjective (cf. examples at the end of this paper).

3 Theorems

3.1 Cohen-Macaulay property for PDOs

Recall that by [23] Th.2.1] any commutative ring B C D of PDOs satisfying the property ()
leads to a datum (X,C, L), where X,C are the same as in definition and L is a torsion
free coherent sheaf on X . Let’s assume (see the discussion before remark 2.4)) that B is a
1-quasi-elliptic strongly admissible ring satisfying the extra property (I4]).

In this case by [23 Prop. 3.3] the datum (X, C, L) is isomorphic to the triple (X,C,F) (a
part of geometric data) from theorem If B is of rank one, then by [23] Th. 2.1] we have
C? = 1, and by [23, Prop. 3.2] the sheaf F and the geometric data from theorem are of
rank one.

Theorem 3.1. Let (X,C, P, F,m, ¢) be a geometric datum corresponding to a 1-quasi-elliptic
strongly admissible ring B C D of commuting operators satisfying the properties (M), (4.
Then F is a Cohen-Macaulay sheaf on X .

Remark 3.1. If the ring B is maximal then by [39, Th.4.1] the surface X is also Cohen-
Macaulay.

Proof. By [23, Prop.3.2] the sheaf F ~ L is coherent. By [23, Th.2.1, Prop. 3.3] and remark
the rank of the geometric datum is one.

Consider the Macaulaysation C'M (F) of the sheaf F (see [23, Appendix B]). By [23] Cor.
3.1] the sheaf F is Cohen-Macaulay along C'; in particular, Fp ~ CM(F)p . Consider the
image W' = x1 (H*(X\C,CM (F))) in k[[u]]((t)), where we use the embedding ¢ of the sheaf
F to define x7 (cf. section ). Then we claim that this image is a finitely generated linear
space over W = x1(H*(X\C, F)):

W/ = <W,w1,... ,wk>,

where wy,...,wg & W, wr,...,wg € k[[u]]((?)) .
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To prove the claim, first of all let’s note that the sheaf CM(F)|ncr = Flmer is pure of
dimension one for any m > 0 (see remark for notation), since F is Cohen-Macaulay along
C.

Let’s show that the condition on the space W’ from lemma 2.1]is satisfied. This condition
is true for elements w from the space W corresponding to the sheaf F, because W, 4 =~
HO(X,F(nC")). It is also clear that for any element w from W’ we have w € f~™4Fp for
some m . Now take any element w € W), Then we have for all sufficiently big m > 0:

—md
[T =y — .= gy = a € Winimya

for some ci,...,¢, € k. Thus, 4w = frtmidg 4 f("+m)d(clw1 +...+cpwi) € Fp.
Now by lemma 2] we have H°(X,CM(F)(nC")) ~ W/, forall n>0.
As a corollary we get that for n > 0 big enough

Wia/ Wi _1ya = H(C,CM(F)(nC")|cr) = H(C, F(nC")|cr) = Waa/Wn_1)-

Obviously, W), D Wy for all n. So, our claim is proved.

By [39] Th.3.3, Th.3.1] there is a unique operator S satisfying condition A; such that
Yy Y (W) = WoS (the map oy is defined in (I3), where Wy = k[z;", 2, '] . Moreover, B =
Sy H(A)S™, where A = x1(HY(X\C,Ox)). Since W' - A C W', we have

(W WS B (wi (WS, (WS = (Wo, oy, ... ),

where w; = 1] 1(wi)S —1 . Each series w; can be written in the following way:

~ / " / —k I " -kl
w; = w; +w;, w;= E CriZ] 29, W; = E brizy "2
£>0,1>0,k-+l=q; £>0,0>0,k+1<g;

To the end of this proof we will call g; the order of w/: ord(w}) = ¢; . Since the ring B satisfies
the property (I4]), for any n > 0 the symbols of the operators P™, Q" satisfy the same property
(I4)) with k,l replaced by kn,in. For all n > 0 and for any w; we must have

WP e (P (WS, wmiQ" € (v T (W)ST).
Direct calculations show that these elements can be represented as
wW; P" = wio(P)" + "lower order terms”, w;Q" = wio(Q)" + "lower order terms”.

Hence, since n > 0, we must have wio(P)", wio(Q)"™ € Wy . Therefore, wio(P)", wio(Q)™ must
be homogeneous polynomials of orders ¢; +nk, ¢;+n(l+1). Since the characteristic schemes of
P and @ have no intersection, this mean that w] must be a homogeneous polynomial of order
¢i - But then since w] ¢ Wy and due to the property (I4) the polynomials wio(P)", wio(Q)"
will contain a nonzero monomial of type cz; “zg ¢ Wy for b >0, a contradiction. Thus, all w;
must be zero, and W/ =W, where from CM(F) = F. O

3.2 Geometric properties of rational commutative algebras of PDOs

As we have mentioned in Introduction, there are examples of algebraically integrable commuta-
tive rings of PDOs whose affine spectral surface satisfy the following property: its normalisation
is A%. The following theorem clarifies what is the normalisation of the projective spectral surface
X.

Theorem 3.2. Let X be a projective surface, C C X — an integral Weil divisor not contained
in the singular locus of X which is also an ample Q -Cartier divisor and C? = 1. Assume that
X\C ~ A?.

Then X ~P?, ¢ ~P!.
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Proof. Since C' is not contained in the singular locus of X , we can choose a point P regular
on C' and on X . Choose local parameters u,t at P such that ¢ is a local equation of C' at
the point P and uw € Op restricted to C is a local equation of the point P on C'.

Now we have the natural isomorphism

7: Op — k[[u,t]].

Using this isomorphism we can repeat the construction of the subspace A from section 21l and
define A % v, (H(X\C,0)).
Repeating the arguments from the proof of [39, lemma 3.6] we obtain that for all n >0

H°(X,0x(nC")) = Apg,
where A; = ANt~'k[[u,t]]. Since C? =1, we must have for all n>> 0
dim(Ang/Am—1)a) = d*n + const. (32)

Consider any element a € A4 such that v(a) = (x,nd). We claim that * < nd.

Indeed, by [23] sec.3.4] there is a canonically defined ribbon (C,.A) over the field k. Thus,
by the proof of [2I, Th.1] we can construct the space A in k((u))((¢)) which is a generalized
Fredholm subspace (see loc. cit. or section 26]). As it follows from (I8]), the space A(nd) is
naturally isomorphic to a Fredholm subspace in the field k((u)) obtained as the image of the
sheaf Ox(nC’)|c under the Krichever map. For n > 0 we have also H°(C,Ox(nC")|¢) ~

Apa/Ana—1 and by (I6)
dim(A (nd) N k[[u]]) = h°(C, Ox (nC")|c) = nd + const. (33)

Remark 3.2. Alternately, we can just repeat the construction of the generalized Krichever map
from [33] or from [31] in our situation (replacing a Cartier divisor there with a Q-Cartier one)
to avoid referring to the theory of ribbons.

Since C? =1, we have that the Euler characteristic
X(A(nd)) = nd + const.

Now we can apply arguments from the proof of [38, Th.1] to show that * < nd. Assume the
converse. We have a-A(0) C A(nd) . It is easy to see that x(a-A(0)) = x(A(0)) + x. Now we
have

X(A(nd)) = nd + const < x + const = x(A(0)) + * = x(a - A(0)) < x(A(nd)),

a contradiction.

Now note that, since X\C' ~ A2, we have A ~ k[p,q]. So, the space A is generated by
monomials p¥q' . Because of the claim and formulas ([32) and (B3] we conclude that (without loss
of generality) v(p) = (0,1), v(¢q) = (1,1) (since any other values would make these formulas
impossible). But then A ~ k[t~!, ut™!] and X ~ Proj(®A,) = P?, C ~ Proj(®A,/An_1) = P*
(cf. the proof of [39] lemma 3.3]).

O

3.2.1 The example of an affine non-spectral surface

Example 3.1. Using the idea from the proof of theorem we can give an example of an affine
surface which can not be a spectral surface of any ring B of PDO’s of rank one satisfying the
property [[l For example, consider the ring

A = k[Xy1, X2, X5]/(F), (34)
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where F' = X1 X9 + X3 + 22:1 9o X{, and g¢; € k[X3] are any polynomials and k is an
algebraically closed field.

Then (see [2, Ch.VIL§3, Ex.5]) A is a factorial ring, and Spec(A) is a rational affine surface.
It is easy to see that A is not isomorphic to a polynomial ring k[u,v] for generic g; and that
Spec(A) is a smooth surface. Assume that there exists a ring B C D of rank one satisfying
the property [ and such that B ~ A. Without loss of generality we can assume that B is a
1-quasi-elliptic strongly admissible ring. Since the rank of the ring is one, the rank of the data
is also one by the classification theorem [Z3] Then the sheaf F is coherent of rank one by [23]
Prop.3.3]. By theorem Bl the sheaf F is Cohen-Macaulay. Since Spec(A) is smooth, F must
be locally free on Spec(A). But since A is a factorial ring, we have CI(A) ~ Pic(A) = 0,
thus Flgpec(a) = Ospec(a) - But then the space W of the corresponding Schur pair must be
equal to the space A. Therefore, A ~ k[ut™!',t~!] (where u,t are the parameters from (I3))),
a contradiction.

3.2.2 The Darboux transformation for PDOs with rational spectral surface

Theorem 3.3. Let B C D be a commutative ring of rank rk(B) =1 satisfying the properties
[@). Assume that the normalization of Spec(B) is isomorphic to A .

Then there exists a PDO F such that F~*BF C k[0y, ] .

More precisely, F' = S03 , where S is an operator as in the analogue of the Sato theorem

22

Proof. We can assume without loss of generality that B is a finitely generated 1-quasi-elliptic
strongly admissible ring satisfying the property (I4]) (see the beginning of section and argu-
ments before remark [2.13]), since our assertion don’t depend on linear changes of coordinates.

Since the rank of the ring B is one, the rank of the corresponding geometric data
(X,C,P,F,m,¢) is also one by the classification theorem 2.3l Then the sheaf F is coherent of
rank one by [23, Prop.3.3] and C is a rational curve with C? =1 by [23, Prop.3.2].

The assumption about normalization is equivalent to the assumption that the normalization
of Spec(B) ~ X\C is isomorphic to A?. Note that this assumption is equivalent to the as-
sumption that the normalization of X is isomorphic to P2, Indeed, if p: P2~ X — X is the
normalization morphism, then p*(C') is a rational irreducible curve. Thus, we have p*(C') is an
ample rational Cartier-Weil divisor on P? with p (C)? =1,ie p*(C) = P! . Therefore, the
normalization of Spec(B) is isomorphic to the complement to P* in P? i.e. A*. The converse
statement follows from the same arguments together with theorem

Let (X ~ P? p*(C) ~ P! p*(P) = P) be the normalization of (X,C,P). Since P is
regular, the local rings Ox p and OIP’2 p are canonically isomorphic.

Now we can repeat the arguments from the beginning of the proof of theorem to get
an embedding of HO(P*\P',0) to the same space k[[u]]((t)) (here u,t are local parameters
at the point P € X ). Let’s denote the image by A’. As we have seen above, A" must be the
normalization of A . The arguments from the proof of theorem B2 show that in fact A" ~ k[p, ¢
with the highest terms of the series p,q equal to t~!, ut™! correspondingly (so, Supp(4’) =
Klut=1¢71]).

Set A” =71 (A") (see (@3)). Then we have Supp(A”) = k[z;', 2, '], and A” is a 1-space.
By [39, Lemma 2.11, 2),3)] there is an operator S such that S™'01S = ¥;'(¢q), S™'0aS =
(I 1(p) ,and S satisfies the condition Ay . Thus, S € Adm; .

Now consider the Schur pair (/7' (A), W) from theorem 2] corresponding to the ring B.
Consider the equivalent pair (A = Sy;'(A)S™', W = WS~!). Then the ring SA"S~! =
k27!, 251] is the normalization of the ring St '(A)S™" (in the field k(21,22) C k((21))((22)) ).
Thus, all elements of the space S, 1(A)S —! are polynomials in 2y L 2y !
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The space WS™! is a finitely generated module over Sy 1(A)S_l. Without loss of gen-
erality we can assume that 1 € WS~! by taking another equivalent Schur pair (A, WT) if
needed (for an appropriate operator 7" with constant coefficients; 7' just changes the trivial-
isation ¢ in definition 2.2 item 6). By construction of the Schur pair given in section [2.1] we
have W C k(z1,22) (as this Schur pair corresponds to a pair coming from the geometric data
with an appropriate trivialization ¢, and the rank of the coherent sheaf F is one).

So, W is generated by a finite number of elements from k(z1,22) over A. Since W isa 1-
space, we can choose the generators to be the elements satisfying the condition A; . Let’s denote
by @ their common denominator. From lemma [3.1] (see below) it follows that ordr(Q) = (0,n),
where n = ord(Q) (here and below we identify z; with 07!, 2, with 9,'; in this case
ord(Q) = deg(Q), where deg means the usual degree of the polynomial @ in two variables).
Consider the equivalent Schur pair (A4, WQ/ a§°g(Q’) (this is a Schur pair since Q/@geg(Q) is
a zeroth order operator with constant coefficients with ordp(Q/ﬁgeg(Q)) = (0,0) satisfying
condition (Aj7)!). Note that all elements from the space WQ/ 8§Og(Q) are just polynomials in
O, Oz, 0y ! with constant coefficients, and the order of these polynomials with respect to 0y !
is less or equal to deg(Q) .

Then from the proof of theorem 2] in [39] immediately follows that the operator S is a
(non-commutative) polynomial in 05 L of degree with respect to 0y ! not greater than deg(Q) .
By remark 214 the ring SAS™' is a ring of PDO’s. Then S € k[[z1,22]][01]((95")) (this
immediately follows from lemmas 2.9, 2.11 item 2,3 in [39]). Thus, we can set F = S@geg@) .

O

Lemma 3.1. Assume that the Laurent expansion of the element
P/Q € k(d1,82) € k(7 ))((8;1)),

where P,Q € k[0, 2] are relatively prime, belongs to k[01]((05 ")) . Assume that this expansion
satisfies the condition Aj .
Then ordr(Q) = (0,ord(Q)) .

Proof. The proof of this lemma is based on several technical routine elementary calculations,
and we will hardly use some technical lemmas from [39].

Assume the converse. Then ) can be represented as a polynomial in 0y of the order with
respect to Jy less than ord(Q), say

n—1

Q = qn0y — quaé, n < ord(Q),
=0

where ¢; € k[01] . Let
P = Zplﬁé.
1=0

Now we will prove our lemma in several steps.

Step 1. First we claim that deg(g,) +n = ord(Q) .

Clearly, we always have deg(g,) + n < ord(Q). Assume that deg(g,) + n < ord(Q).
Let’s show that this will contradict to the condition A; for the element P/Q . Since we are
working with series in the field k((9;1))((95')) of pseudo-differential operators with constant
coefficients, we can literally repeat the proofs of lemma 2.8 and corollary 2.1 in [39] to show that
the statements from these claims remain true also for operators from k((871))((95 1))

In particular, @~ don’t satisfy the condition A;. Indeed, assume that Q' satisfies the
condition A;.Then Q7! =g, 182_ L@, where Q' is an operator of the form from [39, Corol.2.1]
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satisfying the condition A; (by [39, Lemma 2.8]). Then Q = (Q™')~! = ¢,02(Q")~!' must satisfy
the condition A; by [39, Lemma 2.8, Corol.2.1]. But @ don’t satisfy the condition A; by our
assumption (namely, the term with the first coefficient ¢; of @ such that deg(g;)+i = ord(Q)
will contradict the condition A; ), a contradiction.

Let P = P+ P, be any decomposition of P in a sum of two PDOs with constant coefficients
such that P, satisfies the condition A; and the degree of P, with respect to 0, is less than m
( P, may be zero). Let Q7' = Q1 + Q2 be any decomposition of @~! in a sum of two pseudo-
differential operators from k((9;"))((05')) such that Q; satisfies the condition A; and the
degree of Qo with respect to o is less than —n (since Q! don’t satisfy the condition A,
(2 is not zero). Denote by « the first coefficient of Q2 , and by S the first coefficient of P, if
Py # 0. Now we have two cases: if P, = 0 then the product PQ~! will not satisfy the condition
Aq, because the coefficient of PQ~! containing p,,a will not satisfy it; if P, # 0 then the
product PQ~! will not satisfy the condition A;, because the coefficient of PQ~! containing
Ba will not satisfy it. Thus, PQ~! does not satisfy the condition A;, a contradiction.

Step 2. Now the idea of the proof is to come to a contradiction with the assumption that
Gn 7 const .

Obviously, we can multiply the element P/@) on an appropriate degree of 0, 1 to make the
degree of its Laurent expansion to be zero. Thus, we can assume without loss of generality that
P,Q are polynomials in 0, ! with nonzero free terms p,,, g, correspondingly.

Now we can write

m n m co n—1
P/Q _ (Zplaé—m)(z qlal n Z p_ l m Z q 8[ n 2 (35)
=0 =0 :0 =0 [= 0

Note that not all ¢; are divisible by ¢, . Indeed, otherwise (¢, Q) € k[01, 5] and therefore
¢, P =(PQ™")(g,'Q) € k[&]((9 ) N k(87 ))[:] = k[6n, 5]

i.e. P and @ are divisible by ¢, # const, a contradiction.

Note that we can reduce the proof to the case deg(P) < mn — 1 (the degree now means the
degree with respect to 05 ! ). Indeed, it is easy to see that p,, must be divisible by ¢, . Since
P/Q € k[01)((851)), all expressions of type (P/Q — a)d§ will again belong to k[d1]((05 ")) for
any polynomial a € k[0;]. Thus, if we take a = p,,/qn, then (P/Q — a)d2 = P'/Q, where
deg(P’) < deg(P) if m > n. Note that P’ # 0, since P,Q are relatively prime.

Analogously we can reduce the proof to the case deg(P) = 0. Indeed, using Euclidean
algorithm, we can always find polynomials a € k[0;] and F € k[01,05 1 such that deg(a@ —
FP) < deg(P) if deg(P) # 0. Again (a@Q — FP) # 0, since P,Q are relatively prime and
deg(P) #0. Thus, F(P/Q) —a = P'/Q with deg(P’) < deg(P), P'#0.

At last, in the case deg(P) = 0 the proof follows immediately from (B5]): P must be divisible
by infinite power of some prime factor of ¢, , i.e. P =0, a contradiction.

O

4 Examples

In this section we give several examples.

4.0.3 ”Trivial” commutative algebras of operators

First we would like to explain the geometric picture for a class of "trivial” examples. These are
examples of rings of commuting operators in D containing, say, the operator 0. In this case
all operators obviously don’t depend on x; . Nevertheless, the geometry of the corresponding
surfaces and even the naive moduli space of sheaves from geometric data are non-trivial.
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Note that, if we have a commutative 1-quasi-elliptic strongly admissible ring B C D satis-
fying properties (), (I4) and containing the operator J,, then after a linear change 9; <> 0o
the ring B will remain 1-quasi-elliptic strongly admissible and will contain the operator 0 .
So, in particular, the well known example of the quantum Calogero-Moser system (see [30], [5],
sec. 5.3] and [39], Ex.4.3]) belongs to this class of ”trivial” examples. We would like to emphasize
that in [5, sec. 5.3] the affine spectral surface of this system was calculated: it is Al x H , where
H is some hyperelliptic curve. So, by [23] Th.2.1] the projective spectral surface X from the
corresponding geometric data is normal, and singularities appear only on the curve C' (which
is rational).

Theorem 4.1. Let B C D be a Cohen-Macaulay finitely generated 1-quasi-elliptic strongly
admissible ring of commuting operators (note that by [39, Th.4.1] any finitely generated 1-quasi-
elliptic strongly admissible ring B lies in a Cohen-Macaulay finitely generated 1-quasi-elliptic
strongly admissible ring).

Then B contains 0y if and only if the divisor C of the corresponding geometric data is
Cartier, the sheaf F is coherent of rank one, Oc(C) ~ Oc(P) and the map

HY(X,0x) = H'(X,0x(C))

15 injective.
Moreover, if the ground field k is uncountable and algebraically closed, the sheaf F is
Cohen-Macaulay on X .

Proof. Recall that the surface X corresponding to B is Cohen-Macaulay by [23] Th.3.2].

Assume first that B contains 0; . Since B is 1-quasi-elliptic strongly admissible, this means
that rk(B) = 1. Also this means that for any n > 0 there are operators P, € B with
ordr(P,) = (0,n) . Thus, we can give an approximation of the dimension of the space A, C A
(where, as usual, A means the space of the Schur pair corresponding to the ring B ): dim(A,,) ~
n?/2 for all n > 0. Then it follows from the asymptotic Riemann-Roch formula () that C? =1
(since A,q ~ HY(X,0x(ndC)) for all n > 0, see section B)). Since rk(B) = 1, the rank
of the corresponding geometric data is also one by theorem 23l Thus, by [23] Prop.3.2] the
corresponding sheaf F is coherent of rank one.

Now let’s prove that C is a Cartier divisor. Our arguments will be very similar to the
arguments from the proofs of lemma 3.3 in [39] or theorem 2.1 in [23]. Recall that X =~ Proj A
and the divisor C is defined by the homogeneous ideal I = (s). It is not contained in the
singular locus, since it contains the regular point P . Since A is a finitely generated k -algebra
with Ag =k, by [2, Ch.III, § 1.3, prop. 3] there exists an integer d > 1 such that the k-algebra

o0
Ald) — Ly, Ay is finitely generated by elements from flgd) as a k-algebra (here flgd) =Ay).

k=0
Let’s show that the divisor dC is an effective Cartier divisor. We consider the subscheme

C' in X which is defined by the homogeneous ideal I? = (s%) of the ring A . The topological
space of the subscheme C’ coincides with the topological space of the subscheme C' (as it can
be seen on an affine covering of X ). The local ring Ox ¢ coincides with the valuation ring of
the discrete valuation on Quot(A) induced by the discrete valuation v on the field k((u))((¢)) :

Ox.c = fl(I) ={as"/bs" | n>0,a € Ay, be A, \ Ap_1}.

The ideal I induces the maximal ideal in the ring Ox ¢, and the ideal I @ induces the d-th
power of the maximal ideal. Therefore, if we will prove that the ideal I? defines an effective
Cartier divisor on X , then the cycle map on this divisor is equal to dC' (see [23, Appendix A)).
By [12}, prop. 2.4.7] we have X = Proj A ~ Proj A _ Under this isomorphism the subscheme
C' is defined by the homogeneous ideal 14N A@ in the ring A@ . This ideal is generated by

29



the element s? € flgd) . The open affine subsets D, (x;) = Spec fl&iz) with z; € flgd) define a
covering of Proj A@ . In every ring flgiz) the ideal (17N fl(d))m) is generated by the element
s/x; . Therefore the homogeneous ideal I N A defines an effective Cartier divisor.

Now let’s show that the k-algebra A(™) is finitely generated by elements from flgm) for all
m > 0. By theorem 1] it is equivalent to show that the k-algebra B(™) is finitely generated
by elements from Bim) for all m > 0.

Let d be such a number that all generators of B lie in By and for all n > d there
are elements P, € B with ordp(P,) = (0,n) (the same will be true also for the ring A).
Let ¥ denote the set of all numbers a € Z, such that there are operators @ in B; with
ordr(Q) = (*,a). Since 0 € B, we have that for any m > d and any a € ¥ there are
operators @ in B with ordp(Q) = (m,a).

Now let m > 2d be any number such that B(™ is finitely generated by elements from

B%m). It suffices to show that Bt is also finitely generated by elements from B£m+1).
To show this it suffices to show that any element from Blimﬂ) can be represented as a sum
(m+1)

of products of elements from E,(ﬁ;rl) and from Bl . The space E%mﬂ) has two special

operators: Q1 = 8{”“ and Qo with ordp(Q2) = (0,m + 1). As it follows from what we have
said above, for any [ > 2d and any ¢,j € Z, such that ¢+ j = [ there is an element Q € B
with ordr(Q) = (4,7) . Thus, any element @ € Blimﬂ) can be written as a sum of an element
with the order less than ordr(@) and a product of an element from Bgﬁfl) and Q1 or Q.
By induction we obtain our claim.

Now the arguments above for mC and (m+1)C (instead of dC') show that mC', (m+1)C
are Cartier divisors. But then C' must be also a Cartier divisor.

Now let (A, W) be the pair from k((u))((t)) corresponding to our geometric data (see
section 2.I]). As it follows from section 2] (namely, from (I8), [20) and (23]))

A(n) Nk[[u]] ~ A,/A,_1 ~ H(C,0c(nC)),

for all n > 0 and A(n) is the image of (C, P, Oc(nC),u,id) under the Krichever map (cf. also
(24))). From one-dimensional KP theory (see (IH)), (7)) we have then that A(n)-u~™ is the image
of the quintet (C, P, Oc(nC)(—nP),u,id) under the Krichever map. Since 97" € B,\By,_1 , we
have that t~"u" € A, /A,,—1 . Hence,

H(C,0c(nC)(=nP)) = A(n) - u™" N k[[u]] = k,

and by Riemann-Roch h'(C,Oc(nC)(—nP)) = g.(C). But then O¢(nC)(—nP) ~ O¢ for all
n>0,ie Oc(C)~0Oc(P).

Now we have two possibilities for the number h%(C, Oc(C)): it is either 1 or 2. If it is equal
to 1, then this means that

H(C,0c(0)) = A(1) N k([u]] = A1 /Ao, (36)

because 0y € Bi\Bp and we have always A;/Ag C A(1). Note that we always have the
embeddings

AN RI)((®) + k(@)IA) <> A -0 k[ul)((5) + k() [2]).
A k()] < A -0 k()]
ANE[u]]((8) = A -t E[[u]]((#)).
Thus, we have a natural linear map

AN Kl[)(@) + (@A) At K[[u]]((?)) + k((w)][H]) (37)
(ANE(@)[]) + (ANk[u(®)) (At k(@) + (A -0 E[[u]((£)
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By ([@2) this map coincides with the map H'(X,0x) — H'(X,Ox(C)). Let’s show that the
kernel of this map may contain only elements from

(A1 N (R{[ul]((#) + E(u)ED) + (AN E(u)E]) + (AN E[ull(@)], (38)

where Ay = ANt~ k((u))[[t]] . From this and (B8] it follows that the map H'(X,Ox) —
HY(X,0x(C)) is injective. Let a € AN (k[[u]]((t)) + k((w))[[t]]) be a lift of an element from
the kernel. Then a -t = aj + ag, where a; € (A -t Nk((w))[[t]]) and az € (A -t N k[[u]]((2))) .
Since a1t~ € (AN k((u))[[t]]), we have

azt™" =a—ait™ € AN (k[[u]]((t) + &((w)][H]).

But ast~' € A; and also gives an element of the kernel.

Now assume that h°(C,Oc(C)) = 2. This means that the image of the sheaf O¢ in k((u))
under the Krichever map contains an element of order —1. Hence, this image is isomorphic to
the ring k[u~!],i.e. C ~P'. But then the surface X must be smooth along C', hence X must
be normal since X is Cohen-Macaulay and C' is an ample divisor. Then by [I, Th.2.5.19] and
[T, Corol.2.5.20] there is an open neighbourhood of C' isomorphic to an open neighbourhood
of a line in P?. Since ((F) is a torsion free sheaf and h%(C,¢(F(nC))) = dim W, /Wy_; =
n+1 for all n > 0, we have ((F) ~ Oc¢. Since F is Cohen-Macaulay, it is locally free
on the smooth open neighbourhood of C'. Since CI(P?) = CI(P*\Z) ~ Z for any closed
subscheme of codimension greater than one, we must have F ~ Ox on this open set (since
otherwise its restriction on €' = P' would be not trivial). But then (e.g. by [I, Prop.1.1.6])
W, ~ H(X, F(nC)) ~ H°(X,0x(nC)) ~ A, since X and F are Cohen-Macaulay. Thus,
A~ kla,b] and X =P?. Hence, H'(X,Ox) =0 and we are done.

At last, from formulas (I5]) and (I6) one can easily deduce that the sheaf F fulfils the
assumptions of proposition Hence it is Cohen-Macaulay on X .

Conversely, assume that C' is a Cartier divisor, F is a coherent sheaf of rank one, the
map H'Y(X,0x) — HY(X,0x(C)) is injective, Oc(C) ~ Oc(P). Then by [23, Rem.3.3]
the rank of the data is one. As we have seen above, the condition on cohomology means that
the kernel of the cohomology map (1) is zero. This means (see ([B8])) that all elements from
Ay 0 (E[[u]]((t)) + k((w))[[t]]) can be represented as a sum of an element from Aj N k[[u]]((¢))
and an element from A; N Ek((w))[[t]] . In particular, for any element from A(1) N k[[u]] there
exists an element from Aj N k[[u]]((t)) with the same support (multiplied by ¢~!). This means
that

HY(C,0c(0)) ~ HY(C,0c(P)) ~ A(1) N k[[u]] ~ A1/Ag

(since the rank of the data is one). Note that A(1) contains an element of order one (since A(1)
is the image of O¢(P) under the Krichever map). Thus, there is an element in A; with the
least term wt~'. But this element will give us the operator 0, after applying the map (' ! and
conjugating by the Sato operator from theorem O

4.1 Some examples

Example 4.1. This is an example of a surface, divisor and point for which we can calculate all
possible geometric data of rank one, corresponding Schur pairs and corresponding algebras of
commuting operators. More precisely, we start from a ring A, and describe all possible Schur
pairs with the ring A as a stabiliser ring. This description is possible due to using concrete
formulas from the classical KP theory in dimension one; these formulas also lead to a precise
description of commuting operators. Notably, we will see that the map ( restricted to the set of
all sheaves from these geometric data maps this set surjectively to the dense open subset of the
compactified generalized jacobian of the curve C' consisting of sheaves with trivial cohomologies.
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We will see also that for this surface there are no other rings of commuting PDOs except one
ring of operators with constant coefficients.
Consider the ring

A =k(03,0,(0% + 30%),01) C k[0, D).

It is easy to see that A ~ k[h][z,2]/(2? — z(x + 3h?)?) (where 05(03 + 307) — 2, 03 — x,
01— h) and that F = k[0y, 02|, where F denote the normalization of A. It is also clear that
A is a l-quasi-elliptic strongly admissible ring.

Recall that, having such a ring A, we can construct a part of geometric data, namely the
surface X , the divisor C' and the point P (see section [2.]]). This part can be described in a
more explicit way: we have the embedding

A~ k(03,05(02 + 30%),01,T) C F ~ k[0y,01,T],

which induces the normalisation morphism 7 : Proj(F') — Proj(A4), and X = Proj(A) can be
considered as a subscheme in the weighted projective space Proj(k[x, z, h,T]) , where weights of
(z,2,h,T) are (2,3,1,1). Thus, dy = z/(z + 3h?) = x(x + 3h?)/z where from

T*OPQ =0Ox + Ox(—l)ag

and
1
W*OPQ/OX ~ Ox(—1)02/Ox(-1)0, N Ox ~ Ox(—1)/Ox(—1)N OX8—2

and
Og = Ox/OX N (’)X(l)a—l2 ~ Ox/OX(—?))Z + Ox(—Q)(x + 3h2),
where E is the singular locus of X (cf. example 3.3 in [39]). So, E = Proj(k[h,T]) = P' and
T.O0p2/Ox ~ Og(—1), where from H'(X,0x)=0.
Let’s note that, if we have a geometric data (X,C, P, F,...) where X,C, P are defined by
the ring A and the sheaf F is coherent of rank 1, then the corresponding Schur pair (A, W)
induces a 1-dimensional Schur pair (A", W'), where

A =F((01)) (02, 02(% + 392)),

and W' is aspace over K = k((91)) generated by elements from W (thus, A", W' C K((9;"))).
The Schur pair (A, W’) corresponds to a one-dimensional geometric quintet (C', P, F',...)
(see [27, Th.4.6] or [28], see also section [Z6.1]), where C’ is the nodal curve over K and F’
is a torsion free rank one sheaf on C’ with H°(C', F') = HY(C', F') = 0. It is not difficult to
see that the divisor C' on the surface X is naturally isomorphic to the nodal curve too, whose
affine equation (the equation of C\P)is §° = y(y + 3)%.

On the other hand, all torsion free rank one sheaves on this nodal curve (cf. [35]) as well
as corresponding Schur pairs of one-dimensional geometric data can be explicitly described as
follows (cf. [36, Sec 3]). The nodal curve C’ can be thought of as a projective line with two
glued points, whose local coordinates are a and —a (with respect to the local coordinate z on
P'\P"). It is not difficult to see that in our case

a = i\/§81,

and for the curve C' it is equal to iv/3 . Now we can use the well known formula of Baker-Akhieser
function associated to a line bundle on the curve to describe the corresponding spaces of Schur
pairs. Recall that the Baker-Akhieser function can be written in the form (xz, z)exp (zz71) =
S(z,0 Y (exp (zz71)) (where z is a local parameter at a point on the curve).

For the unique non-locally free sheaf n*(Opl) of degree zero (where n : P! — ' is the

normalization map) the corresponding space W’ is equal to K|[dy]. This space comes from
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W = k[01, 02] , and the pair (A, W) obviously corresponds to the ring A of differential operators
with constant coefficients.

The only locally free sheaf of degree zero which has non-zero cohomologies is O¢r . For any
locally free sheaf £ parametrized (in the moduli space) by an element A\ € K* ~ Pic(C’),
A# —1 (A= —1 corresponds to O¢r ) the corresponding space W' is equal to

K[0]-S, where S = (1+wdy") and

_ Aexp (w2a) — exp (—20)
" Xexp (z2a) + exp (—x2a)

Now we can describe those one-dimensional Schur pairs (A’, W’) (over K ) that are induced
by two dimensional Schur pairs (A, W) (over k). It is easy to see that necessary and sufficient
conditions for describing such pairs are the following: all elements from the admissible basis in
W' must belong to k[0;]((95 ")) and satisfy the condition (A;). Since A C A’ and all elements
from A satisfy the condition (Aj), it is enough to check this property only for the two first
elements from the admissible basis of W’. These elements are

wo = S’x:(), w1 = 0y + 82(20)’1:0(92_1 — (w’x:())za;l.

Thus we must have

A—1 9 4 B
—a)\+1—P(81), —a m—@(al)a

where P, are polynomials in 9; with coefficients in k& of degree not higher than 1 and 2
correspondingly. Hence, from the first equality we have
_a—P
a+P

S k(al),

and the second equality holds for any such A for any such P. The same formulas show (due
to theorem [A.J]) that for all —1 # A € k* the sheaf ((F) (which is defined by the space
©Wiy1/W;) is a line bundle on C' corresponding to A. Clearly, ((m«(Opz2)) =~ n4(Op1) . Thus,
the map ¢ mentioned in the beginning of this example is indeed surjective.

On the other hand, for any such A\ we can calculate operators from the corresponding ring
of operators. In particular, there will be an operator of the form

8a2\
(Aexp (x2a) + exp (—x2a))?’

STH03S = 05 + 202 (w) = 05 —

The last term of this operator can not be a polynomial in 9y , because the exponential function
can not belong to an algebraic extension of the field of rational functions. So, by remark 2.14]
there are no rings of PDOs with the projective spectral surface X except the ring A of operators
with constant coefficients.

Example 4.2. This is another example of a surface, divisor and point for which we can calculate
all possible geometric data of rank one, corresponding Schur pairs and corresponding algebras of
commuting operators. The map ¢ mentioned in the previous example will be again surjective.
But we will see that for this surface there are many commutative rings of PDOs.

Consider the ring

A =k(93,03,0,) C k[0y, Do)

It is easy to see that A ~ k[h][z,2]/(2® — 23) (where 93 + 2z, 03 — x, O — h) and that
F = k[01,02], where F denotes the normalization of A. It is also clear that A is a 1-quasi-
elliptic strongly admissible ring.
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Using similar arguments from the previous example one can show that X can be ob-
tained from P? by glueing one doubled projective line (cf. [23, Sec. 3.6]). Thus, we have also
HY(X,0x) = 0. Again as in the previous example X is a cone over C' which is a cuspidal
curve. So, we can use in this case the same ideas and notation.

Now any Schur pair (A, W) induces a 1-dimensional Schur pair (A", W') over K , where

A" =k((01))(03, 03).

For the unique non-locally free sheaf n*(OP1) of degree zero the corresponding space W'
is equal to K[0]. This space comes from W = k[0;,0:], and the pair (A, W) obviously
corresponds to the ring A of differential operators with constant coefficients.

The only locally free sheaf of degree zero which has non-zero cohomologies is O¢r . For any
locally free sheaf £ parametrized by an element A € K ~ Pic(C’), A #0 (A =0 corresponds
to O¢r ) the corresponding space W’ is equal to

K[d]-S, where S = (1+wdy") and

1
A — T2 '
Now wp = S|p=0 = 1+ (1/N)85 " . To find those pairs (A’, W’) that are induced by pairs (A, W)
we again must have 1/\ = P(0;) for some linear polynomial P. It is not difficult to see that

for all such A the spaces W’ are induced by W and that the map ¢ is surjective.
The rings of commuting operators will contain two operators: d; and

w =

2P(0,)?

STl =92 4 ——
2 2T (1= 29P(0)))2

By remark 214 and by proposition such a ring is a ring of PDO if and only if P(0;)
is a constant. Clearly the sheaves corresponding to such rings are the preimages of the sheaf
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