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CAYLEY GRAPHS GENERATED BY SMALL DEGREE
POLYNOMIALS OVER FINITE FIELDS

IGOR E. SHPARLINSKI

ABSTRACT. We improve upper bounds of F. R. K. Chung and of
M. Lu, D. Wan, L.-P. Wang, X.-D. Zhang on the diameter of some
Cayley graphs constructed from polynomials over finite fields.

1. INTRODUCTION

Let P, be the set of monic polynomials of degree d over a finite field
F, of ¢ elements, that are powers of some irreducible polynomial, that
is

Pa={g €Fy[X] : degg=d, g =",
h € F,[X] monic and irreducible, k =1,2,..., }.

For a root «v of an irreducible polynomial f € F,[X] of degree n, thus
F,(a) = Fyn, we define

E(a,d) ={g(a) : g€ Pa}.

It is easy to see that for d < n we have

#E(ad) = #Pa = (1+o(1))

as d — 00, see also (3) below.

Following Lu, Wan, Wang and Zhang [6], we now define the directed
Cayley graph &(a,d) on ¢" —1 vertices, labelled by the elements of ..,
where for u,v € F}. the edge u — v exists if and only if u/v € £(a, d).
These graphs are similar to those introduced by Chung [I] however are
a little spraser: they are #P,-regular rather than ¢%-regular as in [I].

It has been shown in [6] that the graphs &(«, d) have very attrac-
tive connectivity properties. In particular, we denote by D(«,d) the
diameter of &(a,d). Using bounds of multiplicative character sum
from [7, Theorem 2.1], Lu, Wan, Wang and Zhang [6] have shown that
for n < ¢%?+1 the graph &(«, d) is connected and its diameter satisfies
the inequality

2n 2log(n — 1)
1 D < 1 1.
(1) (o, d) < ( +dlogq—2log(n—1))+
1
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Here we augment the argument of [6] with some new combinatorial
and analytic considerations and improve the bound ().
First we assume that d > 2.

Theorem 1. For d > 2 and a root o of an irreducible polynomial
f € F,[X] of degree deg f =n with 2d +1 < n < ¢¥/? + 1, we have

2 1 —-1)—1 41 -1
n <1+ og(n —1) ) og(n —1)+7

D(a,d) < — .
(a,d) < d dlogq —2log(n — 1) dlogq —2log(n — 1)

For d = 1 the bound (J) is exactly the same as the bound of Wan [7]
Theorem 3.3] which improves slightly the bound of Chung [I, Theo-
rem 6]. For d = 1, we set A(a) = D(a,1). For a sufficiently large
q, Katz [4, Theorem 1] has improved the results of Chung [I] and
showed that A(a) < n+ 2, provided that ¢ > B(n) for some inexplicit
function B(n) of n. Furthermore, Cohen [2] shows that one can take
B(n) = (n(n + 2)!)? in the estimate of Katz [4].

We also use our idea in the case d = 1 and obtain an improvement
of () and thus of the bounds of Chung [Il Theorem 6] and Wan [7,
Theorem 3.3].

Theorem 2. For a root a of an irreducible polynomial f € F,[X] of
degree deg f =n with 3 <n < ¢"/? + 1, we have

A(a)§2n(1+ log(n — 1) — 1 ) 3log(n — 1) +3

logq — 2log(n — 1) logq —2log(n — 1)

We use the same idea for the proofs of Theorems [I] and 2, however
the technical details are slightly different.

We also note that the additive constants 7 and 3 in the bounds of
Theorems [I] and 2], respectively, can be replaced by a slightly smaller
(but fractional values).

To compre the bound () with Theorems [Il and 2] we assume that
n = ¢+ for some fixed positive ¥ < 1/2.

The Theorems [Il and 2] imply that for any d > 1,

Y

D(a,d) < G — ;Z + 0(1))

Ul 3

while (II) implies a weaker bound

D(a,d) < (1_22194—0(1)) g.
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2. PREPARATION

We define the polynomial analogue of the von Mangoldt function as
follows. For g € F,[X| we define

degh, if g = h* for some irreducible h € F,[X],
Alg) = .
0, otherwise.

Let &, be the set of multiplicative characters of Fy» and let X* =
X, \ {xo0} be the set of non-principal characters; we appeal to [3] for
a background on the basic properties of multiplicative characters, such
as orthogonality.

For any y € X, we also define the character sum

Sad(X) = Y Ag)x (9(a)).
9€P4

A simple combinatorial argument shows that for the principal character
Xo we have

(2) SealXxo) = Y Mg) =¢*,
9€Pq

see, for example, [5, Corollary 3.21].
As in [6], we recall that by [7, Theorem 2.1] we have:

Lemma 3. For any x € X7 we have
[Sa,a(0)] < (n—1)g"2.

We also consider the set Z; of irreducible polynomials of degree d,
that is,

Zs={h eF,X]| : degh=d, h e F,[X] irreducible},

and the sums

Toa(x) = Y x (h(a)).

h€eZy
Our new ingredient is the following bound “on average”.

Lemma 4. Let m = [n/d| — 1. Then
D TaabO™ < mi(g" = 1)(#Za)™
XEXn

Proof. Using the orthogonality of characters, we see that

D TaaC)™ = (¢" = DN,

XEXn
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where N is the number of solutions to the equation

hi(a)...hp(a) = hpyr(a) .. hop (@),

with some hq, ..., hy, € Zy. Since dm < n this implies the identity
hi(X) .. hp(X) = hg1(X) .o hgp (X))

in the ring of polynomials over F,. Thus, using the uniqueness of
polynomial factorisation, we obtain

which concludes the proof. a

Finally, we recall the well-know formula (see, for example, [5, Theo-
rem 3.25])

3 T, = =5 ),

s|d

where p(s) is the Mébius function, that is,

(—1)¥ if s is a product v distinct primes,
0 otherwise.

3. PrRoOOF oF THEOREM [

Let as before m = [n/d] — 1. For an integer & > 2m and v € F},, we
consider

My (o, d;v) = > S AMar) - AMgi—zm)-

915--39k—2mEPd h1,....hom €Ly
91()...gk—2m (@)h1(a)...ham (a)=v

Clearly, if for some k we have M (a,d;v) > 0 for every v € F}. then
D(a,d) < k.

We now closely follow the same path as in the proof of [6] Theo-
rem 15]. In particular, using the orthogonality of characters we write

My (o, d;v) = ! Z Z Ag1) -+ A(gr—2m)

q"—1
91se-:9k—2m€EPa h1,...;hom €Ly

> x (91(a) - grom(@)ha(a) . ham(@)v7h) .

XEXn
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Changing the order of summation, separating the term corresponding
to xo, and recalling (2]), we derive

qd(k—2m) (#Id)2m

M, d;v) —
k(e d;v) prg
1 B Com -
= = D ) Saad() P Taal)™™
q XEXX
Therefore
My (a, d;v) — 2 (#Za)
" —1
1 Com .
< g 2 1Saab0 T TP

XEX

Using Lemma [3] and then (after extending the summation over all x €
AX,,) using Lemma M we derive

qd(k—2m) (#_’Z‘d)2m
g —1

< m[(n _ 1)k—2qu(k/2—m)(#z-d)m‘
Thus, if for some v € F},. we have Mj(a,d;v) = 0 then

qd(k—Zm) (#Id)zm

‘Mk(av d7 U) o

(4)

< m[(n . 1)k—2qu(k/2—m)(#z-d)m

q" —1 B
or
¢? k
© () -0 - e G
Now, as in the proof of [0 Theorem 9] we note that
d /2
2
Ty > — — .
#la2 7=

Hence () implies that

¢ k .
(n — 1) <ml(n—1)""d™(q" — 1) (1 —2¢7%*) .

Note that since n > 2d + 1, we have m > 2. Hence, by the Stirling
inequality,

(6) m! < V2am T 2emmt/12m < forymt1/2 g—m41/24
Thus, using that m < (n — 1)/d, we see that
(7) mld™ < V2mm?(n — 1)me mH/2,
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Since d > 2 and 2d+1 < n < ¢¥? +1 we have ¢¥/? > 4. Thus ¢%/? > 5.
Furthermore, since m < (n — 1)/2 < ¢#?/2, we also have

(8)  (1—2¢42) "< (1—242) """ < (1-2/5)7 < 36,

Hence, recalling that m < (n —1)/d < (n —1)/2, we derive from (7))
and (8) that

¢ k
( 1) < 3.6V2rmY2(n — 1) mgre M/

S \/7_T(n— 1)—m+1/2qne—m+1/24
< VA (efn — 1)) R e
Since m > (n — 1)/d — 1, we conclude that
1. n

B
mT5 =4

Therefore,
(e(n = 1)) < (e(n — 1)/

which finally implies

f < 2nlogq — (n/d —2)(1 +log(n — 1)) +log(3.6y/m) — 11/24

- dlogq — 2log(n — 1)
nlogqg— (n/d —2)(1 +log(n—1))+ 14
dlogq — 2log(n — 1)

_2n <1 log(n —1) —1 ) 4log(n — 1) +6.8

d dlogq — 2log(n — 1) dlogq — 2log(n — 1)’

which concludes the proof.

<2

4. PROOF OF THEOREM

We now put m = n — 1. Note that the set P; is the set of ¢ linear
polynomials X + u, u € F,. For an integer & > 2m and v € F, we

consider
Ni(a;v) = > 1.

(u1+a)...(ug+a)=v
Clearly, if for some k we have Ni(a;v) > 0 for every v € F;. then
Ala) < k.
Using the same argument as in the proof Theorem [Il we obtain the
following analogue of ()
k

Ni(a;v) — < ml(n — D22 = (n — 1)I(n — 1)k 42k/2,

g —1
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Thus if for some v € F}, we have Nj(a;v) = 0 then

n —

/2 \ k
©) (q 1) < (n—Dl(n— 1)(q" — 1),

The inequality (@) together with the Stirling inequality (@) imply that,
for n > 3,

d/2 \ k
( ¢ 1) <V2m(n — 1)‘"*3/2q"e—"+1+1/12(n—1).
n R

Using the inequality
2 1
log (\/ 27r61+1/12("_1)) = 2—2 + 3 log (27) < 2,
that holds for n > 3, we obtain
nlogg— (n—3/2)log(n —1) —n+2
log g — 2log(n — 1)

o (14 log(n—1) —1 3log(n—1)—|—2’
log g — 2log(n — 1) logg — 2log(n — 1)

k<2

and the result now follows.
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