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CAYLEY GRAPHS GENERATED BY SMALL DEGREE

POLYNOMIALS OVER FINITE FIELDS

IGOR E. SHPARLINSKI

Abstract. We improve upper bounds of F. R. K. Chung and of
M. Lu, D. Wan, L.-P. Wang, X.-D. Zhang on the diameter of some
Cayley graphs constructed from polynomials over finite fields.

1. Introduction

Let Pd be the set of monic polynomials of degree d over a finite field
Fq of q elements, that are powers of some irreducible polynomial, that
is

Pd = {g ∈ Fq[X ] : deg g = d, g = hk,

h ∈ Fq[X ] monic and irreducible, k = 1, 2, . . . , }.
For a root α of an irreducible polynomial f ∈ Fq[X ] of degree n, thus

Fq(α) = Fqn , we define

E(α, d) = {g(α) : g ∈ Pd}.
It is easy to see that for d < n we have

#E(α, d) = #Pd = (1 + o(1))
qd

d

as d → ∞, see also (3) below.
Following Lu, Wan, Wang and Zhang [6], we now define the directed

Cayley graph G(α, d) on qn−1 vertices, labelled by the elements of F∗
qn,

where for u, v ∈ F
∗
qn the edge u → v exists if and only if u/v ∈ E(α, d).

These graphs are similar to those introduced by Chung [1] however are
a little spraser: they are #Pd-regular rather than qd-regular as in [1].
It has been shown in [6] that the graphs G(α, d) have very attrac-

tive connectivity properties. In particular, we denote by D(α, d) the
diameter of G(α, d). Using bounds of multiplicative character sum
from [7, Theorem 2.1], Lu, Wan, Wang and Zhang [6] have shown that
for n < qd/2+1 the graph G(α, d) is connected and its diameter satisfies
the inequality

(1) D(α, d) ≤ 2n

d

(

1 +
2 log(n− 1)

d log q − 2 log(n− 1)

)

+ 1.
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Here we augment the argument of [6] with some new combinatorial
and analytic considerations and improve the bound (1).
First we assume that d ≥ 2.

Theorem 1. For d ≥ 2 and a root α of an irreducible polynomial

f ∈ Fq[X ] of degree deg f = n with 2d+ 1 ≤ n < qd/2 + 1, we have

D(α, d) ≤ 2n

d

(

1 +
log(n− 1)− 1

d log q − 2 log(n− 1)

)

+
4 log(n− 1) + 7

d log q − 2 log(n− 1)
.

For d = 1 the bound (1) is exactly the same as the bound of Wan [7,
Theorem 3.3] which improves slightly the bound of Chung [1, Theo-
rem 6]. For d = 1, we set ∆(α) = D(α, 1). For a sufficiently large
q, Katz [4, Theorem 1] has improved the results of Chung [1] and
showed that ∆(α) ≤ n+2, provided that q ≥ B(n) for some inexplicit
function B(n) of n. Furthermore, Cohen [2] shows that one can take
B(n) = (n(n + 2)!)2 in the estimate of Katz [4].
We also use our idea in the case d = 1 and obtain an improvement

of (1) and thus of the bounds of Chung [1, Theorem 6] and Wan [7,
Theorem 3.3].

Theorem 2. For a root α of an irreducible polynomial f ∈ Fq[X ] of
degree deg f = n with 3 ≤ n < q1/2 + 1, we have

∆(α) ≤ 2n

(

1 +
log(n− 1)− 1

log q − 2 log(n− 1)

)

+
3 log(n− 1) + 3

log q − 2 log(n− 1)
.

We use the same idea for the proofs of Theorems 1 and 2, however
the technical details are slightly different.
We also note that the additive constants 7 and 3 in the bounds of

Theorems 1 and 2, respectively, can be replaced by a slightly smaller
(but fractional values).
To compre the bound (1) with Theorems 1 and 2, we assume that

n = q(ϑ+o(1))d for some fixed positive ϑ < 1/2.
The Theorems 1 and 2, imply that for any d ≥ 1,

D(α, d) ≤
(

2− 2ϑ

1− 2ϑ
+ o(1)

)

n

d
,

while (1) implies a weaker bound

D(α, d) ≤
(

2

1− 2ϑ
+ o(1)

)

n

d
.
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2. Preparation

We define the polynomial analogue of the von Mangoldt function as
follows. For g ∈ Fq[X ] we define

Λ(g) =

{

deg h, if g = hk for some irreducible h ∈ Fq[X ],

0, otherwise.

Let Xn be the set of multiplicative characters of Fqn and let X ∗
n =

Xn \ {χ0} be the set of non-principal characters; we appeal to [3] for
a background on the basic properties of multiplicative characters, such
as orthogonality.
For any χ ∈ Xn we also define the character sum

Sα,d(χ) =
∑

g∈Pd

Λ(g)χ (g(α)) .

A simple combinatorial argument shows that for the principal character
χ0 we have

(2) Sα,d(χ0) =
∑

g∈Pd

Λ(g) = qd,

see, for example, [5, Corollary 3.21].
As in [6], we recall that by [7, Theorem 2.1] we have:

Lemma 3. For any χ ∈ X ∗
n we have

|Sα,d(χ)| ≤ (n− 1)qd/2.

We also consider the set Id of irreducible polynomials of degree d,
that is,

Id = {h ∈ Fq[X ] : deg h = d, h ∈ Fq[X ] irreducible},
and the sums

Tα,d(χ) =
∑

h∈Id

χ (h(α)) .

Our new ingredient is the following bound “on average”.

Lemma 4. Let m = ⌈n/d⌉ − 1. Then
∑

χ∈Xn

|Tα,d(χ)|2m ≤ m!(qn − 1)(#Id)
m.

Proof. Using the orthogonality of characters, we see that
∑

χ∈Xn

|Tα,d(χ)|2m = (qn − 1)N,
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where N is the number of solutions to the equation

h1(α) . . . hm(α) = hm+1(α) . . . h2m(α),

with some h1, . . . , h2m ∈ Id. Since dm < n this implies the identity

h1(X) . . . hm(X) = hm+1(X) . . . h2m(X)

in the ring of polynomials over Fq. Thus, using the uniqueness of
polynomial factorisation, we obtain

W ≤ m!(#Id)
m,

which concludes the proof. ⊓⊔

Finally, we recall the well-know formula (see, for example, [5, Theo-
rem 3.25])

(3) #Id =
1

d

∑

s|d

µ(s)qd/s,

where µ(s) is the Möbius function, that is,

µ(s) =

{

(−1)ν if s is a product ν distinct primes,

0 otherwise.

3. Proof of Theorem 1

Let as before m = ⌈n/d⌉− 1. For an integer k > 2m and v ∈ F
∗
qn we

consider

Mk(α, d; v) =
∑

g1,...,gk−2m∈Pd

∑

h1,...,h2m∈Id
g1(α)...gk−2m(α)h1(α)...h2m(α)=v

Λ(g1) . . .Λ(gk−2m).

Clearly, if for some k we have Mk(α, d; v) > 0 for every v ∈ F
∗
qn then

D(α, d) ≤ k.
We now closely follow the same path as in the proof of [6, Theo-

rem 15]. In particular, using the orthogonality of characters we write

Mk(α, d; v) =
1

qn − 1

∑

g1,...,gk−2m∈Pd

∑

h1,...,h2m∈Id

Λ(g1) . . .Λ(gk−2m)

∑

χ∈Xn

χ
(

g1(α) . . . gk−2m(α)h1(α) . . . h2m(α)v
−1
)

.
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Changing the order of summation, separating the term corresponding
to χ0, and recalling (2), we derive

Mk(α, d; v)−
qd(k−2m)(#Id)

2m

qn − 1

=
1

qn − 1

∑

χ∈X ∗

n

χ(v−1)Sα,d(χ)
k−2mTα,d(χ)

2m.

Therefore
∣

∣

∣

∣

Mk(α, d; v)−
qd(k−2m)(#Id)

2m

qn − 1

∣

∣

∣

∣

≤ 1

qn − 1

∑

χ∈X ∗

n

|Sα,d(χ)|k−2m |Tα,d(χ)|2m .

Using Lemma 3 and then (after extending the summation over all χ ∈
Xn) using Lemma 4, we derive

∣

∣

∣

∣

Mk(α, d; v)−
qd(k−2m)(#Id)

2m

qn − 1

∣

∣

∣

∣

≤ m!(n− 1)k−2mqd(k/2−m)(#Id)
m.

(4)

Thus, if for some v ∈ F
∗
qn we have Mk(α, d; v) = 0 then

qd(k−2m)(#Id)
2m

qn − 1
≤ m!(n− 1)k−2mqd(k/2−m)(#Id)

m

or

(5)

(

qd/2

n− 1

)k

≤ m!(n− 1)−2m(qn − 1)qm(#Id)
−m.

Now, as in the proof of [6, Theorem 9] we note that

#Id ≥
qd

d
− 2qd/2

d
.

Hence (5) implies that
(

qd/2

n− 1

)k

≤ m!(n− 1)−2mdm(qn − 1)
(

1− 2q−d/2
)−m

.

Note that since n > 2d + 1, we have m ≥ 2. Hence, by the Stirling
inequality,

(6) m! ≤
√
2πmm+1/2e−m+1/12m ≤

√
2πmm+1/2e−m+1/24.

Thus, using that m ≤ (n− 1)/d, we see that

(7) m!dm ≤
√
2πm1/2(n− 1)me−m+1/24.
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Since d ≥ 2 and 2d+1 ≤ n < qd/2+1 we have qd/2 > 4. Thus qd/2 ≥ 5.
Furthermore, since m ≤ (n− 1)/2 < qd/2/2, we also have

(8)
(

1− 2q−d/2
)−m ≤

(

1− 2q−d/2
)−qd/2/2 ≤ (1− 2/5)−5/2 < 3.6.

Hence, recalling that m ≤ (n − 1)/d ≤ (n − 1)/2, we derive from (7)
and (8) that

(

qd/2

n− 1

)k

< 3.6
√
2πm1/2(n− 1)−mqne−m+1/24

≤
√
π(n− 1)−m+1/2qne−m+1/24

≤
√
π (e(n− 1))−m+1/2 qne−11/24.

Since m ≥ (n− 1)/d− 1, we conclude that

m− 1

2
≥ n

d
− 2.

Therefore,

(e(n− 1))−m+1/2 ≤ (e(n− 1))−n/d+2 ,

which finally implies

k ≤ 2
n log q − (n/d− 2)(1 + log(n− 1)) + log(3.6

√
π)− 11/24

d log q − 2 log(n− 1)

≤ 2
n log q − (n/d− 2)(1 + log(n− 1)) + 1.4

d log q − 2 log(n− 1)

=
2n

d

(

1 +
log(n− 1)− 1

d log q − 2 log(n− 1)

)

+
4 log(n− 1) + 6.8

d log q − 2 log(n− 1)
,

which concludes the proof.

4. Proof of Theorem 2

We now put m = n − 1. Note that the set P1 is the set of q linear
polynomials X + u, u ∈ Fq. For an integer k > 2m and v ∈ F

∗
qn we

consider
Nk(α; v) =

∑

u1,...,uk∈Fq

(u1+α)...(uk+α)=v

1.

Clearly, if for some k we have Nk(α; v) > 0 for every v ∈ F
∗
qn then

∆(α) ≤ k.
Using the same argument as in the proof Theorem 1, we obtain the

following analogue of (4)
∣

∣

∣

∣

Nk(α; v)−
qk

qn − 1

∣

∣

∣

∣

≤ m!(n− 1)k−2mqk/2 = (n− 1)!(n− 1)k−2n+2qk/2.
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Thus if for some v ∈ F
∗
qn we have Nk(α; v) = 0 then

(9)

(

q1/2

n− 1

)k

≤ (n− 1)!(n− 1)−2n+2(qn − 1).

The inequality (9) together with the Stirling inequality (6) imply that,
for n ≥ 3,

(

qd/2

n− 1

)k

≤
√
2π(n− 1)−n+3/2qne−n+1+1/12(n−1).

Using the inequality

log
(√

2πe1+1/12(n−1)
)

=
25

24
+

1

2
log (2π) ≤ 2,

that holds for n ≥ 3, we obtain

k ≤ 2
n log q − (n− 3/2) log(n− 1)− n+ 2

log q − 2 log(n− 1)

= 2n

(

1 +
log(n− 1)− 1

log q − 2 log(n− 1)

)

+
3 log(n− 1) + 2

log q − 2 log(n− 1)
,

and the result now follows.
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