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POLYNOMIAL VALUES IN SUBFIELDS AND AFFINE

SUBSPACES OF FINITE FIELDS

OLIVER ROCHE-NEWTON AND IGOR E. SHPARLINSKI

Abstract. For an integer r, a prime power q, and a polynomial f
over a finite field Fqr of qr elements, we obtain an upper bound on
the frequency of elements in an orbit generated by iterations of f
which fall in a proper subfield of Fqr . We also obtain similar results
for elements in affine subspaces of Fqr , considered as a linear space
over Fq.

1. Introduction

1.1. Background. For a prime power q and an integer r > 1 we con-
sider finite fields K = Fq and F = Fqr of q and qr elements, respectively.
The motivation behind this work comes from some questions of poly-

nomial dynamics, however to address these questions we first obtain
new results which fall in the domain of additive combinatorics as are
of independent interest.
More precisely, given a polynomial f ∈ F[X ] and an element u ∈ F,

we define the orbit

(1) Orbf (u) = {f (n)(u) : n = 0, 1, . . .},

where f (n) is the nth iterate of f , that is,

f (0) = X, f (n) = f(f (n−1)), n ≥ 1.

Here we consider the question about the frequency of elements in orbits
Orbf(u) that fall in the proper subfield K ⊆ F. Our first result is based
on some combinatorial argument and shows that unless some iterate
f (s) of f is defined over F (for a rather small s) then the frequency of
this event is low.
Furthermore, we also study the frequency of orbit elements that fall

in an affine subspace of F considered as a linear vector space over K.
This question is motivated by a recent work of Silverman and Viray [25]
(in characteristic zero and using a very different technique), see also [1].
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Using new results from additive combinatorics we obtain a lower bound
on the dimension of an affine space that may contain N consecutive
elements in an orbit. This result may also be considered as an analogue
of the results on the diameters of polynomial orbits in prime fields Fp,
see [6, 7, 8, 10, 14]. More precisely, in [6, 7, 8, 10, 14] various lower
bounds are given on the length H of the shortest interval [a+1, a+H ]
that contains residues modulo p of the N consecutive iterations f (n)(u),
n = 0, . . . , N − 1.
There are also related results where bounds on the size of the inter-

section # (f(A) ∩ B) are given, where A and B are some ‘interesting’
sets and f(A) = {f(a) : a ∈ A} is the value set of a polynomial f
on A; see [8, 10] for the case when both sets A and B are intervals of
consecutive integers and [13, 24] for the case when A is such an interval
and B is a multiplicative subgroup of Fp. Unfortunately in the very
interesting case when both sets A and B are subgroups of Fq no results
are known. We also note that bounds on # (f(A) ∩ B) for intervals A
and B play an important role in the analysis of some algorithms [9].
Finally, we also mention that the intersection of L−1 ∩ M for two

linear subspaces of F over K has been studied by Mattarei [17, 18]
by using different methods (certainly 0 should be discarded from L in
the definition of L−1). It is quite likely that the methods of additive
combinatorics can be applied to this question as well.

1.2. Our results. Here we consider affine subspaces in high degree
extensions of finite fields as natural analogues of intervals. To obtain
results about orbits in affine subspaces of F, we extend a result of
Bukh and Tsimerman [5] on a polynomial version of the celebrated
sum-product theorem to the case of arbitrary finite fields.
Recall that Bukh and Tsimerman [5, Theorem 1] give a lower bound

on max{#(A + A),#(f(A) + f(A))} for subsets A of prime fields.
Their technique can be extended to arbitrary fields. However, moti-
vated by our application we obtain a result of this kind with multifold
sums of the set A, see Theorem 4 below, which in turn gives stronger
versions of our principal results. We believe that this result and some
technical innovations in its proof can be of independent interest as well
and may have several other applications. For example, using this result
we derive an upper bound on the intersection # (A ∩ f(A)) of an affine
subspace A of F over K and its polynomial image f(A), see Theorem 7
below.
Furthermore, let us define the dimension dimS of a set S ⊆ F as

the smallest dimension of all affine subspaces of F over K that contain
S. In Corollary 5 we obtain a lower bound on dim f(A) for an affine



POLYNOMIAL VALUES IN SUBFIELDS AND AFFINE SUBSPACES 3

subspace A of F over K. Questions of this type sometimes appear in
theoretical computer science, see [2, 3] and references therein. Note
that some results of this kind for very special affine subspaces are also
given in [11].
Finally, as we have mentioned, we apply these results to achieve our

main goal: bound on the frequency of polynomial orbits in subspaces.

1.3. Notation. Throughout the paper, any implied constants in the
symbols O, ≪ and ≫ may depend on deg f . We recall that the nota-
tions U = O(V ), U ≪ V and V ≫ U are all equivalent to the statement
that the inequality |U | ≤ cV holds with some constant c > 0.

2. Polynomial Version of Sum-Product Estimates

2.1. Preparations. We now obtain a version of the result of Bukh
and Tsimerman [5, Theorem 1] for polynomials over arbitrary finite
fields.
As usual given m sets A1, . . . ,Am ⊆ F and a polynomial

F (X1, . . . , Xm) ∈ F[X1, . . . , Xm],

we define the set

F (A1, . . . ,Am) = {F (a1, . . . , am) : (a1, . . . , am) ∈ (A1 × . . .×Am)}.

In particular, A+A and A · A are the sum set and the product set
of A, respectively.
We note that in our version of [5, Theorem 1] we use the set A+A+

A +A −A −A −A −A instead of A + A and f(A)− f(A) instead
of f(A) + f(A), which leads for stronger expansion factor and is more
suitable for our applications.
Throughout, the notation A : B is used to denote the ratio set (as-

suming that B ⊆ F∗). Furthermore, we need the idea of a restricted

ratio set . Namely, if E ⊆ A×B, then the ratio set of A and B restricted
to E is the set

A
E
: B = {a/b : (a, b) ∈ E}.

The following result is a small modification of [16, Theorem 1.4]. The
necessary sum-ratio estimate is mentioned (without a proof) in [16]; a
full proof can be found in [19].

Lemma 1. Let A be a subset of F with the property that for any subfield

G, and any a ∈ F,

#(A ∩ aG) ≤ max

{

(#G)1/2,
#A

8

}

.
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Then either,

(#(A : A))4 (#(A+A+A+A))5 ≫ (#A)10

or

(#(A : A))5 (#(A+A+A+A))4 ≫ (#A)10.

We also define

A
E

− B = {a− b : (a, b) ∈ E}.

Furthermore, we extend in a natural way the definition of the sum set
A+B and difference set A−B to subsets of an arbitrary group, written
additively.
We also require a version of the Balog-Szemerédi-Gowers Theorem.

The following result is essentially given in [4, Lemma 2.2]. Note that
in the statement of [4, Lemma 2.2] it is assumed that the group in
question is the additive group of the prime field Fp, however, one can
verify that the same proof works for an arbitrary group G.

Lemma 2. Let G be an arbitrary group, written additively, and let

U ,V ⊆ G. Let E ⊆ U × V such that

#E ≥
#U#V

K
.

for some real K ≥ 1. Then there exists a subset U0 ⊆ U such that

#U0 ≥
#U

10K
and #

(

U
E

− V

)4

≥
#(U0 − U0)#U(#V)2

104K5
.

Finally, we use a form of the Plünnecke-Ruzsa inequality which fol-
lows from [20, Theorem 1.1.1] (see also [5, Lemma 9]).

Lemma 3. Let G be an arbitrary group, written additively, and let

U ⊆ G. Then

#(U + U − U − U)4 ≤

(

#(U − U)

#U

)4

#U .

2.2. Main result. Let p be the characteristic of F = Fqr .

Theorem 4. Let A be a subset of F with the property that, for any

subfield G ⊆ F and any a ∈ F,

#((A−A) ∩ aG) ≤ max

{

(#G)1/2,
#A1−ϑd

8

}

.
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Then, for any polynomial f ∈ F[X ] of degree d = deg f with p > d ≥ 2
we have

max{#(A+A+A+A−A−A−A−A),#(f(A)− f(A))}

≥ cd(#A)1+ηd ,

where η2 = ϑ2 = 1/69, and c2 = c for some absolute constant c > 0
and then

ηd =
ηd−1

5 + ηd−1
, ϑd = ϑd−1 + ηd − ϑd−1ηd, cd =

(cd−1

d3

)1/(5+ηd−1)

for d ≥ 3.

Proof. Let #A = M . We define α, β, γ and ξ by the relations:

#(A+A) = αM, #(A−A) = βM, #(f(A)− f(A)) = ξM.

and

#(A+A+A+A−A−A−A−A) = γM

The proof uses induction on d.
Consider first the base case d = 2. In this case the condition on the

set A is simply

(2) # ((A−A) ∩ aG) ≤ max

{

(#G)1/2,
(#A)1−η2

8

}

.

Without loss of generality, we can assume that the polynomial f is
monic and with the zero constant coefficient, since the cardinality of
f(A)− f(A) does not vary under these changes to f . The polynomial
f can then be written as f(x) = x2 + bx, for some b ∈ F. Note that,
for any x, y ∈ A,

(3) f(x)− f(y) = x2 + bx− y2 − by = (x− y)(x+ y + b).

Next, define a set E ⊆ (A−A)× (A+A+ b)−1 by the equation

E = {(x− y, (x+ y + b)−1) : x, y ∈ A, x+ y + b 6= 0}.

Note that for p > 2 each pair (x, y) with x, y ∈ A and x+ y + b 6= 0
leads to a different element of E . Hence

(4) #E ≥ M2 −M ≥
M2

2
=

# (A−A)# (A+A+ b)

2αβ
.

Moreover, by (3) we have

(5) (A−A)
E
: (A+A+ b)−1 ⊆ f(A)− f(A),

where we define

(A+A+ b)−1 = {(x+ y + b)−1 : x, y ∈ A, x+ y + b 6= 0}.
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We now apply Lemma 2 in this setting, with with the group G = F∗,
the sets

U = (A−A)\{0} and V = (A+A+ b)−1,

and thus, by (4), with K = 2αβ. Without loss of generality we can
assume that #A ≥ 2, so # (A−A) ≥ #A ≥ 2, and thus

# (A−A)− 1 ≥
1

2
# (A−A) .

Hence there exists a subset A0 ⊆ A−A such that

(6) #A0 ≥
#(A−A)− 1

20αβ
≥

#(A−A)

40αβ
=

M

40α

and

#
(

(A−A)
E
: (A+A+ b)−1

)4

≥
#(A0 : A0)α

2βM3

104(2αβ)5

=
#(A0 : A0)M

3

32 · 104α3β4
.

Applying the upper bound on the restricted ratio set which comes
from (5), and simplifying, gives

α3β4ξ4M ≥
#(A0 : A0)

32 · 104
.

If α > Mη2/40 there is nothing to prove. Otherwise we see from (6)
that #A0 ≥ M1−η2 . Note that it now follows from (2) that

# (A0 ∩ aG) ≤ #((A−A) ∩ aG)

≤ max

{

(#G)1/2,
M1−η2

8

}

≤ max

{

(#G)1/2,
#A0

8

}

.

Therefore Lemma 1 applies to A0 and if interpreted as a lower bound
for # (A0 : A0) yields either

(7) (# (A0 +A0 +A0 +A0))
5 α12β16ξ16M4 ≫ (#A0)

10 ≫
M10

α10
,

or

(8) (# (A0 +A0 +A0 +A0))
4 α15β20ξ20M5 ≫ (#A0)

10 ≫
M10

α10
.

Note that

A0 +A0 +A0 +A0 ⊆ A+A+A+A−A−A−A−A,
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so that #(A0 + A0 + A0 + A0) ≤ γM . It is also straightforward to
check that α, β ≤ γ. Putting this information into (7), we conclude
that

(9) γ43ξ16 ≫ M.

On the other hand, the inequality (8) gives

(10) γ49ξ20 ≫ M.

Since (9) also implies (10) it can be concluded that

max{#(A+A+A+A−A−A−A−A),#(f(A)− f(A))}

≫ (#A)1+
1

69 .

Taking a sufficiently small value of c we obtain the desired result for
d = 2, which concludes the base case.
Now assume that the result holds with d− 1 instead of d.
Let

r(t) = #{(x, y) ∈ A×A : t = x− y}.

Since
∑

t∈A−A

r(t) = M2,

it follows that there exists some t ∈ A−A such that

r(t) ≥
M2

#(A−A)
=

M

β
.

Define B = {a ∈ A : a + t ∈ A}, and so

(11) #B ≥ M/β.

Now, if β > Mηd then there is nothing to prove. Otherwise we have

(12) #B ≥ M/β ≥ M1−ηd .

We now define a new polynomial g(X) = f(X + t)− f(X), and note
that deg g = d− 1 as deg f < p. It is easy to check that B satisfies the
subfield intersection conditions. Indeed, using (12) we derive

# ((B − B) ∩ aG) ≤ #((A−A) ∩ aG) ≤ max

{

(#G)1/2,
M1−ϑd

8

}

≤ max

{

(#G)1/2,
(#B)(1−ϑd)/(1−ηd)

8

}

= max

{

(#G)1/2,
(#B)1−ϑd−1

8

}

.
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So the inductive hypothesis can be applied with g and B. There are
two possibilities; either

(13) # (g(B)− g(B)) ≥ cd−1 (#B)1+ηd−1

or

(14) # (B + B + B + B − B − B − B − B) ≥ cd−1 (#B)1+ηd−1 .

If (13) holds, we note that g(B)−g(B) ⊆ f(A)+f(A)−f(A)−f(A).
Also, by Lemma 3, we have

# (f(A) + f(A)− f(A)− f(A)) ≤
(# (f(A)− f(A)))4

(#f(A))3
.

So, using the trivial bound #f(A) ≥ M/d, we obtain

cd−1 (#B)1+ηd−1 ≤ d3ξ4M.

Recalling (11) we derive

cd−1d
−3Mηd−1 ≤ β1+ηd−1ξ4.

Therefore

max{β, ξ} ≥
(

cd−1d
−3Mηd−1

)1/(5+ηd−1) ,

and so the desired result holds.
If (14) holds, then it follows from the fact that B ⊆ A that

cd−1 (#B)1+ηd−1 ≤ γM ≤ γMd3.

By applying (11), we derive

cd−1d
−3Mηd−1 ≤ β1+ηd−1γ.

Therefore, using the fact that γ ≥ β we obtain

max{γ, ξ} ≥ γ ≥
(

cd−1d
−3Mηd−1

)1/(2+ηd−1) ,

and so in this case the desired result holds as well. This closes the
induction and concludes the proof. ⊓⊔

It is easy to see that

lim
d→∞

log ηd
d

= − log 5.

Note that a similar result can also be obtained for the exponent of the
bound of Bukh and Tsimerman [5, Theorem 1] (instead of 16−1 · 6−d).
This in turn implies that

lim
d→∞

log cd
log d

= −3.
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We now recall the definition of the dimension dimS of a set S ⊆ F as
the smallest dimension of all affine subspaces of F over K that contain
S.

Corollary 5. Let f ∈ F[X ] be of degree d = deg f with p > d ≥ 2. Let
A ⊆ F be an affine subspace of dimension s over K such that for any

subfield G ⊆ F and any a ∈ F, we have

#(L ∩ aG) ≤ max

{

(#G)1/2,
qs(1−ϑd)

8

}

,

where A = b+ L for some b ∈ F and a linear subspace L ⊆ F. Then

dim f(A) ≥ (1 + ηd + o(1)) dimA,

as #A → ∞ where ηd and ϑd are as in Theorem 4.

Proof. Since we obviously have #(A+A+A+A−A−A−A−A) =
#A and A − A = L, then Theorem 4 implies # (f(A)− f(A))} ≥
cd(#A)1+ηd and the result follows. ⊓⊔

2.3. Some remarks on Theorem 4. Regarding the condition in The-
orem 4 that the degree of f satisfies d ≤ p, we note that some condition
is necessary in order to account for the possibility that our polynomial
f is additive. If f has the property that f(x+ y) = f(x) + f(y) for all
x, y ∈ L, then we can take A to be an affine subspace of F and observe
that #(A +A),#(f(A) + f(A)) ≪ #A. For example, if f(X) = Xp,
then f is an additive polynomial, and this is why the inductive argu-
ment breaks down at this point.
The condition that A−A does not have an overly large intersection

with a dilate of a subfield is needed in order to apply the sum-product
estimate from [16]. Again, some condition of this kind is necessary,
since it could be the case that A = G for some subfield G ⊆ F. Then,
if the coefficients of f are all taken from G, we obviously have

A+A+A+A−A−A−A−A, f(A)− f(A) ⊆ A,

and so the estimate in Theorem 4 does not hold. It seems likely that the
result holds under the cleaner condition that A does not have an overly
large intersection with any subfield. We note that if #A ≥ (#F)1/2,
then this simplification of the condition can be obtained, since one
does not need to worry about the subfield intersection conditions in
the sum-product estimate for larger subsets of a finite field. Sum-
product estimates for large subsets of a finite field can be found in [12]
and [26].
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It remains an interesting and open problem to give a full classification
of the polynomials f and sets A for which

max{#(A+A),#(f(A)− f(A))} = (#A)1+o(1),

as #A → ∞.

3. Distribution of Polynomial Orbits

3.1. Polynomials orbits in subfields. Clearly, for any u ∈ F, the
orbit (1) is a finite set as the sequence f (n)(u), n = 0, 1, . . ., is eventually
periodic. Let Tu = #Orbf(u) be the size of the orbit.
We now show that if a segment of an orbit of length N ≤ Tu has a

large intersection with K then there is an iterate of f which is defined
over K.
We note that the argument of this section works for any fields K ⊆ F,

not necessary finite fields.

Theorem 6. Let f ∈ F[X ] be of degree d ≥ 1 and let u ∈ F. Assume

that for some real η > 0 and an integer N ≤ Tu we have

#{0 ≤ n < N : f (n)(u) ∈ K} ≥ c(d)
N

logN
+ 1,

where c(d) = 2 log(4d). Then for some integer k we have f (k)(X) ∈
K[X ].

Proof. Let 1 ≤ n1 < . . . < nM ≤ N be all values with the property
that f (ni)(u) ∈ K. We denote by A(h) the number of i = 1, . . . ,M − 1
with ni+1 − ni = h. Clearly

N
∑

h=1

A(h) = M − 1 and

N
∑

h=1

A(h)h = nM − n1 ≤ N.

Thus for any integer H ≥ 1 we have

H
∑

h=1

A(h) = M − 1−

N
∑

h=H+1

A(h)

≥ M − 1− (H + 1)−1
N
∑

h=H+1

A(h)h ≥ M − 1− (H + 1)−1N.

Hence there exists k ∈ {1, . . . , H} with

(15) A(k) ≥ H−1
(

M − 1− (H + 1)−1N
)

.

We now set

H =

⌊

2N

(M − 1)

⌋

.
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Clearly H ≥ 1. Then

H−1
(

M − 1− (H + 1)−1N
)

≥
M − 1

2H
≥

N

H(H + 1)

and we derive from (15) that

(16) A(k) ≥
N

H(H + 1)
.

Assume that dk ≥ A(k). Then the inequality (16) implies that

dH ≥ dk ≥
N

H(H + 1)
.

Since H < H + 1 ≤ 2H for H ≥ 1, we derive

(4d)H > H(H + 1)dH ≥ N

which in turn implies that

2N

(M − 1)
≥ H >

logN

log(4d)

which contradicts our assumption on the frequency of orbit elements
that belong to K.
Therefore, dk < A(k).
Let J be the set of j ∈ {0, . . . ,M − 1} with nj+1 − nj = k. Then

we have

f (nj)(u) ∈ K and f (nj+1)(u) = f (k)
(

f (nj)(u)
)

∈ K.

Since

deg f (k) = dk < A(k) = #J

we now see that f (k)(w) ∈ K for more than deg f (k) elements w ∈
K. Then by Lagrange interpolation we have f (k)(X) ∈ K[X ], which
concludes the proof. ⊓⊔

3.2. Polynomials orbits in affine subspaces. As before we denote
by p the characteristic of F = Fqr .

Theorem 7. Let f ∈ F[X ] be of degree d = deg f with p > d ≥ 2 and

let A ⊆ F be an affine subspace of dimension s over K such that for

any subfield G ⊆ F and any a ∈ F we have

#(L ∩ aG) ≤ max

{

(#G)1/2,
qs(1−ρd)

8

}

,

where A = b+ L for some b ∈ F and a linear subspace L ⊆ F. Then

#(A ∩ f(A)) ≪ qs(1−κd),
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where

κd =
ηd

1 + ηd
and ρd = ηd + ϑd − ηdϑd,

and ηd and ϑd are as in Theorem 4.

Proof. Let S = A ∩ f(A). Now, for each s ∈ S we choose an element
a ∈ A with f(a) = s. Let A be this set, so that #S = #A.
It is obvious that

A+A+A+A−A−A−A−A ⊆ L

and also
f(A)− f(A) ⊆ S − S ⊆ L.

If #A < qs(1−ηd) there is nothing to prove. Otherwise

#A1−ϑd ≥ qs(1−ηd)(1−ϑd) = #L1−ρd

Hence, since A−A ⊆ L we have

# ((A−A) ∩ aG)) ≤ #(L ∩ aG) ≤ max

{

(#G)1/2,
#L1−ρd

8

}

≤ max

{

(#G)1/2,
#A1−ϑd

8

}

for any a ∈ F. Therefore Theorem 4 applies to the set A and implies
that

#L ≫ (#A)1+ηd

from which we immediately derive the result. ⊓⊔

Corollary 8. Let f ∈ F[X ] be of degree d = deg f with p > d ≥ 2. Let
A ⊆ F be an affine subspace of dimension s over K such that for any

subfield G ⊆ F and any a ∈ F we have

#(L ∩ aG) ≤ max

{

(#G)1/2,
qs(1−ρd)

8

}

,

where A = b + L for some b ∈ F and a linear subspace L ⊆ F. If for

some u ∈ F and an integer N with 2 ≤ N ≤ Tu we have

f (n)(u) ∈ A, n = 0, . . . , N − 1,

then

qs ≫ N1+ηd ,

where ηd and ρd are as in Theorems 4 and 7, respectively.

Proof. Let R = {f (n)(u) : n = 1, . . . , N − 1}. Then clearly, under the
condition of the theorem, we have R ⊆ A∩ f(A). Using Theorem 7 we
derive the result. ⊓⊔
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4. Comments

It is certainly interesting to obtain a multiplicative analogue of Theo-
rem 4 for the sets A·A and f(A)·f(A) (and their multifold analogues).
A result of this type can be used to study the distribution of polynomial
orbits in subgroups. We note that even over prime fields this question
is still widely open, see [23]. It is related to the aforementioned open
problem of estimating the size of the intersection f (G) ∩ H for two
multiplicative subgroups G,H ⊆ F∗. The case when G = H is of di-
rect relevance to studying orbits of dynamical systems in subgroups. It
seems plausible that the method of Heath-Brown and Konyagin [15],
that has recently been advanced by Shkredov [21, 22], is able to yield
such results over prime fields.
Studying rational functions instead of polynomials is an interesting

direction as well.
The methods of proofs of Theorems 6 and 7 do not seem to extend to

multivariate polynomials and it is very desirable to find an alternative
approach.
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