A MIXED MOCK MODULAR SOLUTION OF KANEKO — ZAGIER
EQUATION

P. GUERZHOY

ABSTRACT. The notion of mixed mock modular forms was recently introduced by Don
Zagier. We show that certain solutions of Kaneko - Zagier differential equation constitute
simple yet non-trivial examples of this notion. That allows us to address a question posed
by Kaneko and Koike on the (non)-modularity of these solutions.

1. INTRODUCTION

The differential equation

(K7) r) -y + HEEL

E} =

. By (7) =0

initially appeared in the paper by Kaneko and Zagier [10] in the connection with supersin-
gular j-invariants. Here and throughout 7 = x + iy with y > 0 is a variable in the upper
half-plane 9, and as in [10, 6], the symbol ’ denotes the differentiation with respect to 2mir,
specifically f":= (2mi)~!df /dr. The Eisenstein series E}, is defined by

) =1- 2 [ Sa ) o

Fn>1 \ dn

where ¢ := exp(2miT) and By, is the k-th Bernoulli number. We denote by M, the space of
modular forms of weight k£ on SLy(Z). In particular, E) € M for even integer k > 2, while
Ey ¢ My, is a weight 2 quasi-modular form.

Equation (K Z) was further investigated in a series of papers by Kaneko and Koike [6,
7,8, 9]. The general theory of differential equations predicts the existence of two linearly
independent holomorphic solutions of (K Zy) locally. In many cases two global linearly
independent holomorphic solutions of this equation were found (see [10, Theorem 5] and [6,
Theorem 1]), and these solutions turn out to be modular forms. In contrast, in the case when
k is an even integer congruent to 0 or 4 modulo 6 (that is the case initially considered in
[10]) only one solution, f; € M) was found. On the basis of numerical experiments, Kaneko
and Koike conjecture in [6], in particular, that the second solution is not modular, and called
for the investigation of its arithmetic nature. In fact, it is not obvious even that there exist
a second global holomorphic solution on §) in this case. (The fact that all solutions already
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found are indeed global, i.e. are holomorphic functions on §), is clear since these solutions
are written down explicitly in [10, 6].)

On the other hand, Zagier recently introduced a notion of mized mock modular forms,
which are certain holomorphic functions on $). The definition is given in a preprint by
A.Dabholkar, S. Murthy, and D. Zagier [3, Section 7.3]. In his lecture at “Mock theta func-
tions and applications in combinatorics, algebraic geometry, and mathematical physics” May
2009 conference at MPI Bonn, Zagier justified introduction of the new notion by important
examples such as indefinite theta series and Gaiotto function related to super Liouville el-
liptic genus. These examples are quite complicated. The primary goal of this note is to
present a rather simple yet non-trivial example: a second solution of equation KZj in the
case when £ = 4 mod 6. In contrast, in the case when £ = 0 mod 6, although a second
solution of (K Zj) is also a holomorphic function on §, is bounded at ico, and has a quite
similar behavior under the action of SLy(Z), this function is not a mixed mock modular
form. We also shed some light on the question of Kaneko and Koike mentioned above in the
case when £ =0 or 4 mod 6 (see Corollary 1 below).

We introduce and discuss in some details Zagier’s definition of mixed mock modular forms
in Section 3, and we denote by M, ,(x1, x2) the space of mixed mock modular forms of even
integer weights (u,v) on SLy(Z) with Nebentypus (x1, x2). In order to state the principal
result of this paper we introduce some notations, and provide a specific example of a mixed
mock modular form now.

Let X

n(r)=q= [J(1-¢")
n>1
be Dedekind’s n-function. Throughout x is the homomorphism of SLy(Z) to the group of
sixth roots of unity defined by

(1) x(o) = (67-1:_(;)(;;2(7‘) for o= ( Z ) € SLy(Z).

a
c

We denote by Mj(x) the space of modular forms on SLy(Z) with Nebentypus x, in particular,

n* € Ma(x). Let hy be the meromorphic function on § such that lim, .« hs(7) = 0, and

n20

E?’
The existence of hy follows from Proposition 3 below. The function f;, = E4 € M, is a
solution of (KZj) for k = 4. We show, in particular, (see Proposition 2 and Proposition
4 for details) that Ejhy € Myo(triv,x) is also a solution of (KZ) for k = 4. Here and
throughout triv stays for the trivial character.

Define a holomorphic function £ on § (an Eichler integral) by

E(r) = 2mi / ) de.

100

iy

Theorem 1. Let k > 0 be an even positive integer congruent to O or 4 modulo 6, and let
fr =14 O(q) be the modular solution of (KZy).
(i) If k=0 mod 6, then equation (KZy) admits a solution

Fk :Akg—FBk



with Ay € My, which is a non-zero multiple of fi, and By, € My(x).
(ii) If k =4 mod 6, then equation (K Zy) admits a mized mock modular form

F, € Mk70 (t’l“’il), Y)

as a solution. Furthermore,
Fy = Crhy + Dy,
with Cy € My which is a non-zero multiple of fi, and Dy € My(X).

Remark 1. In the case when £ =4 mod 6, one can represent the functions Fj as C& + D
with weakly holomorphic modular forms C' and D, and an Eichler integral £ of a weakly
holomorphic cusp form (cf. [2]). This representation, however, does not capture the behavior
of F} at cusps: it admits an exponential growth. In fact, being a mixed mock modular form,
the functions Fj, have no more than polynomial growth at cusps (see [3] and Section 3). This
property is, of course, obvious in the case k = 0 mod 6 when we deal with a usual Eichler
integral and holomorphic modular forms.

Theorem 1 allows us to derive a corollary concerning the modularity of the solutions of
(K Zy) since the transformation laws of both £(67) and hs(67) with respect to I'g(36) are
clear. The function £(67) is an Eichler integral of a weight two primitive cusp form n*(67).
The function hy(67) differs (cf. (9) below) by a (meromorphic) modular function on I'g(36)
from mock modular form M* whose shadow is a constant multiple of n*(67). In both cases,
we thus have group homomorphisms v; : I'4(36) — C with ¢ = 1,2 defined by

v1(0) = ha(60(7)) — hy(67), 1a(0c) = E(60(T)) — E(67T).

Since the images of both homomorphisms are non-degenerate lattices in C, their kernels,
K; = ker(y;) are normal subgroups of ['((36) of infinite indexes. (Equations (4) and (10)
below imply that in fact K1 = Ky, = K.) Clearly, the functions £(67) and hy(67) are
modular on K, and are not modular on any bigger subgroup of I'g(36).

It follows from Theorem 1 that, although an individual solution of (K Zj;) may be not
modular on I'y(36), the two-dimensional space of solutions is, in a certain sense, modular.
In order to formulate that a bit nicer, we consider a slight modification of (KZy),

(8) £(7) = (k + 1) Ea(r) () + D)

such that f(7) is a solution of (K Z) if an only if g(7) = f(67) is a solution of (#).

Ey(67)f(7) =0,

Corollary 1. Let k > 0 be an even positive integer congruent to 0 or 4 modulo 6.
(i) Let G(7) be a solution of (8). Then for any o = (¢ %) € T'4(36) the function

Go(r) = (7 + d)*G (giz)

is also a solution of (%)

(ii) There exists an infinite index normal subgroup K <T'4(36) such that every solution of
(8r) is modular of weight k (and trivial Nebentypus) on K, while no solution of (§x) which
1s not a constant multiple of the modular solution fi s modular on any normal subgroup
['AT(36) of finite index.
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Remark 2. The modularity of the space of solutions claimed in Corollary 1(i) can be also
proved in a straightforward way. For instance the argument in the proof of [6, Proposition 2]
proves a stronger statement of the modularity of the space of solutions of (K Zy) on SLy(Z).
The non-modularity claim of Corollary 1(ii) answers a question posed in [6, Remark 2] on
the non-modularity of these solutions.

We introduce necessary notations and discuss in some details Zagier’s definition of mixed
mock modular forms in Section 3, and prove Theorem 1 in Section 4. Both our proof of
Theorem 1, and our way to derive Corollary 1 may be built on results from [4], where the
existence of a certain mock modular form M™ was shown by making use of general theory
of weak harmonic Maass forms. In Section 2 of this paper we provide an alternative more
explicit construction of M™* which uses nothing but the classical theory of modular forms
and elliptic curves along with some computer calculations.
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2. A WEIGHT ZERO WEAK HARMONIC MAASS FORM

In this section, we construct of a certain weight zero weak harmonic Maass form M. A
general definition of mock modular forms parallel to the definition of mixed mock modular
forms is given in Section 3. For the purposes of this section we recall that a weight zero
weak harmonic Maass form on a subgroup I' C SLy(Z) (with trivial Nebentypus) is a I'-
invariant harmonic function M on $. Being a harmonic function, M decomposes into a sum
M = M™* + M~ of a holomorphic function M* and anti-holomorphic function M~. The
holomorphic part M™* of a weak harmonic Maass form M is called a mock modular form.

Let

g= n4(67_) — q_4q7+2q13+8q19_5q25 _4q31 _10q37+8q43+9q49+14q61 —16(]67—10([73—1-. B
be the unique normalized cusp form in Sy(I'9(36)) of weight 2 on I'y(36) with trivial character.

Proposition 1. There exists a weight zero weak harmonic Maass form M such that

OM  dM* _ Ey(67)
@) or  dr 2m n4(67)’
and
oM  dM~ _
) o Y

for a non-zero t € C*.

Remark 3. The conditions (2) and (3) determine M up to addition of a constant while the
condition (3) alone determines M up to addition of a weakly holomorphic (with poles only
at cusps) modular function on T'.
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Remark 4. In [4], Proposition 1 was derived from general theory of weak harmonic Maass
forms. We offer a different proof based on an explicit construction here.

Proof. The Eichler integral

Eg(1) = —27m'/ g(z) dz = ﬂ5(67')
determines a homomorphism v : T'y(36) — C by

v(7) = E(V(7)) = &(7).

(It easily follows from g € S5(I'9(36)) that v(y) does not depend on 7 for v € I'y(36).) The
image of v is a lattice A C C, and the function &, performs an isomorphism of smooth
projective curves of genus one

£, @ Xo(36) = To(36)\H — C/A.

(The CM elliptic curve E = C/A has Weierstrass equation y* = 23 + 1.) We now consider
Weierstrass (-function
11 1 1 . 3

4
A _ 4 L o 11 23
(A2 =2+ 322~ moo7® T Taaoas7 | s86605265° T 242582010115

associated with A. Although meromorphic function (A, z) is not A-periodic, the function
C*(A,2) = C(A,z) + Az is. Here (cf. [12]) A = —7/Vol(A), where Vol(A) is the volume
of a fundamental parallelogram of the lattice. It follows that the harmonic on $) function
C*(A, &) is I'g(36)-invariant, and satisfies

z29+...

*(A
0 (A &) (0_7_’5‘]) = 2miNg
by construction.
The holomorphic on $) function
3 1 5 8 1 4 11 10
AENVT = (A E g M LT S g ot
C(AE)T ==C(N, &) = +5q Tl T4 T34 3¢ +5q ad et

is a mock modular form.
Let K(7) be an holomorphic antiderivative of E4(67)/n*(67),

L, 245 3184, I8T60 o 84345 5y | 06252 140482 i
54T ¢ 17 ¢ 23 1 29 ¢ 5 ¢

A quick computer calculation shows that
K +12¢(A, &) = 11¢7" + 56¢° + 286" + 1100¢"" + 3663¢** 4 10560¢* + 28106¢™ + .. .,

and absence of the denominators suggests that K + 12((A, &,) is a weakly holomorphic (i.
e. with its poles only in cusps) modular form. Indeed we have the identity

E2(6’7') — 2E2(12’7‘) §E2(6’7') — 3E2(].87') _ 3E2(67') — 6E2(367')
9(7) 2 9(7) 9(7)

(4) = K +12¢(A,&,)
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which requires only a finite number of g-expansion coefficients to check since the derivatives
of all terms are weakly holomorphic weight two modular forms on I'y(36). We thus conclude
that the function

E2(67') — 2E2(12’7‘) i §E2(6’7‘) — 3E2(18’7‘) _ E2(6’7') — 6E2(367')
9(7) 2 9(7) 9(7)

satisfies all requirements of Proposition 1. O

M = —12¢" (A, &) +

3. MIXED MoCK MODULAR FORMS

In this section, we introduce both mock modular forms and mixed mock modular forms
in a way which allows us to reveal the similarities and differences between these objects. We
try to follow the exposition given by Don Zagier in a lecture at MPI (see also [3, Section
7.3]). For the sake of brevity and clarity we limit ourselves with even integral weights
and cuspidal shadows here. The case of half-integral weights is quite similar, and possible
presence of Eisenstein series as shadows requires only a little more work. (For an alternative
definition of mock modular forms and a detailed discussion of their properties and important
applications see [11].)

Let I' C SLy(Z) be a congruence subgroup. For a finite order group homomorphism
Y : I' — C*, and a non-negative even integer k, we use standard notations M (T, ) (resp.
Sk(I',4)) for the spaces of holomorphic modular (resp. cusp) forms of weight k£ on I' with
Nebentypus 1. For even integers u and v, denote by 9. +o(I', 1)) the linear space of real-
analytic functions F on the upper half-plane $ which satisfy the transformation law

b
(5) F (aT i ) =y (2y) (et +d)"F(r) forevery (25)el,
ct +d

and have at most linear exponential growth at cusps. The subspace M, (T, ) C M, ()
consists of those functions which have at most polynomial growth at cusps. In the case
I' = SLy(Z), which is of primary interest for the purposes of this note, the latter condition
simplifies to the existence of the limit

(6) lim  F(7).

S(1)—o0

It is easy to check that the linear operator

Oy :=(1)"

S

takes functions satisfying the transformation law (5) to functions ® satisfying the transfor-
mation law

@ o) e e P+ PO forevery (2) €T,

The linear space of all real-analytic functions ® on $) which satisfy (7) contains the subspace

W(X17 X2) = Mu(rv X1> ® SQ—U(F7E> (Wlth X1X2 = w>7

In order to have a non-empty space W (x1, x2) we shall assume that « > 0 and v < 0.
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Let us firstly consider the special case u = 0 in order to construct mock modular forms.
In this case M, (I, x1) is empty unless x; is trivial, and contains nothing but constants in
the latter case. We thus end up with

W (triv, ) = m
Consider the space H. (T, ),
H (T, ) = 0, (W (triv, v)) € ML(T, ),

(2

defined as the preimage of W (triv,+) under 9, in 9} (T,+). This is the space of weak
harmonic Maass forms on I' with Nebentypus ¢ of weight v. Note that [1, Proposition 3.5]
implies that

(8) Hy (T, ) () (T, 00) = 0.

For g € Sy, (I', ) define

' (r) = (20)" / (D)7 +2)" dz.

-7

Then 0,(g") =7 € Sa—o(T', ).
If now F € H.(T, ) we let

gr = 8U(F) € SQ_U(F,@),
and the real-analytic on $ function F' — ¢} is holomorphic on § since

0
P (F'—gp) =0
by construction. The function F' — g} being the canonically defined holomorphic part of F
is referred to as a mock modular form of weight v with a shadow of g, and we denote the
linear space of these mock modular forms by M, (T, 7).
We now consider the case u > 0 in order to present a parallel constuction of mized mock
modular forms. Similarly to the previous case, we define Hiw(F, X1, X2) as the preimage of

W (x1, x2) under 9, in M., (T, v):
H’!LL,U(]‘—" X1 X2) = av—l (W(Xla X2)) C miﬁ-v(ra 'l/))

If we proceed as previously, we end up with the linear space of canonically defined holo-
morphic parts of functions F' € H,, ,(I', x1, x2) which (see [1]) is nothing but M, (T, x1) ®
My, (T, x2), and this space does not deserve any special name.

However, there is a substantial difference from the case when u = 0: an analog of (8) does
not need to hold, we define

Hu,v(ra X1 X2) = HL,U(F7 X1, XQ) ﬂmu-i-v(ra w)a

and apply a construction similar to the that in the case u = 0 to the space H, (I, x1, x2)-
Specifically, for F' € H, (I, x1, x2) we have that 0,(F) € W(x1, x2), therefore

0,(F) = Z £i9;,
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where the sum is finite, f; € M,(I', x1) and g; € So—,(I',X2). Again the real-analytic on
function

Fri=F = fg;
J

satisfies oF 5
T:IE(F—QF):O,

and is therefore holomorphic on $). Moreover, since F' has at most polynomial growth at
cusps, so does Fr. The function Fr = F—) ; 1797 being the canonically defined holomorphic
part of F' is referred to as a mized mock modular form of weight (u,v) and Nebentypus
(X1, Xx2). We denote by M, ,(x1, x2) the linear space of mixed mock modular forms. We
emphasize that, by construction, all mixed mock modular forms are holomorphic on the
upper half-plane §), and, in contrast to the case of mock modular forms, have at most
polynomial growth at cusps. For this reason, no mock modular form is a mixed mock
modular form. However, a product of a mock modular form with a cusp form may be a
mixed mock modular form if the cusp form has zeros of sufficiently large order in all cusps.

There is another space of functions which are also holomorphic on the upper half-plane and
transform quite similarly to mixed mock modular forms. For a modular form g € Sy, (T, x2),
denote by &, the Eichler integral

The linear space of functions
{Ag + B ‘ A S Mu(F7X1)7 B e Mu+U(F7X1X2>}

shows up naturally if one allows weakly holomorphic cusp forms in the definition of W (1, x2)

(i.e. considers W(x1,x2) := M,(T,x1) ® S5 (I, X2) D W(x1, x2) instead). Despite of this
similarity, we do not call these functions mixed mock modular forms.

The following proposition provides us with an example which illustrates non-triviality of
the notion of mixed mock modular form. We will later make use of this example.

Proposition 2. There exists a meromorphic function hy on $ such that

oy 1T
"0 = ey

We have that
F4(’7‘) = E4(7')h4(’7') c M470(t7“’l.U,Y)

Remark 5. Our description of mixed mock modular forms obviously implies that

My o(triv,v) O My(¢). Furthermore, it implies that M, o(triv, ) = &M o(triv,) is a
graded vector space over M, = @M. In particular, Proposition 2 implies that in order to
prove Fj, € My o(triv, ) claimed in Theorem 1(ii), it suffices to prove that Cj € M} and

Proof. Let M be the weight zero weak harmonic Maass form constructed in Proposition 1.
Remark 3 allows us to assume that the Fourier expansion M*(7) = —¢~' + O(q) has no
constant term.



9

The product Ey(7)M(7/6) thus satisfies (5) with v + v = 4, and the character x of
I' = SLy(Z) with values in 6-th roots of unity defined by (1),

Ey(r)M(7/6) € M(SLo(Z), X).
Note that E,(7)M(7/6) ¢ 9M4(SLa(Z),X), and thus extracting a holomorphic part we will
not produce a mixed mock modular form out of this function. However, we claim that
Eg(7)
n(r)*
It suffices to check that the limit (6) exists. Indeed,

F = E (r)M(71/6) + € My(SLy(Z),X).

Eg(7) -
o+ /)

exists because limg(r)—.oc M~ (7/6) = 0, and the function M™ has a Fourier expansion M* =
_q—1/6 —I—O(q5/6).
We put v = 0 (and u = 4), and note that

S(r)—o0 S(1)—o00

lim F(r)= lim <E4(T)M+(T/6)+

9o (E4(r)M(7/6)) = %E4(T)W € My ® S5(STa(Z).x) = W(triv, 7).

We thus conclude that the holomorphic part of F defined by

E,
—5T6F,(T) := F(7) — Ex(1)M~(7/6) = Ey(1)M T (7/6) + 77?7(';2 € My o(triv, X)
is a mixed mock modular form. We now define a meromorphic function k4 on $ by
F E,
(9) —576h4(T) = 4(7) 6(7)

= M*(7/6) + "

Ey(7) (T)Ea(7)’

and find that
/ / 20
W =L (RO 1 EG 1 BO Y0
576 \ E4(7) 3456 n*(1) 576 \ n*(1)E4(T)
the latter identity was found in [5].

4. PROOF OF THEOREM 1

Let k£ be an even positive integer such that K =0 mod 6 or K =4 mod 6. Recall that by
[10, Theorem 5] and [6, Theorem 1], equation (K Zj) has a one-dimensional space of modular
solutions generated by

The following statement will help us to construct a second solution as a function on $)

Proposition 3. There exists a meromorphic function hy on $ such that

)

po=1__"
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Proof. All poles of **+1) / 2 are located in the interior of the upper half-plane at the points
z such that f(z) = 0. The order of these poles is always 2 since, being a non-zero solution
of (KZy), the function f may have only simple zeroes. We thus have Laurent expansion
around such a point z

n4(k+1)

C_9 C_q
7 :(T_Z)z+7__Z—|—co—|—cl(7'—z)+....
k

It suffices to prove that ¢_; = 0. We multiply the above equation by (7 — 2)? and take the
derivative (recall that ' = (27i)~!d/dr) to obtain

2(7 — 2)h), + 2mi(T — 2)?h) = c_1 + 2co(T — 2) + ...,

therefore
c_1 = (2(1 = 2)hj, + 2mi(T — 2)?R) |re.-
Since
, 1
n = ﬁE?r]v
we use the definition of A}, to obtain that
hj, fi k+1
11 k= 97k 4 Es,
(1) Ry

and we conclude that

) =i (- (5 -9 s B2 -9 )

T k

T=2

We now write fr = (7 — z)¢, therefore

1
fri= %¢+ (1 —2)¢'
=gt (-2
1 ¢’
(1= = g+ (=95,

(1—2)9" + (i.—(T—z)k_glE2> ¢+ ((T—Z)%Eé—%k_glEg) o=0

out of (KZ;). We specialize at 7 = z to obtain that

20/(2) = i B (2).

We now plug all this data into (12) to obtain that

c_1 =27 <(T — 2)%h), (—2% + k 23— 1E2))

as required since the function (7 — 2)?hj, is holomorphic at 7 = 2. O

=0

T=2
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Proposition 3 along with the fact that ) vanishes exponentially at ico allows us to con-
clude that i
hi(T) = 27Ti/ hy(2) dz
makes sense, does not depend on the path of integration as soon as the path misses the zeros
of fr, and defines a meromorphic function on $.
In the next proposition we make use of the function hj in order to construct the second
holomorphic solution of (K Z;). This proposition was shown to the author by M. Kaneko.

Proposition 4. The function
Fi(7) := ha(7) fi(7)
is holomorphic on the upper half-plane 9, and satisfies (K Zy).

Proof. By construction, hj is meromorphic with poles of order 1 which are located at the
zeroes of f, therefore F} is holomorphic.

In order to check that Fy = hyfy satisfies (KZ;) we simply plug the function into the
equation:

k+1 k(k+ 1)

(P fi)” — TEz(hkfk)/ t—0 B (. fr)
k41 Kk+1)
= hie(fi — TE2f12 + %Esz
kE+1

= fehy + (2f; — TE2fk) w =0,

where the latter equality follows from (11).
U

We will make use of the inductive structure of the solutions of (K Zj) investigated in |6,
Section 3|. Since the function hj in Proposition 3 is non-constant, and equation (K Zj)
locally has a two-dimensional space of solutions, Proposition 4 allows us to conclude that
the whole space of solutions is a two-dimensional space spanned by Fj and f;. We denote
this space by Ly, and define a linear map p; from L; to holomprohic functions on $ by

[F,Ey] kFE,—AF'E,
p(F) o= 5= = - 24 :
n n
Proposition 5. For even integer k > 6 congruent to 0 or 4 modulo 6, the map p performs
an isomorphism py : Lp — Li_g.

Proof. For every F' € Lj we have that ug(F) € Li_g by a result of Kaneko and Koike [6,
Proposition 1(i)]. It thus suffices to check that uy has trivial kernel. In other words, it suffices

to check that the function Ef/ *is not a solution of (K Zy,). That follows by a straightforward
calculation making use of the standard formulas

1 1
EQ-—Q@—&%.@:§@MQ—&%.%:

=3 (ExEs — EF) .

N —

We now turn to the proof of Theorem 1.
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Proof of Theorem 1. To this end we have two-dimensional spaces Ly of holomorphic on $
solutions of (K Zj) along with isomorphisms py, : Ly — Ly_g. Since f € My, we have that
pr(fr) € Myg_g by standard properties of Rankin - Cohen bracket. Moreover, a result of
Kaneko and Koike [6, Proposition 1(ii)] implies that

wi(fr) = arfise
with ay, # 0. Since ug(Fy) € Li_g, we have that
p(Fr) = YeFr—6 + Ok fr—s

with v, # 0 because py, is an isomorphism. We also have that

[fx, Ealhi — 4 frly By F,  AEmtt)
pr(Fr) = pe(frhr) ol 1 (fr) 7, 7
Combining the three equations above, we the inductive relation
AE 4(k—5)
(13) apFy = fYka—Gi + Ok fr + i
k—6 Jr—6

with agye # 0. We take into the account the following description of the solutions of (K Zj)
for k=0and k =4

f():la F():ga f4:E4> F4:E4h'4a

and make use of (13) for an inductive argument to conclude that

7 - AE+ B, k=0 mod6
"TYCwha+ Dy ifk=4 mod 6,

where Ay and C} are non-zero multiples of the corresponding functions fx. We also have by
an inductive argument that the function By (resp. Dy) transform like a modular form from
My (x) (resp. M;(X)). We still need to show that these functions do not have poles in the
interior of §) (the fact that they are bounded at ioco easily follows from (13) by induction).
In the case when £ = 0 mod 6, that follows from the holomorphicity in the interior of $
of both Fy (by Proposition 4) and A€. In the case when &£ =4 mod 6, the function Fj, is
again holomorphic in the interior of $ by Proposition 4, and we now claim that so is Cjhy.
Indeed, the modular form f; (and, therefore, Cy) is divisible by Ej (see e.g. [10, Equation

2))):

C
fk € My_4(SLo(Z))
4
Therefore
Cihy = %E h
kha = 7, N

is holomorphic in §.
The last assertion to prove is Fj, € My o(triv,x¥) when £ = 4 mod 6. This now follows
from Proposition 2 (cf. Remark 5). O
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Remark 6. It was communicated to the author by Prof. Kaneko that the results from [6]
imply the following explicit expressions for the quantities and functions involved into our
proof of Theorem 1.

288k(k — 4) 2
=———= 0,=0 =——(k—=5).
O L_—5 0 % v Tk 3( )
In the case kK =0 mod 6, put k = 6n. Then we have that
) i
k= ni_lfku By, = n"By—2
4327(73)

with a modular form Bj,_o € M;_s of weight & — 2 on SLy(Z).
In the case when £k =4 mod 6, put £k = 6n + 4. Then we have that
5.2
~35
Cr = ( - )_é
4327(75)

3
n

fe» Dr=1"Dy_19
with a modular form ﬁk_w € Mj,_10 of weight k — 10 on SLy(Z).
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