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1 Introduction

In the mathematics literature, lowering and rasing operators operators are known as gener-

ators of step algebras, which were originally introduced by Mickelsson [1] for reductive pairs

of Lie algebras, g′ ⊂ g. These algebras naturally act on g′-singular vectors in U(g)-modules

and are important in representation theory, [2, 3].

The general theory of step algebras for classical universal enveloping algebras was devel-

oped in [2, 4] and was extended to the special linear and orthogonal quantum groups in [5].

They admit a natural description in terms of extremal projectors, [4], introduced for classical

groups in [6, 7] and extended to the quantum group case in [8]. It is known that the step

algebra Z(g, g′) is generated by the image of the orthogonal complement g 	 g′ under the

extremal projector of the g′. Another description of lowering/raising operators for classical

groups was obtained in [9, 10, 11, 12] in an explicit form of polynomials in g.

A generalization of the results of [9, 10] to quantum gl(n) can be found in [13]. In this

special case, the lowering operators can be also conveniently expressed through ”modified

commutators” in the Chevalley generators of U(g) with coefficients in the field of fractions

of U(h). Extending [11, 12] to a general quantum group is not straightforward, since there

are no immediate candidates for the nilpotent triangular Lie subalgebras g± in Uq(g). We

suggest such a generalization, where the lack of g± is compensated by the entries of the

universal R-matrix with one leg projected to the natural representation. Those entries are

nicely expressed through modified commutators in the Chevalley generators turning into

elements of g± in the quasi-classical limit. Their commutation relation with the Chevalley

generators modify the classical commutation relations with g± in a tractable way. This

enabled us to generalize the results of [9, 10, 11, 12] and construct generators of Mickelsson

algebras for the non-exceptional quantum groups.

1.1 Quantized universal enveloping algebra

In this paper, g is a complex simple Lie algebra of type B, C or D. The case of gl(n) can

be easily derived from here due to the natural inclusion Uq
(
gl(n)

)
⊂ Uq(g), so we do not

pay special attention to it. We choose a Cartan subalgebra h ⊂ g with the canonical inner

product (., .) on h∗. By R we denote the root system of g with a fixed subsystem of positive

roots R+ ⊂ R and the basis of simple roots Π+ ⊂ R+. For every λ ∈ h∗ we denote by hλ

its image under the isomorphism h∗ ' h, that is (λ, β) = β(hλ) for all β ∈ h∗. We put

ρ = 1
2

∑
α∈R+ α for the Weyl vector.
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Suppose that q ∈ C is not a root of unity. Denote by Uq(g±) the C-algebra generated by

e±α, α ∈ Π+, subject to the q-Serre relations

1−aij∑
k=0

(−1)k

[
1− aij
k

]
qαi

e
1−aij−k
±αi e±αje

k
±αi = 0,

where aij =
2(αi,αj)

(αi,αi)
, i, j = 1, . . . , n = rk g, is the Cartan matrix, qα = q

(α,α)
2 , and[

m

k

]
q

=
[m]q!

[k]q![m− k]q!
, [m]q! = [1]q · [2]q . . . [m]q.

Here and further on, [z]q = qz−q−z
q−q−1 whenever q±z make sense.

Denote by Uq(h) the commutative C-algebra generated by q±hα , α ∈ Π+. The quantum

group Uq(g) is a C-algebra generated by Uq(g±) and Uq(h) subject to the relations

qhαe±βq
−hα = q±(α,β)e±β, [eα, e−β] = δα,β

qhα − q−hα
qα − q−1

α

.

Remark that h is not contained in Uq(g), still it is convenient for us to keep reference to h.

Fix the comultiplication in Uq(g) as in [14]:

∆(eα) = eα ⊗ qhα + 1⊗ eα, ∆(e−α) = e−α ⊗ 1 + q−hα ⊗ e−α,

∆(q±hα) = q±hα ⊗ q±hα ,

for all α ∈ Π+.

The subalgebras Uq(b±) ⊂ Uq(g) generated by Uq(g±) over Uq(h) are quantized universal

enveloping algebras of the Borel subalgebras b± = h + g± ⊂ g.

The Chevalley generators eα can be extended to a set of higher root vectors eβ for all

β ∈ R. A normally ordered set of root vectors generate a Poincaré-Birkhoff-Witt (PBW)

basis of Uq(g) over Uq(h), [14]. We will use g± to denote the vector space spanned by

{e±β}β∈R+ .

The universal R-matrix is an element of a certain extension of Uq(g)⊗Uq(g). We heavily

use the intertwining relation

R∆(x) = ∆op(x)R, (1.1)

between the coproduct and its opposite for all x ∈ Uq(g). Let {εi}ni=1 ⊂ h∗ be the standard

orthonormal basis and {hεi}ni=1 the corresponding dual basis in h. The exact expression for

R can be extracted from [14], Theorem 8.3.9, as the ordered product

R = q
∑n
i=1 hεi⊗hεi

∏
β

expqβ{(1− q
−2
β )(eβ ⊗ e−β)} ∈ Uq(b+)⊗̂Uq(b−), (1.2)
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where expq(x) =
∑∞

k=0 q
1
2
k(k+1) xk

[k]q !
.

We use the notation ei = eαi and fi = e−αi for αi ∈ Π+, in all cases apart from i = n,

g = so(2n + 1), where we set fn = [1
2
]qe−αn . The reason for this is two-fold. Firstly, the

natural representation can be defined through the classical assignment on the generators,

as given below. Secondly, we get rid of qαn = q
1
2 and can work over C[q], as the relations

involved turn into

[en, fn] =
qhαn − q−hαn
q − q−1

,

f 3
nfn−1 − (q + 1 + q−1)f 2

nfn−1fn + (q + 1 + q−1)fnfn−1f
2
n − fn−1f

3
n = 0.

It is easy to see that the square root of q disappears from the corresponding factor in the

presentation (1.2).

In what follows, we regard gl(n) ⊂ g to be the Lie subalgebra with the simple roots

{αi}n−1
i=1 and Uq

(
gl(n)

)
the corresponding quantum subgroup in Uq(g).

Consider the natural representation of g in the vector space CN . We use the notation

i′ = N + 1− i for all integers i = 1, . . . , N . The assignment

π(ei) = ei,i+1 ± ei′−1,i′ , π(fi) = ei+1,i ± ei′,i′−1, π(hαi) = eii − ei+1,i+1 + ei′−1,i′−1 − ei′i′ ,

for i = 1, . . . , n − 1, defines a direct sum of two representations of gl(n) for each sign. It

extends to the natural representation of the whole g by

π(en) = en,n+1 ± en′−1,n′ , π(fn) = en+1,n ± en′,n′−1, π(hαn) = enn − en′n′ ,

π(en) = enn′ , π(fn) = en′n, π(hαn) = 2enn − 2en′n′ ,

π(en) = en−1,n′±en,n′+1, π(fn) = en′,n−1±en′+1,n, π(hαn) = en−1,n−1+enn−en′n′−en′+1,n′+1,

respectively, for g = so(2n+ 1), g = sp(2n), and g = so(2n).

Two values of the sign give equivalent representations. The choice of minus corresponds

to the standard representation that preserves the bilinear form with entries Cij = δi′j, for

g = so(N), and Cij = sign(i′ − i)δi′j, for g = sp(N). However, we fix the sign to + in order

to simplify calculations. The above assignment also defines representations of Uq(g).

2 R-matrix of non-exceptional quantum groups

Define Ř = q−
∑n
i=1 hεi⊗hεiR. Denote by Ř− = (π ⊗ id)(Ř) ∈ End(CN) ⊗ Uq(g−) and by

Ř+ = (π ⊗ id)(Ř21) ∈ End(CN) ⊗ Uq(g+). In this section, we deal only with Ř− and

suppress the label ”−” for simplicity, Ř = Ř−.
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Denote by N+ the ring of all upper triangular matrices in End(CN) and by N ′+ its ideal

spanned by eij, i < j + 1.

Lemma 2.1. One has

Ř = 1⊗ 1 + (q1+δ1n − q−1−δ1n)
n∑
i=1

π(ei)⊗ fi mod N ′+ ⊗ Uq(g−),

where δ1n is present only for g = sp(2n).

Proof. For all positive roots α, β the matrix π(eαeβ) belongs to N ′+. Also, π(eβ) ∈ N ′+ for

all β ∈ R+\Π+. Therefore, the only terms that contribute to Spanεi−εj∈Π+{eij⊗Uq(g−)} are

those of degree 1 from the series expqα(1− q−2
α )(eα ⊗ e−α) with α ∈ Π+.

Write Ř =
∑N

i,j=1 eij ⊗ Řij, where Řij = 0 for i > j. Due to the h-invariance of Ř, the entry

Řij ∈ Uq(g−) carries weight εj − εi.
For all g, we have fk,k+1 = fk = fk′−1,k′ once k < n and fn,n+1 = fn = fn+1,n′ for

g = so(2n + 1), fn−1,n′ = fn = fn,n′+1 for g = so(2n), and fnn′ = [2]qfn for g = sp(2n). We

present explicit expressions for the entries fij in terms of modified commutators in Chevalley

generators, [x, y]a = xy − ayx, where a is a scalar; we also put q̄ = q−1.

Proposition 2.2. Suppose that εi − εj ∈ R+\Π+. Then the elements fij are given by the

following formulas:

For all g and i+ 1 < j 6 N+1
2

:

fij = [fj−1, . . . [fi+1, fi]q̄ . . .]q̄, fj′i′ = [. . . [fi, fi+1]q̄ , . . . fj−1]q̄. (2.3)

Furthermore,

• For g = so(2n+ 1): fnn′ = (q − 1)f 2
n and

fi,n+1 = [fn, fi,n]q̄ , fn+1,i′ = [fn′,i′ , fn]q̄ , i < n,

fij′ = qδij [fn+1,j′ , fi,n+1]q̄δij , i, j < n.

• For g = sp(2n): fnn′ = [2]qfn and

fin′ = [fn, fin]q̄2 , fni′ = [fn′i′ , fn]q̄2 , i < n,

fij′ = qδij [fnj′ , fin]q̄1+δij , i, j < n.
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• For g = so(2n): fnn′ = 0 and

fin′ = [fn, fi,n−1]q̄ , fni′ = [fn′+1,i′ , fn]q̄ , i < n− 2,

fji′ = qδij [fni′ , fj,n]q̄1+δij , i, j 6 n− 1.

Proof. The proof is a direct calculation with the use of the identity

(fα ⊗ 1)Ř − Ř(fα ⊗ 1) = Ř(q−hα ⊗ fα)− (qhα ⊗ fα)Ř,

which follows from the intertwining axiom (1.1) for x = fα. This allows us to construct the

elements fij by induction starting from fα, α ∈ Π+.

For each α ∈ Π+, denote by P (α) the set of ordered pairs l, r = 1, . . . , N , with εl−εr = α.

We call such pairs simple.

Proposition 2.3. The matrix entries fi,j ∈ Uq(g−) such that εi−εj 6∈ Π+ satisfy the identity

[eα, fij] =
∑

(l,r)∈P (α)

(
filδjrq

hα − q−hαδilfrj
)
,

for all simple positive roots α.

Proof. The proof is a straightforward calculation based on the intertwining relation (1.1),

which is equivalent to

(1⊗ eα)Ř − Ř(1⊗ eα) = Ř(eα ⊗ qhα)− (eα ⊗ q−hα)Ř,

for x = eα, α ∈ Π+. Alternatively, one can use the expressions for fij from Proposition

2.2.

3 Mickelsson algebras

Consider the Lie subalgebra g′ ⊂ g corresponding to the root subsystem Rg′ ⊂ Rg generated

by αi, i > 1, and let h′ ⊂ g′ denote its Cartan subalgebra. Let the triangular decomposition

g′− ⊕ h′ ⊕ g′+ be compatible with the triangular decomposition of g. Recall the definition

of step algebra Zq(g, g
′) of the pair (g, g′). Consider the left ideal J = Uq(g)g′+ and its

normalizer N = {x ∈ Uq(g) : eαx ⊂ J,∀α ∈ Π+
g′}. By construction, J is a two-sided ideal in

the algebra N . Then Zq(g, g
′) is the quotient N /J .
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For all βi ∈ R+
g \R+

g′ let eβi be the corresponding PBW generators and let Z be the vector

space spanned by ekl−βl . . . e
k1
−β1e

k0
0 e

m1
β1
. . . emlβl , were e0 = qhα1 , ki ∈ Z+, and k0 ∈ Z. The PBW

factorization Uq(g) = Uq(g
′
−)ZUq(h

′)Uq(g
′
+) gives rise to the decomposition

Uq(g) = ZUq(h
′)⊕ (g′−Uq(g) + Uq(g)g′+).

Proposition 3.1 ([5], Theorem 1). The projection Uq(g)→ ZUq(h
′) implements an embed-

ding of Zq(g, g
′) in ZUq(h

′).

Proof. The statement is proved in [5] for the orthogonal and special linear quantum groups

but the arguments apply to symplectic groups too.

It is proved within the theory of extremal projectors that generators of Zq(g, g
′) are

labeled by the roots β ∈ Rg\Rg′ plus z0 = qhα1 . We calculate them in the subsequent

sections, cf. Propositions 3.5 and 3.9.

3.1 Lowering operators

In what follows, we extend Uq(g) along with its subalgebras containing Uq(h) over the field

of fractions of Uq(h) and denote such an extension by hat, e.g. Ûq(g). In this section we

calculate representatives of the negative generators of Zq(g, g
′) in Ûq(b−).

Set hi = hεi ∈ h for all i = 1, . . . , N and introduce ηij ∈ h + C for i, j = 1, . . . , N , by

ηij = hi − hj + (εi − εj, ρ)− 1

2
||εi − εj||2. (3.4)

Here ||µ|| is the Euclidean norm on h∗.

Lemma 3.2. Suppose that (l, r) ∈ P (α) for some α ∈ Π+. Then

i) if l < r < j, then ηlj − ηrj = hα + (α, εj − εr),

ii) if i < l < r, then ηli − ηri = hα + (α, εi − εr),

iii) ηlr = hα.

Proof. We have (α, ρ) = 1
2
||α||2 for all α ∈ Π+. This proves iii). Further, for εl − εr = α:

ηlj − ηrj = hα +
1

2
||α||2 +

1

2
||εj − εr||2 −

1

2
||εj − εr − α||2 = hα + (α, εj − εr), r < j,

ηli − ηri = hα +
1

2
||α||2 +

1

2
||εi − εr||2 −

1

2
||εi − εr − α||2 = hα + (α, εi − εr), i < l,

which proves i) and ii).
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We call a strictly ascending sequence ~m = (m1, . . . ,ms) of integers a route from m1 to

ms. We write m < ~m and ~m < m for m ∈ Z if, respectively, m < min ~m and max ~m < m.

More generally, we write ~m < ~k if max ~m < min~k. In this case, a sequence (~m,~k) is a route

from min ~m to max~k.

Given a route ~m = (m1, . . . ,ms), define the product f~m = fm1,m2 · · · fms−1,ms ∈ Uq(g−).

Consider a free right Ûq(h)-module Φ1m generated by f~m with 1 6 ~m 6 j and define an

operation ∂lr : Φ1j → Ûq(b−) for (l, r) ∈ P (α) as follows. Assuming 1 6 ~̀ < l < r < ~ρ < j,

set
∂lrf(~̀,l)f(l,r)f(r,~ρ) = f(~̀,l)f(r,~ρ)[ηlj − ηrj]q,

∂lrf(~̀,l)f(l,~ρ) = −f(~̀,l)f(r,~ρ)q
−ηlj+ηrj ,

∂lrf(~̀,r)f(r,~ρ) = f(~̀,l)f(r,~ρ)q
ηlj−ηrj ,

∂lrf~m = 0, l 6∈ ~m, r 6∈ ~m.

Extend ∂lr to entire Φ1j by Ûq(h)-linearity. Let p : Φ1j → Û(g) denote the natural homo-

morphism of Ûq(h)-modules.

Lemma 3.3. For all α ∈ Π+ and all x ∈ Φ1j, eα ◦ p(x) =
∑

(l,r)∈P (α) ∂lrx mod Ûq(g)eα.

Proof. A straightforward analysis based on Proposition 2.3 and Lemma 3.2.

To simplify the presentation, we suppress the symbol of projection p in what follows.

Introduce elements Ajr ∈ Ûq(h) by

Ajr =
q − q−1

q−2ηrj − 1
, (3.5)

for all r, j ∈ [1, N ] subject to r < j. For each simple pair (l, r) we define (l, r)-chains as

f(~̀,l)f(l,~ρ)A
j
l + f(~̀,l)f(l,r)f(r,~ρ)A

j
lA

j
r + f(~̀,r)f(r,~ρ)A

j
r, f(~̀,l)fl,jA

j
l + f(~̀,j), (3.6)

where 1 6 ~̀ < l and r < ~ρ 6 j. Remark that f(l,r) =
[

(α,α)
2

]
q
e−α, where α = εl − εr.

Lemma 3.4. The operator ∂lr annihilates (l, r)-chains.

Proof. Applying ∂lr to the 3-chain in (3.6), we get

f(~̀,l)f(r,~ρ)(−q−ηlj+ηrjAjl + [ηlj − ηrj]qAjlA
j
r + qηlj−ηrjAjr).

The factor in the brackets turns zero on substitution of 3.5.

Now apply ∂lj to the right expression in (3.6) and get

f(~̀,l)([hα]qA
j
l + qhα) = f(~̀,l)(

qhα − q−hα
q−2ηlj − 1

+ qhα) = f(~̀,l)

[hα − ηlj]q
[−ηlj]q

= 0,

so long as ηlj = hα by Lemma 3.2.

8



Given a route ~m = (m1, . . . ,ms), put Aj~m = Ajm1
· · ·Ajms ∈ Ûq(h) (and Aj~m = 1 for the

empty route) and define

z−j+1 =
∑

1<~m<j

f(1, ~m,j)A
j
~m ∈ Ûq(b−), j = 2, . . . , N, (3.7)

where the summation is taken over all possible ~m subject to the specified inequalities plus

the empty route.

Proposition 3.5. eαz−j = 0 mod Ûq(g)eα for all α ∈ Π+
g′ and j = 1, . . . , N − 1.

Proof. Thanks to Lemma 3.3, we can reduce consideration to the action of operators ∂lr,

with (l, r) ∈ P (α). According to the definition of ∂lr the summands in (3.7) that survive the

action of ∂lr can be organized into a linear combination of (l, r)-chains with coefficients in

Ûq(h). By Lemma 3.4 they are killed by ∂lr.

The elements z−i, i = 1, . . . , N − 1, belong to the normalizer N and form the set of

negative generators of Zq(g, g
′) for symplectic g. In the orthogonal case, the negative part

of Zq(g, g
′) is generated by z−i, i = 1, . . . , N − 2.

3.2 Raising operators

In this section we construct positive generators of Zq(g, g
′), which are called raising operators.

Consider an algebra automorphism ω : Uq(g) → Uq(g) defined on the generators by fα ↔
eα, q±hα 7→ q∓hα . For i < j, let gji be the image of fij under this isomorphism. The

natural representation restricted to Uq(g±) intertwines ω and matrix transposition. Since

(ω⊗ω)(Ř) = Ř21, the matrix Ř+ = (π⊗ id)(Ř21) is equal to 1⊗ 1 + (q− q−1)
∑

i<j eji⊗ gji.

Lemma 3.6. For all α ∈ Π+
g′ and all i > 1, eαgi1 =

∑
(l,r)∈P (α) δilgr1 mod Ûq(g)eα.

Proof. Follows from the intertwining property of the R-matrix.

Consider the right Ûq(h)-module Ψi1 freely generated by f(~m,k)gk1 with i 6 ~m < k.

We define operators ∂lr : Ψi1 → Ûq(g) similarly as we did it for Φ1j. For a simple pair

(l, r) ∈ P (α), put

∂l,rf(~m,k)gk1 =

{
f(~m,l)gr1, l = k,(

∂l,rf(~m,k)

)
gk1, l 6= k,

i 6 ~m < r.

The Cartan factors appearing in ∂lrf(~m,k) depend on hα. When pushed to the right-most

position, hα is shifted by (α, ε1− εr). We extend ∂lr to an action on Ψi1 by the requirement
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that ∂lr commutes with the right action of Ûq(h). Let p denote the natural homomorphism

of Ûq(h)-modules, p : Ψi1 → Ûq(g). One can prove the following analog of Lemma 3.3.

Lemma 3.7. For all α ∈ Π+
g′ and all x ∈ Ψi1, eα ◦ p(x) =

∑
(l,r)∈P (α) ∂lrx mod Ûq(g)eα.

Proof. Straightforward.

We suppress the symbol of projection p to simplify the formulas.

Define σi for all i = 1, . . . , N as follows. For i < j let ||i − j|| be the number of simple

positive roots entering εi − εj. For all i, k = 2, . . . , N , i < k, put

Aik =
qηk1−ηi1

[ηi1 − ηk1]q
, Bi

k =
(−1)||i−k||

[ηi1 − ηk1]q
,

For each (l, r) ∈ P(α), where α ∈ Π+
g′ , define 3-chains as

f(i,~m,l)gl1B
i
l + f(i,~m,l)f(l,r)gr1A

i
lB

i
r + f(i,~m,r)gr1B

i
r, (3.8)

with i < ~m < l < r 6 N and

f(i,~̀,l)f(l,~ρ,k)gk1A
i
l + f(i,~̀,l)f(l,r)f(r,~ρ,k)gk1A

i
lA

i
r + f(i,~̀,r)f(r,~ρ,k)gk1A

i
r (3.9)

with i < ~̀ < l < r < ~ρ < k 6 N . The 2-chains are defined as

gi1 + f(i,r)gr1B
i
r, f(i,~m,k)gk1 + f(i,r)f(r,~m,k)gk1A

i
r (3.10)

where r is such that εi − εr ∈ Π+
g′ and i < r < ~m < k 6 N . In all cases the empty routes ~m

are admissible.

Lemma 3.8. For all α ∈ Π+
g′ and all (l, r) ∈ P (α) the (l, r)-chains are annihilated by ∂lr.

Proof. Suppose that i = l and apply ∂ir to the left 2-chain in (3.10). The result is

gr1 + [hα]qgr1B
i
r = gr1(1 + [hα + (α, ε1 − εr)]qBi

r) = gr1(1 + [ηi1 − ηr1]qB
i
r) = 0,

by Lemma 3.2. Applying ∂ir to the right 2-chain in (3.10) we get

f(r,~m,k)gk1(−q−ηi1+ηr1 + [ηi1 − ηr1]qA
i
r) = 0.

Now consider 3-chains. The action of ∂lr on the (3.9) produces

−f(i,~̀,l)q
−hαf(r,~ρ,k)gk,1A

i
l + f(i,~̀,l)[hα]qf(r,~ρ,k)gk,1A

i
lA

i
r + f(i,~̀,l)q

hαf(r,~ρ,k)gk,1A
i
r,

which turns zero since −qηr1−ηl1Ail + [ηl1 − ηr1]qA
i
lA

i
r + qηl1−ηr1Air = 0. The action of ∂lr on

(3.8) yields

f(i,~m,l)gr1B
i
l + f(i,~m,l)[hα]gr1A

i
lB

i
r + f(i,~m,l)q

hαgr1B
i
r.

This is vanishing since Bi
l + [ηl1 − ηr1]AilB

i
r + qηl1−ηr1Bi

r = Bi
l + [ηi1−ηr1]q

[ηi1−ηl1]q
Bi
r = 0.
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Given a route ~m = (m1, . . . ,mk) such that i < ~m let Ai~m denote the product Aim1
. . . Aimk .

Introduce elements zi ∈ Ûq(g−)g+ of weight ε1 − εi by

zi−1 = gi1 +
∑

i<~m<k6N

f(i,~m,k)gk1A
i
~mB

i
k, i = 2, . . . , N.

Again, the summation includes empty ~m.

Proposition 3.9. eαzi = 0 mod Ûq(g)eα, for all α ∈ Π+
g′ and i = 1, . . . , N − 1.

Proof. By Lemma 3.6, the vectors g2′1 and zN−1 = g1′1 are normalizing the left ideal Ûq(g)g′+,

so is zN−2 = g2′1 + f1g1′1B
1′

2′ . Once the cases i = 2′, 1′ are proved, we further assume i < 2′.

In view of Lemma 3.7, it is sufficient to show that zi−1 is killed, modulo Ûq(g)g′+, by all

∂lr such that εl − εr ∈ Π+
g′ . Observe that zi−1 can be arranged into a linear combination of

chains, which are killed by ∂lr, as in Lemma 3.8.

The elements zi, i = 1, . . . , N − 1, belong to the normalizer N . They form the set of

positive generators of Zq(g, g
′) for symplectic g. In the orthogonal case, the positive part of

Zq(g, g
′) is generated by zi, i = 1, . . . , N − 2.
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