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Abstract

This paper is a continuation of the work on the spectral problem of

Harper operator using algebraic geometry. We continue to discuss the

local monodromy of algebraic Fermi curves based on Picard-Lefschetz

formula. The density of states over approximating components of

Fermi curves satisfies a Picard-Fuchs equation. By the property of

Landen transformation, the density of states has a Lambert series as

the quarter period. A q-expansion of the energy level can be derived

from a mirror map as in the B-model.

1 Introduction

In solid state physics, we are interested in the behavior of moving electrons
subject to periodic potential in a 2-dimensional lattice, especially when a
uniform magnetic field is turned on. We studied in [8] the spectral theory
of Harper operator with irrational parameters generalizing some results on
Bloch variety and algebraic Fermi curves developed by Gieseker, Knörrer
and Trubowitz [6]. Harper operator is the discrete magnetic Laplacian of a
square lattice electron in a magnetic field, and its associated Bloch variety
describes the complex energy-crystal momentum dispersion relation. Harper
operator arises in the study of integer quantum Hall effect, and it gives a
special element in the noncommutative 2-torus [3]. By the famous “Ten
Martini Problem” solved by Avila and Jitomirskaya [1], the spectrum of the
almost Mathieu operator (i.e. 1-dimensional reduction of Harper operator) is
a Cantor set of zero Lebesgue measure for all irrational magnetic fluxes, for
a square lattice this Cantor structure is illustrated by Hofstadter butterfly.

We consider the simplest model when the potential is zero under the
independent electron approximation, and the Fermi surface could be roughly
approximated by real Fermi curves. In our case, each component of the
Fermi curves gives rise to a stable family of elliptic curves with four singular
fibers belonging to the Beauville family [2]. Peters and Stienstra [10] also
studied a similar pencil of K3-surfaces related to the irrationality of ζ(3). By
comparison, we are more interested in the density of states and the spectral
aspect of Harper operator.

In [8], we gave the geometric picture of the Bloch variety at an algebro-
geometric level, then calculated the density of states and some spectral func-
tion. In fact, the compactification of the Bloch variety is an ind-pro-variety
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with properties analogous to a totally disconnected space, which is compat-
ible with the Hofstadter butterfly picture. The density of states over each
component of Fermi curves can be calculated by an elliptic integral plus
Landen transformations.

In complex geometry, a Picard-Fuchs equation (corresponds to a Gauss-
Manin connection in the geometric setting) describes how the local period
solutions change in a family. And the corresponding Schwarzian equation
characterizes the change of the ratio of periods, i.e. the complex structure.
Take into account the monodromy representation, the exponential of the pe-
riod ratio gives a local coordinate of the moduli space of complex structures.
In the context of mirror symmetry, Picard-Fuchs equation encodes the in-
formation from the B-model of the mirror partner, and Schwarzian equation
characterizes the mirror map, which is supposed to be a local identification
between Kähler moduli and complex moduli in the large complex structure
limit.

In this letter, we continue the investigation of the algebro-geometric prop-
erties of the Harper operator. We start with the monodromy of the Fermi
curves, the local monodromy will be computed in terms of Picard-Lefschetz
formula, while the global monodromy was already discussed in [6]. Then we
focus on a Picard-Fuchs equation satisfied by the density of states and the
corresponding Schwarzian equation, the density of states can be written as a
hypergeometric function so that it has some modular property. Finally, from
the relation between the elliptic modulus and the energy level, we obtain a
q-expansion of the energy level based on a mirror map as in mirror symmetry.

2 Fermi curves of Harper operator

In order to fix the notations, we briefly recall the spectral problem of Harper
operator discussed in [8]. As a square lattice discrete magnetic Laplacian,
Harper operator H acting on ℓ2(Z2) is defined by

Hψ(m,n) := e−2πiαnψ(m+ 1, n) + e2πiαnψ(m− 1, n)+
e−2πiβmψ(m,n+ 1) + e2πiβmψ(m,n− 1),

(1)

where the two magnetic translation operators

Uψ(m,n) := e−2πiαnψ(m+1, n) and V ψ(m,n) := e−2πiβmψ(m,n+1) (2)

have irrational real parameters α and β respectively.
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For distinct prime numbers a and b, we consider the associated Bloch
variety,

B := {(ξ1, ξ2, λ) ∈ C∗ × C∗ × C | ∃ ψ 6= 0 s.t. Hψ = λψ,
ψ(m+ a, n) = ξ1ψ(m,n), ψ(m,n+ b) = ξ2ψ(m,n)}. (3)

The Bloch variety is composed by all possible complex loci that can be
reached by analytic continuation of energy band functions with boundary
conditions.

Due to the irrationality of the magnetic fluxes α and β, the loci deter-
mined by (3) consists of a countable collection of algebraic varieties. More
precisely, the Bloch variety in this case is an inductive limit of finite dimen-
sional algebraic varieties, we call it the Bloch ind-variety.

Using Fourier transformation, the Bloch ind-variety can be written as
B =

⋃

k,ℓ,m,nBk,ℓ,m,n with nonsingular subvarieties as components:

Bk,ℓ,m,n := {(ξ1, ξ2, λ) ∈ C
∗ × C

∗ × C | Nk,ℓ
m,n(ξ1, ξ2)− λ = 0} (4)

where

Nk,ℓ
m,n(ξ1, ξ2) := e2πiα(n+ℓb)ξ1+ e−2πiα(n+ℓb)ξ−1

1 + e2πiβ(m+ka)ξ2+ e−2πiβ(m+ka)ξ−1
2

(5)
for (k, ℓ,m, n) ∈ Z× Z× Za × Zb.

Now it is convenient to work on the approximating components of the
Bloch ind-variety, and more details about its compactification by blow-ups
can be found in [8].

Consider the projection π : B → C; (ξ1, ξ2, λ) 7→ λ, if affine Fermi curves
are defined by Fλ(C) := π−1(λ), then each Fermi curve Fλ =

⋃

k,ℓ,m,n F
k,ℓ,m,n
λ

is an ind-variety with components

F k,ℓ,m,n
λ = {(ξ1, ξ2)|Nk,ℓ

m,n(ξ1, ξ2) = λ}. (6)

In [10], the authors used the parametrization λ = σ+σ−1 based on the lattice
structure in H2.

For each 4-tuple (k, ℓ,m, n), there exist singular fibers at λ = 0, 4,−4. It
is easy to see that F k,ℓ,m,n

0 has two components:

{(ξ1, ξ2)|e2πiα(n+ℓb)ξ1 + e2πiβ(m+ka)ξ2 = 0},
{(ξ1, ξ2)|e2πiα(n+ℓb)ξ1 + e−2πiβ(m+ka)ξ−1

2 = 0}. (7)
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F k,ℓ,m,n
4 is an irreducible curve with singularity only at (e−2πiα(n+ℓb), e−2πiβ(m+ka)),

similarly F k,ℓ,m,n
−4 is singular only at (−e−2πiα(n+ℓb),−e−2πiβ(m+ka)), and these

singularities are ordinary double points. Under the involution (ξ1, ξ2) ↔
(−ξ1,−ξ2), it is natural to consider energy level µ = λ2/16 with singular
fibers at 0, 1,∞, this parametrization is related to the modular property of

2F1(
1
2
, 1
2
; 1; 16µ) as in [13].

The projective closure of each component F k,ℓ,m,n
λ in P1× P1, denoted by

F̄ k,ℓ,m,n
λ , is an elliptic curve for a generic λ, and the complement F̄ k,ℓ,m,n

λ \
F k,ℓ,m,n
λ is a divisor of type (2, 2). In other words, we have an elliptic fibration

of the projective closure of each Bk,ℓ,m,n, denoted by B̄k,ℓ,m,n,

π̄ : B̄k,ℓ,m,n → P
1, π̄−1(λ) = F̄ k,ℓ,m,n

λ (8)

By the same statement as in [6], the above fibration gives rise to a stable
family of elliptic curves with four exceptional fibers, at λ = ±4 (type I1), at
λ = 0 (type I2) and at λ =∞ (type I8). Hence the global monodromy group
is Γ0(8) ∩ Γ0

0(4), and the details can be found in [2].
The local monodromy of the family of elliptic curves has been discussed

in [6]. Here we have a similar result for the family of Fermi curve components
in terms of Picard-Lefschetz formula. Let δ be a vanishing cycle, recall that
the Picard-Lefschetz transformation is given by

T (x) = x− (x · δ)δ (9)

for an arbitrary homology cycle x and x·δ is the intersection number between
cycles with chosen orientation.

Lemma 2.1. The local monodromies around λ = 4, 0,−4 are given by the

Picard-Lefschetz transformations T4, T0, T−4,

T4(γ) = γ + δ1, T−4(γ) = γ − δ2, T0(γ) = γ − δ1 + δ2, (10)

where δ1, δ2 are vanishing cycles and γ is an arbitrary homology cycle.

Proof. If we change the variables by ξ = e2πiα(n+ℓb)ξ1 and η = e2πiβ(m+ka)ξ2,
then the Fermi curve components become

F k,ℓ,m,n
λ = {(e−2πiα(n+ℓb)ξ, e−2πiβ(m+ka)η)|ξ + ξ−1 + η + η−1 = λ} (11)

Rewrite the above curve as ξη2 + (ξ2 − λξ + 1)η + ξ = 0 with discrimi-
nant ∆ = (ξ2 − λξ + 1)2 − 4ξ2. Set ∆ = 0, there exist four branch points

{ (λ+2)±
√
λ2+4λ

2
, (λ−2)±

√
λ2−4λ

2
} on the ξ-plane.
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When λ tends to 4, (λ−2)±
√
λ2−4λ

2
shrink to be an ordinary double point

at ξ = 1, which corresponds to (ξ1, ξ2) = (e−2πiα(n+ℓb), e−2πiβ(m+ka)). And

the cycle around (λ−2)±
√
λ2−4λ

2
is a vanishing cycle, call it δ1. Assume γ

is a cycle such that δ1 · γ = 1, we rotate δ1 once and interchange the

points (λ−2)+
√
λ2−4λ

2
←→ (λ−2)−

√
λ2−4λ

2
, by the Picard-Lefschetz transforma-

tion T4(γ) = γ + δ1.

When λ tends to −4, (λ+2)±
√
λ2+4λ

2
shrink to be an ordinary double point

at ξ = −1, which corresponds to (ξ1, ξ2) = (−e−2πiα(n+ℓb),−e−2πiβ(m+ka)).

And the cycle around (λ+2)±
√
λ2+4λ

2
is a vanishing cycle, call it δ2. γ is the

same cycle as above, so δ2 · γ = −1, we rotate δ2 once and interchange the

points (λ+2)+
√
λ2+4λ

2
←→ (λ+2)−

√
λ2+4λ

2
, by the Picard-Lefschetz transforma-

tion T−4(γ) = γ − δ2.
When λ tends to 0, (λ+2)±

√
λ2+4λ

2
shrink to be one ordinary double point

at ξ = 1 corresponding to (ξ1, ξ2) = (e−2πiα(n+ℓb),−e−2πiβ(m+ka)), and at

the same time (λ−2)±
√
λ2−4λ

2
shrink to be the other ordinary double point at

ξ = −1 corresponding to (ξ1, ξ2) = (−e−2πiα(n+ℓb), e−2πiβ(m+ka)). The cycles
δ1, δ2, γ are the same as above, so by the Picard-Lefschetz transformation
T0(γ) = γ − δ1 + δ2.

3 Picard-Fuchs equation of density of states

One of the main results of [8] is that the density of states on each compo-
nent of the Fermi curve can be identified with a period integral independent
of the irrational parameters α, β. In this section, we will give the Picard-
Fuchs equation of the density of states and relate the density of states to the
modular subgroup Γ(2).

Recall that the density of states (DOS) on each component of the Fermi
curve F k,ℓ,m,n

λ is of the form,

DOS =
1

2π2ab
(1 + k)K(k) =

1

2π2ab
K(

2
√
k

1 + k
) (12)

where k = 1−ε
1+ε

is the elliptic modulus. To avoid confusion with the elliptic
modular lambda function, we write the energy level as ε = |λ|/4 instead of
λ used in the previous section. The second equality in (12) is the ascending
Landen transformation, which changes the corresponding period ratio from
τ to τ/2.
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The complete elliptic integral of the first kindK(k), also called the quarter
period, satisfies a second order differential equation

k(1− k2)d
2K

dk2
+ (1− 3k2)

dK

dk
− kK = 0 (13)

with regular singularities at k = −1, 0, 1,∞. Indeed, if we change the vari-
able by the elliptic modular lambda function λ = k2 in K, then the above
differential equation is equivalent to

λ(1− λ)d
2K

dλ2
+ (1− 2λ)

dK

dλ
− K

4
= 0 (14)

which is the Picard-Fuchs equation of the Legendre family of elliptic curves:
y2 = x(x−1)(x−λ), as a special case of hypergeometric differential equation.

If we define
D(k) := 2π2ab DOS = (1 + k)K(k), (15)

then D(k) satisfies a differential equation. Or equivalently,

Proposition 3.1. The density of states satisfies a second order differential

equation

k(1− k)(1 + k)2
d2D

dk2
+ (1− 2k − k2)(1 + k)

dD

dk
+ (k − 1)D = 0. (16)

From now on, we call it the Picard-Fuchs equation of density of states.

Proof. Recall the derivatives of K(k) and E(k) (the complete elliptic integral
of the second kind),

dK

dk
=

E(k)

k(1− k2) −
K(k)

k
,

dE

dk
=
E(k)−K(k)

k
(17)

Substitute into the first derivative of D(k),

dD

dk
= (1 + k)

dK

dk
+K(k) =

E(k)

k(1− k) −
K(k)

k
(18)

In other words,

k(1− k)dD
dk

= E(k) + (k − 1)K(k) (19)
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Then
d

dk
[k(1− k)dD

dk
] =

dE

dk
+ (k − 1)

dK

dk
+K(k) (20)

k(1−k)d
2D

dk2
+(1−2k)

dD

dk
=
E −K
k

+(k−1)(
E

k(1− k2) −
K

k
)+K =

E

1 + k
(21)

Here we use (19) again to cancel E(k), so

k(1− k)d
2D

dk2
+ (1− 2k)

dD

dk
− k(1− k)

1 + k

dD

dk
+

k − 1

(1 + k)2
D = 0 (22)

Instead of the normal derivative d
dk
, the logarithmic derivative operator

Θ = k d
dk

is widely used, so the above Picard-Fuchs equation gives rise to a
differential operator,

Θ2 +
2k

k2 − 1
Θ− k

(1 + k)2
. (23)

Corollary 3.2. With respect to the energy level ε, the Picard-Fuchs equation

of density of states is written as

ε(1− ε2)d
2D

dε2
+ (1− 3ε2)

dD

dε
− εD = 0 (24)

By setting ϑ = ε d
dε
, it is equivalent to

[ϑ2 − ε2(ϑ+ 1)2]D = 0 (25)

Thus the Picard-Fuchs equation of density of states is the same as that
of the quarter period. Actually this is a natural consequence derived from
Landen transformations. Let Lk be the differential operator,

Lk = k(1− k2) d
2

dk2
+ (1− 3k2)

d

dk
− k (26)

then the quarter period and its complementary period give a fundamental
set of independent solutions, i.e. LkK(k) = LkK(k′) = 0, where k2+k′2 = 1.
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Proposition 3.3. After Landen transformations, we still have

Lk′
1
K(k1) = Lk′

1
K(k′1) = 0 (27)

where

k1 =
2
√
k

1 + k
, k′1 =

1− k
1 + k

, k21 + k′21 = 1 (28)

With the convenient notations K ′ = K(k′) and K1 = K(k1), one has
K1 = (1 + k)K(k), i.e. K = ((1 + k′1)/2)K1. Look at the corresponding
quotients,

K ′

K
= 2

K ′
1

K1

, since K ′ = (1 + k′1)K
′
1 =

2K

K ′ K
′
1 (29)

the half-period ratio τ = iK ′/K changes as τ 7→ τ1 = τ/2 according to the
Landen transformation k 7→ k1.

By the classical results on the elliptic lambda function, we have D = K1 =
π
2 2F1

(

1
2
, 1
2
; 1; 1− ε2

)

. Similar to the nome q = eiπτ , define q1 = eiπτ1 =
√
q,

so the density of states has a Lambert series

DOS =
1

2π2ab
[
π

2
+ 2π

∞
∑

n=1

qn1
1 + q2n1

] =
1

4πab
[1 + 4

∞
∑

n=1

qn/2

1 + qn
]. (30)

And µ = ε2 has a q-expansion about the infinite cusp

ε2(τ) = 1− 16(q1/2 − 8q + 44q3/2 − 192q2 + 718q5/2 − · · · ) (31)

It is easy to see that

1− µ(4τ) = 1− ε2(2τ) = λ(2τ) = k2(τ) (32)

i.e. 1 − ε2(τ) is a Hauptmodul for the modular curve X(2), DOS(ε) is a
weight-1 modular form for Γ(2). The relation between ε and j-invariant is
then

j(τ) = 256
(ε4 − ε2 + 1)3

ε4(ε2 − 1)2
(τ) = 16

(ε4 − 16ε2 + 16)3

ε8(1− ε2) (2τ) (33)

4 mirror map and energy level

In order to get a q-expansion of the energy level ε, we continue to look into
the Picard-Fuchs equation of the density of states from a different point of
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view. Since the monodromy representation for solutions of the Picard-Fuchs
equation is the same as the geometric monodromy representation, we consider
the local monodromy of D(k) = K(2

√
k/(1 + k)), i.e. the monodromy of

y2 = (t2 − 1)(
4k

(1 + k)2
t2 − 1) (34)

The corresponding canonical holomorphic form is

ω =
dt

y
=

dt
√

(t2 − 1)( 4k
(1+k)2

t2 − 1)
=

ds
√

(s2 − 1)(s2 − 4k
(1+k)2

)
(35)

where s = −1/t. We have an equivalent statement as Lemma 2.1 under the
change of variable k = 1−ε

1+ε
.

Lemma 4.1. The local monodromies around k = 0, 1 are given by the Picard-

Lefschetz transformations S0, S1,

S0(γ) = γ + δ1, S1(γ) = γ + 2δ2 − 2δ3, (36)

Proof. If k approaches 0, then ±2
√
k/(1 + k) shrink to 0, which gives an

ordinary double point at s = 0. So the cycle around ±2
√
k/(1 + k) is a

vanishing cycle, call it δ1. Let γ be a cycle intersects with δ1 so that δ1 ·γ = 1.
Hence by the Picard-Lefschetz formula S0(γ) = γ + δ1.

If k approaches 1, then ±2
√
k/(1+k) go to ±1, which gives two ordinary

double points at s = ±1. So the cycles around 2
√
k/(1+k), 1 and−2

√
k/(1+

k), −1 are vanishing cycles, call them δ2, δ3, let γ be a cycle intersect with δ2
and δ3 such that δ2 ·γ = 1 and δ3 ·γ = −1. Similarly, by the Picard-Lefschetz
formula S1(γ) = γ + 2δ2 − 2δ3.

As a multiple valued function, the local period solution could change
according to the monodromy if it goes along any loop around some regular
singularity. It is better to consider the ratio of the period solutions since its
exponential is invariant subject to the local monodromy. In the following we
change the Picard-Fuchs equation of density of states into its Q-form and
consider the related Schwarzian equation.

Lemma 4.2. By change of variable D = UV , the Picard-Fuchs equation

(16) is equivalent to
d2U

dk2
+

(1 + k2)2

4k2(1− k2)2U = 0 (37)
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the corresponding differential operator is

Θ2 +
k2

(1− k2)2 (38)

Proof. Based on (16), first define V such that

d

dk
lnV =

k2 + 2k − 1

2k(1− k2) (39)

and the second derivative of V is

V ′′ =
7k2 + 2k − 3

2k(1− k2) V ′ +
1

k(1− k)V (40)

Then by substituting into the Picard-Fuchs equation, it is easy to get the
Q-from with

Q(k) =
(1 + k2)2

4k2(1− k2)2 (41)

Recall that the Schwarzian derivative of a function f(z) is defined by

{f, z} =
(

f ′′(z)

f ′(z)

)′

− 1

2

(

f ′′(z)

f ′(z)

)2

, (42)

and it has a convenient inversion formula

{w, v} = −
(

dw

dv

)2

{v, w}. (43)

Suppose D1, D2 are two linearly independent local period solutions of the
Picard-Fuchs equation (16), and let U1, U2 be the corresponding solutions of
the Q-from (37), define t = D2/D1 = U2/U1, then t satisfies the Schwarzian
equation

{t, k} = (1 + k2)2

2k2(1− k2)2 (44)

By the inverse formula

{k, t} = −k′(t)2{t, k} = − k
′2(1 + k2)2

2k2(1− k2)2 (45)

Since the Schwarzian derivative is GL(2,R) invariant, we have the following
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Proposition 4.3. The energy level ε satisfies a Schwarzian equation

{ε, t} = − k
′2(1 + k2)2

2k2(1− k2)2 = − ε
′2(1 + ε2)2

2ε2(1− ε2)2 (46)

We now use the Frobenius method to find a set of local solutions, write
the Picard-Fuchs equation (16) as

d2D

dk2
+
P1

k

dD

dk
+
P2

k2
D = 0 (47)

with

P1(k) =
1− 2k − k2

1− k2 , P2(k) =
−k

(1 + k)2
. (48)

We want to find out two linearly independent solutions around k = 0, which
is a regular singular point. First the indicial equation is given by

r(r − 1) + rP1(0) + P2(0) = r2 = 0. (49)

Thus k = 0 has maximally unipotent monodromy, which agrees with Lemma
4.1. The indicial equation has repeated roots r = 0, meaning that the local
solutions around k = 0 with normalization D1(0) = 1 are given by

D1 =

∞
∑

n=0

dnk
n, D2 = D1ln k +

∞
∑

n=1

cnk
n (50)

Lemma 4.4. By the Frobenius method, the coefficients are

d2n+1 = d2n =
[

(2n)!
22n(n!)2

]2

c1 = 0; c2n+1 = c2n = 2(
∑n

i=1
1

i+n
)d2n, n ≥ 1

(51)

Write out the local solutions explicitly,

D1 = (1 + k)(1 + 1
4
k2 + 9

64
k4 + 25

256
k6 + · · · )

D2 = D1ln k + (1 + k)(1
4
k2 + 21

128
k4 + 185

1536
k6 + · · · ) (52)

Hence the mirror map is

Q(k) = exp(D2/D1) = kexp{ 2
D1

∑∞
n=1

[

(2n)!
22n(n!)2

]2

(
∑n

i=1
1

i+n
)k2n}

= k + 1
4
k3 + 17

128
k5 + 45

512
k7 + · · ·

(53)
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Theorem 4.5. The energy level has a Q-expansion

ε = 1− 8

[

Q

4
− 4

(

Q

4

)2

+ 12

(

Q

4

)3

− 32

(

Q

4

)4

+ 78

(

Q

4

)5

− · · ·
]

(54)

Proof. Set t = D2/D1 and Q = Q(k) = et. The inverse of the mirror map is

k(Q) = Q− 1

4
Q3 +

7

128
Q5 − 5

512
Q7 + · · · (55)

Since the relation between k and ε is just ε = 1−k
1+k

,

ε = 1− 2Q+ 2Q2 − 3
2
Q3 +Q4 − 39

64
Q5 + 11

64
Q6 − · · · (56)

5 Discussion

We use the classical method to study the Picard-Fuchs equation of density
of states, get a q-expansion of ε2(τ) and a Q-expansion of ε(t). Since the
density of states is independent of the magnetic fluxes, we have to emphasize
that these expansions are independent of these real parameters.

In the language of mirror symmetry, the imaginary variable τ ∈ H is
a local coordinate of the moduli space of complex structures, while t is a
local coordinate of the moduli space of Kähler structures. By the mirror
hypothesis, one can identify τ and t in the large complex structure limit. In
our case, we identify these local coordinates as t = τ/2 and Q = 4

√
q.

It is easy to see that the terms in the q-expansion of the energy level ε
are all integers, which is also true in ε = 1+

∑

ndq
d/2/(1− qd/2), i.e. nd ∈ Z.

Right now we don’t have a good explanation of such “instanton numbers”
related to the spectrum of Harper operator.
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