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On the toric ideal of a matroid

Micha l Lasoń* and Mateusz Micha lek†

Abstract. Describing minimal generating set of a toric ideal is a well-studied
and difficult problem. In 1980 White conjectured that the toric ideal asso-
ciated to a matroid is equal to the ideal generated by quadratic binomials
corresponding to symmetric exchanges.

We prove White’s conjecture up to saturation, that is that the saturations
of both ideals are equal. In the language of algebraic geometry this means that
both ideals define the same projective scheme. Additionally we prove the full
conjecture for strongly base orderable matroids.

1. Introduction

Let M be a matroid on a ground set E with the set of bases B ⊂ P(E) (the
reader is referred to [16] for background of matroid theory). For a fixed field K let
SM := K[yB : B ∈ B] be a polynomial ring. Let ϕM be the K-homomorphism:

ϕM : SM ∋ yB →
∏

e∈B

xe ∈ K[xe : e ∈ E].

The toric ideal of a matroid M , denoted by IM , is the kernel of the map ϕM . For
a realizable matroid M the toric variety associated with the ideal IM has a very
nice embedding as a subvariety of a Grassmannian [8]. It is the closure of the torus
orbit of the point of the Grassmannian corresponding to the matroid M .

The family B of bases, from the definition of a matroid, is nonempty and
satisfies exchange property — for every bases B1, B2 and e ∈ B1 \ B2 there exists
f ∈ B2 \B1, such that (B1 \ e) ∪ f is also a basis.

Brualdi [3] showed that bases of a matroid satisfy also symmetric exchange
property — for every bases B1, B2 and e ∈ B1 \ B2 there exists f ∈ B2 \ B1, such
that both (B1 \ e) ∪ f and (B2 \ f) ∪ e are bases.
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Surprisingly, even a stronger property, known as multiple symmetric exchange
property, is true — for every bases B1, B2 and A1 ⊂ B1 there exists A2 ⊂ B2, such
that both (B1\A1)∪A2 and (B2 \A2)∪A1 are bases (for simple proofs see [14, 23],
and [12, 13] for more exchange properties).

Suppose that a pair of bases D1, D2 is obtained from a pair of bases B1, B2 by
a symmetric exchange. That is, D1 = (B1 \ e) ∪ f and D2 = (B2 \ f) ∪ e for some
e ∈ B1 and f ∈ B2. Then we say that the quadratic binomial yB1yB2 − yD1yD2

corresponds to symmetric exchange. It is clear that such binomials belong to the
ideal IM . White conjectured that they generate this ideal.

Conjecture 1 (White 1980, [21]). For every matroid M its toric ideal IM is
generated by quadratic binomials corresponding to symmetric exchanges.

Since every toric ideal is generated by binomials it is not hard to rephrase the
above conjecture in the combinatorial language. It asserts that if two multisets of
bases of a matroid have equal union (as a multiset), then one can pass between
them by a sequence of symmetric exchanges. In fact this is the original formulation
due to White. We immediately see that the conjecture does not depend on the field
K.

The most significant partial result is due to Blasiak [1], who confirmed the
conjecture for graphical matroids. Kashiwabara [11] checked the case of matroids
of rank at most 3. Schweig [18] proved the case of lattice path matroids, which are
a subclass of transversal matroids. Recently, Bonin [2] confirmed the conjecture for
sparse paving matroids.

A matroid is strongly base orderable if for any two bases B1 and B2 there is a
bijection π : B1 → B2 satisfying the multiple symmetric exchange property, that
is: (B1 \A)∪π(A) is a basis for every A ⊂ B1. This implies that π restricted to the
intersection B1 ∩B2 is the identity. Moreover, (B2 \ π(A)) ∪ A is a basis for every
A ⊂ B1 (by the multiple symmetric exchange property for B1 \ A). The class of
strongly base orderable matroids is closed under taking minors. It is a large class
of matroids, characterized by a matroid property instead of a specific presentation,
contrary to the case of graphical, transversal or lattice path matroids.

We prove White’s conjecture for strongly base orderable matroids. As a con-
sequence it is true for gammoids (every gammoid is strongly base orderable [17]),
and in particular for transversal matroids (every transversal matroid is a gammoid
[16]). So far, for transversal matroids, it was known only that the toric ideal IM is
generated by quadratic binomials [4].

Theorem 2. If M is a strongly base orderable matroid, then the toric ideal IM
is generated by quadratic binomials corresponding to symmetric exchanges.

Our argument uses an idea from the proof presented in [17] of a theorem of
Davies and McDiarmid [6]. Suppose two strongly base orderable matroids on the
ground set E have the same rank. The theorem of Davies and McDiarmid asserts
that if E can be partitioned into bases in each matroid, then there exists also a
common partition.

Let m be the ideal generated by all variables in the polynomial ring SM (so-
called irrelevant ideal). Recall that I : m∞ = {a ∈ SM : amn ⊂ I for some n ∈ N}
is called the saturation of an ideal I with respect to the ideal m. Let JM be the ideal
generated by quadratic binomials corresponding to symmetric exchanges. Clearly,
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JM ⊂ IM and White’s conjecture asserts that the ideals JM and IM are equal. We
prove for arbitrary matroid M that the ideals JM and IM are equal up to saturation
with respect to the irrelevant ideal m. In fact the ideal IM , as a prime ideal, is
saturated IM : m∞ = IM .

Ideals are central objects of commutative algebra. From the point of view of
algebraic geometry one is interested in schemes defined by them. A homogeneous
ideal (IM and JM are homogeneous) defines two schemes – affine and projective (we
refer the reader to [7, 5] for background of toric geometry). Two ideals define the
same affine scheme if and only if they are equal. Thus White’s conjecture asserts
equality of affine schemes defined by IM and JM . Homogeneous ideals define the
same projective scheme if and only if their saturations with respect to the irrelevant
ideal are equal. Thus we prove equality of projective schemes defined by IM and
JM . More information on distinctions between sets and affine or projective schemes
in the case of toric varieties can be found in the last part of Section 4 and in Section
5 of [15].

The projective toric variety Proj(SM/IM ) has been studied before (see [8, 10]).
It is often required that a projective toric variety is normal. Indeed, White proved
the stronger property that the variety Proj(SM/IM ) is projectively normal [22].

Theorem 3. White’s conjecture is true up to saturation. That is, for ev-
ery matroid M we have JM : m

∞ = IM . In other words the projective schemes
Proj(SM/IM ) and Proj(SM/JM ) are equal.

As a corollary we get that both ideals have equal radicals and the same affine
set of zeros (since both IM and JM are contained in m). Moreover, it follows that
in order to prove White’s conjecture it is enough to show that the ideal JM is
saturated, radical or prime.

Conjecture 1 is an algebraic reformulation (cf. [20]) of the original conjecture
due to White expressed in the combinatorial language. Actually, White stated three
conjectures of growing difficulty. In the algebraic language the weakest asserts that
the toric ideal IM is generated by quadratic binomials. The second one is Conjecture
1, and the most difficult is an analog of Conjecture 1 for the noncommutative
polynomial ring SM . We discuss them in details in the last section. We prove that
Conjecture 1 holds for the direct sum M ⊕ M if and only if its noncommutative
version holds for M . In particular we get that the strongest version holds for all
strongly base orderable, graphical, and cographical matroids. We mention also how
to extend Theorems 2 and 3 to discrete polymatroids.

2. White’s conjecture for strongly base orderable matroids

Proof of Theorem 2. Recall that JM is the ideal generated by quadratic
binomials corresponding to symmetric exchanges. The ideal IM , as a toric ideal, is
generated by binomials. Thus it is enough to prove that all binomials of IM belong
to the ideal JM .

Fix n ≥ 2. We are going to show by decreasing induction on the overlap
function

d(yB1 · · · yBn
, yD1 · · · yDn

) := max
π∈Sn

n
∑

i=1

∣

∣Bi ∩Dπ(i)

∣

∣

that a binomial yB1 · · · yBn
− yD1 · · · yDn

∈ IM belongs to JM . Clearly, the biggest
possible value of d is r(M)n, where r(M) denotes the rank of matroid M .
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If d(yB1 · · · yBn
, yD1 · · · yDn

) = r(M)n, then there exists a permutation π ∈ Sn

such that Bi = Dπ(i) for each i. Hence yB1 · · · yBn
− yD1 · · · yDn

= 0 ∈ JM .
Suppose the assertion holds for all binomials with the overlap function greater

than d < r(M)n. Let yB1 · · · yBn
−yD1 · · · yDn

be a binomial of IM with the overlap
function equal to d. Without loss of generality we can assume that the identity
permutation realizes the maximum in the definition of the overlap function. Then
for some i there exists e ∈ Bi \Di. Clearly, yB1 · · · yBn

− yD1 · · · yDn
∈ IM if and

only if B1 ∪ · · · ∪ Bn = D1 ∪ · · · ∪ Dn as multisets. Thus there exists j 6= i such
that e ∈ Dj \Bj. Without loss of generality we can assume that i = 1, j = 2. Since
M is a strongly base orderable matroid, there exist bijections πB : B1 → B2 and
πD : D1 → D2 with the multiple symmetric exchange property. Recall that πB is
the identity on B1 ∩B2, and similarly that πD is the identity on D1 ∩D2.

Let G be a graph on a vertex set B1 ∪B2 ∪D1 ∪D2 with edges {b, πB(b)} for
all b ∈ B1 \ B2 and {d, πD(d)} for all d ∈ D1 \D2. Graph G is bipartite since it
is a sum of two matchings. Split the vertex set of G into two independent (in the
graph sense) sets S and T . Define:

B′
1 = (S ∩ (B1 ∪B2)) ∪ (B1 ∩B2), B′

2 = (T ∩ (B1 ∪B2)) ∪ (B1 ∩B2),

D′
1 = (S ∩ (D1 ∪D2)) ∪ (D1 ∩D2), D′

2 = (T ∩ (D1 ∪D2)) ∪ (D1 ∩D2).

By the multiple symmetric exchange property of πB sets B′
1, B

′
2 are bases obtained

from the pair B1, B2 by a sequence of symmetric exchanges. Therefore the binomial
yB1yB2yB3 · · · yBn

− yB′

1
yB′

2
yB3 · · · yBn

belongs to JM . Analogously the binomial
yD1yD2yD3 · · · yDn

− yD′

1
yD′

2
yD3 · · · yDn

belongs to JM . Moreover, since S and T
are disjoint we have that

d(yB′

1
yB′

2
yB3 · · · yBn

, yD′

1
yD′

2
yD3 · · · yDn

) > d(yB1yB2 · · · yBn
, yD1yD2 · · · yDn

).

By the inductive assumption yB′

1
yB′

2
yB3 · · · yBn

− yD′

1
yD′

2
yD3 · · · yDn

also belongs
to JM . By adding the first and the third and subtracting the second of the above
binomials we get the inductive assertion. �

3. Projective scheme-theoretic version of White’s conjecture for

arbitrary matroids

Proof of Theorem 3. Since JM ⊂ IM we get that JM : m∞ ⊂ IM : m∞ =
IM .

We prove the opposite inclusion IM ⊂ JM : m∞. As IM is toric, it is enough to
prove that any binomial yB1 . . . yBn

− yD1 . . . yDn
∈ IM belongs to JM : m∞. Hence

it is enough to show that for each basis B ∈ B we have

y
(r(M)−1)n
B (yB1 · · · yBn

− yD1 · · · yDn
) ∈ JM ,

since then
(yB1 · · · yBn

− yD1 · · · yDn
)m(r(M)−1)n|B| ⊂ JM .

Let B ∈ B be a basis. The polynomial ring SM has a natural grading given
by the degree function deg(yB′) = 1, for each variable yB′ . We define the B-
degree by degB(yB′) = |B′ \B|, and extend this notion also to bases degB(B′) =
|B′ \B|. Notice that the ideal IM is homogeneous with respect to both gradings.
Additionally B-degree of yB is zero, thus multiplying by yB does not change B-
degree of a polynomial. Observe that if degB(B′) = 1, then B′ differs from B only
by a single element. We call such a basis, and the corresponding variable, balanced.
A monomial or a binomial is called balanced if all its variables are balanced.
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We will prove by induction on the B-degree of a binomial the following claim.
As argued before this will finish the proof.

Claim 4. If b ∈ IM is a binomial, then y
degB(b)−deg(b)
B b ∈ JM .

If degB(b)−deg(b) < 0, then by y
degB(b)−deg(b)
B b ∈ JM we mean that y

deg(b)−degB(b)
B

divides b, and the quotient belongs to JM .
Let n = degB(b). If n = 0, then the claim is obvious, since 0 is the only

binomial in IM with B-degree equal to 0. Suppose n > 0. As we would like to work
with balanced variables, we begin with the following lemma.

Lemma 5. For every basis B′ ∈ B there exist balanced bases B1, . . . , BdegB(B′)

such that
y

degB(B′)−1
B yB′ − yB1 · · · yBdegB(B′)

∈ JM .

Proof. The proof goes by induction on degB(B′). If degB(B′) = 0, 1, then
the assertion is clear. Suppose that degB(B′) > 1. From the symmetric exchange
property for e ∈ B′ \B there exists f ∈ B \B′ such that both B1 = (B \ f)∪ e and
B′′ = (B′ \e)∪f are bases. Now degB(B1) = 1 and degB(B′′) = degB(B′)−1. Ap-
plying the inductive assumption to B′′ we obtain balanced bases B2, . . . , BdegB(B′)

satisfying

y
degB(B′)−2
B yB′′ − yB2 · · · yBdegB(B′)

∈ JM .

Hence, since yByB′ − yB1yB′′ corresponds to symmetric exchange, we get

y
degB(B′)−1
B yB′ − yB1 · · · yBdegB(B′)

= y
degB(B′)−2
B (yByB′ − yB1yB′′) +

+yB1

(

y
degB(B′)−2
B yB′′ − yB2 · · · yBdegB(B′)

)

∈ JM .

�

Lemma 5 allows us to replace each factor y
degB(yB′)−deg(yB′)
B yB′ of a monomial

y
degB(m)−deg(m)
B m by a product of balanced variables (modulo the ideal JM ). Notice

that the B-degree is preserved. Hence for binomials of fixed B-degree equal to n
Claim 4 is equivalent to the following one.

Claim 6. If b = yB1 · · · yBn
− yD1 · · · yDn

∈ IM is a balanced binomial, then
b ∈ JM .

With a balanced monomial m = yB1 · · · yBn
we associate a bipartite multigraph

G(m). The vertex classes of G(m) are B and E \B (where E is the ground set of
matroid M). Each edge corresponds to a variable yBi

of the monomial m. Namely,
if Bi = (B \ f) ∪ e for some f ∈ B, e ∈ E \ B we put an edge {e, f} in G(m). In
this way G(m) is a multigraph with deg(m) edges.

Let b = yB1 · · · yBn
− yD1 · · · yDn

∈ IM be a balanced binomial of B-degree
equal to n. Observe that b belongs to IM if and only if each vertex from E has
the same degree with respect to graphs G(yB1 · · · yBn

) and G(yD1 · · · yDn
). Thus

we can apply the following lemma (we leave the proof as an easy exercise).

Lemma 7. Let G and H be bipartite multigraphs with the same vertex classes.
Suppose that each vertex has the same degree with respect to G and H. Then
the symmetric difference of multisets of edges of G and H can be partitioned into
alternating cycles. That is simple cycles of even length with consecutive edges from
different graphs.



6 MICHA L LASOŃ AND MATEUSZ MICHA LEK

We choose one alternating cycle, and denote its consecutive vertices by
f1, e1, f2, e2, . . . , fr, er, f1. For each i ∈ Z/rZ the sets B′

i = (B \ fi) ∪ ei and
D′

i = (B \ fi) ∪ ei−1 are bases. Notice that yB′

1
· · · yB′

r
divides yB1 · · · yBn

, let m1

be the quotient. Analogously let m2 be the quotient of yD1 · · · yDn
by yD′

1
· · · yD′

r
.

Suppose r < n. Then the balanced binomial b′ = yB′

1
· · · yB′

r
− yD′

1
· · · yD′

r

belongs to IM and has B-degree less than n. From the inductive assumption we
get that b′ ∈ JM . Observe that

b = yB1 · · · yBn
− yD1 · · · yDn

= m1b
′ − yD′

1
· · · yD′

r
(m2 −m1)

and m2 −m1 ∈ IM . The balanced binomial b′′ = m2 −m1 ∈ IM has B-degree less
than n. By the inductive assumption b′′ ∈ JM , and as a consequence b ∈ JM .

Suppose now that r = n. We can assume that E = {f1, e1 . . . , fn, en}, since
otherwise we can contract B \ {f1, . . . , fn} and restrict our matroid to the set
{f1, e1 . . . , fn, en}. Obviously the assertion of the claim extends from such a minor
to the matroid.

We say that a monomial m3 is achievable from a monomial m4 if m3−m4 ∈ JM .
In this situation we say also that variables of m3 are achievable from m4. Observe
that if there is a variable different from yB that is achievable from both monomials
yB1 · · · yBn

and yD1 · · · yDn
, then the assertion follows by induction. Indeed, if a

variable yB′ is achievable from both, then there exist monomials m5,m6 such that

b = (yB1 · · · yBn
− yB′m5) + (yB′m6 − yD1 · · · yDn

) + yB′(m5 −m6).

The binomial b′ = m5 −m6 ∈ IM has B-degree less than n, thus by the inductive

assumption y
degB(b′)−deg(b′)
B b′ ∈ JM . Hence b′ ∈ JM because

degB(b′) − deg(b′) = degB(b) − deg(b) − degB(yB′) + deg(yB′) ≤ 0.

Suppose contrary – no variable different from yB is achievable from both mono-
mials of b. We will exclude this case by reaching a contradiction. For k, i ∈ Z/nZ
we define:

Si
k := B ∪ {ek, ek+1, . . . , ek+i−1} \ {fk, fk+1, . . . , fk+i−1},

T i
k := B ∪ {ek−1, ek, . . . , ek+i−2} \ {fk, fk+1, . . . , fk+i−1},

U i
k := B ∪ {ek−i} \ {fk}.

The sets Si
k and T i

k differ only on the set {e1, . . . , en} by a shift by one. Notice
that S1

k = U0
k = B′

k, T 1
k = U1

k = D′
k and Sn

k = T n
k′ for arbitrary k, k′ ∈ Z/nZ.

Hence m7 := yB′

1
· · · yB′

n
= yS1

1
· · · yS1

n
and m8 := yD′

1
· · · yD′

n
= yT 1

1
· · · yT 1

n
are the

monomials of b, that is b = m7 −m8.

Lemma 8. Suppose that for a fixed 0 < i < n and every k ∈ Z/nZ the following
conditions are satisfied:

(1) the sets Si
k and T i

k are bases,

(2) the monomial yi−1
B ySi

k

∏

j 6=k,...,k+i−1 yS1
j
is achievable from m7,

(3) the monomial yi−1
B yT i

k

∏

j 6=k,...,k+i−1 yT 1
j
is achievable from m8.

Then for every k ∈ Z/nZ neither of the sets U−i
k , U i+1

k is a basis.

Proof. Suppose contrary that U−i
k is a basis. Then yS1

k
ySi

k+1
− yT i

k+1
yU−i

k
, by

the definition, belongs to JM . Thus, by the assumption, the variable yT i
k+1

would

be achievable from both m7 and m8, which is a contradiction. The argument for
U i+1
k is analogous. �
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Lemma 9. Suppose that for a fixed 0 < i < n and every k ∈ Z/nZ the following
conditions are satisfied:

(1) the set Si
k is a basis,

(2) the monomial yi−1
B ySi

k

∏

j 6=k,...,k+i−1 yS1
j
is achievable from m7,

(3) the set U−j
k is not a basis for any 0 < j ≤ i.

Then for every k ∈ Z/nZ the set Si+1
k is a basis and yiBySi+1

k

∏

j 6=k,...,k+i yS1
j
is a

monomial achievable from m7.

Proof. From the symmetric exchange property for ek ∈ S1
k \ Si

k+1 it follows

that there exists x ∈ Si
k+1\S

1
k such that S̃i

k+1 = (Si
k+1\x)∪ek and S̃1

k = (S1
k\ek)∪x

are also bases. Thus x ∈ {fk, ek+1, ek+2, . . . , ek+i}. Notice that if x = ek+j for some

j, then S̃1
k = U−j

k contradicting condition (3). Thus x = fk. Hence S̃i
k+1 = Si+1

k

and S̃1
k = B. In particular the binomial ySi

k+1
yS1

k
−yBySi+1

k
belongs to JM (condition

(1) guarantees that the variable ySi
k+1

exists). Thus the assertion follows from

condition (2). �

Analogously we get the following shifted version of Lemma 9.

Lemma 10. Suppose that for a fixed 0 < i < n and every k ∈ Z/nZ the following
conditions are satisfied:

(1) the set T i
k is a basis,

(2) the monomial yi−1
B yT i

k

∏

j 6=k,...,k+i−1 yT 1
j
is achievable from m8,

(3) the set U j+1
k is not a base for any 0 < j ≤ i.

Then for every k ∈ Z/nZ the set T i+1
k is a basis and yiByT i+1

k

∏

j 6=k,...,k+i yT 1
j
is a

monomial achievable from m8.

We are ready to reach a contradiction by an inductive argument. First we
verify that for i = 1 the assumptions of Lemma 8 are satisfied. Suppose now that
for some 1 ≤ i < n the assumptions of Lemma 8 are satisfied for every 1 ≤ j ≤ i.
Then, by Lemma 8 the assumptions of both Lemma 9 and Lemma 10 are satisfied
for every 1 ≤ j ≤ i. Thus by the assertions of Lemmas 9 and 10, the assumptions
of Lemma 8 are satisfied for all 1 ≤ j ≤ i + 1. We obtain that the assumptions
and the assertions of Lemmas 8, 9 and 10 are satisfied for every 1 ≤ i < n. For
i = n − 1 we get that the monomial yn−1

B ySn
1

= yn−1
B yTn

1
is achievable from both

m7 and m8, this gives a contradiction. �

4. Remarks

We begin with the original formulation of conjectures stated by White in [21].
Two sequences of bases B = (B1, . . . , Bn) and D = (D1, . . . , Dn) are compatible

if B1∪· · ·∪Bn = D1∪· · ·∪Dn as multisets (that is if yB1 · · · yBn
−yD1 · · · yDn

∈ IM ).
White defines three equivalence relations. Two sequences of bases B and D of equal
length are in relation:
∼1 if D may be obtained from B by a composition of symmetric exchanges. That
is ∼1 is the transitive closure of the relation which exchanges a pair of bases Bi, Bj

in a sequence into a pair obtained by a symmetric exchange.
∼2 if D may be obtained from B by a composition of symmetric exchanges and
permutations of the order of the bases.
∼3 if D may be obtained from B by a composition of multiple symmetric exchanges.
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Let TE(i) denote the class of matroids for which every two compatible se-
quences of bases B,D are in relation B ∼i D (the notion TE(i) is the same as
the original one in [21]). An algebraic meaning of the property TE(3) is that the
toric ideal IM is generated by quadratic binomials. A matroid M belongs to TE(2)
if and only if the toric ideal IM is generated by quadratic binomials correspond-
ing to symmetric exchanges. The property TE(1) is an analog of TE(2) for the
noncommutative polynomial ring SM .

We are ready to formulate the original conjecture [21, Conjecture 12] of White.

Conjecture 11. The following equalities hold:

(1) TE(1) = the class of all matroids,
(2) TE(2) = the class of all matroids,
(3) TE(3) = the class of all matroids.

Clearly, Conjecture 1 coincides with Conjecture 11 (2). It is straightforward
[21, Proposition 5] that:

(1) TE(1) ⊂ TE(2) ⊂ TE(3),
(2) classes TE(1), TE(2) and TE(3) are closed under taking minors and dual,
(3) classes TE(1) and TE(3) are closed under direct sum.

White also claims that the class TE(2) is closed under direct sum, however
unfortunately there is a gap in his proof. We believe that it is an open question.
Corollary 14 will show some consequences of TE(2) being closed under direct sum
for the relation between classes TE(1) and TE(2).

Lemma 12. For any matroid M the following conditions are equivalent:

(1) M ∈ TE(1),
(2) M ∈ TE(2) and for any two bases (B1, B2) ∼1 (B2, B1) holds.

Proof. Implication (1) ⇒ (2) is clear from the definition. To get the oppo-
site implication it is enough to recall that any permutation is a composition of
transpositions. �

Proposition 13. For any matroid M the following conditions are equivalent:

(1) M ∈ TE(1),
(2) M ⊕M ∈ TE(1),
(3) M ⊕M ∈ TE(2).

Proof. Implications (1) ⇒ (2) ⇒ (3) were already discussed. To get (3) ⇒ (1)
suppose that a matroid M satisfies M ⊕M ∈ TE(2). By [B′, B′′] we denote a basis
of M ⊕M consisting of a basis B′ of M on the first copy and B′′ on the second.

First we prove that M ∈ TE(2). Let B = (B1, . . . , Bn) and D = (D1, . . . , Dn)
be compatible sequences of bases of M . If B is a basis of M , then B′ = ([B1, B], . . . )
and D′ = ([D1, B], . . . ) are compatible sequences of bases of M ⊕ M . From the
assumption we have B′ ∼2 D′. Notice that any symmetric exchange in M ⊕ M
restricted to the first coordinate is either trivial or a symmetric exchange. Thus,
the same symmetric exchanges certify that B ∼2 D in M .

Due to Lemma 12, in order to prove M ∈ TE(1) it is enough to show that for
any two bases B1, B2 of M the relation (B1, B2) ∼1 (B2, B1) holds. Sequences of
bases ([B1, B1], [B2, B2]) and ([B2, B1], [B1, B2]) in M⊕M are compatible. Thus by
the assumption one can be obtained from the other by a composition of symmetric
exchanges and permutations. By the symmetry, without loss of generality we can
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assume that permutations are not needed. Now by projecting these symmetric
exchanges to the first coordinate we get that (B1, B2) ∼1 (B2, B1) in M . �

As a corollary we obtain that for reasonable classes of matroids the ‘standard’
version of White’s conjecture is equivalent to the ‘strong’ one.

Corollary 14. If a class of matroids C is closed under direct sums, then
C ⊂ TE(1) if and only if C ⊂ TE(2). In particular:

(1) strongly base orderable, graphical, cographical matroids belong to TE(1),
(2) Conjectures 11 (1) and (2) are equivalent,
(3) the class TE(2) is closed under direct sum if and only if TE(1) = TE(2).

In the same way as we associate the toric ideal with a matroid one can associate
a toric ideal IP with a discrete polymatroid P . Herzog and Hibi [9] extend White’s
conjecture to discrete polymatroids. They also ask if the toric ideal IP of a discrete
polymatroid possesses a quadratic Gröbner basis (we refer the reader to [19]).

Remark 15. Theorem 2 and Theorem 3 are true for discrete polymatroids.

There are several ways to prove that our results hold also for discrete poly-
matroids. One possibility is to use Lemma 5.4 from [9]. It reduces a question
if a binomial is generated by quadratic binomials corresponding to symmetric ex-
changes from a discrete polymatroid to a certain matroid. Another possibility is
to associate to a discrete polymatroid P ⊂ Z

n a matroid MP on the ground set
{1, . . . , r(P )} × {1, . . . , n}. A set I is independent if there is v ∈ P such that
|I ∩{1, . . . , r(P )}×{i}| ≤ vi holds for all i. It is straightforward that compatibility
of sequences of bases and generation are the same in P and in MP . Moreover,
one can easily show that a symmetric exchange in MP corresponds to at most two
symmetric exchanges in P .
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