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AFFINE CONES OVER FANO THREEFOLDS AND ADDITIVE

GROUP ACTIONS

TAKASHI KISHIMOTO, YURI PROKHOROV, AND MIKHAIL ZAIDENBERG

Abstract. We address the following question:

When an affine cone over a smooth Fano threefold admits an effective action of the
additive group?

In this paper we deal with Fano threefolds of index 1 and Picard number 1. Our
approach is based on a geometric criterion from [KPZ], which relates the existence
of an additive group action on the cone over a smooth projective variety X with
the existence of an open polar cylinder U ≃ Z × A1 in X . Non-trivial families of
Fano threefolds carrying a cylinder were found in [KPZ]. Here we provide new such
examples.
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Introduction

All varieties in this paper are defined over C. It is known [KPZ] that the affine cone
over any smooth del Pezzo surface of degree d ≥ 4 anticanonically embedded in Pd

admits an effective Ga-action. The existence of a Ga-action on the affine cone over a
projective variety X depends upon the polarization chosen. However, if Pic(X) ≃ Z,
then all polarizations are proportional and so all the affine cones over X simultaneously
admit or do not admit a Ga-action.

On the other hand, under the assumption Pic(X) ≃ Z it is natural to restrict to
Fano varieties X only, since otherwise X is not uniruled and so the affine cones over
X do not admit a Ga-action, see [KPZ]. Consider, for instance, a Fano variety X

2010 Mathematics Subject Classification. Primary 14R20, 14J45; Secondary 14J50, 14R05.
Key words and phrases. Affine cone, Fano variety, automorphism, additive group, group action.
The first author was supported by a Grant-in-Aid for Scientific Research of JSPS No. 20740004.

The second author was partially supported by RFBR, grant No. 11-01-00336-a, the grant of Lead-
ing Scientific Schools, No. 4713.2010.1 and AG Laboratory SU-HSE, RF government grant, ag.
11.G34.31.0023. This work was done during a stay of the second and the third authors at the Max
Planck Institut für Mathematik at Bonn and a stay of the first and the second authors at the Institut
Fourier, Grenoble. The authors thank these institutions for hospitality.

1

http://arxiv.org/abs/1106.1312v1


2 TAKASHI KISHIMOTO, YURI PROKHOROV, AND MIKHAIL ZAIDENBERG

with Picard number one which contains the affine space An as a Zariski open subset.
Clearly, every affine cone over X admits a Ga-action. This applies e.g. to Pn, the
smooth quadric Q in Pn+1, or the Fano threefold X5 of index 2 and degree 5. In [KPZ,
5.1-5.2] we found two more families of rational Fano threefolds X with Picard number
one such that every affine cone over X admits a Ga-action. Namely, these are the
smooth intersections of two quadrics in P5 and the Fano threefolds X22 of genus 12. In
the next theorem we provide two more such families. Given a Fano threefold X , we
let τ(X) denote the Fano scheme of X that is, the component of the Hilbert scheme
parameterizing the lines on X .

Theorem 0.1. Let X be a Fano threefold of genus g = 9 or 10 with

Pic(X) = Z · (−KX) .

If the scheme τ(X) is not smooth, then the affine cone over X under any projective
embedding X →֒ PN admits an effective Ga-action. The Fano threefolds with a non-
smooth scheme τ(X) form a codimension one subvariety in the corresponding moduli
space.

Let us make the following observation. It is known [Pr3] that the automorphism
group of a Fano threefold X as in Theorem 0.1 is finite. It follows that for any affine
cone over X , the group of its linear automorphisms is one-dimensional, while the whole
automorphism group is infinite-dimensional, see [KPZ, §§2-3].

A geometric construction used in the proof of Theorem 0.1 involves a line L on
X , which corresponds to a non-smooth point of τ(X). Besides, in Theorems 3.3 and
3.6 we provide families of examples, which evoke instead a smooth point [L] ∈ τ(X).
It seems plausible that the latter families are not contained in the former ones. A
natural question arises whether the conclusion of Theorem 0.1 remains true for any
Fano threefold of genus g = 9 or 10 with Picard number 1. We expect, however, that
the answer is negative.

The proof of Theorem 0.1 is based on the following geometric criterion. Let X ⊆ Pn

be a smooth projective variety. We say that X possesses a polar A1-cylinder U if
there exists an effective Q-divisor D on X such that D ∼Q H , where H stands for the
hyperplane section, and

U = Y \ supp D ∼= Z × A1

for some quasiprojective variety Z. We let AffCone(X) denote the affine cone over X .

Theorem 0.2. ([KPZ, Theorem 3.9]) If X as above possesses a polar A1-cylinder
U → Z with Pic(Z) = 0, then AffCone(X) admits an effective Ga-action.

Vice versa, if AffCone(X) admits an effective Ga-action, then there exists in X an
open set U = Y \ supp D, where D is as before, isomorphic to the total space of a line
bundle.

Specifying Theorem 0.2 we deduce the following corollary.

Corollary 0.3. Let X be a smooth subvariety in Pn with Pic(X) ≃ Z. Then AffCone(X)
admits an effective Ga-action if and only if there exists in X an open cylinder U ≃
Z × A1.

Proof. Indeed, since Pic(X) ≃ Z, every cylinder in X is polar. Since a line bundle over
Z is locally trivial, shrinking Z if necessary we may assume that it is trivial. �
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We apply this criterion to smooth Fano threefolds of index one and with Picard
number one. Thus Theorem 0.1 follows from Theorem 3.1 which says that every Fano
threefold X satisfying the assumptions of Theorem 0.1 has a cylinder.

Section 1 contains a brief overview on Fano threefolds, with a special accent on the
rationality problem. Besides, we collect here some useful facts on the variety of lines in
a Fano threefold. In Section 2 we describe two standard constructions, which give all
Fano threefolds of genus 9 and 10. Sometimes the proofs are hardly accessible in the
literature, so we provide them here. The main Theorems 0.11, 3.3, and 3.6 are proven
in Section 3.

1. Generalities on Fano threefolds

We recall that a Fano variety is a smooth projective variety X with an ample an-
ticanonical class −KX . The Fano index r = i(X) is defined via −KX = rH , where
H ∈ Pic(X) is a primitive ample divisor class. It is well known that r ≤ dimX + 1.
We write X = Xd for a Fano threefold of degree d, where d = H3. The genus g of X
is defined via 2g − 2 = −K3

X (= dr3).

1.1. Classification of Fano threefolds: rationality. Any Fano threefold X has
index r ≤ 4. Furthermore,

• if r = 4 then X ≃ P3;
• if r = 3 then X ≃ Q, where Q is a smooth quadric in P4.

We assume in the sequel that Pic(X) ≃ Z.

• If r = 2 then the degree of X varies in the range d = 1, . . . , 5. More precisely,
(1) if d = 1 then X is a hypersurface of degree 6 in the weighted projective

space P(1, 1, 1, 2, 3). Such a threefold X is non-rational [Tyu], [Gr];
(2) if d = 2 then X is a hypersurface of degree 4 in the weighted projective

space P(1, 1, 1, 1, 2). Such a threefold X is non-rational [Vo];
(3) if d = 3 then X is a cubic hypersurface in P4, which is known to be non-

rational [CG];
(4) if d = 4 then X = X2·2 is an intersection of two quadrics in P5. Such a

threefold is rational [IPr];
(5) if d = 5 then X = X5 is a linear section (by P6) of the Grassmanian G(2, 5)

under its Plücker embedding in P9. Such a threefold is rational and unique
up to isomorphism [IPr].

• If r = 1 then the genus of X varies in the range g = 2, . . . , 10 and 12. More
precisely,
(a) If g = 2, 3, 5, or 8, then the threefold X is non-rational (see [Is3], [IPu] for

g = 2, [IM], [Is3] for g = 3, [Be] for g = 5, [Is3] and [CG] for g = 8);
(b) if g = 4 or 6 then a general threefold X is non-rational [Be], [IPu], [Tyu];
(c) if g = 7, 9, 10, or 12 then X is rational [IPr].

We are interested in Fano threefolds which possess a cylinder. By the Castelnuovo
rationality criterion for surfaces, such a threefold must be rational. Of course, if X
contains the affine space A3 as an open subset then it has a cylinder. Besides the
projective space P3, a smooth quadric Q in P4, and the Fano threefold X5, also certain
threefolds X22 contain A3 [Fur]. The latter threefolds form a subvariety of codimension

1See also Theorem 3.1.
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two in the moduli space of all the X22, which has dimension 6. In contrast, a cylinder
exists in every Fano threefold X22 or X2·2 [KPZ, §5]. In Theorem 3.1 below we describe
families of Fano threefolds with a cylinder among the X16 (g = 9) and the X18 (g = 10).

The question arises whether every rational Fano threefold carries a cylinder; in par-
ticular, whether this is true for all the threefolds X12 (g = 7), X16 and X18.

1.2. Families of lines on Fano threefolds. In the sequel we need the following facts.

Theorem 1.1 ([Sh1], [Re1], [Is2, Ch. 3, §2], [IPr, §4.2]). Let X = X2g−2 be a Fano
threefold of genus g ≥ 3 with Pic(X) = Z · (−KX), anticanonically embedded in Pg+1.
Then the following hold.

(1) There is a line L on X.
(2) For the normal bundle NL/X there are the following possibilities:

(α) NL/X ≃ OP1 ⊕ OP1(−1), or

(β) NL/X ≃ OP1(1)⊕ OP1(−2) .

(3) The scheme τ(X) is of pure dimension 1.
(4) The scheme τ(X) is smooth and reduced at a point [L] ∈ τ(X) if and only if

the corresponding line L is of type (α).
(5) For g ≥ 7 any line L on X meets at most a finite number of other lines Li on

X.

Remark 1.2. Let g = 9 or 10 and Pic(X) = Z · (−KX). According to [Pr2] and [GLN]
every irreducible component of the scheme τ(X) is generically reduced. Thus for a
Fano threefold X as in Theorem 0.1, the set of non-smooth points of the scheme τ(X)
is at most finite. On the other hand, for a general Fano threefold X of this type, the
scheme τ(X) is an irreducible smooth curve [Pr1, §3.2], [Il, Cor. 5.1.b].

2. Fano threefolds of genera 9 and 10

We need the following lemma.

Lemma 2.1. (a) Any smooth curve Γ of degree 7 and genus 3 in P3 lies on a unique
(irreducible) cubic surface F = F (Γ) in P3.

(b) For any smooth, linearly non-degenerate curve Γ of degree 7 and genus 2 in P4,
the quadrics containing Γ form a linear pencil, say, Q. The base locus of this
pencil is an irreducible quartic surface F = F (Γ) in P4.

Proof. We provide a proof in the case g = 10, the case g = 9 being similar. Let IΓ be
the ideal sheaf of Γ ⊆ P4. Using the exact sequence

0 −→ IΓ(2) −→ OP4(2) −→ OΓ(2) −→ 0

by Riemann-Roch we obtain that dimH0(IΓ(2)) ≥ 2. Hence there is a pencil of
quadrics Q through Γ.

Assume to the contrary that there exist three linearly independent quadrics Q1, Q2,
and Q3 ⊆ P4 passing through Γ. Then Q1 ∩Q2 ∩Q3 = Γ + L (as a scheme), where L
is a line. Consider the exact sequence

(2.1.1) 0 −→ OΓ∪L −→ OΓ ⊕ OL −→ F −→ 0 ,
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where the quotient sheaf F is supported on Γ ∩ L. Since

χ(OΓ∪L) = −4 and χ(OΓ ⊕ OL) = χ(OΓ) + χ(OL) = 0 ,

we obtain by (2.1.1)

#(Γ ∩ L) = dimH0(F ) = χ(OΓ ⊕ OL)− χ(OΓ∪L) = 4 .

Thus L must be a 4-secant line of Γ. Hence the projection with center L would map Γ
to a plane cubic, a contradiction.

Let us show finally that F is irreducible. Indeed, otherwise Γ would be contained
in an irreducible surface F ′ of degree ≤ 3 in P4. Since Γ is assumed to be linearly
non-degenerate, F ′ must be a cubic surface. By [GH, Ch. 4, §3], either F ′ is a cone
or F ′ ≃ F1. Proceeding as at the beginning of the proof, it is easily seen that in both
cases h0(IΓ(2)) ≥ h0(IF ′(2)) ≥ 3. Hence there is a two-dimensional family of quadrics
passing through Γ, which leads to a contradiction as before. �

In 2.3–2.6 below we deal with the following setting.

Setup 2.2. We consider the following two cases:

(i) For g = 9, we let W = P3 and Γ ⊆ P3 be a smooth non-hyperelliptic curve of
degree 7 and genus 3.

(ii) For g = 10, we let W = Q ⊆ P4 be a smooth quadric and Γ be a smooth curve
of degree 7 and genus 2 on Q.

In both cases, we let F = F (Γ) denote the corresponding surface from Lemma 2.1.

In the next proposition we list the possibilities for such a surface F .

Proposition 2.3. In the notation and assumptions as in 2.1–2.2 we let g = 9 in case
(a) of Lemma 2.1 and g = 10 in case (b). Then the surface F = F (Γ) ⊆ Pg−6 belongs
to one of the following classes.

(1) F ⊆ Pg−6 is a normal del Pezzo surface with at worst Du Val singularities; or
(2) F ⊆ Pg−6 is a non-normal scroll, whose singular locus Λ = Sing(F ) is a double

line. Furthermore, the normalization F ′ of F is a smooth scroll F ′ of the
minimal degree g−6 in Pg−5, and the normalization map ν : F ′ → F is induced
by the projection from a point P ∈ Pg−5\F ′. The restriction ν|ν−1(Λ) : ν

−1(Λ) →
Λ is a ramified double cover. There are the following possibilities.
(a) If g = 9 then F ′ ≃ F1, the embedding F ′ ⊆ P4 is defined by the linear

system |Σ + 2ℓ| on F1, where Σ ⊆ F1 is the exceptional section and ℓ is a
ruling, and ν−1(Λ) ∼ Σ + ℓ is a reduced conic on F ′ ⊆ P4, which is either
smooth or degenerate.
If g = 10 then one of the following hold.

(b) F ′ ≃ F0 = P1 × P1, the embedding F ′ ⊆ P5 is defined by the linear system
|Σ+ 2ℓ|, and ν−1(Λ) ∼ Σ is a smooth conic on F ′ ⊆ P5; or

(b′) F ′ ≃ F2, the embedding F ′ ⊆ P5 is defined by the linear system |Σ + 3ℓ|,
and ν−1(Λ) ∼ Σ+ ℓ is a reduced degenerate conic on F ′ ⊆ P5.

Proof. Since F is a complete intersection, it is Gorenstein. By the adjunction formula
ωF ≃ OF (−1), i.e. F is (possibly non-normal) del Pezzo surface.

If F is normal, then by [HW] F is either a surface described in (1), or a cone over
an elliptic curve C ⊆ Pg−7 of degree g − 6. Assume to the contrary that F is a cone.
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Let ξ : F̃ → F be the blowup of the vertex. Then F̃ is a smooth ruled surface over
C. Let as before Σ and ℓ be the exceptional section and a ruling, respectively, with
Σ2 = −k. Letting M = ξ∗OF (1) and Γ̃ be the proper transform of Γ on F̃ , we can
write M ≡ Σ + kℓ and Γ̃ ≡ aΣ+ bℓ. Then

0 =M · Σ, g − 6 =M2 = k, Σ2 = −k = 6− g ,

7 = Γ̃ ·M = b, and Γ̃ · Σ = a(6− g) + 7 ≥ 0 .

Since Γ̃ ≃ Γ is not an elliptic curve, a ≥ 2. This is only possible for g = 9, a = 2, and
so k = 3. On the other hand, by adjunction

2g(Γ̃)− 2 = (Γ̃ +KF̃ ) · Γ̃ = 8,

a contradiction, since g(Γ̃) = g(Γ) ≤ 3.
If F is non-normal then by [Na, Theorem 8], [Re3], [Dol, 9.2.1], F is a projection of a

normal surface F ′ of the minimal degree g− 6 in Pg−5. It is well known (see e.g., [GH,
Ch. 4, §3, p. 525]) that F ′ ⊆ Pg−5 is either a Veronese surface F ′

4 ⊆ P5, or the image
of a Hirzebruch surface Fn under the map given by the linear system |Σ + kℓ|, where
2k − n = g − 6 and k ≥ n. The case of the Veronese surface is impossible because the
degree of every curve on F ′

4 ⊆ P5 is even. Thus F ′ ≃ Fn. Let Γ′ ⊆ Fn be the proper
transform of Γ on F ′. We can write Γ′ ∼ aΣ+ bℓ, where a ≥ 2 and b ≥ na. Note that
in the case g = 9 we have a ≥ 3, since Γ is assumed being non-hyperelliptic, see 2.2.
It is easily seen that the remaining possibilities are as in (2). �

The following corollary is immediate.

Corollary 2.4. In the notation of Proposition 2.3(2), the class of Γ′ in the Picard
group of the normalization F ′ ≃ Fn is as follows:

(a) g = 9, F ′ ≃ F1, Γ
′ ∼ 3Σ + 4ℓ;

(b) g = 10, F ′ ≃ F0, Γ
′ ∼ 2Σ + 3ℓ;

(b′) g = 10, F ′ ≃ F2, Γ̄
′ ∼ 2Σ + 5ℓ.

In all cases Λ is a (13 − g)-secant line of Γ i.e., a 3-secant if g = 10 and 4-secant if
g = 9.

Now we can strengthen part (b) of Lemma 2.1.

Lemma 2.5. In case (b) of Lemma 2.1 the pencil Q contains a smooth quadric.

Proof. Assume to the contrary that every quadric Q ∈ Q is singular. By Bertini
Theorem a general member Q ∈ Q is smooth outside F . Since F is a complete
intersection, every member Q ∈ Q is smooth at the points of F \ Sing(F ). If F has at
worst isolated singularities, then so does every quadric Q ∈ Q. Moreover, in this case
they all must have a common singularity. Hence F should be a cone, which contradicts
Proposition 2.3.

Thus under our assumption F must have non-isolated singularities. Moreover, by
Proposition 2.3(2) F must be singular along a line Λ. If some quadric Q ∈ Q is singular
along Λ, then F is again a cone, which is impossible. Thus we may assume that every
quadric Q ∈ Q has an isolated singular point P ∈ Λ. Fixing such a quadric Q, we can
choose an affine chart in P4 with coordinates x1, . . . , x4 centered at P so that Λ is given
by x1 = x2 = 0 and Q is given by x1x3 + x2x4 = 0. There is a quadric Q′ ∈ Q given
by x1u(x1, x2, x4) + x2v(x1, x2, x3, x4) = 0, where u and v are linear forms. Since F is
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singular along Λ, at every point of Λ the Jacobian matrix of these two quadratic forms
has rank ≤ 1. Therefore x3v(0, 0, x3, x4) = x4u(0, 0, x4) for all x3, x4. This implies that
v(0, 0, x3, x4) = u(0, 0, x4) = 0. So Q′ is given by x1(ax1 + bx2) + x2(cx1 + dx2) = 0 for
some a, b, c, d ∈ C. Hence Q′ is a cone with vertex Λ. Therefore F = Q ∩Q′ is a cone
with vertex P = (0, 0, 0, 0) ∈ Λ, which again gives a contradiction and concludes the
proof. �

In the case of a curve Γ lying on a smooth surface F , the following result can be found
in [Is1]. In the present more general form, the result was announced without proof in
[IPr, Theorems 4.3.3 and 4.3.7]. Besides, we can quote an explanation in [IPr, 4.3.9(ii)]
as to why the assumption in 2.2(i) that the curve Γ is non-hyperelliptic is important.
The details of the proof can be found in an unpublished thesis [Pr1] (in Russian). For
the reader’s convenience, we reproduce them below; see also the (unpublished) notes
[BL].

Theorem 2.6. In the notation as in Setup 2.2 there exists a Sarkisov link

(2.6.2) D̃
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~~

χ
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~~~~
~~
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��?
??

??
??

? F̂

��=
==

==
==

=
? _oo

Γ
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ψ
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T V X Z [ ] _ a c d f h j

kX0 X L?
_oo

where σ is the blowup of Γ, σ0 and ϕ0 are the anticanonical maps onto X0 ⊆ Pg−1, χ
is a flop, X = X2g−2 is a smooth Fano threefold of genus g with Pic(X) = Z · (−KX)
anticanonically embedded in Pg+1, and ϕ is the blowup of a line L on X. The exceptional
divisor F̂ of ϕ is a proper transform of the surface F = F (Γ) ⊆ W . The exceptional
divisor D̃ of σ is a proper transform of a divisor D ∈ | − (12 − g)KX − (25 − 2g)L|.
The map ψ−1 is the double projection with center L that is, a map given by the linear
system |A− 2L| on X, where A ∼ −KX is a hyperplane section.

Proof. Let σ : X̃ → W be the blowup of Γ. Let D̃ be the exceptional divisor and let
H∗ = σ∗H , where H is the positive generator of Pic(W ) ≃ Z. We have (see e.g. [IPr,
Lemma 2.2.14])

(2.6.3) (H∗)3 = g − 8, (H∗)2 · D̃ = 0, H∗ · D̃2 = −H · Γ = −7 ,

and

D̃3 = − degNΓ/W =

{

−23 if g = 10,

−32 if g = 9.

Letting F̃ ⊆ X̃ be the proper transform of F we get F̃ ∼ (12− g)H∗− D̃. The divisor

classes −KX̃ ∼ (13− g)H∗ − D̃ and F̃ form a basis of Pic(X̃) ≃ Z⊕ Z. We have

(2.6.4) −K3
X̃
= 2g−6 > 0, (−KX̃)

2 ·F̃ = 3, −KX̃ ·F̃ 2 = −2, and F̃ 3 = g−13 .

We need the following fact.

Claim 2.7. The divisor −KX̃ is nef and big.
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Proof. Since −K3
X̃

= 2g − 6 > 0, the divisor −KX̃ is big. To establish that it is also
nef, we consider the case g = 10; the proof in the case g = 9 is similar. From the exact
sequence

0 −→ IΓ(3) −→ OW (3) −→ OΓ(3) −→ 0

we obtain by Riemann-Roch

dimH0(IΓ(3)) ≥ dimH0(OW (3))− dimH0(OΓ(3)) = 10 .

The members of the linear system | − KX̃ | are proper transforms of the members of
the linear system | −KW | = |OW (3)| passing through Γ. Hence

(2.7.5) dim | −KX̃ | ≥ 9 .

Applying Lemma 2.1 it is easily seen that the only reducible members G̃ ∈ |−KX̃| are
those of the form G̃ = F̃ +H∗. Hence such divisors form a linear subsystem in |−KX̃ |
of codimension ≥ 5.

Assume to the contrary that there exists an irreducible curve C̃ on X̃ with C̃ ·
(−KX̃) < 0, and let C = σ(C̃) ⊆W . Since g(Γ) = 2, the curve Γ does not admit any 4-
secant line. Indeed, otherwise the projection from this line would send Γ isomorphically
to a plane cubic, which is impossible. Since

#(C ∩ Γ) = C̃ · D̃ > 3H∗ · C̃ = 3degC ≥ 3 ,

the curve C cannot be a line. If C is contained in a plane Π ⊆ P4 then by the same
argument

#(Π ∩ Γ) ≥ #(C ∩ Γ) > 3 degC ≥ 6 .

Since deg Γ = 7 and Γ is linearly non-degenerate, we get a contradiction. Thus C is not
contained in a plane and so degC ≥ 3. Assume that C is contained in some hyperplane
Θ ⊆ P4. Then as above

#(Θ ∩ Γ) ≥ #(C ∩ Γ) > 3 degC ≥ 9 ,

which again leads to a contradiction because deg Γ = 7. Therefore C is linearly non-
degenerate and degC ≥ 4.

On the other hand, F contains a line, say, Υ. Let Υ̃ ⊆ X̃ be its proper transform.
We have Υ̃ · (−KX̃) ≤ 3 = Υ · (−KW ). Therefore, fixing four general points on Υ̃, a

member M̃ ∈ |−KX̃ | passing through these points is forced to contain Υ̃. The family
of all such members has codimension at most 4, while degenerate ones vary in a family
of codimension at least five, as we observed before. Hence there exists an irreducible
divisor M̃ ∈ |−KX̃ | containing Υ̃. By our assumption M̃ · C̃ < 0, and then also

F̃ · C̃ = M̃ · C̃ −H∗ · C̃ < 0. Thus the intersection M̃ ∩ F̃ contains C̃ ∪ Υ̃ and so by
(2.6.3)

deg(C+Υ) = (C̃+Υ̃)·H∗ ≤ M̃ ·F̃ ·H∗ = −KX̃ ·F̃ ·H∗ = (3H∗−D̃)·(2H∗−D̃)·H∗ = 5 .

It follows that degC = 4, so C ⊆ P4 is a rational normal quartic curve. Every quadric
in the linear system H0(IC∪Γ(2)) contains C ∪ Γ. Picking two distinct points on Γ let
us consider the family of quadrics from H0(IC(2)) passing through these points. It
has dimension four. Such a quadric cuts Γ in 13 + 2 = 15 points, hence contains it.

An easy computation gives dimH0(IC(2)) = 6. It follows that

dimH0(IC∪Γ(2)) ≥ 6− 2 = 4 .
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However, the latter contradicts Lemma 2.1(b). This shows that in the case g = 10, the
divisor −KX̃ is nef. The case g = 9 can be treated similarly. �

By the Base Point Freeness Theorem we deduce the following.

Corollary 2.8. For some n > 0 the linear system | − nKX̃ | defines a birational mor-

phism σ0 : X̃ → X0 ⊆ PN whose image is a Fano threefold with at worst Gorenstein
canonical singularities. Moreover −KX̃ = σ∗

0(−KX0
).

Our next claim is as follows.

Claim 2.9. The morphism σ0 is small, i.e. it does not contract any divisor.

Proof. Assume that σ0 contracts a prime divisor Ξ ∼ α(−KX̃)− βF̃ . Then by (2.6.4)

0 = Ξ · (−KX̃)
2 = (2g − 6)α− 3β .

This yields β = (2g/3− 2)α. Since Ξ 6= F̃ and −KX̃ is nef by 2.7, we have

0 ≤ Ξ · F̃ · (−KX̃) = 3α + 2β = α(4g/3− 1) .

Hence α > 0. Furthermore,

Ξ ∼ α(2g2/3− 11g + 37)H∗ + α(2g/3− 3)D̃ .

Since σ∗Ξ is effective we must have 2g2/3− 11g + 37 ≥ 0, a contradiction. �

The following corollary is standard.

Corollary 2.10. In the notation as above, X0 has at worst isolated compound Du Val
singularities.

Following the techniques outlined in [IPr, §4.1] we can now finish the proof of The-
orem 2.6.

End of the proof of 2.6. If −KX̃ is ample then the map σ0 is an isomorphism. In

this case we let X̂ = X̃ = X0 and χ to be the identity map. Otherwise by [Kol] the
contraction σ0 : X̃ → X0 can be completed to a flop triangle as in diagram (2.6.2).

Here ϕ0 is another small resolution of X0. Let Ĉ ⊆ X̂ and C̃ ⊆ X̃ be the flopped and
the flopping curves, respectively. Then χ induces an isomorphism X̃ \ C̃ ≃ X̂ \ Ĉ.

In both cases the divisor −KX̂ = ϕ∗(−KX0
) is nef and big. Further, we have

−K3
X̂
= −K3

X̃
= 2g−6, (−KX̂)

2 ·F̂ = (−KX̃)
2 ·F̃ = 3, −KX̂ ·F̂ 2 = −KX̃ ·F̃ 2 = −2.

Since Pic(X̂) ≃ Pic(X̃) is of rank 2 the Mori cone NE(X̂) is generated by two extremal
rays. One of them has the form R+[T ], where T is a curve in the fiber of σ (resp., ϕ0)

if χ is an isomorphism (resp., not an isomorphism). Let R ⊆ NE(X̂) be the second
extremal ray. Since −KX̂ is nef and big, R is K-negative. By [Mo] there exists a

contraction ϕ : X̂ → X of R.
Since −KX̃ − F̃ = σ∗ O(1) is nef we have (−KX̃ − F̃ ) · C̃ > 0. Therefore F̃ · C̃ < 0

and F̂ · Ĉ > 0. Since −KX̂ · F̂ 2 = −2 < 0, the divisor F̂ is not nef. Hence F̂ · R < 0
that is, the ray R is not nef. By the classification of extremal rays [Mo], ϕ is a

birational divisorial contraction. Moreover, the ϕ-exceptional divisor coincides with F̂ .
If ϕ : X̂ → X contracts F̂ to a point, then by [Mo]

(−KX̂)
2 · F̂ = 4, 2 or 1 .
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On the other hand, (−KX̂)
2 · F̂ = 3, a contradiction. Hence ϕ : X̂ → X contracts F̂

to a curve Z. In this case both X and Z are smooth and ϕ is the blowup of Z [Mo].

Moreover, X is a Fano threefold of Fano index r = 1, 2, 3 or 4. The group Pic X̂ is
generated by F̂ and

−
1

r
ϕ∗KX =

1

r
(−KX̂ + F̂ ) .

Therefore, the subgroup generated by F̃ and −KX̃ has index r in Pic X̃ ≃ Pic X̂ . This
implies that r = 1. We have

(−KX)
3 = (−KX̂) · (−KX̂ + F̂ )2 =

= (−KX̂)
3 + 2F̂ · (−KX̂)

2 + (−KX̂) · F
′2 =

= 2g − 6 + 6− 2 = 2g − 2 ,

i.e. X is a Fano threefold of genus g. Furthermore,

degZ = −KX · Z = (−KX̂ + F̂ ) · F̂ · (−KX̂) = 3− 2 = 1 ,

i.e. Z ⊆ X is a line. Now an easy computation shows that F̂ 3 6= F̃ 3, so χ is not an
isomorphism.

By [Is2, Prop. 3] the linear system | − KX̂ | defines a birational map and X0 is a
Fano threefold with at worst isolated Gorenstein terminal singularities. In particular,
| − KX0

| is very ample. Hence the linear system | − KX̃ | = σ∗

0 | −KX0
| is base point

free and defines the map σ0.
Finally, Γ is (as a scheme) the base locus of the linear subsystem σ∗| − KX̃ | ⊆

|OW (13−g)|. It remains to show that in the case g = 9 the curve Γ is not hyperelliptic.
Assume the converse. It was shown already that Γ does not admit a 5-secant line. On
the other hand, by [GH, Ch. 2, §5] Γ admits a 4-secant line, say, N . The projection
from N defines a linear system of degree 3 and dimension ≥ 1 on Γ. Hence the curve
Γ is hyperelliptic and trigonal. However, this is impossible, since otherwise the linear
systems g12 and g13 on Γ define a birational morphism Γ → P1 × P1 whose image is a
divisor of bidegree (2, 3). This contradicts the assumption that g(Γ) = 3. Now the
proof of Theorem 2.6 is completed. �

Corollary 2.11. In the notation as above we have X \D ≃ W \ F .

In the next proposition we describe the flopped and the flopping curves in (2.6.2).

Proposition 2.12. In the notation as above we let C̃ ⊆ X̃ and Ĉ ⊆ X̂ be the flopping
and the flopped curve, respectively. Then the following hold.

(1) Any irreducible component Ĉi ⊆ X̂ either is a proper transform of a line Li 6= L
on X meeting L, or (in the case where L is of type (β)) is the negative section

Σ of the ruled surface F̂ ≃ F3.
(2) The curve Ĉ is a disjoint union of the Ĉi’s.

(3) For any Ĉi we have

NĈi/X̂
≃ OP1(−1)⊕ OP1(−1) or NĈi/X̂

≃ OP1 ⊕ OP1(−2) .

It follows that χ coincides with the Reid’s pagoda [Re2] near each Ĉi.

(4) The curve C̃ in X̃ is a disjoint union of the C̃i’s, where each C̃i is the proper
transform of a (13− g)-secant line of Γ.
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Proof. Recall that Ĉ and C̃ are exceptional loci of ϕ0 and σ0, respectively [Kol]. The
assertion (1) is proven in [Is1, Proposition 3, (iv)] and [IPr, Proposition 4.3.1], while
(2) and (3) in [Cu, Proposition 4] and [Cu, Corollary 12, Theorem 13], respectively. By

virtue of (3) C̃ is a disjoint union of its irreducible components. Finally (−KX̂−F̂ )·Ĉi =

−1. Therefore 1 = (−KX̃−F̃ )·C̃i = σ∗OW (1)·C̃i. So σ(C̃i) is a line. Since −KX̃ ·C̃i = 0,
this line must be (13− g)-secant. �

Finally in the next theorem we provide a criterion as to when the surface F in
Theorem 2.6 is normal.

Theorem 2.13. In the notation of Theorems 1.1 and 2.6, the surface F is normal if
and only if L is a line of type (α) on X.

Proof. We use the notation of Proposition 2.12. Assume that L is of type (β), and let

C̃0 denote the proper transform on X̃ of the negative section Σ of the ruled surface
F̂ ≃ F3. By Remark 5.13 in [Re2], F̃ is not normal along C̃0. Since C̃0 is a smooth
rational curve, σ is an isomorphism at a general point of C̃0. So F is also non-normal
along σ(C̃0).

Assume to the contrary that L is of type (α), while F is non-normal. Then F

is singular along a line Λ. Clearly Λ 6= Γ, so F̃ is also non-normal and singular
along σ−1(Λ). The map χ is an isomorphism near a general ruling f̂ ⊆ F̂ ≃ F1.

Letting f̃ = χ−1(f̂), the surface F̃ is smooth along f̃ and σ0(f̃) = ϕ0(f̂) is a line on

σ0(F̃ ) = ϕ0(F̂ ) ≃ F1. Let l ⊆ F be a general line on a non-normal scroll F and l̃

be its proper transform on F̃ . An easy computation shows that σ0(l̃) is again a line

on σ0(F̃ ) = ϕ0(F̂ ) ≃ F1. Thus we may suppose that l̃ = f̃ . On the other hand,

l̃ ∩ Sing(F̃ ) 6= ∅, a contradiction. �

3. Constructions of cylinders

In this section we prove Theorem 0.1. Recall that under its assumptions X = X2g−2

is a Fano threefold in Pg+1 of genus g = 9 or 10 with Pic(X) = Z · (−KX), having
a non-smooth Fano scheme τ(X). By virtue of Corollary 0.3 the first assertion of
Theorem 0.1 is equivalent to the following one.

Theorem 3.1. Under the assumptions of Theorem 0.1 the variety X contains a cylin-
der.

Proof. Assuming that the scheme τ(X) is not smooth at a point [L] ∈ τ(X), it suffices
to construct a cylinder in W \ F (see Corollary 2.11).

By Theorem 1.1(4) L is a line of type (β) on X . According to Theorem 2.13 the
surface F is non-normal, and so by Proposition 2.3 Λ = Sing(F ) is a double line on F .
Consider the following diagram:

W̄
q

""D
DD

DD
DD

D
p

~~}}
}}

}}
}}

W
ξ

//_______ Pg−8

where ξ is the projection from Λ, p is the blowup of Λ, and q = ξ ◦ p. We show below
that q is a P11−g-bundle over Pg−8. Let Ē ⊆ W̄ be the exceptional divisor and F̄ ⊆ W̄
be the proper transform of F .
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In the case g = 10 the fibers of ξ are intersections of our smooth quadricW ⊆ P4 (see
2.2) with planes in P4 containing Λ. Therefore q is a P1-bundle over P2, whose fibers
are the proper transforms of lines in W ⊆ P4 meeting Λ. The morphism q : W̄ → P2

is given by the linear system |p∗OW (1) − Ē|. Since F̄ ∼ 2p∗OW (1) − 2Ē, the image
q(F̄ ) = ξ(F ) is a conic on P2. Since NΛ/W ≃ OΛ⊕OΛ(1), the P

1-bundle Ē → Λ is that
of the Hirzebruch surface F1 → P1. Moreover, its negative section Σ̄ is a fiber of q. It
follows that the open set W \F ≃ W̄ \ (F̄ ∪ Ē) is an A1-bundle over P2 \ q(F̄ ∪ Σ̄). By
[KM, Theorem 2] and [KW, Theorem], this bundle is trivial over a Zariski open subset
Z ⊆ P2 \ q(F̄ ∪ Σ̄). This gives a cylinder contained in W \F and also a cylinder on X .

In the case g = 9 the fibers of ξ are planes in W = P3. The intersection of such
a plane with the cubic surface F consists of the double line Λ and a residual line l.
Therefore q is a P2-bundle over P1, and F̄ ∪ Ē intersects each fiber along a pair of lines.

More precisely, we have Ē ∼= F0 and F̄ ∼= F1 (see Proposition 2.3(2a)). Furthermore,
q|Ē and q|F̄ , respectively, yield P1-bundles with rulings being lines in the fibers of q.
By a simple computation we obtain that F̄ |Ē ∼ 2Σ̄ + l̄, where Σ̄ (resp. l̄) is a section
(a ruling, respectively) of the trivial P1-bundle Ē → Λ. Notice that Σ̄ is a line in a
fiber of q and l̄ is a section of q. The finite map p|F̄ : F̄ → F yields a normalization of
F . For the curve F̄ |Ē there are the following two possibilities :

(i) F̄ |Ē = ∆1, where ∆1 ∈ |2Σ̄ + l̄| is irreducible, or
(ii) F̄ |Ē = Σ̄ + ∆0, where ∆0 ∈ |Σ̄ + l̄| is a diagonal.

We claim that W \F ≃ W̄ \ (F̄ ∪ Ē) contains a cylinder. In what follows we deal with
case (ii) only; (i) can be treated in a similar fashion. There exists exactly one fiber of q,
say Π̄∞, such that Ē, F̄ and Π̄∞ meet along a common line. Blowing up W̄ ◦ := W̄\Π̄∞

along the irreducible curve Ē ∩ F̄ ∩ W̄ ◦, we obtain an F1-bundle π̂ : Ŵ ◦ → A1 together
with the proper transforms F̂ ◦ and Ê◦ on Ŵ ◦ of F̄ and Ē, respectively. The exceptional
divisor Ê◦

1 is ruled over A1 with rulings being the (−1)-curves in the fibers isomorphic

to F1. There is a natural P1-bundle structure ρ : Ŵ ◦ → Ê◦

1 which defines in each fiber

of ρ the ruling F1 → P1. The map ρ sends Ê◦ and F̂ ◦ to the intersections Ê◦ ∩ Ê◦

1 and

F̂ ◦ ∩ Ê◦

1 , respectively. The complement Ŵ ◦ \ (Ê◦

1 ∪ Ê
◦ ∪ F̂ ◦) ≃ W̄\(Ē ∪ F̄ ∪ Π̄∞) ≃

W \ (F ∪ Π∞) is again a P1-bundle over Ê◦

1 \ (Ê
◦ ∪ F̂ ◦), where Π∞ := p∗(Π̄∞). This

bundle is trivial over a Zariski open subset Z ⊆ Ê◦

1 , and admits a tautological section

defined by Ê◦

1 →֒ Ŵ ◦. After trivialization the map ρ : ρ−1(Z) → Z becomes the first
projection Z × P1 → Z. The second projection of the tautological section defines a
morphism f : Z → P1. The automorphism t 7−→ (t − f(z))−1 of Z × P1 sends this

section to the constant section ‘at infinity’. The A1-bundle ρ : Ŵ ◦ \ Ê◦

1 → Ê◦

1 being

trivial over Z it defines a cylinder ρ−1(Z) \ Ê◦

1 ≃ Z × A1, as required. �

Proof of Theorem 0.1. The first assertion of Theorem 0.1 is a consequence of Theorems
1.1(4), 2.13, and 3.1. Let us show the second one. Recall that the automorphism group
of a Fano threefold of genus g = 9 or 10 with Pic(X) = (−KX) · Z is finite [Pr3].

Fix a moduli space Mg of the Fano threefolds of genus g = 9 or 10 with Pic(X) =
(−KX) · Z. It can be defined using GIT, and is unique up to a birational equivalence.
Let ML g be the moduli space of pairs (X,L), where X is a Fano threefold as above
and L is a line on X . Consider a natural projection π : ML g → Mg whose fiber over
a point [X ] ∈ Mg (which corresponds to X) is isomorphic to τ(X). By Theorem 1.1(3)



AFFINE CONES OVER FANO THREEFOLDS 13

we have dimMg = dimML g−1. By Theorem 2.6 ML g is isomorphic to the moduli
space of embedded curves Γ ⊆W of degree 7 and genus g(Γ) = 12− g.

Let further M ′

g ⊆ Mg be the closed subvariety formed by all Fano threefolds X

whose Fano scheme τ(X) is non-smooth, and let ML
′

g ⊆ ML g be the subvariety

formed by all pairs (X,L) such that L is of type (β). Then M ′

g = π(ML
′

g). Since
such a Fano threefold X contains at most a finite number of (β)-lines (see Remark 1.2)
we have dimM ′

g = dimML
′

g. Now the second assertion of Theorem 0.1 is immediate
in view of the following claim. �

Claim 3.2. Let Hg be the Hilbert scheme parameterizing the curves Γ on W of degree 7
and arithmetic genus pa(Γ) = 12−g. Then dimHg = 91−7g. If the surface F = F (Γ)
is smooth along Γ, then Hg is smooth at the corresponding point. Furthermore, the
subscheme of Hg parameterizing the curves Γ with F (Γ) non-normal, has codimension
2.

Proof. Assuming that F (Γ) is smooth along Γ, we consider an exact sequence of normal
bundles with base Γ

(3.2.6) 0 −→ NΓ/F −→ NΓ/W −→ NF/W |Γ −→ 0 .

Taking into account the relations

degNΓ/F = 2g(Γ)− 2 + deg Γ and degNF/W |Γ = Γ · F ,

we obtain by (3.2.6) that H1(NΓ/W ) = 0 and dimH0(NΓ/W ) = 91− 7g. Now the first
two assertions follow by the standard facts of the deformation theory.

The proof of the last assertion is just a parameter count. By Corollary 2.4 the
dimension of the family of curves Γ with a non-normal surface F (Γ) equals 13 and 11
in cases (a) and (b)-(b′), respectively, while the family of all non-normal surfaces F is
of codimension 15− g. �

Second construction. In this and the next subsections we describe some families
of Fano threefolds of genera 9 and 10 carrying a cylinder, which plausibly are not
covered by Theorem 0.1. In this subsection we prove the following theorem.

Theorem 3.3. In the notation as in Setup 2.2 and Theorem 2.6, in the case g = 10
the threefold X contains a cylinder whenever the surface F has a singularity worse
than the Du Val singularity of type A1.

Proof. Assume that the surface F ⊆W ⊆ P4 is singular, whereW is as before a smooth
quadric in P4 and F is a complete intersection quartic surface in W . Let P ∈ F be a
singular point. There is a commutative diagram

(3.3.7) W̄
q

  A
AA

AA
AAp

~~}}
}}

}}
}}

W
ξ

//_______ P3

where ξ is the projection from P and p is the blowup of P . Let Ē ⊆ W̄ be the
exceptional divisor and F̄ ⊆ W̄ the proper transform of F . Then Π = q(Ē) is a plane
in P3, while the birational morphism q is the blowup of a conic C ⊆ Π. Furthermore,
let HP = W ∩ TP,W be the tangent hyperplane section and H̄P ⊆ W̄ be its proper
transform. Then H̄P is the q-exceptional divisor. Now let F̄ ⊆ W̄ be the proper
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transform of F and let F ◦ = q(F̄ ). It is easily seen that F ◦ ⊆ P3 is a quadric.
Obviously, W \ (F ∪HP ) ≃ P3 \ (F ◦ ∪ Π). Note that F̄ ∩ Ē is the exceptional divisor
of pF̄ : F̄ → F and F̄ ∩ Ē ≃ F ◦ ∩ Π.

Now assume that the singularity P ∈ F is worse than a Du Val singularity of type
A1. Then F̄ ∩ Ē ≃ F ◦ ∩Π cannot be a smooth conic. So it is either a pair of crossing
lines or a double line. In any case P3 \ (F ◦ ∪Π) admits a cylinder by the arguments in
the proof of Theorem 3.1 for g = 9. Indeed, F ◦ ∪Π can be regarded as a cubic surface
singular along a line. �

Consider, for instance, the following construction.

Example 3.4. Let Γ0 ⊆ P2 be a plane quartic curve with a node P1. Pick a pair of
distinct general points P2, P3 ∈ Γ0. Let F1 → P2 be the blowup of P1, P2, P3 and let
Ei be the corresponding exceptional divisors. Let Γ1 ⊆ F1 be the proper transform
of Γ0, and let P4 = Γ1 ∩ E2 (this is a single point). Let F2 → F1 be the blowup of
P4, E4 be the exceptional divisor, and Γ2 ⊆ F2 be the proper transform of Γ1. Take
a general point P5 ∈ E4. Letting F3 → F2 be the blowup of P5 and Γ3 ⊆ F3 be the
proper transform of Γ2, we see that F3 is a weak del Pezzo surface of degree 4 [Dol, ch.
8] containing two (−2)-curves C2 and C4 that meet at a point. These are the proper
transforms of E2 and E4, respectively. The anticanonical image of F3 is a del Pezzo
surface F ⊆ P4 with a Du Val singularity of type A2, which is the image of C2 ∪ C4.
Since Γ3 · (C2 +C4) = 1, the image Γ of Γ3 is a smooth curve of genus 2 and degree 7.
Thus (F,Γ) satisfies the conditions of Theorem 3.3. More precisely, the complement
W\F contains a cylinder, and the center Γ ⊆ F of the blow-up σ : X̃ → W is such
that one can reach a pair (X,D) consisting of a Fano threefold X = X18 (g = 10) and
an irreducible divisor D on X , which is the proper transform of σ−1(Γ) on X , with
X\D ≃W\F .

Remark 3.5. The construction (3.3.7) works as well in the case of a non-normal F .
We believe that in this case there are several cylinder structures on X , and hence the
Makar-Limanov invariant of any affine cone over X vanishes.

Third construction. In this subsection we construct a cylinder in the complement
of an irreducible cubic surface F ⊆ P3 under certain restrictions on the singularities of
F . In [Oh] some families of cubic surfaces F in P3 were found such that the complement
P3 \F contains an A2-cylinder. However, sometimes an A1-cylinder exists while an A2-
cylinder does not.

Theorem 3.6. In the notation as in 2.2–2.6, in the case g = 9 the threefold X contains
a cylinder whenever the cubic surface F ⊆ P3 has a singular point of type A3 or worse.
There exists a family of Fano threefolds X satisfying these assumptions.

This theorem follows from the next proposition and Example 3.16 below.

Proposition 3.7. Let F be an irreducible cubic surface in P3. Then the complement
P3 \F contains a cylinder whenever the surface F has a singularity worse than the Du
Val A2 singularity.

Before dwelling in the proof, let us mention an application of this result.
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Remark 3.8. We observe that, whenever the complement of a cubic surface in P3

contains a cylinder, this complement admits an effective Ga-action. This applies e.g.
to the singular cubic surfaces as in Proposition 3.7 or in Lemma 3.10 below.

More generally, let X be a normal affine variety such that the class group Cl(X) is
a torsion group, and let U ≃ A1 ×Z be an A1-cylinder in X . We claim that X admits
an effective Ga-action along the corresponding A1-fibration. Indeed, consider the Ga-
action on U by shifts on the second factor, and let ∂ ∈ Der(O(U)) be the corresponding
locally nilpotent derivation. By our assumption, a multiple of the effective reduced
divisor D = X \ U is principal i.e., mD = div(f) for some f ∈ O(X) and m ∈ N.
Clearly, f ∈ ker(∂) since f does not vanish on the A1-rulings of U . Hence fNδ is well
defined and locally nilpotent on O(X) for N sufficiently large (cf. [KPZ, Proposition
3.5]). �

We start the proof of Proposition 3.7 with several remarks and lemmas.

Remarks 3.9. (1) Any non-normal, irreducible cubic surface F in P3 different from a
cone is a scroll in lines with a double line [Na], [Re3] (cf. Proposition 2.3). The proof
of Proposition 3.7 goes for such a surface F in the same way as that of Theorem 3.1.

(2) If F has a singular point P of multiplicity ≥ 3, then F is a cone over a plane
cubic curve. So the projection P3 \ {P} → P2 with center P determines a (linear)
cylinder structure over an appropriate open set Z ⊆ P2.

(3) In case (1) F does not admit any isolated singularity. In fact, if F has a Du Val
singularity then all its singular points are at most isolated Du Val singularities. The
classification of all possible sets of Du Val singularities on cubic surfaces in P3 is as
follows (see e.g., [BW] or [Dol])2:

(nA1), n = 1, . . . , 4, (nA2), n = 1, 2, 3, (A3), (A4), (A5),

(nA1, A2), (nA1, A3), n = 1, 2, (A1, 2A2), (A1, A4), (A1, A5),

(D4), (D5), (E6) .

In the proof of Proposition 3.7 we use the following simple observation.

Lemma 3.10. Let F be a cubic surface in P3, L a line on F , and Πλ (λ ∈ P1) the
pencil of planes through L. Suppose that for a general λ ∈ P1

(3.10.8) Πλ ∩ F = L+ Cλ, where Cλ ∩ L = 2P,

i.e. Cλ is a plane conic tangent to L at a point P . Then P3 \ F contains a cylinder.

Proof. Blowing up P3 with center L yields a diagram

P̃3

p

~~~~
~~

~~
~ q

  @
@@

@@
@@

P3
ξ

//_______ P1

where p is the blowup of L, ξ is the projection with center L, and q is a P2-bundle. Let
F̃ be the proper transform of F on P̃3 and Ẽ ⊆ P̃3 be the exceptional divisor of p. We

2 The coefficients in the list mean the number of singular points of a given type.
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fix a member, say, Π∞ of our pencil, and we let Π̃∞ denote its proper transform on P̃3.
In P̃3 we consider the open set

Ũ = P̃3 \ (Π̃∞ ∪ Ẽ) ≃ P3 \ Π∞ ≃ A3 .

Let h be a regular function on Ũ which defines the affine surface F̃ ∩ Ũ . Consider
further a rational map

δ = (q, h) : P̃3
99K P1 × P1 .

Its restriction to the open set Ũ \ F̃ is regular, while the restriction to a general fiber
Π̃λ \ (Ẽ ∪ F̃ ) of q|Ũ defines an A1-fibration. Hence δ defines as well an A1-fibration
over a Zariski open subset of P1 × P1. By[KM, Theorem 2] and [KW, Theorem] there
exists a cylinder in P3 \ F compatible with this A1-fibration.

�

Remarks 3.11. (1) The construction in the proof yields a cylinder in conics with a
unique base point P . Such a cylinder can exist only if P ∈ F is a singular point.

(2) If F as in Lemma 3.10 is singular at P , then there is a line L on F through P .
Indeed, in an affine chart centered at P the equation of F can be written as f2+f3 = 0,
where f2 and f3 are homogeneous forms of degree 2 and 3, respectively. The system of
equations f2 = f3 = 0 defines 6 lines on F through P , counting with multiplicities.

(3) Suppose that for a triple (F, L, P ) as before, the pencil Πλ does not satisfy the
assumptions of Lemma 3.10. Then in an appropriate affine chart with coordinates
(x, y, z) centered at a singular point P of F , the surface F can be given by equation

xy + zg(x, y, z) = 0 .

Since the quadratic part is of rank ≥ 2, in this case (F, P ) is an An-singularity. These
observations lead to the following corollary.

Corollary 3.12. If (F, P ) as before is a Du Val singularity not of type An, then P3 \F
contains an A1-cylinder in conics with a unique base point P .

It remains to determine for which An-singularities (F, P ) of cubic surfaces the com-
plement P3 \ F contains a cylinder.

Lemma 3.13. Let F be a cubic surface in P3 with an An-singularity P ∈ F . If n ≥ 3
then the complement P3 \ F contains a cylinder.

Proof. Suppose that n ≥ 3, and let f = f2+f3 = 0 be an equation of F in a local affine
chart (x, y, z) centered at P . If rk f2 = 1 then (F, P ) is of type Dn or E6. If rk f2 = 2
then (F, P ) is non-normal or of type An (n ≥ 2), and if rk f2 = 3 then (F, P ) is of
type A1. In the former case, the result follows from Corollary 3.12. The case n ≤ 2 is
eliminated by our assumption. In the second case, we can reduce the equation to the
form

f = xy + g3(x, y) + g2(x, y)z + g1(x, y)z
2 + cz3 = 0 ,

where gi is a homogeneous form of degree i. We claim that c = 0. Indeed, let the
blowup of P3 at P be given in an affine chart as (x, y, z) 7−→ (xz, yz, z), with the
exceptional divisor z = 0. Then the equation of the proper transform F ′ of F in this
chart is

xy + g3(x, y)z + g2(x, y)z + g1(x, y)z + cz = 0 .
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Since n > 2 and the surface F ′ should acquire a singular point of type An−2 at the
origin, we conclude that c = 0.

Furthermore, we may assume that L = {x = y = 0}. Consider the pencil of planes
Πλ = {y = λx} through L. We have Πλ∩F = L+Cλ, where L∩Cλ = {x = 0, z2 = 0}
has a double point. Now the conclusion follows by Lemma 3.10. �

Remark 3.14. In the case where P ∈ F is an A1 or A2 singularity and L is a line
on F through P , there is no plane Πλ through L such that the residual conic on the
section Πλ ∩ F is tangent to L at P .

Remark 3.15. For a cubic surface F ⊆ P3 the following are equivalent:

(1) F has a singularity worse than Du Val A2 singularity,
(2) there exists a line L on F such that the pair (F, L) is not purely log terminal

(PLT).

Indeed, assuming that all singularities of F are of type A1 or A2, consider a line L on
F . Since L is smooth, for any singular point P ∈ F the dual graph of the minimal
resolution has the form

◦—
L
• or ◦— ◦—

L
•

Thus (F, L) is PLT by the classification of the PLT singularities of surfaces. Hence (2)
implies (1).

To show the converse, assume that (F, L) is PLT. Again by the classification of the
PLT singularities, and because there is a line passing through any singular point of F ,
the surface F is normal and has only An-singularities. Take L as in Lemma 3.10, and
let P ∈ L be a singular point of F . For a general plane Π passing through L we have
Π∩F = L+C, where C is a smooth conic tangent to L at P . Then the pair (F,C+L)
is not log canonical (LC) at P .

On the other hand, we claim that the dual graph of the minimal resolution of (F,C+
L) has the form

L
•—

E1

◦ — · · ·—
En

◦ —
C
•

Consequently, the pair (F,C + L) is LC at P , a contradiction.

To show the claim we consider the minimal resolution µ : F̃ → F of the An-
singularity (F, P ) and its fundamental cycle Z =

∑n
i=1Ei. Since L and C both are

smooth and pass through P we have L · Z = 1 = C · Z. Hence C and L are both at-
tached at the end vertices of the dual resolution chain

∑n
i=1Ei. It remains to show that

they are attached at the opposite end vertices. Write µ∗(C+L) = C ′+L′+
∑n

i=1 αiEi,

where αi > 0, i = 1, . . . , n, are the vanishing orders on the Ei of the pullback to F̃
of the local equation of the Cartier divisor C + L on F . Taking intersections with Ei,
i = 1, . . . , n, yields a system

−2α1 +α2 = −δ1, α1 − 2α2 +α3 = −δ2, α2 − 2α3 +α4 = −δ3, . . . , αn−1 − 2αn = −δn ,

where δi = (C ′ + L′) · Ei ∈ {0, 1, 2}. We have
∑n

i=1 δi = 2. Assuming that δ1 > 0 and
summing up the equations we obtain −(α1 + αn) = −2, hence α1 = αn = 1. Plugging
in this in our system we find α2 + δ1 = 2, where α2 > 0 and δ1 > 0, hence α2 = 1 = δ1.
From the second equation we deduce

α3 = 2α2 − α1 − δ2 = 1− δ2 > 0 ,
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hence δ2 = 0 and α3 = 1, and so on. By recursion, finally we get

δ1 = 1, δ2 = . . . = δn−1 = 0, and δn = 1 .

Now the claim follows.

The next example fixes the second part of Theorem 3.6.

Example 3.16. Let us construct a pair (F,Γ), where Γ is a smooth curve of degree
7 and genus 3 in the smooth locus of a cubic surface F in P3 with a unique singular
point Sing(F ) = {P}, such that (F, P ) is an A3-singularity.

Consider a smooth quartic curve Γ̄ in P2. Blowing up a point P0 on Γ̄ and three
infinitesimally near points P1, P2, P3 on the subsequent proper transforms of Γ̄, and
then also a point P4 6= P0 on Γ̄ and an extra point P5 ∈ P2 \ Γ̄, we obtain a smooth
surface F̃ , a chain of rational curves L = E0 +E1 +E2 on F with E2

i = −2, i = 0, 1, 2,
which consists of the first three components appeared in the exceptional locus, and a
smooth curve Γ̃ on F̃ of genus 3 and anticanonical degree 7, disjoint with L. Blowing
down L leads to a singular cubic surface F with a unique singular point of type A3

anticanonically embedded in P3. The image Γ of Γ̃ on F is a desired curve.

The following observation shows however that not any cubic surface with a deep
singularity is available for our purposes.

Remark 3.17. By construction, the criterion of Theorem 3.6 on the existence of a
cylinder in X = X16 ⊆ P10 (g = 9) is valid as long as the cubic surface F in P3 as
in 2.2–2.6 contains a smooth curve Γ of genus 3 and degree 7. However, there is no
such curve Γ on a cubic surface F with an isolated conic singularity or a Du Val E6

singularity (although by Proposition 3.7 in this case P3 \ F contains an A1-cylinder).
In other words, a normal cubic surface with a conic or an E6 singularity cannot appear
via the Sarkisov link as in 2.6. In the conic case, this follows from Proposition 2.3.

Suppose further that F ⊆ P3 is a cubic surface with a Du Val E6 singularity P . Let
L be a line on F passing through P . Then Cl(F ) ≃ Z[L], where L2 = 1/3. Since
deg(Γ) = 7 we have Γ ∼ 7L and so Γ2 = 49/3. It follows that P ∈ Γ.

Consider the minimal resolution σ : F̃ → F , and let

Z = E1 + 2E2 + 3E3 + 2E4 + E5 + 2E6

be the fundamental cycle supported on the exceptional divisor E =
∑6

i=1Ei of σ with
the dual graph

Γ′

•—
E1

◦ —
E2

◦ —
E3

◦ —
E4

◦ —
E5

◦—
L′

•
|
◦
E6

Since L and Γ are both smooth and pass through P , we have Z ·Γ′ = 1 = Z ·L′, where
Γ′ and L′ are the proper transforms of Γ and L on F̃ , respectively. In the minimal
resolution graph, Γ′ and L′ must be both attached at the end vertices E1 or E5. We
claim that they are not attached to the same vertex.

Suppose to the contrary that Γ′ · E1 = 1 = L′ · E1. We use the notion of a different
(see e.g. [Sh2], [Pr4])

DiffC(0) = (KF + C)|C −KC ,
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where C is a curve on F smooth at P . By adjunction,

(KF + L) · L = −2 + deg DiffL(0) and (KF + Γ) · Γ = 4 + degDiffΓ(0) ,

where DiffL(0) = DiffΓ(0) because of the local analytic invariance of the different [Pr4].
We have (KF + L) · L = −2/3 and so degDiffL(0) = 4/3. On the other hand,

(KF + Γ) · Γ = (−3L+ 7L) · 7L = 28L2 = 28/3 .

We deduce that deg DiffΓ(0) = 16/3 6= degDiffL(0), a contradiction. Thus we may
assume that Γ′ ·E1 = 1 = L′ ·E5. Then by the symmetry of the resolution graph, it fol-
lows that deg DiffL(0) = deg DiffΓ(0), which is again absurd by the same computation
as above.
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