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Abstract
A small survey of work done on estimating the number of integers without large
prime factors up to around the year 1950 is provided. Around that time N.G. de
Bruijn published results that dramatically advanced the subject and started a new
era in this topic.

– In memoriam: Nicolaas Govert (‘Dick’) de Bruijn (1918-2012)

1. Introduction

Let P (n) denote the largest prime divisor of n. We set P (1) = 1. A number n is
said to be y-friable2 if P (n) ≤ y. We let S(x, y) denote the set of integers 1 ≤ n ≤ x
such that P (n) ≤ y. The cardinality of S(x, y) is denoted by Ψ(x, y). We write
y = x1/u; that is, u = log x/ log y.

Fix u > 0. In 1930, Dickman [14] proved that

lim
x→∞

Ψ(x, x1/u)

x
= ρ(u), (1)

with

ρ(u) = ρ(N)−
∫ u

N

ρ(v − 1)

v
dv, (N < u ≤ N + 1, N = 1, 2, 3, . . .),

and ρ(u) = 1 for 0 < u ≤ 1 (see Figure 1). It is left to the reader to show that we
have

ρ(u) =

{
1 for 0 ≤ u ≤ 1;
1
u

∫ 1
0 ρ(u− t)dt for u > 1.

(2)

1This paper is a slightly extended version of [22] (in a non-research publication) and is repro-
duced here with permission from the publishers.

2In the older literature one usually finds y-smooth. Friable is an adjective meaning easily
crumbled or broken.
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The function ρ(u) in the literature is either called the Dickman function or the
Dickman-de Bruijn function.

This survey concerns the work done on friable integers up to the papers of de
Bruijn [7, 8] that appeared around 1950 and dramatically advanced the subject.
A lot of the early work was carried out by number theorists from India (with the
earliest contributor being Ramanujan).

De Bruijn [7] improved on (1) by establishing a result that, together with the best
currently known estimate for the prime counting function (due to I.M. Vinogradov
and Korobov in 1958), yields the following result.

Theorem 1. The estimate

Ψ(x, y) = xρ(u)
{
1 +O3

( log(u + 1)

log y

)}
, (3)

holds for 1 ≤ u ≤ log3/5−ε y, that is, y > exp(log5/8+ε x).

De Bruijn’s most important tool in his proof of this result is the Buchstab equation
[10],

Ψ(x, y) = Ψ(x, z)−
∑

y<p≤z

Ψ(
x

p
, p), (4)

where 1 ≤ y < z ≤ x. The Buchstab equation is easily proved on noting that the
number of integers n ≤ x with P (n) = p equals Ψ(x/p, p). Given a good estimate
for Ψ(x, y) for u ≤ h, it allows one to obtain a good estimate for u ≤ h+ 1.

De Bruijn [8] complemented Theorem 1 by an asymptotic estimate for ρ(u). That
result has as a corollary that, for u ≥ 3,

ρ(u) = exp
{
− u

{
log u+ log2 u− 1 +

log2 u− 1

log u
+O

(( log2 u
log u

)2)}}
, (5)

which will suffice for our purposes. Note that (5) implies that, as u → ∞,

ρ(u) =
1

uu+o(u)
, ρ(u) =

(e+ o(1)

u log u

)u
,

formulas that suffice for most purposes and are easier to remember. For a more
detailed description of this and other work of de Bruijn in analytic number theory,
we refer to Moree [23].

2. Results on ρ(u)

Note that ρ(u) > 0, for if not, then because of the continuity of ρ(u) there is a small-
est zero u0 > 1 and then substituting u0 in (2) we easily arrive at a contradiction.

3The reader not familiar with the Landau-Bachmann O-notation we refer to wikipedia or any
introductory text on analytic number theory, e.g., Tenenbaum [38]. Instead of log log x we some-
times write log2 x, instead of (log x)A, logA x.
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Figure 1: The Dickman-de Bruijn function ρ(u)
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Note that for u > 1 we have

ρ′(u) = −ρ(u− 1)

u
. (6)

It follows that ρ(u) = 1 − log u for 1 ≤ u ≤ 2. For 2 ≤ u ≤ 3, ρ(u) can be
expressed in terms of the dilogarithm. However, with increasing u one has to resort
to estimating ρ(u) or finding a numerical approximation.

Since ρ(u) > 0 we see from (6) that ρ(u) is strictly decreasing for u > 1. From
this and (2) we then find that uρ(u) ≤ ρ(u − 1), which upon using induction leads
to ρ(u) ≤ 1/[u]! for u ≥ 0. It follows that ρ(u) tends to zero fast as u tends to
infinity.

Ramaswami [32] proved that

ρ(u) >
C

u4uΓ(u)2
, u ≥ 1,

for a suitable constant C, with Γ the Gamma function. By Stirling’s formula we have
logΓ(u) ∼ u log u and hence the latter inequality is, for u large enough, improved
on by the following inequality due to Buchstab [10]:

ρ(u) > exp
{
− u

{
log u+ log2 u+ 6

log2 u

log u

}}
, (u ≥ 6). (7)

But just as (7) yields a great improvement over the Ramaswami inequality, in its
turn, De Bruijn’s inequality (5) also achieves a large improvement over (7).

3. S. Ramanujan (1887-1920) and the Friables

In his first letter (January 16th, 1913) to Hardy (see, e.g., [3]), one of the most
famous letters in all of mathematics, Ramanujan claims that

Ψ(n, 3) =
1

2

log(2n) log(3n)

log 2 log 3
. (8)
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The formula is of course intended as an approximation, and there is no evidence
to show how accurate Ramanujan supposed it to be. Hardy [18, pp. 69-81] in his
lectures on Ramanujan’s work gave an account of an interesting analysis that can
be made to hang upon the above assertion. We return to this result in Section 6
(on the Ψ(x, y) work of Pillai).

In the so-called Lost Notebook [30] we find at the bottom half of page 337:

φ(x) is the no. of nos of the form

2a2 · 3a3 · 5a5 · · · pap p ≤ xε

not exceeding x.

1
2 ≤ ε ≤ 1, φ(x) ∼ x

{
1−

∫ 1

ε

dλ0

λ0

}

1
3 ≤ ε ≤ 1

2 , φ(x) ∼ x
{
1−

∫ 1

ε

dλ0

λ0
+

∫ 1
2

ε

dλ1

λ1

∫ 1−λ1

λ1

dλ0

λ0

}

1
4 ≤ ε ≤ 1

3 , φ(x) ∼ x
{
1 −

∫ 1

ε

dλ0

λ0
+

∫ 1
2

ε

dλ1

λ1

∫ 1−λ1

λ1

dλ0

λ0

−
∫ 1

3

ε

dλ2

λ2

∫ 1−λ2
2

λ2

dλ1

λ1

∫ 1−λ1

λ1

dλ0

λ0

}

1
5 ≤ ε ≤ 1

4 , φ(x) ∼ x
{
1−

∫ 1

ε

dλ0

λ0
+

∫ 1
2

ε

dλ1

λ1

∫ 1−λ1

λ1

dλ0

λ0

−
∫ 1

3

ε

dλ2

λ2

∫ 1−λ2
2

λ2

dλ1

λ1

∫ 1−λ1

λ1

dλ0

λ0

+

∫ 1
4

ε

dλ3

λ3

∫ 1−λ3
3

λ3

dλ2

λ2

∫ 1−λ2
2

λ2

dλ1

λ1

∫ 1−λ1

λ1

dλ0

λ0

}

and so on.

In the book by Andrews and Berndt [1, §8.2] it is shown that Ramanujan’s
assertion is equivalent to (1) with

ρ(u) =
∞∑

k=0

(−1)k

k!
Ik(u),

where

Ik(u) =

∫

t1,...tk≥1
t1+...+tk≤u

dt1
t1

· · · dtk
tk

.
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This is one of the many examples where one could say that Ramanujan “reached
with his hand from the grave to snatch a theorem, in this case from Dickman whose
work came at least ten years after that of Ramanujan (see Berndt [2]). Chowla and
Vijayaragahavan [13] seemed to have been the first to rigorously prove (1) with ρ(u)
expressed as a sum of iterated integrals (see Section 8). The asymptotic behaviour
of the integrals Ik(u) has been studied by Soundararajan [35].

Ramanujan’s claim is reminiscent of the following result of Chamayou [11]: If
x1, x2, x3, · · · are independent random variables uniformly distributed in (0, 1), and
un = x1+x1x2+. . .+x1x2 · · ·xn, then un converges in probability to a limit u∞ and
u∞ has a probability distribution with density function ρ(t)e−γ , where γ denotes
Euler’s constant.

4. I.M. Vinogradov (1891-1983) and the Friables

The first person to have an application for Ψ(x, y) estimates seems to have been
Ivan Matveyevich Vinogradov [39] in 1927. Let k ≥ 2 be a prescribed integer and
p ≡ 1(mod k) a prime. The k-th powers in (Z/pZ)∗ form a subgroup of order
(p− 1)/k and so the existence of g1(p, k) follows, the least k-th power non-residue
modulo a prime p. Suppose that y < g1(p, k); then S(x, y) consists of k-th power
residues only. It follows that

Ψ(x, y) ≤ #{n ≤ x : n ≡ ak(mod p) for some a}.

The idea, now, is to use good estimates for the quantities on both sides of the
inequality sign in order to deduce an upper bound for g1(p, k).

Vinogradov [39] showed that Ψ(x, x1/u) ≥ δ(u)x for x ≥ 1, u > 0, where δ(u)
depends only on u and is positive. He applied this to show that if m ≥ 8, k > mm,
and p ≡ 1(mod k) is sufficiently large, then

g1(p, k) < p1/m. (9)

See Norton [24] for an historical account of the problem of determining g1(p, k) and
original results.

5. K. Dickman (1861-1947) and the Friables

Karl Dickman was active in the Swedish insurance business during the end of the
nineteenth century and the beginning of the twentieth century [20].

As already mentioned Dickman proved (1) and in the same paper4 gave an heuris-

4Several sources falsely claim that Dickman wrote only one mathematical paper. He also wrote
[15].
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tic argument to the effect that

lim
x→∞

1

x

∑

2≤n≤x

logP (n)

logn
=

∫ ∞

0

ρ(u)

(1 + u)2
du. (10)

Denote the integral above by λ. Dickman argued that λ ≈ 0.62433. Mitchell [21]
in 1968 computed that λ = 0.62432998854 . . . . The interpretation of Dickman’s
heuristic is that for an average integer with m digits, its greatest prime factor has
about λm digits. The constant λ is now known as the Golomb-Dickman constant,
as it arose independently in research of Golomb and others involving the largest
cycle in a random permutation.

De Bruijn [7] in 1951 was the first to prove (10). He did this using his Λ(x, y)-
function, an approximation of Ψ(x, y), that he introduced in the same paper.

6. S.S. Pillai (1901-1950) and the Friables

Subbayya SivasankaranarayanaPillai (1901-1950) was a number theorist who worked
on problems in classical number theory (Diophantine equations, Waring’s problem,
etc.). Indeed, he clearly was very much inspired by the work of Ramanujan. He
tragically died in a plane crash near Cairo while on his way to the International
Congress of Mathematicians (ICM) 1950, which was held at Harvard University.

Pillai wrote two manuscripts on friable integers, [26, 27], of which [26] was ac-
cepted for publication in the Journal of the London Mathematical Society, but did
not appear in print. Also [27] was never published in a journal.

In [26] (see also [29, pp. 481-483]), Pillai investigates Ψ(x, y) for y fixed. Let
p1, p2, . . . , pk denote all the different primes not exceeding y. Notice that Ψ(x, y)
equals the cardinality of the set

{(e1, . . . , ek) ∈ Zk : ei ≥ 0,
k∑

i=1

ei log pi ≤ x}.

Thus Ψ(x, y) equals the number of lattice points in a k-dimensional tetrahedron
with sides of length log x/ log 2, . . . , log x/ log pk. This tetrahedron has volume

1

k!

∏

p≤y

( log x
log p

)
.

Pillai shows that

Ψ(x, y) =
1

k!

∏

p≤y

( log x
log p

)(
1 + (1 + o(1))

k log(p1p2 . . . pk)

2 logx

)
.
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If ρ1, . . . , ρk are positive real numbers and ρ1/ρ2 is irrational, then the same estimate
with log pi replaced by ρi holds for

{(e1, . . . , ek) ∈ Zk : ei ≥ 0,
k∑

i=1

eiρi ≤ x}.

This was proved by Specht [36] (after whom the Specht modules are named); see
also Beukers [4]. A much sharper result than those of Pillai and Specht was obtained
in 1969 by Ennola [16] (see also Norton [24, pp. 24-26]). In this result Bernoulli
numbers make their appearance.

Note that Pillai’s result implies that

Ψ(x, 3) =
1

2

log(2x) log(3x)

log 2 log 3
+ o(log x), (11)

and that the estimate

Ψ(x, 3) =
log2 x

2 log 2 log 3
+ o(log x)

is false. Thus Ramanujan’s estimate (8) is more precise than the trivial estimate
log2 x/(2 log 2 log 3). Hardy [18, §5.13] showed that the error term o(log x) in (11)
can be replaced by o(log x/ log2 x). In the proof of this he uses a result of Pillai [25]
(see also [28, pp. 53-61]), saying that given 0 < δ < 1, one has |2x − 3y| > 2(1−δ)x

for all integers x and y with x > x0(δ) sufficiently large.
In [27] (see also [29, pp. 515-517]), Pillai claims that, for u ≥ 6, B/u < ρ(u) <

A/u, with 0 < B < A constants. He proves this result by induction assuming a cer-
tain estimate for ρ(6) holds. However, this estimate for ρ(6) does not hold. Indeed,
the claim contradicts (5) and is false.

Since Pillai reported on his work on the friables at conferences in India and
stated open problems there, his influence on the early development of the topic was
considerable. For example, one of the questions he raised was whether Ψ(x, x1/u) =
O(x1/u) uniformly for u ≤ (log x)/ log 2. This question was answered in the affir-
mative by Ramaswami [32].

7. R.A. Rankin (1915-2001) and the Friables

In his work on the size of gaps between consecutive primes, Robert Alexander
Rankin [34] in 1938 introduced a simple idea to estimate Ψ(x, y) which turns out
to be remarkably effective and can be used in similar situations. This idea is now
called “Rankin’s method” or “Rankin’s trick.” The starting point is the observation
that for any σ > 0,

Ψ(x, y) ≤
∑

n∈S(x,y)

(
x

n
)σ ≤ xσ

∑

P (n)≤y

1

nσ
= xσζ(σ, y), (12)
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where
ζ(s, y) =

∏

p≤y

(1− p−s)−1,

is the partial Euler product up to y for the Riemann zeta function ζ(s). Recall that,
for *s > 1,

ζ(s) =
∞∑

n=1

1

ns
=

∏

p

1

1− p−s
.

By making an appropriate choice for σ and estimating ζ(σ, y) using analytic prime
number theory, a good upper bound for Ψ(x, y) can be found. For example, the
choice σ = 1− 1/(2 log y) leads to

ζ(σ, y) + exp
{∑

p≤y

1

pσ

}
≤ exp

{∑

p≤y

1

p
+O

(
(1− σ)

∑

p≤y

log p

p

)}
+ log y,

which gives rise to
Ψ(x, y) + xe−u/2 log y. (13)

As a further example let us try to estimate Ψ(x, logA x) for A > 1. Letting
σ = 1− 1/A, we get

log ζ(σ, y) +
∑

p≤y

p−σ =
∑

p≤y

p1/A

p
+ y1/A

log y
+ log x

log log x
.

This estimate together with (12) yields

Ψ(x, logA x) ≤ x1−1/A+O(1/ log log x). (14)

From a result of de Bruijn from 1966 [9] it follows that, actually, equality holds in
(14).

8. A.A. Bukhshtab (1905-1990) and the Friables

Aleksandr Adol’fovich Bukhshtab5’s most important contribution is the equation
(4) now named after him. A generalization of it plays an important role in sieve
theory. Buchstab [10] in 1949 proved (1) and gave both Dickman’s differential-
difference equation as well as the result

ρ(u) = 1 +
N∑

n=1

(−1)n
∫ u

n

∫ t1−1

n−1

∫ t2−1

n−2
· · ·

∫ tn−1−1

1

dtndtn−1 · · · dt1
t1t2 · · · tn

, (15)

for N ≤ u ≤ N + 1 and N ≥ 1 an integer, simplifying Chowla and Vijayaragaha-
van’s expression (they erroneously omitted the term n = N). Further, Buchstab
established inequality (7) and applied his results to show that the exponent in
Vinogradov’s result (9) can be roughly divided by two.

5Buchstab in the German spelling.
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9. V. Ramaswami and the Friables

V. Ramaswami6 [31] showed that

Ψ(x, x1/u) = ρ(u)x+OU (
x

log x
)

for x > 1, 1 < u ≤ U , and remarked that the error term is best possible. He
sharpened this result in [32] and showed there that, for u > 2,

Ψ(x, x1/u) = ρ(u)x+ σ(u)
x

log x
+O(

x

log3/2 x
), (16)

with σ(u) defined similarly to ρ(u). Indeed, it turns out that

σ(u) = (1− γ)ρ(u− 1),

but this was not noticed by Ramaswami. In [33] Ramaswami generalized his results
to Bl(m,x, y) which counts the number of integers n ≤ x with P (n) ≤ y and
n ≡ l(mod m) 7. Norton [24, pp. 12-13] points out some deficiencies in this paper
and gives a reproof [24, §4] of Ramaswami’s result on Bl(m,x, x1/u) generalizing
(16).

From de Bruijn’s paper [7, Eqs. (5.3), (4.6)] one easily derives the following
generalization of Ramaswami’s results8:

Theorem 2. Let m ≥ 0, x > 1, and suppose m+ 1 < u <
√
log x. Then

Ψ(x, y) = x
m∑

r=0

ar
ρ(r)(u)

logr y
+Om

( x

logm+1 y

)
,

where ρ(r)(u) is the r-th derivative of ρ(u) and a0, a1, . . . are the coefficients in the
power series expansion

z

1 + z
ζ(1 + z) = a0 + a1z + a2z

2 + . . . ,

with |z| < 1.

It is well-known (see, e.g., Briggs and Chowla [5]) that around s = 1 the Riemann
zeta function has the Laurent series expansion

ζ(s) =
1

s− 1
+

∞∑

k=0

(−1)k

k!
γk(s− 1)k,

6Ramaswami worked at Andhra University until his death in 1961. The author will be grateful
for further biographical information.

7Buchstab [10] was the first to investigate Bl(m, x, y).
8The notation Om indicates that the implied constant might depend on m.
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with γk the k-th Stieltjes constant and γ0 = γ Euler’s constant. Using this we find
that a0 = 1 and a1 = γ−1. Thus Theorem 2 yields (16) with σ(u) = (1−γ)ρ(u−1)
for the range 2 < u <

√
log x. For u >

√
log x the estimate (16) in view of (5)

reduces to
Ψ(x, x1/u) + x log−3/2 x,

which easily follows from (13).

10. S. Chowla (1907-1995) and the Friables

The two most prominent number theorists in the period following Ramanujan were
S.S. Pillai and Sarvadaman Chowla. They kept in contact through an intense cor-
respondence [37]. Chowla in his long career published hunderds of research papers.

Chowla and Vijayaragahavan [13] expressed ρ(u) as an iterated integral and
gave a formula akin to (15). De Bruijn [6] established some results implying that
Ψ(x, logh x) = O(x1−1/h+ε) for h > 2. An easier reproof of the latter result was
given by Chowla and Briggs [12].

11. Summary

It seems that the first person to look at friable integers was Ramanujan, starting
with his first letter to Hardy (1913), Ramanujan also seems to have been the first
person to arrive at the Dickman-de Bruijn function ρ(u). Pillai generalized some of
Ramanujan’s work and spoke about it at conferences in India, which likely induced
a small group of Indian number theorists to work on friable integers. Elsewhere in
the same period (1930-1950) only incidental work was done on the topic. Around
1950 N.G. de Bruijn published his ground-breaking papers [7, 8]. Soon afterwards
the Indian number theorists stopped publishing on friable integers.

It should also be said that the work on friable integers up to 1950 seems to con-
tain more mistakes than more recent work. Norton [24] points out and corrects
many of these mistakes.

Further reading. As a first introduction to friable numbers we highly recom-
mend Granville’s 2008 survey [17]. It has a special emphasis on friable numbers
and their role in algorithms in computational number theory. Mathematically more
demanding is the 1993 survey by Hildebrand and Tenenbaum [19]. Chapter III.5
in Tenenbaum’s book [38] deals with ρ(u) and approximations to Ψ(x, y) by the
saddle point method.
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