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MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING:
NEF AND MOVABLE CONES, LAGRANGIAN FIBRATIONS

AREND BAYER AND EMANUELE MACRÌ

ABSTRACT. We use wall-crossing with respect to Bridgeland stabilityconditions to systematically
study the birational geometry of a moduli spaceM of stable sheaves on a K3 surfaceX:

(a) We describe the nef cone, the movable cone, and the effective cone ofM in terms of the
Mukai lattice ofX.

(b) We establish a long-standing conjecture that predicts the existence of a birational Lagrangian
fibration onM wheneverM admits an integral divisor classD of square zero (with respect
to the Beauville-Bogomolov form).

These results are proved using a natural map from the space ofBridgeland stability conditions
Stab(X) to the coneMov(X) of movable divisors onM ; this map relates wall-crossing inStab(X)
to birational transformations ofM . In particular, every minimal model ofM appears as a moduli
space of Bridgeland-stable objects onX.
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A moduli space of Bridgeland stable objects automatically comes equipped with a numerically
positive determinant line bundle, depending only on the stability condition [BM12]. This provides
a direct link between wall-crossing for stability conditions and birational transformations of the
moduli space. In this paper, we exploit this link to systematically study the birational geometry of
moduli spaces of Gieseker stable sheaves on K3 surfaces.
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1. INTRODUCTION

Overview. Let X be a projective K3 surfaceX, andv a primitive algebraic class in the Mukai
lattice with self-intersection with respect to the Mukai pairing v

2 > 0. For a generic polarization
H, the moduli spaceMH(v) of H-Gieseker stable sheaves is a projective holomorphic symplec-
tic manifold (hyperkähler variety) deformation equivalent to Hilbert schemes of points on K3
surfaces. The cone theorem and the minimal model program (MMP) induce a locally polyhedral
chamber decomposition of the movable cone ofMH(v) (see [HT09]):

• chambers correspond one-to-one to smoothK-trivial birational models̃M 99K MH(v)
of the moduli space, as the minimal model of the pair(MH(v),D) for anyD in the
corresponding chamber, and

• walls correspond to extremal Mori contractions, as the canonical model of(MH(v),D).

It is a very interesting question to understand this chamberdecomposition for general hyperkähler
varieties [HT01, HT10, HT09]. It has arguably become even more important in light of Verbitsky’s
recent proof [Ver09] of a global Torelli statement: two hyperkähler varietiesX1,X2 are isomor-
phic if and only if there exists an isomorphism of integral Hodge structuresH2(X1) → H2(X2)
that is induced by parallel transport in a family, and that maps the nef cone ofX1 to the nef cone
of X2 (see also [Huy11, Mar11]).

In addition, following the recent success [BCHM10] of MMP for the log-general case, there
has been enormous interest to relate MMPs for moduli spaces to the underlying moduli problem;
we refer [FS13] for a survey of the case of the moduli spaceMg,n of stable curves, known as the
Hassett-Keel program. Ideally, one would like a moduli interpretation for every chamber of the
base locus decomposition of the movable or effective cone.

On the other hand, in [Bri08] Bridgeland described a connected componentStab†(X) of the
space of stability conditions on the derived category ofX. He showed thatMH(v) can be recov-
ered as the moduli spaceMσ(v) of σ-stable objects forσ ∈ Stab†(X) near the “large-volume
limit”. The manifoldStab†(X) admits a chamber decomposition, depending onv, such that

• for a chamberC, the moduli spaceMσ(v) =: MC(v) is independent of the choice of
σ ∈ C, and

• walls consist of stability conditions with strictly semistable objects of classv.

The main result of our article, Theorem1.2, relates these two pictures directly. It shows that any
MMP for the Gieseker moduli space (with movable boundary) can be induced by wall-crossing for
Bridgeland stability conditions, and so any minimal model has an interpretation as a moduli space
of Bridgeland-stable objects for some chamber. In Theorem12.1, we deduce the chamber decom-
position of the movable cone ofMH(v) in terms of the Mukai lattice ofX from a description of
the chamber decomposition ofStab†(X), given by Theorem5.7.

We also obtain the proof of a long-standing conjecture: the existence of a birational Lagrangian
fibrationMH(v) 99K Pn is equivalent to the existence of an integral divisor classD of square
zero with respect to the Beauville-Bogomolov form, see Theorem 1.5. We use birationality of
wall-crossing and a Fourier-Mukai transform to reduce the conjecture to the well-known case of a
moduli space of torsion sheaves, studied in [Bea91]. Further applications are mentioned below.

Birationality of wall-crossing and the map to the movable cone. Let σ, τ ∈ Stab†(X) be two
stability conditions, and assume that they aregenericwith respect tov. By [BM12, Theorem 1.3],
the moduli spacesMσ(v) andMτ (v) of stable objectsE ∈ Db(X) with Mukai vectorv(E) = v

exist as smooth projective varieties. Choosing a path fromσ to τ in Stab†(X) relates them by a
series of wall-crossings. Based on a detailed analysis of all possible wall-crossings, we prove:



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 3

Theorem 1.1. Letσ, τ be generic stability conditions with respect tov.

(a) The two moduli spacesMσ(v) andMτ (v) of Bridgeland-stable objects are birational to
each other.

(b) More precisely, there is a birational map induced by a derived (anti-)autoequivalence
Φ of Db(X) in the following sense: there exists a common open subsetU ⊂ Mσ(v),
U ⊂Mτ (v), with complements of codimension at least two, such that foranyu ∈ U , the
corresponding objectsEu ∈Mσ(v) andFu ∈Mτ (v) are related viaFu = Φ(Eu).

An anti-autoequivalence is an equivalence from the opposite categoryDb(X)op to Db(X), for
example given by the local dualizing functorRHom( ,OX).

As a consequence, we can canonically identify the Néron-Severi groups ofMσ(v) andMτ (v).
Now consider the chamber decomposition ofStab†(X) with respect tov as above, and letC be a
chamber. The main result of [BM12] gives a natural map

(1) ℓC : C → NS (MC(v))

to the Néron-Severi group of the moduli space, whose image is contained in the ample cone of
MC(v). More technically stated, our main result describes the global behavior of this map:

Theorem 1.2. Fix a base pointσ ∈ Stab†(X).

(a) Under the identification of the Ńeron-Severi groups induced by the birational maps of
Theorem1.1, the mapsℓC of (1) glue to a piece-wise analytic continuous map

(2) ℓ : Stab†(X) → NS (Mσ(v)) .

(b) The image ofℓ is the intersection of the movable cone with the big cone ofMσ(v).
(c) The mapℓ is compatible, in the sense that for any genericσ′ ∈ Stab†(X), the moduli

spaceMσ′(v) is the birational model corresponding toℓ(σ′). In particular, every smooth
K-trivial birational model ofMσ(v) appears as a moduli spaceMC(v) of Bridgeland
stable objects for some chamberC ⊂ Stab†(X).

(d) For a chamberC ⊂ Stab†(X), we haveℓ(C) = Amp(MC(v)).

The imageℓ(τ) of a stability conditionτ is determined by its central charge; see Theorem10.2
for a precise statement.

Claims (b) and (c) are the precise version of our claim above that MMP can be runvia wall-
crossing: any minimal model can be reached after wall-crossing as a moduli space of stable ob-
jects. Extremal contractions arising as canonical models are given as coarse moduli spaces for
stability conditions on a wall.

Wall-crossing transformation. Our second main result is Theorem5.7. It determines the loca-
tion of walls inStab†(X), and for each wallW it describes the associated birational modification
of the moduli space precisely. These descriptions are givenpurely in terms of the algebraic Mukai
latticeH∗

alg(X,Z) of X:
To each wallW we associate a rank two latticeHW ⊂ H∗

alg(X,Z), consisting of Mukai vectors
whose central charges align for stability conditions onW. Theorem5.7determines the birational
wall-crossing behavior ofW completely in terms of the pair(v,HW ). Rather than setting up the
necessary notation here, we invite the reader to jump directly to Section5 for the full statement.

The proof of Theorem5.7takes up Sections5 to 9, and can be considered the heart of this paper.
The ingredients in the proof include Harder-Narasimhan filtrations in families, a priori constraints
on the geometry of birational contractions of hyperkählervarieties, and the essential fact that every
moduli space of stable objects on a K3 surface has expected dimension.
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Fourier-Mukai transforms and birational moduli spaces. The following result is a conse-
quence of Mukai-Orlov’s Derived Torelli Theorem for K3 surfaces, a crucial Hodge-theoretic re-
sult by Markman, and Theorem1.1. It completes Mukai’s program, started in [Muk81, Muk87b],
to understand birational maps between moduli spaces of sheaves via Fourier-Mukai transforms.
Following Mukai, considerH∗(X,Z) equipped with its weight two Hodge structure, polarized by
theMukai pairing. We writev⊥,tr ⊂ H∗(X,Z) for the orthogonal complement ofv. By a result
of Yoshioka [Yos01], v⊥,tr andH2(MH(v),Z) are isomorphic as Hodge structures; the Mukai
pairing onH∗(X,Z) gets identified with theBeauville-Bogomolovpairing onH2(MH(v),Z).

Corollary 1.3. 1 Let X andX ′ be smooth projective K3 surfaces. Letv ∈ H∗
alg(X,Z) and

v
′ ∈ H∗

alg(X
′,Z) be primitive Mukai vectors. LetH (resp.,H ′) be a generic polarization with

respect tov (resp.,v′). Then the following statements are equivalent:

(a) MH(v) is birational toMH′(v′).
(b) The embeddingv⊥,tr ⊂ H∗(X,Z) of integral weight-two Hodge structures is isomorphic

to the embeddingv′⊥,tr ⊂ H∗(X ′,Z).
(c) There is an (anti-)equivalenceΦ fromDb(X) toDb(X ′) with Φ∗(v) = v

′.
(d) There is an (anti-)equivalenceΨ from Db(X) to Db(X ′) with Ψ∗(v) = v

′ that maps a
generic objectE ∈MH(v) to an objectΨ(E) ∈MH′(v′).

The equivalence (a) ⇔ (b) is a special case of [Mar11, Corollary 9.9], which is based on
Markman’s description of the monodromy group and Verbitsky’s global Torelli theorem. We will
only need the implication (a) ⇒ (b), which is part of earlier work by Markman: [Mar10, Theorem
1.10 and Theorem 1.14] (when combined with the fundamental result [Huy03, Corollary 2.7] that
birational hyperkähler varieties have isomorphic cohomology).

By [Tod08], stability is an open property in families; thusΨ as in (d) directly induces a bira-
tional mapMH(v) 99K MH′(v′); in particular, (d) ⇒ (a). We will prove at the end of Section10
that derived Torelli for K3 surfaces [Orl97] gives (b) ⇒ (c), and that Theorem1.1 provides the
missing implication (c) ⇒ (d). Thus, in the case of moduli spaces of sheaves, we obtain a proof
of Markman’s version [Mar11, Corollary 9.9] of global Torelli independent of [Ver09].

Cones of curves and divisors.As an application, we can use Theorems1.2and5.7to determine
the cones of effective, movable, and nef divisors (and thus dually the Mori cone of curves) of the
moduli spaceMH(v) of H-Gieseker stable sheaves completely in terms of the algebraic Mukai
lattice ofX; as an example we will state here our description of the nef cone.

Recall that we assumev primitive andH generic; in particular,MH(v) is smooth. Restricting
the Hodge isomorphism of [Yos01] mentioned previously to the algebraic part, we get an isometry
θ : v⊥ → NS(MH(v)) of lattices, wherev⊥ denotes the orthogonal complement ofv inside the
algebraic Mukai latticeH∗

alg(X,Z). (Equivalently,v⊥ ⊂ v
⊥,tr is the sublattice of(1, 1)-classes

with respect to the induced Hodge structure onv
⊥,tr.) LetPos(MH(v)) denote the cone of strictly

positive classesD with respect to the Beauville-Bogomolov pairing, satisfying (D,D) > 0 and
(A,D) > 0 for a fixed ample classA ∈ NS(MH(v)). We letPos(MH(v)) denote its closure,
and by abuse of language we call it thepositive cone.

Theorem 12.1. Consider the chamber decomposition of the closed positive conePos(MH(v))
whose walls are given by linear subspaces of the form

θ(v⊥ ∩ a
⊥),

1We will prove this and the following results more generally for moduli spaces of Bridgeland-stable complexes.
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for all a ∈ H∗
alg(X,Z) satisfyinga2 ≥ −2 and0 ≤ (v,a) ≤ v

2

2 . Then the nef cone ofMH(v) is
one of the chambers of this chamber decomposition.

In other words, given an ample classA ∈ NS(MH(v)), a classD ∈ Pos(MH(v)) is nef if and
only if (D, θ(±a)) ≥ 0 for all classesa as above and a choice of sign such that(A, θ(±a)) > 0.

We obtain similar descriptions of the movable and effectivecone, see Section12. The intersec-
tion of the movable cone with the strictly positive cone has been described by Markman for any
hyperkähler variety [Mar11, Lemma 6.22]; the pseudo-effective cone can also easily be deduced
from his results. Our method gives an alternative wall-crossing proof, and in addition a description
of the boundary, based the proof of the Lagrangian fibration conjecture discussed below.

However, there was no known description of the nef cone except for specific examples, even in
the case of the Hilbert scheme of points. A general conjecture by Hassett and Tschinkel, [HT10,
Thesis 1.1], suggested that the nef cone (or dually, its Moricone) of a hyperkähler varietyM
depends only on the lattice of algebraic cycles inH2(M,Z). In small dimension, their conjecture
has been verified in [HT01, HT09, HT10, HHT12, BJ11]. The original conjecture turned out to
be incorrect, already for Hilbert schemes (see [BM12, Remark 10.4] and [CK12, Remark 8.10]).
However, Theorem12.1is in fact very closely related to the Hassett-Tschinkel Conjecture: we will
explain this precisely in Section12, in particular Proposition12.6and Remark12.7. In Section
13, we give many explicit examples of nef and movable cones.

Using deformation techniques, Theorem12.1and Proposition12.6have now been extended to
all hyperkähler varieties of the same deformation type, see [BHT13, Mon13].

Existence of Lagrangian fibrations. The geometry of a hyperkähler varietyM is particularly
rigid. For example, Matsushita proved in [Mat01] that any mapf : M → Y with connected fibers
anddim(Y ) < dim(M) is a Lagrangian fibration; further, Hwang proved in [Hwa08] that if Y is
smooth, it must be isomorphic to a projective space.

It becomes a natural question to ask when such a fibration exists, or when it exists birationally.
According to a long-standing conjecture, this can be detected purely in terms of the quadratic
Beauville-Bogomolov form on the Néron-Severi group ofM :

Conjecture 1.4(Tyurin-Bogomolov-Hassett-Tschinkel-Huybrechts-Sawon). LetM be a compact
hyperk̈ahler manifold of dimension2m, and letq denote its Beauville-Bogomolov form.

(a) There exists an integral divisor classD with q(D) = 0 if and only if there exists a
birational hyperk̈ahler manifoldM ′ admitting a Lagrangian fibration.

(b) If in addition,M admits anef integral primitive divisor classD with q(D) = 0, then
there exists a Lagrangian fibrationf : M → Pm induced by the complete linear system
ofD.

In the literature, it was first suggested by Hassett-Tschinkel in [HT01] for symplectic fourfolds,
and, independently, by Huybrechts [GHJ03] and Sawon [Saw03] in general; see [Ver10] for more
remarks on the history of the Conjecture.

Theorem 1.5.LetX be a smooth projective K3 surface. Letv ∈ H∗
alg(X,Z) be a primitive Mukai

vector withv2 > 0 and letH be a generic polarization with respect tov. Then Conjecture1.4
holds for the moduli spaceMH(v) ofH-Gieseker stable sheaves.

The basic idea of our proof is the following: as we recalled above, the Néron-Severi group of
MH(v), along with its Beauville-Bogomolov form, is isomorphic tothe orthogonal complement
v
⊥ ⊂ H∗

alg(X,Z) of v in the algebraic Mukai lattice ofX, along with the restriction of the Mukai
pairing. The existence of an integral divisorD = c1(L) with q(D) = 0 is thus equivalent to
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the existence of an isotropic classw ∈ v
⊥: a class with(w,w) = 0 and (v,w) = 0. The

moduli spaceY = MH(w) is a smooth K3 surface, and the associated Fourier-Mukai transform
Φ sends sheaves of classv on X to complexes of rank 0 onY . While these complexes onY
are typically not sheaves—not even for a generic object inMH(v)—, we can arrange them to
be Bridgeland-stable complexes with respect to a Bridgeland-stability conditionτ onDb(Y ). We
then deformτ along a path with endpointτ ′, such thatτ ′-stable complexes of classΦ∗(v) are
Gieseker stable sheaves, necessarily of rank zero. In otherwords, the Bridgeland-moduli space
Mτ ′(Φ∗(v)) is a moduli space of sheavesF with support|F| on a curve of fixed degree. The map
F 7→ |F| defines a map fromMτ ′(Φ∗(v)) to the linear system of the associated curve; this map
is a Lagrangian fibration, known as theBeauville integral system. On the other hand, birationality
of wall-crossing shows thatMτ (Φ∗(v)) =MH(v) is birational toMτ ′(Φ∗(v)).

The idea to use a Fourier-Mukai transform to prove Conjecture 1.4 was used previously by
Markushevich [Mar06] and Sawon [Saw07] for a specific family of Hilbert schemes on K3 sur-
faces of Picard rank one. Under their assumptions, the Fourier-Mukai transform of an ideal sheaf
is a stable torsion sheaf; birationality of wall-crossing makes such a claim unnecessary.

Remark 1.6. By [MM12], Hilbert schemes ofn points on projective K3 surfaces are dense in the
moduli space of hyperkähler varieties ofK3[n]-type.

Conjecture1.4 has been proved independently by Markman [Mar13a] for a very general hy-
perkähler varietyM of K3[n]-type; more specifically, under the assumption thatH2,0(M) ⊕
H0,2(M) does not contain any integral class. His proof is completelydifferent from ours, based
on Verbitsky’s Torelli Theorem, and a way to associate a K3 surface (purely lattice theoretically)
to such hyperkähler manifolds with a square-zero divisor class.

These results have been extended by Matsushita to any variety of K3[n]-type [Mat13].

Geometry of flopping contractions. As mentioned previously, every extremal contraction of
MH(v) is induced by a wall in the space of Bridgeland stability conditions. In Section14, we
explain how basic geometric properties of flopping contractions are also determined via the asso-
ciated lattice-theoretic wall-crossing data; this adds geometric content to Theorem5.7. We obtain
examples where the exceptional locus has either arbitrarily many connected components, or arbi-
trarily many irreducible components all intersecting in one point.

Strange Duality. In Section15we apply Theorem1.5to study Le Potier’s Strange Duality, in the
case where one of the two classes involved has square zero. Wegive sufficient criteria for strange
duality to hold, which are determined by wall-crossing, andwhich are necessary in examples.

Generality. In the introduction, we have stated most results for Gieseker moduli spacesMH(v).
In fact, we will work throughout more generally with moduli spacesMσ(v) of Bridgeland sta-
ble objects on a K3 surface(X,α) with a Brauer twistα, and all results will be proved in that
generality.

Relation to previous work on wall-crossing. Various authors have previously studied examples
of the relation between wall-crossing and the birational geometry of the moduli space induced
by the chamber decomposition of its cone of movable divisors: the first examples (for moduli of
torsion sheaves onK-trivial surfaces) were studied in [AB13], and moduli on abelian surfaces
were considered (in varying generality) in [MM13, Mac12, MYY11a, MYY11b, YY12, Yos12].

Several of our results have analogues for abelian surfaces that have been obtained previously by
Yoshioka, or by Minamide, Yanagida, and Yoshioka: the birationality of wall-crossing has been
established in [MYY11a, Theorem 4.3.1]; the ample cone of the moduli spaces is described in
[MYY11b, Section 4.3]; statements related to Theorem1.2can be found in [Yos12]; an analogue
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of Corollary 1.3 is contained in [Yos09, Theorem 0.1]; and Conjecture1.4 is proved in [Yos09,
Proposition 3.4 and Corollary 3.5] with the same basic approach.

The crucial difference between abelian surfaces and K3 surfaces is the existence of spherical
objects on the latter. They are responsible for the existence of totally semistable walls(walls
for which there are no strictly stable objects) that are harder to control; in particular, these can
correspond to any possible type of birational transformation (isomorphism, divisorial contraction,
flop). The spherical classes are the main reason our wall-crossing analysis in Sections5—9 is
fairly involved.

A somewhat different behavior was established in [ABCH13] in many cases for the Hilbert
scheme of points onP2 (extended to torsion-free sheaves in [Hui12, BMW13], and to Hirzebruch
surfaces in [BC13]): the authors show that the chamber decomposition in the space of stability
conditions corresponds to the base locus decomposition of theeffectivecone. In particular, while
the mapℓC of equation (1) exists similarly in their situation, it will behave differently across walls
corresponding to a divisorial contraction: in our case, themap “bounces back” into the ample
cone, while in their case, it will extend across the wall.

Acknowledgments. Conversations with Ralf Schiffler dissuaded us from pursuing a failed ap-
proach to the birationality of wall-crossing, and we had extremely useful discussions with Daniel
Huybrechts. Tom Bridgeland pointed us towards Corollary1.3, and Dragos Oprea towards the
results in Section15. We also received helpful comments from Daniel Greb, AntonyMacio-
cia, Alina Marian, Eyal Markman, Dimitri Markushevich, Daisuke Matsushita, Ciaran Meachan,
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Notation and Convention. For an abelian groupG and a fieldk(= Q,R,C), we denote byGk

thek-vector spaceG⊗ k.
Throughout the paper,X will be a smooth projective K3 surface over the complex numbers.

We refer to Section2 for all notations specific to K3 surfaces.
We will abuse notation and usually denote all derived functors as if they were underived. We

write the dualizing functor as( )∨ = RHom( ,OX).
The skyscraper sheaf at a pointx ∈ X is denoted byk(x). For a complex numberz ∈ C, we

denote its real and imaginary part byℜz andℑz, respectively.
By simple objectin an abelian category we will denote an object that has no non-trivial subob-

jects.
Recall that an objectS in a K3 category is spherical ifHom•(S, S) = C ⊕ C[−2]. We denote

the associated spherical twist atS by STS( ); it is defined [Muk87a, ST01] by the exact triangle

Hom•(S,E) ⊗ S → E → STS(E).

We will write stable(in italics) whenever we are considering strictly stable objects in a context
allowing strictly semistable objects: for a non-generic stability condition, or for objects with non-
primitive Mukai vector.
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2. REVIEW: DERIVED CATEGORIES OFK3 SURFACES, STABILITY CONDITIONS, MODULI

SPACES

In this section, we give a review of stability conditions K3 surfaces, and their moduli spaces of
stable complexes. The main references are [Bri07, Bri08, Tod08, Yos01, BM12].

Bridgeland stability conditions. LetD be a triangulated category.

Definition 2.1. A slicingP of the categoryD is a collection of full extension-closed subcategories
P(φ) for φ ∈ R with the following properties:

(a) P(φ+ 1) = P(φ)[1].
(b) If φ1 > φ2, thenHom(P(φ1),P(φ2)) = 0.
(c) For anyE ∈ D, there exists a collection of real numbersφ1 > φ2 > · · · > φn and a

sequence of triangles

(3) 0 = E0
// E1

//

��⑧⑧
⑧
⑧
⑧

E2
//

}}⑤⑤
⑤
⑤

· · · // En−1
// En = E

yyss
s
s
s
s

A1

cc

A2

aa

An

cc

with Ai ∈ P(φi).

The collection of exact triangles in (3) is called theHarder-Narasimhan (HN) filtrationof E.
Each subcategoryP(φ) is extension-closed and abelian. Its nonzero objects are called semistable
of phaseφ, and its simple objects are called stable.

We will write φmin(E) := φn andφmax(E) := φ1. By P(φ − 1, φ] we denote the full sub-
category of objects withφmin(E) > φ − 1 andφmax(E) ≤ φ. This is the heart of a bounded
t-structure(D≤0,D≥0) given by

D≤0 = P(> φ−1) = {E ∈ D : φmin > φ−1} and D≥0 = P(≤ φ) = {E ∈ D : φmax ≤ φ}.
Let us fix a lattice of finite rankΛ and a surjective mapv : K(D) ։ Λ.

Definition 2.2 ([Bri07, KS08]). A Bridgeland stability conditiononD is a pair(Z,P), where

• Z : Λ → C is a group homomorphism, and
• P is a slicing ofZ,

satisfying the following compatibilities:

(a) 1
πargZ(v(E)) = φ, for all non-zeroE ∈ P(φ);

(b) given a norm‖ ‖ onΛR, there exists a constantC > 0 such that

|Z(v(E))| ≥ C‖v(E)‖,
for all E that are semistable with respect toP.

We will write Z(E) instead ofZ(v(E)) from now on.
A stability condition is calledalgebraicif Im(Z) ⊂ Q⊕Q

√
−1.

The main theorem in [Bri07] shows that the setStab(D) of stability conditions onD is a
complex manifold; its dimension equals the rank ofΛ.

Remark 2.3([Bri07, Lemma 8.2]). There are two group actions onStab(D). The groupAut(D)
of autoequivalences acts on the left byΦ∗(Z,P) = (Z ◦ Φ−1

∗ ,Φ(P)), whereΦ ∈ Aut(D)

andΦ∗ also denotes the push-forward on the K-group. The universalcover G̃L
+

2 (R) of ma-
trices inGL2(R) with positive determinant acts on the right, lifting the action of GL2(R) on
Hom(K(D),C) = Hom(K(D),R2).
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Twisted K3 surfaces. LetX be a smooth K3 surface. The (cohomological)Brauer groupBr(X)
is the torsion part of the cohomology groupH2(X,O∗

X ) in the analytic topology.

Definition 2.4. Letα ∈ Br(X). The pair(X,α) is called atwisted K3 surface.

SinceH3(X,Z) = 0, there exists aB-field lift β0 ∈ H2(X,Q) such thatα = eβ0. We will
always tacitly fix both such B-field lift and ǎCech representativeαijk ∈ Γ(Ui ∩Uj ∩Uk,O∗

X) on
an open analytic cover{Ui} in X; see [HS05, Section 1] for a discussion about these issues.

Definition 2.5. An α-twisted coherent sheafF consists of a collection({Fi}, {ϕij}), whereFi is
a coherent sheaf onUi andϕij : Fj |Ui∩Uj

→ Fi|Ui∩Uj
is an isomorphism, such that:

ϕii = id; ϕji = ϕ−1
ij ; ϕij ◦ ϕjk ◦ ϕki = αijk · id.

We denote byCoh(X,α) the category ofα-twisted coherent sheaves onX, and byDb(X,α) its
bounded derived category. We refer to [Căl00, HS05, Yos06, Lie07] for basic facts about twisted
sheaves on K3 surfaces.

In [HS05, Section 1], the authors define a twisted Chern character by

ch: K(Db(X,α)) → H∗(X,Q), ch( ) = eβ0 · chtop( ),

wherechtop is the topological Chern character. By [HS05, Proposition 1.2], we have

ch( ) ∈
[
eβ0 ·

(
H0(X,Q) ⊕NS(X)Q ⊕H4(X,Q)

)]
∩H∗(X,Z).

Remark 2.6. Let H∗(X,α,Z) := H∗(X,Z). In [HS05], the authors define a weight-2 Hodge
structure on the whole cohomologyH∗(X,α,Z) with

H2,0(X,α,C) := eβ0 ·H2,0(X,C).

We denote by
H∗

alg(X,α,Z) := H1,1(X,α,C) ∩H∗(X,Z)

its (1, 1)-integral part. It coincides with the image of the twisted Chern character. Whenα = 1,
this reduces to the familiar definitionH∗

alg(X,Z) = H0(X,Z) ⊕NS(X)⊕H4(X,Z).

The algebraic Mukai lattice. Let (X,α) be twisted K3 surface.

Definition 2.7. (a) We denote byv : K(Db(X,α)) → H∗
alg(X,α,Z) theMukai vector

v(E) := ch(E)
√

td(X).

(b) TheMukai pairing( , ) is defined onH∗
alg(X,α,Z) by

((r, c, s), (r′, c′, s′)) := cc′ − rs′ − sr′ ∈ Z.

It is an even pairing of signature(2, ρ(X)), satisfying−(v(E),v(F )) = χ(E,F ) =∑
i(−1)i exti(E,F ) for all E,F ∈ Db(X,α).

(c) Thealgebraic Mukai latticeis defined to be the pair
(
H∗

alg(X,α,Z), ( , )
)

.

Recall that an embeddingi : V → L of a latticeV into a latticeL is primitive if L/i(V ) is a
free abelian group. In particular, we call a non-zero vectorv ∈ H∗

alg(X,α,Z) primitive if it is
not divisible inH∗

alg(X,α,Z). Throughout the paperv will often denote a primitive class with
v
2 > 0.
Given a Mukai vectorv ∈ H∗

alg(X,α,Z), we denote its orthogonal complement byv
⊥.
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Stability conditions on K3 surfaces. Let (X,α) be a twisted K3 surface. We remind the reader
that this includes fixing a B-field liftβ0 of the Brauer classα.

Definition 2.8. A (full, numerical)stability conditionon(X,α) is a Bridgeland stability condition
onDb(X,α), whose latticeΛ is given by the Mukai latticeH∗

alg(X,α,Z).

In [Bri08], Bridgeland describes a connected component of the space of numerical stability
conditions onX. These results have been extended to twisted K3 surfaces in [HMS08]. In the
following, we briefly summarize the main results.

Letβ, ω ∈ NS(X)R be two real divisor classes, withω being ample. ForE ∈ Db(X,α), define

Zω,β(E) :=
(
eiω+β+β0 ,v(E)

)
.

In [Bri08, Lemma 6.1] Bridgeland constructs a heartAω,β by tilting at a torsion pair (see [HMS08,

Section 3.1] for the caseα 6= 1). Its objects are two-term complexesE−1 d−→ E0 with the property:

• Ker d is a torsion-freeα-twisted sheaf such that, for every non-zero subsheafE′ ⊂ Ker d,
we haveℑZω,β(E

′) ≤ 0;
• the torsion-free part ofCok d is such that, for every non-zero torsion free quotientCok d։

E′′, we haveℑZω,β(E
′′) > 0.

Theorem 2.9([Bri08, Sections 10, 11], [HMS08, Proposition 3.8]). Letσ = (Z,P) be a stability
condition such that all skyscraper sheavesk(x) of points areσ-stable. Then there are real divisor

classesω, β ∈ NS(X)R with ω ample, such that, up to thẽGL
+

2 (R)-action, σ is equal to the
stability conditionσω,β determined byP((0, 1]) = Aω,β andZ = Zω,β.

We will call such stability conditionsgeometric, and writeU(X,α) ⊂ Stab(X,α) for the the
open subset of geometric stability conditions.

Using the Mukai pairing, we identify any central chargeZ ∈ Hom(H∗
alg(X,α,Z),C) with a

vectorΩZ in H∗
alg(X,α,Z) ⊗ C such that

Z( ) = (ΩZ , ) .

The vectorΩZ belongs to the domainP+
0 (X,α), which we now describe. Let

P(X,α) ⊂ H∗
alg(X,α,Z) ⊗ C

be the set of vectorsΩ such thatℑΩ,ℜΩ span a positive definite 2-plane inH∗
alg(X,α,Z) ⊗ R.

The subsetP0(X,α) is the set of vectors not orthogonal to any spherical class:

P0(X,α) =
{
Ω ∈ P(X,α) : (Ω, s) 6= 0, for all s ∈ H∗

alg(X,α,Z) with s
2 = −2

}
.

Finally, P0(X,α) has two connected components, corresponding to the orientation induced on
the plane spanned byℑΩ,ℜΩ; we letP+

0 (X,α) be the component containing vectors of the form
eiω+β+β0 for ω ample.

Theorem 2.10([Bri08, Section 8], [HMS08, Proposition 3.10]). Let Stab†(X,α) be the con-
nected component of the space of stability conditions containing geometric stability conditions
U(X,α). LetZ : Stab†(X,α) → H∗

alg(X,α,Z) ⊗ C be the map sending a stability condition
(Z,P) to ΩZ , whereZ( ) = (ΩZ , ).

ThenZ is a covering map ofP+
0 (X,α).

We will need the following observation:



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 11

Proposition 2.11. The stability conditionsσω,β onU(X,α) andσω,−β onU(X,α−1) are dual to
each other in the following sense: An objectE ∈ Db(X,α) is σω,β-(semi)stable of phaseφ if and
only if its shifted derived dualE∨[2] ∈ Db(X,α−1) is σω,−β-(semi)stable of phase−φ.

Proof. By [Bay09, Propositions 3.3.1 & 4.2], this follows as in [BMT11, Proposition 4.3.6]. �

Derived Torelli. Any positive definite 4-plane inH∗(X,α,R) comes equipped with a canonical
orientation, induced by the Kähler cone. A Hodge-isometryφ : H∗(X,α,Z) → H∗(X ′, α′,Z) is
called orientation-preserving if it is compatible with this orientation data.

Theorem 2.12(Mukai-Orlov). Given an orientation-preserving Hodge isometryφ between the
Mukai lattice of twisted K3 surfaces(X,α) and (X ′, α′), there exists a derived equivalence
Φ: Db(X,α) → Db(X ′, α′) with Φ∗ = φ. Moreover,Φ may be chosen such that it sends the
distinguished componentStab†(X,α) to Stab†(X ′, α′).

Proof. The caseα = 1 follows from Orlov’s representability result [Orl97] (based on [Muk87a]),
see [HLOY04, Plo05, HMS09]. The twisted case was treated in [HS06]. The second statement
follows identically to the caseX = X ′ treated in [Har12, Proposition 7.9]; see also [Huy08]. �

Walls. One of the main properties of the space of Bridgeland stability conditions is that it admits
a well-behaved wall and chamber structure. This is due to Bridgeland and Toda (the precise
statement is [BM12, Proposition 2.3]).

Let (X,α) be a twisted K3 surface and letv ∈ H∗
alg(X,α,Z) be a Mukai vector. Then

there exists a locally finite set ofwalls (real codimension one submanifolds with boundary) in
Stab†(X,α), depending only onv, with the following properties:

(a) Whenσ varies within a chamber, the sets ofσ-semistable andσ-stable objects of classv
does not change.

(b) Whenσ lies on a single wallW ⊂ Stab†(X,α), then there is aσ-semistable object that
is unstable in one of the adjacent chambers, and semistable in the other adjacent chamber.

(c) When we restrict to an intersection of finitely many wallsW1, . . . ,Wk, we obtain a wall-
and-chamber decomposition onW1∩ · · ·∩Wk with the same properties, where the walls
are given by the intersectionsW∩W1∩ · · ·∩Wk for any of the wallsW ⊂ Stab†(X,α)
with respect tov.

Moreover, ifv is primitive, thenσ lies on a wall if and only if there exists a strictlyσ-semistable
object of classv. The Jordan-Hölder filtration ofσ-semistable objects does not change whenσ
varies within a chamber.

Definition 2.13. Let v ∈ H∗
alg(X,α,Z). A stability condition is calledgenericwith respect tov

if it does not lie on a wall.

Remark 2.14. Given a polarizationH that is generic with respect tov, there is always a Gieseker
chamberC: for σ ∈ C, the moduli spaceMσ(v) of Bridgeland stable objects is exactly the moduli
space ofH-Gieseker stable sheaves; see [Bri08, Proposition 14.2].

Moduli spaces and projectivity. Let (X,α) be a twisted K3 surface and letv ∈ H∗
alg(X,α,Z).

Givenσ = (Z,P) ∈ Stab†(X,α) andφ ∈ R such thatZ(v) ∈ R>0 · eπφ
√
−1, let Mσ(v, φ)

andMst
σ (v, φ) be the moduli stack ofσ-semistable andσ-stable objects with phaseφ and Mukai

vectorv, respectively. We will omitφ from the notation from now on.
If σ ∈ Stab†(X,α) is generic with respect tov, thenMσ(v) has a coarse moduli space

Mσ(v) of σ-semistable objects with Mukai vectorv ([BM12, Theorem 1.3(a)], which generalizes
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[MYY11b, Theorem 0.0.2]). It is a normal projective irreducible variety with Q-factorial singu-
larities. Ifv is primitive, thenMσ(v) =M st

σ (v) is a smooth projective hyperkähler manifold (see
Section3).

By results of Yoshioka and Toda, there is a very precise criterion for non-emptiness of a moduli
space, and it always has expected dimension:

Theorem 2.15.Letv = mv0 ∈ H∗
alg(X,α,Z) be a vector withv0 primitive andm > 0, and let

σ ∈ Stab†(X,α) be a generic stability condition with respect tov.

(a) The coarse moduli spaceMσ(v) is non-empty if and only ifv2
0 ≥ −2.

(b) EitherdimMσ(v) = v
2 + 2 andM st

σ (v) 6= ∅, orm > 1 andv2
0 ≤ 0.

In other words, whenv2 6= 0 and the dimension of the moduli space is positive, then it is given
by dimMσ(v) = v

2 + 2.

Proof. This is well-known: we provide a proof for completeness. First of all, claim (a) follows
from results of Yoshioka and Toda (see [BM12, Theorem 6.8]). Sinceσ is generic with respect
to v, we know thatMσ(v) exists as a projective variety, parameterizing S-equivalence classes of
semistable objects. Moreover, ifE ∈ Mσ(v), and we letF →֒ E be such thatφσ(F ) = φσ(E),
thenv(F ) = m′

v0, for somem′ > 0. Hence, the locus of strictly semistable objects inMσ(v)
coincides with the image of the natural map

SSL:
∐

m1+m2=m

Mσ(m1v0)×Mσ(m2v0) −→Mσ(v), SSL
(
(E1, E2)

)
= E1 ⊕ E2.

If we assumev2
0 > 0 (and so≥ 2), then we can proceed by induction onm. Form = 1,

M st
σ (v0) =Mσ(v0) and the conclusion follows from the Riemann-Roch Theorem and [Muk87a].

If m > 1, then we deduce from the inductive assumption that the imageof the mapSSL has
dimension equal to the maximum of(m2

1 +m2
2)v

2
0 + 4, form1 +m2 = m.

We claim that we can construct a semistable objectE with vectorv which is also a Schur
object, i.e.Hom(E,E) = C. Indeed, again by the inductive assumption, we can considera σ-
stableobjectFm−1 with vector(m− 1)v0. LetF ∈ Mσ(v0). Then, again by the Riemann-Roch
Theorem,Ext1(F,Fm−1) 6= 0. We can take any non-trivial extension

0 → Fm−1 → Fm → F → 0.

Since bothFm−1 andF are Schur objects, and they have no morphism between each other,Fm is
also a Schur object.

Again by the Riemann-Roch Theorem and [Muk84], we deduce that the dimension ofMσ(v)
is equal toext1(Fm, Fm) = m2

v
2
0 + 2. Since, for allm1,m2 > 0 with m1 +m2 = m, we have

(m2
1 +m2

2)v
2
0 + 4 < m2

v
2
0 + 2,

this shows thatM st
σ (v) 6= ∅ as claimed.

For the casev2
0 ≤ 0, see [BM12, Lemma 7.1 and Lemma 7.2]. �

Let us also point out that the proof shows a stronger statement:

Lemma 2.16. Let v = mv0 with v
2
0 > 0, andσ ∈ Stab†(X,α), not necessarily generic with

respect tov. If there existσ-stableobjects of classv0, then the same holds forv.

Proof. LetF ′ be a generic deformation ofFm, and assume that it is strictly semistable; letE →֒ F ′

be a semistable subobject of the same phase. The above proof shows the Mukai vectorv(E)
cannot be a multiple ofv0. Using the universal closedness of moduli spaces of semistable objects,
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it follows as in [Tod08, Theorem 3.20] thatFm also has a semistable subobject with Mukai vector
equal tov(E). This is not possible by construction. �

Line bundles on moduli spaces.In this section we recall the main result of [BM12]. It shows
that every moduli space of Bridgeland-stable objects comesequipped with a numerically positive
line bundle, naturally associated to the stability condition.

Let (X,α) be a twisted K3 surface. LetS be a proper algebraic space of finite type overC,
let σ = (Z,P) ∈ Stab†(X,α), and letE ∈ Db(S × (X,α)) be a family ofσ-semistable objects
of classv and phaseφ: for all closed pointss ∈ S, Es ∈ P(φ) with v(Es) = v. We write
ΦE : Db(S) → Db(X,α) for the Fourier-Mukai transform associated toE .

We construct a classℓσ ∈ NS(S)R onS as follows: To every curveC ⊂ S, we associate

C 7→ ℓσ.C := ℑ
(
−Z(v(ΦE (OC)))

Z(v)

)
.

This defines a numerical Cartier divisor class onS, see [BM12, Section 4].

Remark 2.17. The classical construction of determinant line bundles (see [HL10, Section 8.1])
induces, up to duality, the so-calledMukai morphismθE : v⊥ → NS(S). It can also be defined by

(4) θE(w).C :=
(
w,v(ΦE (OC))

)
.

If we assumeZ(v) = −1, and writeZ( ) = (ΩZ , ) as above, we can also write

(5) ℓσ = θE(ℑΩZ).

Theorem 2.18([BM12, Theorem 4.1 & Remark 4.6]). The main properties ofℓσ are:

(a) ℓσ is a nef divisor class onS. Additionally, for a curveC ⊂ S, we haveℓσ.C = 0 if
and only if, for two general closed pointsc, c′ ∈ C, the corresponding objectsEc, Ec′ ∈
Db(X,α) are S-equivalent.

(b) For any Mukai vectorv ∈ H∗
alg(X,α,Z) and a stability conditionσ ∈ Stab†(X,α) that

is generic,ℓσ induces an ample divisor class on the coarse moduli spaceMσ(v).

For any chamberC ⊂ Stab†(X,α), we thus get a map

(6) ℓC : C → Amp(MC(v)),

where we used the notationMC(v) to denote the coarse moduli spaceMσ(v), independent of the
choiceσ ∈ C. The main goal of this paper is to understand the global behavior of this map.

We recall one more result from [BM12], which will be crucial for our wall-crossing analysis.
Letv ∈ H∗

alg(X,α,Z) be aprimitivevector withv2 ≥ −2. LetW be a wall forv and letσ0 ∈ W
be a generic stability condition on the wall, namely it does not belong to any other wall. We
denote byσ+ andσ− two generic stability conditions nearbyW in opposite chambers. Then all
σ±-semistable objects are alsoσ0-semistable. Hence,ℓσ0 induces two nef divisorsℓσ0,+ andℓσ0,−
onMσ+(v) andMσ−

(v) respectively.

Theorem 2.19([BM12, Theorem 1.4(a)]). The divisorsℓσ0,± are big and nef onMσ±
(v). In

particular, they are semi-ample, and induce birational contractions

π± : Mσ±
(v) →M±,

whereM± are normal irreducible projective varieties. The curves contracted byπ± are precisely
the curves of objects that are S-equivalent with respect toσ0.

Definition 2.20. We call a wallW:
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(a) afake wall, if there are no curves inMσ±
(v) of objects that are S-equivalent to each other

with respect toσ0;
(b) atotally semistable wall, if M st

σ0
(v) = ∅;

(c) a flopping wall, if we can identifyM+ = M− and the induced mapMσ+(v) 99K

Mσ−
(v) induces a flopping contraction;

(d) adivisorial wall, if the morphismsπ± : Mσ±
(v) →M± are both divisorial contractions.

By [BM12, Theorem 1.4(b)], ifW is not a fake wall andM st
σ0
(v) ⊂ Mσ±

(v) has complement
of codimension at least two, thenW is a flopping wall. We will classify walls in Theorem5.7.

3. REVIEW: BASIC FACTS ABOUT HYPERK̈AHLER VARIETIES

In this section we give a short review on hyperkähler manifolds. The main references are
[Bea83, GHJ03, Mar11].

Definition 3.1. A projective hyperk̈ahler manifoldis a simply connected smooth projective va-
riety M such thatH0(M,Ω2

M ) is one-dimensional, spanned by an everywhere non-degenerate
holomorphic2-form.

The Néron-Severi group of a hyperkähler manifold carriesa natural bilinear form, called the
Fujiki-Beauville-Bogomolov form. It is induced by a quadratic form on the whole second coho-
mology groupq : H2(M,Z) → Z, which is primitive of signature(3, b2(M)− 3). It satisfies the
Fujiki relation

(7)
∫

M
α2n = FM · q(α)n, α ∈ H2(M,Z),

where2n = dimM andFM is theFujiki constant, which depends only on the deformation type of
M . We will mostly use the notation( , ) := q( , ) for the induced bilinear form onNS(M).

The Hodge structure
(
H2(M,Z), q

)
behaves similarly to the case of a K3 surface. For example,

by [Ver09], there is a weak global Hodge theoretic Torelli theorem for(deformation equivalent)
hyperkähler manifolds.

Moreover, some positivity properties of divisors onM can be rephrased in terms ofq. We first
recall a few basic definitions on cones of divisors.

Definition 3.2. An integral divisorD ∈ NS(M) is called

• big, if its Iitaka dimension is maximal;
• movable, if its stable base-locus has codimension≥ 2;
• strictly positive, if (D,D) > 0 and(D,A) > 0 for a fixed ample classA onM .

The real (not necessarily closed) cone generated by big (resp., movable, strictly positive, effec-
tive) integral divisors will be denoted byBig(M) (resp.,Mov(M), Pos(M), Eff(M)). We have
the following inclusions:

Pos(M) ⊂ Big(M) ⊂ Eff(M)

Nef(M) ⊂ Mov(M) ⊂ Pos(M) ⊂ Big(M) = Eff(M).

The only non-trivial inclusion isPos(M) ⊂ Big(M), which follows from [Huy99, Corollary
3.10]. Divisors inPos(M) are calledpositive.

We say that an irreducible divisorD ⊂M is exceptionalif there is a birational mapπ : M 99K

M ′ contractingD. Using the Fujiki relations, one provesD2 < 0 and (D,E) ≥ 0 for every
movable divisorE [Huy99, Section 1]. We letρD be the reflection atD, i.e., the linear involution
of NS(M)Q fixing D⊥ and sendingD to−D.
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Proposition 3.3([Mar13b]). The reflectionρD at an irreducible exceptional divisor is an integral
involution ofNS(M). LetWExc be the Weyl group generated by such reflectionsρD. The cone
Mov(M) ∩ Pos(M) of big movable divisors is the fundamental chamber, for the action ofWExc

onPos(M), given by(D, ) ≥ 0 for every exceptional divisorD.

The difficult claim is the integrality ofρD; in our case, we could also deduce it from our
classification of divisorial contractions in Theorem5.7. As explained in [Mar11, Section 6], the
remaining statements follow from Zariski decomposition for divisors [Bou04] and standard results
about Weyl group actions on hyperbolic lattices.

Definition 3.4. Let M be a projective hyperkähler manifold of dimension2n. A Lagrangian
fibration is a surjective morphism with connected fibersh : M → B, whereB is a smooth
projective variety, such that the generic fiber is Lagrangian with respect to the symplectic form
ω ∈ H0(M,Ω2

M ).

By the Arnold-Liouville Theorem, any smooth fiber of a Lagrangian fibration is an abelian
variety of dimensionn. Moreover:

Theorem 3.5 ([Mat99, Mat01] and [Hwa08]). Let M be a projective hyperk̈ahler manifold of
dimension2n. LetB be a smooth projective variety of dimension0 < dimB < 2n and let
h : M → B be a surjective morphism with connected fibers. Thenh is a Lagrangian fibration,
andB ∼= Pn.

This result explains the importance of Conjecture1.4. In addition, the existence of a Lagrangian
fibration is equivalent to the existence of a single Lagrangian torus inM (see [GLR11b, HW13,
Mat12], based on previous results in [Ame12, GLR11a]).

The examples of hyperkähler manifolds we will consider aremoduli spaces of stable complexes,
as explained by the theorem below. It has been proven for moduli of sheaves in [Yos01, Sections
7 & 8], and generalized to Bridgeland stability conditions in [BM12, Theorem 6.10 & Section 7]:

Theorem 3.6(Huybrechts-O’Grady-Yoshioka). Let (X,α) be a twisted K3 surface and letv ∈
H∗

alg(X,α,Z) be a primitive vector withv2 ≥ −2. Letσ ∈ Stab†(X,α) be a generic stability
condition with respect tov. Then:

(a) Mσ(v) is a projective hyperk̈ahler manifold, deformation-equivalent to the Hilbert scheme
of points on any K3 surface.

(b) The Mukai morphism induces an isomorphism
• θσ,v : v

⊥ ∼−→ NS(Mσ(v)), if v2 > 0;
• θσ,v : v

⊥/v
∼−→ NS(Mσ(v)), if v2 = 0.

Under this isomorphism, the quadratic Beauville-Bogomolov form forNS(Mσ(v)) coin-
cides with the quadratic form of the Mukai pairing on(X,α).

Hereθσ,v is the Mukai morphism as in Remark2.17, induced by a (quasi-)universal family.
We will often dropσ or v from the notation. It extends to an isomorphism of Hodge structures,
identifying the orthogonal complementv⊥,tr inside the whole cohomologyH∗(X,α,Z) (rather
than its algebraic part) withH2(Mσ(v),Z). The following result is Corollary 9.9 in [Mar11] for
the untwisted caseα = 1; by deformation techniques, the result also holds in the twisted case:

Theorem 3.7([Ver09], [Mar11]). For v primitive andv2 > 0, the embeddingH2(Mσ(v),Z) ∼=
v
⊥,tr →֒ H∗(X,α,Z) of integral Hodge structures determines the birational class ofMσ(v).

However, as indicated in the introduction, we only need the implication that birational moduli
spaces have isomorphic extended Hodge structures.

We will also the need the following special case of a result byNamikawa and Wierzba:
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Theorem 3.8([Wie03, Theorem 1.2 (ii)] and [Nam01, Proposition 1.4]). LetM be a projective
hyperk̈ahler manifold of dimension2n, and letM be a projective normal variety. Letπ : M →
M be a birational projective morphism. We denote bySi the set of pointsp ∈ M such that
dimπ−1(p) = i. ThendimSi ≤ 2n − 2i.

In particular, if π contracts a divisorD ⊂M , we must havedimπ(D) = 2n− 2.

Consider a non-primitive vectorv. As shown by O’Grady and Kaledin-Lehn-Sorger, the moduli
spaceMσ(v) can still be thought of as a singular hyperkähler manifold,in the following sense:

Definition 3.9. A normal projective varietyM is said to havesymplectic singularitiesif
• the smooth partMreg ⊂M admits a symplectic 2-formω, such that
• for any resolutionf : M̃ → M , the pull-back ofω to f−1(Mreg) extends to a holomor-

phic form onM̃ .

Given a hyperkähler manifoldM and a dominant rational mapM 99K M , whereM is a
normal projective variety with symplectic singularities,then it follows from the definitions that
dim(M) = dim(M ). This explains the relevance of the following theorem; our results in [BM12]
reduce it to the case of moduli of sheaves:

Theorem 3.10([O’G99] and [KLS06]). Let (X,α) be a twisted K3 surface and letv = mv0 ∈
H∗

alg(X,α,Z) be a Mukai vector withv0 primitive andv2
0 ≥ 2. Letσ ∈ Stab†(X,α) be a generic

stability condition with respect tov. ThenMσ(v) has symplectic singularities.

4. HARDER-NARASIMHAN FILTRATIONS IN FAMILIES

In this section, we will show that results by Abramovich-Polishchuk and Toda imply the exis-
tence of HN filtrations in families, see Theorem4.3.

The results we present will work as well in the twisted context; to simplify notation, we only
state the untwisted case. LetY be a smooth projective variety overC. We will write Dqc(Y ) for
the unbounded derived of quasi-coherent sheaves. Pick a latticeΛ andv for the bounded derived
categoryDb(Y ) as in Definition2.2, and letσ be a Bridgeland stability onDb(Y ).

Definition 4.1. We sayσ satisfiesopenness of stabilityif the following condition holds: for any
schemeS of finite type overC, and for anyE ∈ Db(S × Y ) such that its derived restrictionEs is
aσ-semistable object ofDb(Y ) for somes ∈ S, there exists an open neighborhoods ∈ U ⊂ S of
s, such thatEs′ is σ-semistable for alls′ ∈ U .

Theorem 4.2([Tod08, Section 3]). Openness of stability holds whenY is a K3 surface andσ is a
stability condition in the connected componentStab†(Y ).2

Theorem 4.3. Letσ = (Z,A) ∈ Stab(Y ) be an algebraic stability condition satisfying openness
of stability. Assume we are given an irreducible varietyS overC, and an objectE ∈ Db(S × Y ).
Then there exists a system of maps

(8) 0 = E0 → E1 → E2 → · · · → Em = E
in Db(S × Y ), and an open subsetU ⊂ S with the following property: for anys ∈ U , the derived
restriction of the system of maps(8)

0 = E0
s → E1

s → E2
s → · · · → Em

s = Es
is the HN filtration ofEs.

2In [Tod08, Section 3], this Theorem is only stated for familiesE satisfyingExt<0(Es, Es) = 0 for all s ∈ S.
However, Toda’s proof in Lemma 3.13 and Proposition 3.18 never uses that assumption.
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The proof is based on the notion of constant family of t-structures due to Abramovich and
Polishchuk, constructed in [AP06] (in caseS is smooth) and [Pol07] (in general).

Throughout the remainder of this section, we will assume that σ andS satisfy the assumptions
of Theorem4.3. A t-structure is calledclose to Noetherianif it can be obtained via tilting from
a t-structure whose heart is Noetherian. Forφ ∈ R, the categoryP((φ − 1, φ]) ⊂ Db(Y ) is the
heart of a close to Noetherian bounded t-structure onY given byD≤0 = P((φ − 1,+∞)) and
D≥0 = P((−∞, φ]) (see the example discussed at the end of [Pol07, Section 1]). In this situation,
Abramovich and Polishchuk’s work induces a bounded t-structure(D≤0

S ,D≥0
S ) onDb(S×Y ); we

paraphrase their main results as follows:

Theorem 4.4([AP06, Pol07]). LetA be the heart of a close to Noetherian bounded t-structure
(D≤0,D≥0) onDb(Y ). Denote byAqc ⊂ Dqc(Y ) the closure ofA under infinite coproducts in
the derived category of quasi-coherent sheaves.

(a) For any schemeS of finite type ofC there is a close to Noetherian bounded t-structure
(D≤0

S ,D≥0
S ) onDb(S × Y ), whose heartAS is characterized by

E ∈ AS ⇔ (pY )∗ (E|Y×U ) ∈ Aqc for every open affineU ⊂ S

(b) The above construction defines a sheaf of t-structures over S: whenS =
⋃

i Ui is an
open covering ofS, thenE ∈ AS if and only ifE|Y×Ui

∈ AUi
for everyi. In particular,

for i : U ⊂ S open, the restriction functori∗ is t-exact.
(c) Wheni : S′ ⊂ S is a closed subscheme, theni∗ is t-exact, andi∗ is t-right exact.

We briefly comment on the statements that are not explicitly mentioned in [Pol07, Theorem
3.3.6]: From part (i) of [Pol07, Theorem 3.3.6], it follows that the t-structure constructed there on
D(S × Y ) descends to a bounded t-structure onDb(S × Y ). To prove that the push-forward in
claim (c) is t-exact, we first use the sheaf property to reduce to the case whereS is affine; in this
case, the claim follows by construction. By adjointness, itfollows thati∗ is t-right exact.

For an algebraic stability conditionσ = (Z,P) on Db(Y ) and a phaseφ ∈ R, we will from
now on denote its associated t-structure byP(> φ) = D≤−1, P(≤ φ) = D≥0, and the associated
truncation functors byτ>φ, τ≤φ. By [Pol07, Lemma 2.1.1], it induces a t-structure onDqc(Y ),
which we denote byPqc(> φ),Pqc(≤ φ). For the t-structure onDb(S × Y ) induced via Theorem
4.4, we will similarly writePS(> φ),PS(≤ φ), andτ>φ

S , τ≤φ
S .

We start with a technical observation:

Lemma 4.5. The t-structures onDb(S × Y ) constructed via Theorem4.4 satisfy the following
compatibility relation:

(9)
⋂

ǫ>0

PS(≤ φ+ ǫ) = PS(≤ φ).

Proof. AssumeE is in the intersection of the left-hand side of (9). By the sheaf property, we may
assume thatS is affine. The assumption implies(pY )∗E ∈ Pqc(≤ φ+ ǫ) for all ǫ > 0.

By [Pol07, Lemma 2.1.1], we can describePqc(≤ φ + ǫ) ⊂ Dqc(Y ) as the right orthogonal
complement ofP(> φ+ ǫ) ⊂ Db(Y ) insideDqc(Y ); thus we obtain

⋂

ǫ>0

Pqc(≤ φ+ ǫ) =
⋂

ǫ>0

(
P(> φ+ ǫ)

)⊥
=

(⋃

ǫ>0

P(> φ+ ǫ)
)⊥

=
(
P(> φ)

)⊥
= Pqc(≤ φ).

Hence(pY )∗E ∈ Pqc(≤ φ), proving the lemma. �
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We next observe that the truncation functorsτ>φ
S , τ≤φ

S induce a slicing onDb(S × Y ). (See
Definition 2.1 for the notion of slicing on a triangulated category.)

Lemma 4.6. Assume thatσ = (Z,P) is an algebraic stability condition, andPS(> φ),PS(≤ φ)
are as defined above. There is a slicingPS onDb(S × Y ) defined by

PS(φ) = PS(≤ φ) ∩
⋂

ǫ>0

PS(> φ− ǫ).

Note thatPS(φ) cannot be characterized by the analogue of Theorem4.4, part (a). For example,
consider the case whereY is a curve and(Z,P) the standard stability condition corresponding to
classical slope-stability inCohY . ThenP(1) ⊂ CohY is the category of torsion sheaves, and
PS(1) ⊂ CohS × Y is the category of sheavesF that are torsion relative overS. However, for
U ⊂ S affine and a non-trivial familyF , the push-forward(pY )∗F|U is never a torsion sheaf.

Proof. By standard arguments, it is sufficient to construct a HN filtration for any objectE ∈ AS :=
PS(0, 1]. In particular, sinceσ is algebraic, we can assume that bothA := P(0, 1] andAS are
Noetherian. For anyφ ∈ (0, 1], we havePS(φ, φ+ 1] ⊂ 〈AS ,AS [1]〉. By [Pol07, Lemma 1.1.2],
this induces a torsion pair(Tφ,Fφ) onAS with

Tφ = AS ∩ PS(φ, φ+ 1] and Fφ = AS ∩ PS(φ− 1, φ].

Let Tφ →֒ E ։ Fφ be the induced short exact sequence inAS . Assumeφ < φ′; sinceFφ ⊂ Fφ′ ,
the surjectionE ։ Fφ factors viaE ։ Fφ′ ։ Fφ. SinceAS is Noetherian, the set of induced
quotients{Fφ : φ ∈ (0, 1]} of E must be finite. In addition, ifFφ

∼= Fφ′ , we must also have
Fφ′′

∼= Fφ for anyφ′′ ∈ (φ, φ′).
Thus, there exist real numbersφ0 = 1 > φ1 > φ2 > · · · > φl > φl+1 = 0 such thatFφ

is constant forφ ∈ (φi+1, φi), but such thatFφi−ǫ 6= Fφi+ǫ. Let us assume for simplicity that
Fφ1+ǫ

∼= E ; the other case is treated similarly by settingF 1 = Fφ1+ǫ, and shifting all other indices
by one. Fori = 1, . . . , l we set

• F i := Fφi−ǫ,
• E i := Ker(E ։ F i), and
• Ai = E i/E i−1.

We haveE i ∈ PS(> φi − ǫ) andE i−1 = τ>φi+ǫ
S E i for all ǫ > 0. Hence the quotientAi satisfies,

for all ǫ > 0,

• Ai ∈ PS(> φi − ǫ),
• Ai ∈ PS(≤ φi + ǫ).

The latter impliesAi ∈ PS(≤ φi) by Lemma4.5. By definition, we obtainAi ∈ PS(φi). Finally,
we haveF l ∈ PS(0, 1] ∩ PS(≤ ǫ) for all ǫ > 0. Using Lemma4.5again, we obtainF l = 0, and
thusE l = E . Thus theE i induce a HN filtration as claimed. �

The following lemma is an immediate extension of [AP06, Proposition 3.5.3]:

Lemma 4.7. Assume thatE ∈ PS(φ) for someφ ∈ R. and thatEs 6= 0 for s ∈ S generic. Then
there exists a dense subsetZ ⊂ S, such thatEs is semistable of phaseφ for all s ∈ Z.

Proof. By [AP06, Proposition 3.5.3], applied to the smooth locus ofS, there exists a dense subset
Z ⊂ S such thatEs ∈ P((φ − 1, φ]). SinceE ∈ PS(> φ− ǫ) for all ǫ > 0, and sincei∗s is t-right
exact, we also haveEs ∈ P(> φ− ǫ) for all ǫ > 0. Considering the HN filtration ofEs, this shows
thatEs ∈ P(φ) for all s ∈ Z. �
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Proof of Theorem4.3. The statement now follows easily from the above two lemmas. First of all,
under the assumption of openness of stability, the dense subsetZ of Lemma4.7may of course be
taken to be open.

Given anyE ∈ Db(S × Y ), let

(10) 0 = E0 → E1 → · · · → Em = E
be the HN filtration with respect to the slicing of Lemma4.6, and letAj be the HN filtration
quotients fitting in the exact triangleEj−1 → Ej → Aj . Let j1, . . . , jl be the indices for which
the generic fiberi∗sA

j does not vanish, and letφi be the phase ofAji . Then we claim that

(11) 0 = E0 → Ej1 → Ej2 → · · · → Em = E
has the desired property. Indeed, there is an open subsetU such that for alls ∈ U , the fibersAji

s

are semistable for alli = 1, . . . , l, and such thatAj
s = 0 for all j /∈ {i1, . . . , il}. Then, for each

suchs, the restriction of the sequence of maps (11) via i∗s induces a sequence of maps that satisfies
all properties of a HN filtration. �

5. THE HYPERBOLIC LATTICE ASSOCIATED TO A WALL

Our second main tool will be a rank two hyperbolic lattice associated to any wall. Let(X,α)
be a twisted K3 surface. Fix a primitive vectorv ∈ H∗

alg(X,α,Z) with v
2 > 0, and a wallW of

the chamber decomposition with respect tov.

Proposition 5.1. To each such wall, letHW ⊂ H∗
alg(X,α,Z) be the set of classes

w ∈ HW ⇔ ℑZ(w)

Z(v)
= 0 for all σ = (Z,P) ∈ W.

ThenHW has the following properties:

(a) It is a primitive sublattice of rank two and of signature(1,−1) (with respect to the re-
striction of the Mukai form).

(b) Letσ+, σ− be two sufficiently close and generic stability conditions on opposite sides of
the wallW, and consider anyσ+-stable objectE ∈ Mσ+(v). Then any HN filtration
factorAi ofE with respect toσ− has Mukai vectorv(Ai) contained inHW .

(c) If σ0 is a generic stability condition on the wallW, the conclusion of the previous claim
also holds for anyσ0-semistable objectE of classv.

(d) Similarly, letE be any object withv(E) ∈ HW , and assume that it isσ0-stable for a
generic stability conditionσ0 ∈ W. Then every Jordan-Ḧolder factors ofE with respect
to σ0 will have Mukai vector contained inHW .

The precise meaning of “sufficiently close” will become apparent in the proof.

Proof. The first two claims of (a) are evident. To verify the claim on the signature, first notethat by
the assumptionv2 > 0, the latticeHW is either hyperbolic or positive (semi-)definite. On the other
hand, consider a stability conditionσ = (Z,A) with Z(v) = −1. Since(ℑZ)2 > 0 by Theorem
2.10, sinceHW is contained in the orthogonal complement ofℑZ, and since the algebraic Mukai
lattice has signature(2, ρ(X)), this leaves the hyperbolic case as the only possibility.

In order to prove the remaining claims, consider anǫ-neighborhoodBǫ(τ) of a generic stability
conditionτ ∈ W, with 0 < ǫ ≪ 1. LetSv be the set of objectsE with v(E) = v, and that are
semistable for some stability condition inBǫ(τ). LetUv be the set of classesu ∈ H∗

alg(X,α,Z)
that can appear as Mukai vectors of Jordan-Hölder factors of E ∈ Sv, for any stability condition
(Z ′,A′) ∈ Bǫ(τ). As shown in the proof of local finiteness of walls (see [Bri08, Proposition
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9.3] or [BM11, Proposition 3.3]), the setUv is finite; indeed, such a class would have to satisfy
|Z ′(u)| < |Z ′(v)|. Hence, the union of all walls for all classes inUv is still locally finite.

To prove claim (b), we may assume thatW is the only wall separatingσ+ andσ−, among
all walls for classes inUv. Let σ0 = (Z0,P0) ∈ W be a generic stability condition in the wall
separating the chambers ofσ+, σ−. It follows thatE and allAi areσ0-semistable of the same
phase, i.e.ℑZ0(v(Ai))

Z0(v)
= 0. Since this argument works for genericσ0, we must havev(Ai) ∈ HW

by the definition ofHW .
Claim (c) follows from the same discussion, and (d) similarly by considering the set of all walls

for the classesUv(E) instead ofUv. �

Our main approach is to characterize which hyperbolic latticesH ⊂ H∗
alg(X,α,Z) correspond

to a wall, and to determine the type of wall purely in terms ofH. We start by making the following
definition:

Definition 5.2. Let H ⊂ H∗
alg(X,α,Z) be a primitive rank two hyperbolic sublattice containing

v. A potential wallW associated toH is a connected component of the real codimension one
submanifold of stability conditionsσ = (Z,P) which satisfy the condition thatZ(H) is contained
in a line.

Remark 5.3. The statements of Proposition5.1are still valid whenW is a potential wall as in the
previous definition.

Definition 5.4. Given any hyperbolic latticeH ⊂ H∗
alg(X,α,Z) of rank two containingv, we

denote byPH ⊂ H⊗R the cone generated by integral classesu ∈ H with u
2 ≥ 0 and(v,u) > 0.

We callPH thepositive coneof H, and a class inPH ∩H is called apositive class.

The condition(v,u) > 0 just picks out one of the two components of the set of real classes
with u

2 > 0. Observe thatPH can be an open or closed cone, depending on whether the lattice
contains integral classesw that are isotropic:w2 = 0.

Proposition 5.5. LetW be a potential wall associated to a hyperbolic rank two sublattice H ⊂
H∗

alg(X,α,Z). For anyσ = (Z,P) ∈ W, let Cσ ⊂ H ⊗ R be the cone generated by classes
u ∈ H satisfying the two conditions

u
2 ≥ −2 and ℜZ(u)

Z(v)
> 0.

This cone does not depend on the choice ofσ ∈ W, and it containsPH.
If u ∈ Cσ, then there exists a semistable object of classu for everyσ′ ∈ W. If u /∈ Cσ, then

there does not exist a semistable object of classu for genericσ′ ∈ W.

From here on, we will writeCW instead ofCσ, and call it the cone of effective classes inH.
Given two different wallsW1, W2, the corresponding effective conesCW1 , CW2 will only differ
by spherical classes.

Proof. If u2 ≥ −2, then by Theorem2.15there exists aσ-semistable object of classu for every
σ = (Z,P) ∈ W. HenceZ(u) 6= 0, i.e, we cannot simultaneously haveu ∈ H (which implies
ℑZ(u)

Z(v) = 0) andℜZ(u)
Z(v) = 0. Therefore, the conditionℜZ(u)

Z(v) > 0 is invariant under deforming a
stability condition insideW, andCσ does not depend on the choice ofσ ∈ W.

Now assume for contradiction thatPH is not contained inCW . Sincev ∈ CW , this is only
possible if there is a real classu ∈ PH with ℜZ(u)

Z(v) = 0; after deformingσ ∈ W slightly, we may
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assumeu to be integral. As above, this impliesZ(u) = 0, in contradiction to the existence of a
σ-semistable object of classu.

The statements about existence of semistable objects follow directly from Theorem2.15. �

Remark 5.6. Note that by construction,CW ⊂ H ⊗ R is strictly contained in a half-plane. In
particular, there are only finitely many classes inCW ∩

(
v − CW

)
∩H (in other words, effective

classesu such thatv − u is also effective).
We will use this observation throughout in order to freely make genericity assumptions: a

generic stability conditionσ0 ∈ W will be a stability condition that does not lie on any additional
wall (other thanW) for any of the above-mentioned classes. Similarly, by stability conditions
σ+, σ− nearbyσ0 we will mean stability conditions that lie in the two chambers adjacent toσ0 for
the wall-and-chamber decompositions with respect to any ofthe classes inCW ∩

(
v−CW

)
∩H.

The behavior of the potential wallW is completely determined byH and its effective coneCW :

Theorem 5.7. LetH ⊂ H∗
alg(X,α,Z) be a primitive hyperbolic rank two sublattice containing

v. LetW ⊂ Stab†(X,α) be a potential wall associated toH (see Definition5.2).
The setW is a totally semistable wall if and only if there exists either an isotropic classw ∈ H

with (v,w) = 1, or an effective spherical classs ∈ CW ∩H with (s,v) < 0. In addition:

(a) The setW is a wall inducing a divisorial contraction if one of the following three condi-
tions hold:
(Brill-Noether): there exists a spherical classs ∈ H with (s,v) = 0, or
(Hilbert-Chow): there exists an isotropic classw ∈ H with (w,v) = 1, or
(Li-Gieseker-Uhlenbeck): there exists an isotropic classw ∈ H with (w,v) = 2.

(b) Otherwise, ifv can be written as the sumv = a+ b of two positive3 classes, or if there
exists a spherical classs ∈ H with 0 < (s,v) ≤ v

2

2 , thenW is a wall corresponding to
a flopping contraction.

(c) In all other cases,W is either a fake wall (if it is a totally semistable wall), or it is not a
wall.

The Gieseker-Uhlenbeck morphism from the moduli space of Gieseker semistable sheaves to
slope-semistable vector bundle was constructed in [Li93]. Many papers deal with birational trans-
formations between moduli spaces of twisted Gieseker semistable sheaves, induced by variations
of the polarization. In particular, we refer to [Tha96, DH98] for the general theory of variation of
GIT quotients and [EG95, FQ95, MW97] for the case of sheaves on surfaces. Theorem5.7can be
thought as a generalization and completion of these resultsin the case of K3 surfaces.

Proof outline. The proof of the above theorem will be broken into four sections. We will distin-
guish two cases, depending on whetherH contains isotropic classes:

Definition 5.8. We say thatW is anisotropicwall if HW contains an isotropic class.

In Section6, we analyze totally semistable non-isotropic walls, and Section 7 describes non-
isotropic walls corresponding to divisorial contractions. In Section8, we use a Fourier-Mukai
transform to reduce the treatment of isotropic walls to the well-known behavior of the Li-Gieseker-
Uhlenbeck morphism from the Gieseker moduli space to the Uhlenbeck space. For the remaining
cases, Section9 describes whether it is a flopping wall, a fake walls, or no wall at all.

To give an example of the strategy of our proof, consider a wall with a divisorD ⊂ Mσ+(v)
of objects that become strictly semistable on the wall. We use the contraction morphismπ+ of

3In the sense of Definition5.4.
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Theorem2.19; Theorem3.8 impliesdimπ+(D) ≥ dimD − 1 = v
2. Recall thatπ+ contracts a

curve if the associated objects have the same Jordan-Hölder factors. Intuitively, this means that the
sum of the dimensions of the moduli spaces parameterizing the Jordan-Hölder factors is at least
v
2; a purely lattice-theoretic argument (using that moduli spaces always have expected dimension)

leads to a contradiction except in the cases listed in the Theorem. To make this argument rigorous,
we use the relative Harder-Narasimhan filtration with respect to σ− in the family parameterized
by D; it induces a rational map fromD to a product of moduli spaces ofσ−-stable objects. The
most technical part of our arguments deals with totally semistable walls induced by a spherical
class. We use a sequence of spherical twists to reduce to the previous cases, see Proposition6.8.

6. TOTALLY SEMISTABLE NON-ISOTROPIC WALLS

In this section, we will analyzetotally semistable walls; while some of our intermediate results
hold in general, we will focus on the case whereH does not contain an isotropic class. The
relevance of this follows from Theorem2.15: in this case, if the dimension of a moduli space
Mσ(u) is positive, then it is given byu2 + 2.

We will first describe the possible configurations of effective spherical classes inCW , and of
corresponding spherical objects withv(S) ∈ HW .

We start with the following classical argument of Mukai (cfr. [Bri08, Lemma 5.2]):

Lemma 6.1 (Mukai). Consider an exact sequence0 → A → E → B → 0 in the heart of a
bounded t-structureA ⊂ Db(X,α) with Hom(A,B) = 0. Then

ext1(E,E) ≥ ext1(A,A) + ext1(B,B).

The following is a well-known consequence of Mukai’s lemma (cfr. [HMS08, Section 2]):

Lemma 6.2. Assume thatS is a σ-semistable object withExt1(S, S) = 0. Then any Jordan-
Hölder filtration factor ofS is spherical.

Proof. Pick any stable subobjectT ⊂ S of the same phase. Then there exists a short exact
sequencẽT →֒ S ։ R with the following two properties:

(a) The object̃T is an iterated extension ofT .
(b) Hom(T,R) = 0.

Indeed, this can easily be constructed inductively: we letR1 = S/T . If Hom(T, S/T ) = 0, the
subobjectT̃ = T already has the desired properties. Otherwise, any non-zero morphismT → R1

is necessarily injective; if we letR2 be its quotient, then the kernel ofS ։ R2 is a self-extension
of T , and we can proceed inductively.

It follows thatHom(T̃ , R) = 0, and we can apply Lemma6.1to conclude thatExt1(T̃ , T̃ ) = 0.
Hence(v(T̃ ),v(T̃ )) < 0, which also implies(v(T ),v(T )) < 0. Thusv(T ) is spherical, too.

The lemma follows by induction on the length ofS. �

Proposition 6.3. LetW be a potential wall associated to the primitive hyperbolic latticeH, and
let σ0 = (Z0,P0) ∈ W be a generic stability condition withZ0(H) ⊂ R. ThenH andσ0 satisfy
one of the following mutually exclusive conditions:

(a) The latticeH does not admit a spherical class.
(b) The latticeH admits, up to sign, a unique spherical class, and there exists a unique

σ0-stable objectS ∈ P0(1) with v(S) ∈ H.
(c) The latticeH admits infinitely many spherical classes, and there exist exactly twoσ0-

stable spherical objectsS, T ∈ P0(1) with v(S),v(T ) ∈ H. In this case,H is not
isotropic.
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Proof. Given any spherical class,s ∈ H, then by Theorem2.15, there exists aσ0-semistable
objectS with v(S) = s andS ∈ P0(1). If H admits a unique spherical class, then by Proposition
5.1and Lemma6.2, S must be stable.

Hence it remains to consider the case whereH admits two linearly independent spherical
classes. If we consider the Jordan-Hölder filtrations ofσ0-semistable objects of the corresponding
classes, and apply Proposition5.1and Lemma6.2, we see that there must be twoσ0-stable objects
S, T whose Mukai vectors are linearly independent.

Now assume that there are three stable spherical objectsS1, S2, S3 ∈ P0(1), and letsi = v(Si).
Since they are stable of the same phase, we haveHom(Si, Sj) = 0 for all i 6= j, as well as
Extk(Si, Sj) = 0 for k < 0. Combined with Serre duality, this implies(si, sj) = ext1(Si, Sj) ≥
0.

However, a rank two lattice of signature(1,−1) can never contain three spherical classes
s1, s2, s3 with (si, sj) ≥ 0 for i 6= j. Indeed, we may assume thats1, s2 are linearly indepen-
dent. Letm := (s1, s2) ≥ 0; sinceH has signature(1,−1), we havem ≥ 3. If we write
s3 = xs1 + ys2, we get the following implications:

(s1, s3) ≥ 0 ⇒ y ≥ 2

m
x

(s2, s3) ≥ 0 ⇒ y ≤ m

2
x

(s3, s3) = −2 ⇒ −2x2 + 2mxy − 2y2 < 0

However, by solving the quadratic equation fory, it is immediate that the term in the last inequality
is positive in the range2mx ≤ y ≤ m

2 x (see also Figure1).
Finally, if H admits two linearly independent spherical classs, t, then the group generated

by the associated reflectionsρs, ρt is infinite; the orbit ofs consists of infinitely many spherical
classes. Additionally, an isotropic class would be a rational solution of−2x2 +2mxy− 2y2 = 0,
but the discriminantm2 − 4 can never be a square whenm is an integerm ≥ 3. �

y = r1x

y = r2x
Q(x, y) > 0

Q(x, y) > 0

Q(x, y) < 0

Q(x, y) < 0

S

T

S[1]

T [1]

FIGURE 1. HW , as oriented byσ+

Whenever we are in case (c), we will will denote
the twoσ0-stable spherical objects byS, T . We may
assume thatS has smaller phase thanT with respect
to σ+; conversely,S has bigger phase thanT with re-
spect toσ−. We will also writes := v(S), t := v(T ),
andm := (s, t) > 2. We identifyR2 with HW ⊗ R

by sending the standard basis to(s, t); under this iden-
tification, the ordering of phases inR2 will be consis-
tent with the ordering induced byσ+. We denote by
Q(x, y) = −2x2 + 2mxy − 2y2 the pull-back of the
quadratic form induced by the Mukai pairing onHW .
Let r1 < r2 be the two solutions of−2r2+2mr−2 =
0; they are both positive and irrational (asm2− 4 can-
not be a square form ≥ 3 integral). The positive conePH is thus the cone between the two lines
y = rix, and the effective coneCW is the upper right quadrantx, y ≥ 0.

We will first prove that the condition for the existence of totally semistable walls given in
Theorem5.7 is necessary in the case of non-isotropic walls. We start with an easy numerical
observation:
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Lemma 6.4. Givenl > 1 positive classesa1, . . . ,al ∈ PH with a
2
i > 0, seta = a1 + · · · + al.

Then
l∑

i=1

(
a
2
i + 2

)
< a

2.

Proof. Since theai are integral classes, andHW is an even lattice, we havea2i ≥ 2. If ai 6= aj,
thenai,aj span a lattice of signature(1,−1), which gives

(ai,aj) >
√

a2ia
2
j ≥ 2, and thus a

2 >

l∑

i=1

a
2
i + 2l(l − 1) ≥

l∑

i=1

a
2
i + 2l.

�

Lemma 6.5. Assume that the potential wallW associated toH satisfies the following conditions:

(a) The wall is non-isotropic.
(b) There does not exist an effective spherical classs ∈ CW with (s,v) < 0.

ThenW cannot be a totally semistable wall.

In other words, there exists aσ0-stable object of classv. Note that by Lemma2.16, this state-
ment automatically holds in the case of non-primitivev as well.

Proof. We will consider two maps from the moduli spaceMσ+(v). On the one hand, by Theorem
2.19, the line bundleℓσ0 onMσ+(v) induces a birational morphism

π+ : Mσ+(v) →M.

The curves contracted byπ+ are exactly curves of S-equivalent objects.
For the second map, first assume for simplicity thatMσ+(v) is a fine moduli space, and letE be

a universal family. Consider the relative HN filtration forE with respect toσ− given by Theorem
4.3. Let a1, . . . ,am be the Mukai vectors of the semistable HN filtration quotients of a generic
fiber Em for m ∈ Mσ+(v); by assumption (a), we havea2i 6= 0. On the open subsetU of the
Theorem4.3, the filtration quotientsE i/E i−1 are flat families ofσ−-semistable objects of class
ai; thus we get an induced rational map

HN: Mσ+(v) 99K Mσ−
(a1)× · · · ×Mσ−

(am).

Let I ⊂ {1, 2, . . . ,m} be the subset of indicesi with a
2
i > 0, and leta =

∑
i∈I ai.

Our first claim isa2 ≤ v
2, with equality if and only ifa = v, i.e., if there are no classes with

a
2
i < 0: Let b = v − a =

∑
i/∈I ai. If b2 ≥ 0, and sob2 ≥ 2, the claim follows trivially from

(a,b) > 0:

(12) v
2 = a

2 + 2(a,b) + b
2 ≥ a

2 + 4.

Otherwise, observe that by our assumption(v, ) is non-negative on all effective classes; in par-
ticular, (v,b) ≥ 0. Combined withb2 ≤ −2 we obtain

(13) a
2 = v

2 − 2(v,b) + b
2 ≤ v

2 − 2.

Lemma6.4then implies

(14) v
2 + 2 ≥ a

2 + 2 ≥
∑

i∈I

(
a
2
i + 2

)
,
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with equality if and only if|I| = 1. By Theorem2.15, part (b), this says that the target of the
rational mapHN has at most the dimension of the source:

(15) dimMσ+(v) ≥
m∑

i=1

dimMσ−
(ai).

However, ifHN(E1) = HN(E2), thenE1, E2 are S-equivalent: indeed, they admit Jordan-
Hölder filtrations that are refinements of their HN filtrations with respect toσ−, which have the
same filtration quotients.

It follows that any curve contracted byHN is also contracted byπ+; therefore

m∑

i=1

dimMσ−
(ai) ≥ dimM = dimMσ+(v)

Hence we have equality in each step of the above inequalities, the relative HN filtration is trivial,
and the generic fiberEm is σ−-stable. In other words, the generic object ofMσ+(v) is alsoσ−-
stable, which proves the claim.

In caseMσ+(v) does not admit a universal family, we can constructHN by first passing to an
étale neighborhoodf : U →Mσ+(v) admitting a universal family; the induced rational map from
U induced by the relative HN filtration will then factor viaf . ✷

We recall some theory of Pell’s equation in the language of spherical reflections of the hyper-
bolic latticeH:

Proposition and Definition 6.6. LetGH ⊂ AutH be the group generated by spherical reflections
ρs for effective spherical classess ∈ CW . Given a positive classv ∈ PH∩H, theGH-orbit GH.v
contains a unique classv0 such that(v0, s) ≥ 0 for all effective spherical classess ∈ CW .

We callv0 theminimal classof the orbitGH.v.

Note that the notion of minimal class depends on the potential wall W, not just on the lattice
H.

Proof. Again, we only treat the case (c) of Proposition6.3, the other cases being trivial. It is
sufficient to prove that(v0, s) ≥ 0 and (v0, t) ≥ 0. Assume(v, s) < 0. Thenρs(v) = v −
|(v, s)| · s is still in the upper right quadrant, with smallerx-coordinate thanv, and with the same
y-coordinate. Similarly if(v, t) < 0. If we proceed inductively, the procedure has to terminate,
thus reachingv0.

The uniqueness follows from Proposition6.7below. �

Assume additionally thatH admits infinitely many spherical classes, so we are in case (c) of
Proposition6.3. The hyperbolav2 = −2 intersects the upper right quadrantx, y ≥ 0 in two
branches, starting ats and t, respectively. Lets0 = s, s−1, s−2, . . . be the integral spherical
classes on the lower branch starting ats, andt1 = t, t2, t3, . . . be those on the upper branch
starting att, see also Figure2. Thesi can be defined recursively bys−1 = ρs(t), andsk−1 =
ρsk(sk+1) for k ≤ −1; similarly for theti.

Proposition 6.7. Given a minimal classv0 of aGH-orbit, definevi, i ∈ Z via vi = ρti(vi−1) for
i > 0, andvi = ρsi+1(vi+1) for i < 0. Then the orbitG.v0 is given by{vi : i ∈ Z}, where the
latter are ordered according to their slopes inR2.

Note that these classes may coincide pairwise, in casev0 is orthogonal tos or t.



26 AREND BAYER AND EMANUELE MACRÌ

Q(x, y) = −2

s0 = s

t1 = t

v1 = ρt(v)

v0
v−1 = ρs(v)

s−1

t2

v−2 = ρs
−1

(v−1)

FIGURE 2. The orbit ofv0

Proof. The groupGH is the free productZ2 ⋆ Z2, generated byρs andρt. It is straightforward to
check that withvi defined as above, we have

v−1 = ρs(v0), v−2 = ρsρt(v0), v−3 = ρsρtρs(v0), . . . ,

and similarlyv1 = ρt(v0) and so on. This list containsg(v0) for all g ∈ Z2 ⋆ Z2. That thevi are
ordered by slopes is best seen by drawing a picture; see also Figure2. �

For i > 0, let T+
i ∈ P0(1) be the uniqueσ+-stable object withv(T+

i ) = ti; similarly for S+
i

with v(S+
i ) = si for i ≤ 0. We also writeT−

i andS−
i for the correspondingσ−-stable objects.

Proposition 6.8. Let W be a potential wall, and assume there is an effective spherical class
s̃ ∈ CW with (v, s̃) < 0. ThenW is a totally semistable wall.

Additionally, letv0 be the minimal class in the orbitGH.v, and writev = vl as in Proposition
6.7. If φ+(v) > φ+(v0), then

STT+
l
◦STT+

l−1
◦ · · · ◦ STT+

1
(E0)

is σ+-stable of classv, for everyσ0-stable objectE0 of classv0.
Similarly, ifφ+(v) < φ+(v0), then

ST−1
S+
−l+1

◦ST−1
S+
−l+2

◦ · · · ◦ ST−1
S+
0

(E0)

is σ+-stable of classv for everyσ0-stable object of classv0.
The analogous statement holds forσ−.

Note that when we are in case (b) of Proposition6.3, the above sequence of stable spherical
objects will consist of just one object.

Before the proof, we recall the following statement (see [BM11, Lemma 5.9]):

Lemma 6.9. Assume thatA,B are simple objects in an abelian category. IfE is an extension of
the form

A →֒ E ։ B⊕r

withHom(B,E) = 0, then any quotient ofE is of the formB⊕r′ . Similarly, given an extension

A⊕r →֒ E ։ B

withHom(E,A) = 0, then any subobject ofE is of the formA⊕r′ .
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Proof. We consider the former case, i.e., an extensionA →֒ E ։ B⊕r; the latter case follows by
dual arguments. LetE ։ N be any quotient ofE. SinceA is a simple object, the composition
ψ : A →֒ E ։ N is either injective, or zero.

If ψ = 0, thenN is a quotient ofB⊕r, and the claim follows. Ifψ is injective, letM be the
kernel ofE ։ N . ThenM ∩A = 0, and soM is a subobject ofB⊕r. SinceB is a simple object,
M is of the formB⊕r′ for somer′ < r; sinceHom(B,E) = 0, this is a contradiction. �

Proof of Proposition6.8. Continuing with the convention of Proposition6.3, we use thẽGL
+

2 (R)-
action to assumeZ0(H) ⊂ R, andZ0(v) ∈ R<0.

Consider the first claim. By assumption, we may find an effective spherical class̃s such that
(v, s̃) < 0. Pick aσ0-semistable objectS with v(S) = s̃. By considering its Jordan-Hölder
filtration, and using Lemma6.2, we may find aσ0-stablespherical object̃S with (v,v(S̃)) < 0.
Assume, for a contradiction, thatW is not a totally semistable wall. Then there exists aσ0-stable
objectE of classv. By stability, sinceE and S̃ have the same phase, we haveHom(S̃, E) =

Hom(E, S̃) = 0; hence(v,v(S̃)) = ext1(S̃, E) ≥ 0, a contradiction.
To prove the construction ofσ+-stable objects, let us assume that we are in the case of infinitely

many spherical classes. Let us also assume thatφ+(v) > φ+(v0), the other case is analogous; in
the notation of Proposition6.7, this meansv = vl for somel > 0. We defineEi inductively by

Ei = STT+
i
(Ei−1).

By the compatibility of the spherical twistSTT , for T a spherical object, with the reflectionρv(T )

and Proposition6.7, we havev(Ei) = vi. Lemma6.9 shows thatE1 is σ+-stable; however, for
the following induction steps, we cannot simply use Lemma6.9 again, as neitherEi nor T+

i are
simple objects inP0(1).

T1

T2

A1
A2

A0

S1

T1

T1[−1]

S0

T2

FIGURE 3. The categoriesAi

Instead, we will need a slightly stronger induction
statement. Using Proposition5.1, in particular part (b),
we can define a torsion pair(Ti,Fi) in A0 := P0(1)
as follows: we letTi be the extension closure of allσ+-
stable objectsF ∈ A0 with φ+(F ) > φ+(Ti+1); by The-
orem2.15, since the Mukai vectors of stable objects have
self-intersection≥ −2 and all objectsF as before have
self-intersection< 0, we deduce thatTi is the extension-
closureTi = 〈T+

1 , . . . , T
+
i 〉. Then letAi = 〈Fi,Ti[−1]〉

(see Figure3). We can also describeAi+1 inductively as
the tilt of Ai at the torsion pair(T ,F) with T = 〈T+

i+1〉
andF = 〈T+

i+1〉⊥.

Induction claim: We haveEi ∈ Fi, and bothEi and
T+
i+1 are simple objects ofAi.

By construction of the torsion pair(Ti,Fi), this also
shows thatEi is σ+-stable. Indeed, the fact thatEi is
in Fi shows thatHom(F,Ei) = 0, for all σ+-stable ob-
jectsF with φ+(F ) > φ+(Ti+1). Also, the fact that
it is simple inAi shows thatHom(F,Ei) = 0, also for allσ+-stable objectsF 6= Ei with
φ+(Ei) ≤ φ+(F ) ≤ φ+(Ti+1). By definition, this means thatEi is σ+-stable.

The casei = 0 follows by the assumption thatE0 is σ0-stable. To prove the induction step,
we first considerT+

i+1. By stability, we haveT+
i+1 ∈ T ⊥

i = Fi. Using stability again, we also
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see that any non-trivial quotient ofT+
i+1 is contained inTi, soT+

i+1 is a simple object ofFi. Since
T+
i+1 is stable of maximal slope inFi, there also cannot be a short exact sequence as in (16) below.

Therefore, Lemma6.10shows thatT+
i+1 is a simple object ofAi.

SinceEi (by induction assumption) is also a simple object inAi, this showsHom(Ei, T
+
i+1) =

Hom(T+
i+1, Ei) = 0. SoRHom(T+

i+1, Ei) = Ext1(T+
i+1, Ei)[−1], andEi+1 = STT+

i+1
(Ei) fits

into a short exact sequence

0 → Ei →֒ Ei+1 ։ T+
i+1 ⊗ Ext1(T+

i+1, Ei) → 0.

In particular,Ei+1 is also an object ofAi. Note that

RHom(T+
i+1, Ei+1) = RHom(ST−1

T+
i+1

(T+
i+1),ST

−1
T+
i+1

(Ei+1)) = RHom(T+
i+1[1], Ei)

is concentrated in degree -2; this shows both thatEi+1 ∈ (T+
i+1)

⊥ ⊂ Ai, and that there are no

extensionsEi+1 →֒ F ′
։ T⊕k

i+1. Applying Lemma6.10via the inductive description ofAi+1 as a
tilt of Ai, this proves the induction claim. ✷

Lemma 6.10. Let (T ,F) be a torsion pair in an abelian categoryA, and letF ∈ F be an
object that is simple in the quasi-abelian categoryF , and that admits no non-trivial short exact
sequences

(16) 0 → F →֒ F ′
։ T → 0

withF ′ ∈ F andT ∈ T . ThenF is a simple object in the tilted categoryA♯ = 〈F ,T [−1]〉.
Proof. Consider a short exact sequenceA →֒ F ։ B in A♯. The long exact cohomology se-
quence with respect toA is

0 → H0
A(A) →֒ F → F ′

։ H1
A(A) → 0

with H0
A(A) ∈ F , F ′ ∈ F andH1

A(A) ∈ T . SinceF is a simple object inF , we must have
H0

A(A) = 0. Thus we get a short exact sequence as in (16), a contradiction. �

7. DIVISORIAL CONTRACTIONS IN THE NON-ISOTROPIC CASE

In this section we examine Theorem5.7 in the case of divisorial contractions when the lattice
HW does not contain isotropic classes. The goal is to prove the following proposition.

Proposition 7.1. Assume that the potential wallW is non-isotropic. ThenW is a divisorial wall
if and only if there exists a spherical classs̃ ∈ HW with (s̃,v) = 0. If we choosẽs to be effective,
then the class of the contracted divisorD is given byD ≡ θ(s̃).

If S̃ is a stable spherical object of classv(S̃) = s̃, thenD can be described as a Brill-Noether
divisor of S̃: it is given either by the conditionHom(S̃, ) 6= 0, or byHom( , S̃) 6= 0.

One can use more general results of Markman in [Mar13b] to show that a divisorial contraction
implies the existence of an orthogonal spherical class in the non-isotropic case. We will instead
give a categorical proof in our situation.

We first treat the case in which there exists aσ0-stableobject of classv:

Lemma 7.2. Assume thatH is non-isotropic, and thatW is a potential wall associated toH. If v
is a minimal class of aGH-orbit, and if there is no spherical class̃s ∈ HW with (s̃,v) = 0, then
the set ofσ0-stableobjects inMσ+(v) has complement of codimension at least two.

In particular,W cannot induce a divisorial contraction.
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Proof. The argument is similar to Lemma6.5; additionally, it uses Namikawa’s and Wierzba’s
characterization of divisorial contractions recalled in Theorem3.8.

For contradiction, assume that there is an irreducible divisorD ⊂ Mσ+(v) of objects that are
strictly semistable with respect toσ0. Letπ+ : Mσ+(v) →M be the morphism induced byℓσ0 ; it
is either an isomorphism or a divisorial contraction. The divisorD may or may not be contracted
by π+; by Theorem3.8, we havedimπ+(D) ≥ dimD − 1 = dimMσ+(v) − 2 = v

2 in either
case.

On the other hand, consider the restriction of the universalfamily E onMσ+(v) to the divisor
D, and its relative HN filtration with respect toσ−. As before, this induces a rational map

HND : D 99K Mσ−
(a1)× · · · ×Mσ−

(al).

Again, letI ⊂ {1, . . . , l} be the subset of indicesi with a
2
i > 0, anda =

∑
i∈I ai. The arguments

leading to inequalities (12) and (13) still apply, and showa2 ≤ v
2.

If I 6= {1, . . . , l}, there exists a classaj appearing in the HN filtration of the formaj = ms̃,
s̃
2 = −2. Under the assumptions, we now have thestrict inequality(s̃,v) > 0; thus, in equation

(13), we also have(v,b) > 0, and soa2 ≤ v
2 − 4 in all cases.

Otherwise, ifI = {1, . . . , l}, we have|I| > 1, and we can apply Lemma6.4; in either case we
obtain

l∑

i=1

dimMσ−
(ai) =

∑

i∈I
(a2i + 2) < v

2 = dimπ+(D).

As before, this is a contradiction to the observation that any curve contracted byHND is also
contracted byπ+. �

The case of totally semistable walls can be reduced to the previous one:

Corollary 7.3. Assume thatH is non-isotropic, and that there does not exist a spherical classs̃ ∈
H with (s̃,v) = 0. Then a potential wall associated toH cannot induce a divisorial contraction.

In fact, we will later see that all potential walls associated toH are mapped to the same wall in
the movable cone of the moduli space; thus they have to exhibit identical birational behavior.

Proof. As before, consider the minimal classv0 of the orbitGH.v, in the sense of Definition
6.6. By Lemma7.2, there is an open subsetU ⊂ Mσ+(v0) of objects that areσ0-stablethat has
complement of codimension at least two.

Let Φ be the composition of spherical twists given by Proposition6.8, such thatΦ(E0) is σ+-
stable of classv for every [E0] ∈ U . Observe thatΦ(E0) has a Jordan-Hölder filtration such
thatE0 is one of its filtration factors (the other factors are stablespherical objects). Therefore,
the induced mapΦ∗ : U → Mσ+(v) is injective, and the image does not contain any curve of
S-equivalent objects with respect toσ0. Also,Φ∗(U) has complement of codimension at least two
(see e.g. [GHJ03, Proposition 21.6]). Sinceℓσ0 does not contract any curves inΦ∗(U), it cannot
contract any divisors inMσ+(v). �

The next step is to construct the divisorial contraction when there exists an orthogonal spherical
class. To clarify the logic, we first treat the simpler case ofa wall that is not totally semistable:

Lemma 7.4. AssumeH is non-isotropic,W a potential wall associated toH, and thatv is a
minimal class of aGH-orbit. If there exists a spherical class̃s ∈ H with (s̃,v) = 0, thenW
induces a divisorial contraction.
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If we assume that̃s is effective, then the contracted divisorD ⊂ Mσ+(v) has classθ(s̃). The
HN filtration of a generic element[E] ∈ D with respect toσ− is of the form

0 → S̃ →֒ E ։ F → 0 or 0 → F →֒ E ։ S̃ → 0,

whereS̃ andF areσ0-stable objects of class̃s andv− s̃, respectively.

Proof. As before, we only treat the case whenH admits infinitely many spherical classes. In that
case, we must havẽs = s or s̃ = t; we may assumẽs = s, and the other case will follow by dual
arguments.

We first prove thatv − s is a minimal class in itsGH-orbit by a straightforward computation.
If v2 = 2, then(v − s)2 = 0 in contradiction to the assumption; thereforev2 ≥ 4. If we write
v = xs + yt, then(v, s) = 0 givesy = 2

mx. Plugging inv2 ≥ 4 givesx2
(
1− 4

m2

)
≥ 2. Since

m ≥ 3, we obtain

x2
(
1− 4

m2

)2

> x2
(
1− 4

m2

)
1

2
≥ 1,

and therefore

(t,v − s) = m(x− 1)− 2
2

m
x = mx

(
1− 4

m2

)
−m ≥ 0.

Also, (s,v − s) = 2 > 0, and thereforev − s has positive pairing with every effective spherical
class.

By Lemma6.5, the generic elementF ∈ Mσ+(v − s) is alsoσ0-stable. Since(s,v − s) = 2
andHom(F, S) = Hom(S,F ) = 0, there is a family of extensions

0 → S →֒ Ep ։ F → 0

parameterized byp ∈ P1 ∼= P(Ext1(F, S)). By Lemma6.9, they areσ+-stable. Since allEp

are S-equivalent to each other, the morphismπ+ : Mσ+(v) → M associated toW contracts
the image of this rational curve. VaryingF ∈ M st

σ0
(v − s), these span a family of dimension

1 + (v − s)2 + 2 = v
2 + 1; this is a divisor inMσ+(v) contracted byπ+.

Sinceπ+ has relative Picard-rank equal to one, it cannot contract any other component. �

The following lemma treats the general case, for which we will first set up notation. As before,
we letv0 be the minimal class in theGH-orbit of v. By s̃0 we denote the effective spherical class
with (v0, s̃0) = 0; we havẽs0 = t or s̃0 = s. Accordingly, in the list of theGH-orbit of v given
by Proposition6.7, we have eitherv2i = v2i+1, or v2i = v2i−1 for all i, sincev0 is fixed under
the reflectionρs̃0 at s̃0. We choosel such thatv = vl, and such that the corresponding sequence
of reflections sends̃s0 to s̃:

s̃ =

{
ρtl ◦ ρtl−1

◦ · · · ◦ ρt0(s̃0) if l > 0

ρsl ◦ ρsl−1
◦ · · · ◦ ρs−1(s̃0) if l < 0

Depending on the ordering of the slopesφ+(v), φ+(v0), we letΦ be the composition of spherical
twists appearing in Proposition6.8.

Lemma 7.5. Assume thatH is non-isotropic, and letW be a corresponding potential wall. If
there is an effective sphericals̃ ∈ CW with (v, s̃) = 0, thenW induces a divisorial contraction.

The contracted divisorD has classθ(s̃). For E ∈ D generic, there areσ+-stable objectsF
andS̃ of classv − s̃ and s̃, respectively, and a short exact sequence

(17) 0 → S̃ →֒ E ։ F → 0 or 0 → F →֒ E ։ S̃ → 0.
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The inclusionS̃ →֒ E or F →֒ E appears as one of the filtration steps in a Jordan-Hölder
filtration ofE.

In addition, there exists an open subsetU+ ⊂Mσ+(v0), with complement of codimension two,
such thatΦ(E0) is σ+-stable for everyσ+-stable objectE0 ∈ U+.

Proof. We rely on the construction in the proof of Proposition6.8. Let S̃0 be the stable spherical
object of class̃s0; we haveS̃0 = S or S̃0 = T . As in the proof of Lemma7.4, one shows that
v0 − s̃0 is the minimal class in itsGH-orbit.

Let F0 be a genericσ0-stableobject of classv0 − s̃0. Applying Proposition6.8 to the class
v − s̃, we see thatF := Φ(F0) is σ+-stable of that class.

We may again assume thatΦ is of the formSTT+
l
◦ · · · ◦ STT+

1
; the other case follows by dual

arguments. Inductively, one shows thatΦ(S) = T+
l+1 andΦ(T ) = T+

l [−1]. These are both simple

objects of the categoryAl defined by tilting in the proof of Proposition6.8; therefore,S̃ := Φ(S̃0)
is simple inAl. By the induction claim in the proof of Proposition6.8, F = Φ(F0) is also a
simple object in this category. In particular,Hom(S̃, F ) = Hom(F, S̃) = 0 andext1(S̃, F ) = 2.
Applying Lemma6.9 again, and using the compatibility ofAl with stability, we obtain a stable
extension of the form (17).

This gives a divisor contracted byπ+, and we can proceed as in the previous lemma.
Let D0 ⊂ Mσ+(v0) be the contracted divisor for the classv0. The above proof also shows

that for a generic objectE0 ∈ D0 (whose form is given by Lemma7.4), the objectΦ(E0) is a
σ+-stable (contained in the contracted divisorD). Thus we can takeU+ to be the union of the
set ofσ0-stableobjects inMσ+(v0) with the open subset ofD0 of objects of the form given in
Lemma7.4. �

Proof of Proposition7.1. The statements follow from Corollary7.3and Lemma7.5. �

8. ISOTROPIC WALLS AREUHLENBECK WALLS

In this section, we study potential wallsW in the case whereH admits an isotropic class
w ∈ H,w2 = 0. Following an idea of Minamide, Yanagida, and Yoshioka [MYY11b], we study
the wallW via a Fourier-Mukai transform after whichw becomes the class of a point. Thenσ+
corresponds to Gieseker stability and, as proven in [Lo12], the wall corresponds to the contraction
to the Uhlenbeck compactification, as constructed by Jun Li in [Li93].

Parts of this section are well-known. In particular, [Yos99, Proposition 0.5] deals with the
existence of stable locally-free sheaves. For other general results, see [Yos01].

The Uhlenbeck compactification. We let (X,α) be a twisted K3 surface. For divisor classes
β, ω ∈ NS(X)Q, with ω ample, and for a vectorv ∈ H∗

alg(X,α,Z), we denote byMβ
ω (v)

the moduli space of(β, ω)-Gieseker semistableα-twisted sheaves onX with Mukai vectorv.
Here,(β, ω)-Gieseker stability is defined via the Hilbert polynomial formally twisted bye−β (see
[MW97, Yos06, Lie07]). Whenβ = 0, we obtain the usual notion ofω-Gieseker stability. In such
a case, we will omitβ from the notation.

We start with the following observation:

Lemma 8.1. Assume that there exists an isotropic class inH. Then there are two effective, prim-
itive, isotropic classesw0 andw1 in H, such that, for a generic stability conditionσ0 ∈ W, we
have

(a) Mσ0(w0) =M st
σ0
(w0), and
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(b) eitherMσ0(w1) = M st
σ0
(w1), or there exists aσ0-stable spherical objectS, with Mukai

vectors, such that(s,w1) < 0 andW is a totally semistable wall forw1.

Any positive classv′ ∈ PH satisfies(v′,wi) ≥ 0 for i = 1, 2.

Proof. Let w̃ ∈ H be primitive isotropic class; up to replacing̃w by−w̃, we may assume it to be
effective. We completẽw to a basis{ṽ, w̃} of HQ. Then, for all(a, b) ∈ Q, we have

(aṽ + bw̃)2 = a ·
(
aṽ2 + 2b(ṽ, w̃)

)
.

This shows the existence of a second integral isotropic class. If we choose it to be effective, then
the positive conePH is given byR≥0 ·w0 + R≥0 ·w1. The claim(v′,wi) ≥ 0 follows easily.

By Theorem2.15, we haveMσ0(w̃) 6= ∅. If W does not coincide with a wall for̃w, then we
can takew0 = w̃, and claim (a) will be satisfied.

Otherwise, letσ ∈ Stab†(X,α) be a generic stability condition nearbyW; by [BM12, Lemma
7.2], we haveMσ(w̃) =M st

σ (w̃) 6= ∅.
Up to applying a Fourier-Mukai equivalence, we may assume that w̃ = (0, 0, 1) is the Mukai

vector of a point on a twisted K3 surface; then we can apply theclassification of walls for
isotropic classes in [Bri08, Theorem 12.1], extended to twisted surfaces in [HMS08]. If W is
a totally semistable wall for̃w, then we are in case(A+) or (A−) of [Bri08, Theorem 12.1]:
there exists a sphericalσ0-stable twisted vector bundleS such thatS or S[2] is a JH factor of the
skyscraper sheafk(x), for everyx ∈ Mσ(w̃); moreover, the other non-isomorphic JH factor is
eitherSTS(k(x)), or ST−1

S (k(x)). In both cases, the Mukai vectorw0 of the latter JH factor is
primitive and isotropic, andW is not a wall forw0.

Finally, if W is a wall forw̃, but not a totally semistable wall, it must be a wall of type(Ck),
still in the notation of [Bri08, Theorem 12.1]: there is a rational curveC ⊂Mσ(w̃) such thatk(x)
is strictly semistable iffx ∈ C. But then the rank two lattice associated to the wall is negative
semi-definite by [BM12, Remark 6.3]; on the other hand, by Proposition5.1, claim (d), it must
coincide withH, which has signature(1,−1). This is a contradiction. �

Let w0,w1 ∈ CW be the effective, primitive, isotropic classes given by theabove lemma, and
let Y := Mσ0(w0). ThenY is a K3 surface and, by [Muk87a, Căl02, Yos06, HS06], there exist a
classα′ ∈ Br(Y ) and a Fourier-Mukai transform

Φ: Db(X,α)
∼−→ Db(Y, α′)

such thatΦ(w0) = (0, 0, 1). By construction, skyscraper sheaves of points onY areΦ∗(σ0)-
stable. By Bridgeland’s Theorem2.9, there exist divisor classesω, β ∈ NS(Y )Q, with ω ample,

such that up to thẽGL
+

2 (R)-action,Φ∗(σ0) is given byσω,β. In particular, the categoryPω,β(1) is
the extension-closure of skyscraper sheaves of points, andthe shiftsF [1] of µω-stable torsion-free
sheavesF with slopeµω(F ) = ω · β. Sinceσ0 by assumption does not lie on any other wall with
respect tov, the divisorω is generic with respect toΦ∗(v).

By abuse of notation, we will from now on write(X,α) instead of(Y, α′), v instead ofΦ∗(v),
andσ0 instead ofσω,β. Let σ+ = σω,β−ǫ andσ− = σω,β+ǫ; hereǫ is a sufficiently small positive
multiple ofω.

Proposition 8.2([Lo12, LQ11]). An object of classv is σ+-stable if and only if it is the shiftF [1]
of a (β, ω)-Gieseker stable sheafF on (X,α); the shift[1] induces the following identification of
moduli spaces:

Mσ+(v) =Mβ
ω (−v).

Moreover, the contraction morphismπ+ induced via Theorem2.19 for genericσ0 ∈ W is the
Li-Gieseker-Uhlenbeck morphism to the Uhlenbeck compactification.
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Finally, an objectF of classv is σ−-stable if and only if it is the shiftF∨[2] of the derived dual
of a (−β, ω)-Gieseker stable sheaf on(X,α−1).

Proof. The identification ofMσ+(v) with the Gieseker moduli space is well-known, and follows
with the same arguments as in [Bri08, Proposition 14.2]. Forσ0, two torsion-free sheavesE,F
become S-equivalent if and only if they have the same image inthe Uhlenbeck space ([Lo12,
Theorem 3.1], [LQ11, Section 5]): indeed, ifEi are the Jordan-Hölder factors ofE with respect
to slope-stability, thenE is S-equivalent to

⊕
E∗∗

i ⊕ (E∗∗
i /Ei) ,

precisely as in [HL10, Theorem 8.2.11]. Thus, Theorem2.19identifiesπ+ with the morphism to
the Uhlenbeck space.

The claim ofσ−-stability follows by Proposition2.11 from the case ofσ+-stability; see also
see [MYY11a, Proposition 2.2.7] in the caseα = 1. �

In other words, the coarse moduli spaceMσ0(v) is isomorphic to the Uhlenbeck compact-
ification ([Li93, Yos06]) of the moduli space of slope-stable vector bundles on(X,α). Given a
(β, ω)-Gieseker stable sheafF ∈Mβ

ω (−v), theσ+-stable objectF [1] becomes strictly semistable
with respect toσ0 if and only ifF is not locally free, or ifF is not slope-stable.

In particular, when the rank of−v equals one, then the contraction morphismπ+ is the Hilbert-
Chow morphismHilbn(X) → Symn(X); see also [BM12, Example 10.1].

Totally semistable isotropic walls. We start with the existence of a unique spherical stable object
in the case the wall is totally semistable:

Lemma 8.3. Assume thatW is a totally semistable wall forv.

(a) There exists a unique sphericalσ0-stable objectS ∈ Pσ0(1).
(b) LetE ∈Mσ+(v) be a generic object. Then its HN filtration with respect toσ− has length

2 and takes the form

(18) S⊕a → E → F, or F → E → S⊕a,

with a ∈ Z>0. Theσ−-semistable objectF is generic inMσ−
(v′), for v′ := v(F ), and

dimMσ−
(v′) = dimMσ+(v) = v

2 + 2.

The idea of the proof is very similar to the one in Lemma6.5. The only difference is that we
cannot use a completely numerical criterion like Lemma6.4 and we will replace it by Mukai’s
Lemma6.1.

Proof of Lemma8.3. We first prove (a). We consider again the two maps

π+ : Mσ+(v) →M,

HN: Mσ+(v) 99K Mσ−
(a1)× · · · ×Mσ−

(am).

The first one is induced byℓσ0 and the second by the existence of relative HN filtrations. By
[HL10, Section 4.5], we have, for alli = 1, . . . ,m and for allAi ∈Mσ−

(ai),

dimMσ−
(ai) ≤ ext1(Ai, Ai).

Hence, by Mukai’s Lemma6.1, we deduce

(19) dimMσ+(v) ≥
m∑

i=1

dimMσ−
(ai).
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Equation (19) is the analogue of (15) in the non-isotropic case. Since any curve contracted byHN
is also contracted byπ+, it follows that

m∑

i=1

dimMσ−
(ai) ≥ dimM = dimMσ+(v).

Therefore equality holds, andHN is a dominant map.
This shows that the projections

Mσ+(v) 99K Mσ−
(ai)

are dominant. By Theorem3.10, Mσ−
(ai) has symplectic singularities. Hence, we deduce that

eitherMσ−
(ai) is a point, ordimMσ−

(ai) = dimMσ+(v) = v
2 + 2. Sincem ≥ 2, by Lemma

6.2 this shows the existence of a sphericalσ0-stable object inPσ0(1). By Proposition6.3, there
can only be one such spherical object.

To prove (b), we first observe that by uniqueness (and by Lemma6.2 again), allσ−-spherical
objects appearing in a HN filtration of a generic elementE ∈Mσ+(v) must beσ0-stable as well.
As a consequence, the length of a HN filtration ofE with respect toσ− must be2 and have the
form (18). Since the mapsMσ+(v) 99K Mσ−

(ai) are dominant, theσ−-semistable objectF is
generic. �

We can now prove the first implication for the characterization of totally semistable walls in the
isotropic case. We lets := v(S), whereS is the uniqueσ0-stable object inPσ0(1).

Proposition 8.4. Let W be a totally semistable wall forv. Then either there exist an isotropic
vectorw with (w,v) = 1, or the effective spherical classs satisfies(s,v) < 0.

Proof. We continue to use the notation of Lemma8.3; in particular, leta > 0 be as in the short
exact sequence (18), andv′ = v − as.

If (v′)2 > 0, then by Lemma8.3 and Theorem2.15(b), we have(v′)2 = v
2. Sincev′ =

v − as, a > 0, this implies(s,v) < 0.
So we may assumev′2 = 0. Thenv2 = 0+ 2a(v′, s)− 2a2, and it follows that(v′, s) > 0. In

the notation of Lemma8.1, this means thatv′ is a positive multiple ofw0, which we can take to
be the class of a point:v′ = cw0 = c(0, 0, 1).

Then the coarse moduli spaceMσ0(v
′) is the symmetric productSymcX; if we definen by

v
2 = 2n − 2, then the equality of dimensions in Lemma8.3becomesc = n. Therefore

2n− 2 = v
2 = (as+ nw0)

2 = −2a2 + 2an(s,w0)

or, equivalently,

(20) n− 1 = a
(
n(s,w0)− a

)

Recall that(s,w0) > 0. If the right-hand side is positive, then it is at leastn(s,w0) − 1. Thus,
(20) only has solutions if(s,w0) = 1, in which case they area = 1 anda = n − 1. In the
former case,(v,w0) = 1. In the latter case, observe thatw1 = w0 + s, and(v,w1) = 1 follows
directly. �

The converse statement follows from Proposition6.8above, and Lemma8.5below.

Lemma 8.5. LetW be a potential wall. If there exists an isotropic classw ∈ HW with (w,v) =
1, thenW is a totally semistable wall.
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Proof. Note that by Lemma8.1, the primitive classw is automatically effective. Letσ0 ∈ W be
a generic stability condition. IfM st

σ0
(w) 6= ∅, then we can assumew = (0, 0, 1). In this case

−v has rank one,Mσ+(v) is the Hilbert scheme, andW is the Hilbert-Chow wall discussed in
[BM12, Example 10.1]; in particular, it is totally semistable.

Otherwise,M st
σ0
(w) = ∅; hence, in the notation of Lemma8.1, we are in the casew = w1, and

there exists aσ0-stable spherical objectS, with Mukai vectors, such that(s,w1) < 0.
Writew1 = w0 + rs, wherer = (s,w0) ∈ Z>0. Then

1 = (v,w1) = (v,w0) + r(v, s).

By Lemma8.1, (v,w0) is strictly positive, and so(v, s) ≤ 0. If the inequality is strict, Proposition
6.8 applies. Otherwise,(v, s) = 0 and(v,w1) = (v,w0) = 1; thus we are again in the case of
the Hilbert-Chow wall, andW is a totally semistable wall forv. �

Divisorial contractions. We now deal with divisorial contractions for isotropic walls. The case
of a flopping wall, a fake wall, and no wall will be examined in Section9.

Proposition 8.6. LetW be a wall inducing a divisorial contraction. Assume that(v,w) 6= 1, 2,
for all isotropic vectorsw ∈ H. Then there exists an effective spherical classs ∈ H with
(s,v) = 0.

Proof. The proof is similar to the one of Lemma7.2: in particular, we are going to use Theorem
3.8. LetD ⊂Mσ+(v) be an irreducible divisor contracted byπ+ : Mσ+(v) →M . We know that
dimπ+(D) = v

2. Consider the rational map

HND : D 99KMσ−
(a1)× · · · ×Mσ−

(al)

induced by the relative HN filtration with respect toσ−. We letI ⊂ {1, . . . , l} be the subset of
indicesi with a2i > 0, anda =

∑
i∈I ai. We can assume|I| < l, otherwise the proof is identical

to Lemma7.2.

Step 1.We show that there is ani such thatai is a multiple of a spherical classs.
Assume otherwise. Then we can writev = n0w0 + n1w1 + a. By symmetry, we may assume

n1 ≥ n0; in particularn1 6= 0. Also note that fori = 0, 1 we have(w0,w1) ≥ 1, (v,wi) ≥ 3
and(wi,a) ≥ 1 as long asa 6= 0.

In case|I| ≥ 1, i.e.,a 6= 0, we obtain a contradiction by

v
2 =

(
(a+ n0w0) + n1w1

)2
= a

2 + 2n0(a,w0) + 2n1(v,w1)

≥ a
2 + 2n0 + 6n1 > a

2 + 2 + 2n0 + 2n1(21)

≥
∑

i∈I
(a2i + 2) + 2n0 + 2n1 =

l∑

i=1

dimMσ−
(ai) ≥ dimπ+(D) = v

2,(22)

where we used the numerical observations in (21), and Lemma6.4for the case|I| > 1 in (22).
Otherwise, if|I| = 0, thenv = n0w0 + n1w1 with n0, n1 > 0 andni(w0,w1) ≥ 3 by the

assumption(v,wi) ≥ 3. We get a contradiction from

v
2 = 2n0n1(w0,w1) = 2n0 + 2n1 + 2(n0 − 1)(n1 − 1)− 2 + 2n0n1

(
(w0,w1)− 1

)

> 2n0 + 2n1 =
l∑

i=1

dimMσ−
(ai) ≥ v

2.

Step 2.We show(s,v) ≤ 0.
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Assume for a contradiction that(s,v) > 0. Usingw1 = ρs(w0) we can writev = as+bw0+a.
By Step 1, we havea > 0. In casea 6= 0, we use(a,w0) > 0 to get

a
2 =

(
(v − as)− bw0

)2

= v
2 − 2a(v, s) − 2a2 − 2b(a+ bw0,w0)

≤ v
2 − 2a(v, s) − 2a2 − 2b.

This leads to a contradiction:

v
2 > v

2 − 2a(v, s) − 2a2 + 2 ≥ a
2 + 2 + 2b ≥

l∑

i=1

dimMσ−
(ai) ≥ v

2.

If a = 0, our assumptions givea(s,w0) = (v,w0) > 2 and−2a + b(s,w0) = (s,v) > 0. This
leads to

v
2 = −2a2 + 2ab(s,w0) > ab(s,w0) > 2b =

l∑

i=1

dimMσ−
(ai) ≥ v

2.

Step 3.We show(s,v) = 0.
Assume for a contradiction that(s,v) < 0. By Proposition6.8, W is a totally semistable wall

for v. We considerv′ = ρs(v) as in Lemma8.3. The wallW induces a divisorial contraction
for v if and only if it induces one forv′. But, since(v,w) 6= 1, 2, for all w isotropic, then
(v′,w) 6= 1, 2 as well. Moreover,(s,v′) > 0. This is a contradiction, by Step 2. �

The converse of Proposition8.6 is a consequence of the following three lemmas:

Lemma 8.7. Assume that(v,w0) = 2. ThenW induces a divisorial contraction.

Proof. It suffices to show thatMβ
ω (−v) contains a divisor of non-locally free sheaves. Since

(v,w0) = 2, we can writev = −(2,D, s), whereD an integral divisor which is either primitive
or D = 0. Consider the vectorv′ = −(2,D, s + 1) with (v′)2 = v

2 − 4 ≥ −2. By Theorem
2.15, we getMβ

ω (−v
′) 6= ∅ . Given a sheafF ∈ Mβ

ω (−v
′) and a pointx ∈ X, the surjections

F ։ k(x) induce aP1 of extensions

k(x) → E[1] → F [1] → k(x)[1]

of objects inMσ+(v) that are S-equivalent with respect toσ0. Dimension counting shows that
they sweep out a divisor. �

Lemma 8.8. Assume that there exists an effective spherical classs ∈ H such that(v, s) = 0.
ThenW induces a divisorial contraction.

Proof. Let S be the uniqueσ0-stable spherical object with Mukai vectors. Leta = v − s; then

a
2 = (v − s)2 = v

2 − 2 and (a, s) = −s
2 = 2.

If v2 > 2, thena2 > 0. By Lemma8.1, w1 = bs + w0 with b > 0; hence(w1,a) > (w0,a).
If (w0,a) ≥ 2, then Proposition8.4 implies thatW is not a totally semistable wall fora, since
(a, s) = 2. Hence, givenA ∈Mσ0(a), all the extensions

S → E → A

give a divisorD ⊂ Mσ+(v), which is aP1-fibration overM st
σ0
(a) and which gets contracted by

crossing the wallW.
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If (w0,a) = 1, then there is a spherical class of the forma + kw0. By the uniqueness up to
sign,s must be of this form; hence also(w0, s) = 1. From this we get(w0,v) = 2, and soW
induces a divisorial contraction by Lemma8.7.

Finally, assume thatv2 = 2. Thena is an isotropic vector with(a,v) = (a, s) = 2. But
this implies that(w0,v) = 1, 2. Indeed, by Lemma8.1, the fact thata is an effective class with
(a, s) > 0 implies thata has to be a positive multiple ofw0. The case(w0,v) = 2 is again
Lemma8.7; and if (w0,v) = 1, then−v has rank1, and we are in the case of the Hilbert-Chow
wall. �

Lemma 8.9. LetW be a potential wall. If there exists an isotropic classw such that(v,w) ∈
{1, 2}, thenW induces a divisorial contraction.

Proof. By Lemma8.1, the classw is automatically effective. By Lemma8.7, the only remaining
case isw = w1, with w1 = bs+w0, b > 0, wheres is the class of the uniqueσ0-stable spherical
object. By Lemma8.8, we can assume that(s,v) 6= 0.

If (s,v) > 0, then
(w1,v) = b(s,v) + (w0,v) ∈ {1, 2}.

Since(w0,v) > 0 andb > 0, this is possible only if(w0,v) = 1, which corresponds to the
Hilbert-Chow contraction.

Hence, we can assume(s,v) < 0. By Proposition6.8, W is a totally semistable wall forv, and
W induces a divisorial contraction with respect tov if and only if it induces one with respect to
v
′ = ρs(v). But then(v′,w0) = (v,w1) ∈ {1, 2}. Again, we can use Lemma8.7 to finish the

proof. �

9. FLOPPING WALLS

This section deals with the remaining case of a potential wall W: assuming thatW does not
correspond to a divisorial contraction, we describe in which cases it is a flopping wall, a fake wall,
or not a wall. This is the content of Propositions9.1and9.4.

Proposition 9.1. Assume thatW does not induce a divisorial contraction. If either

(a) v can be written as the sumv = a1 + a2 of two positive classesa1,a2 ∈ PH ∩H, or
(b) there exists a spherical classs̃ ∈ W with 0 < (s̃,v) ≤ v

2

2 ,

thenW induces a small contraction.

Lemma 9.2. LetM be a lattice of rank two, andC ⊂M ⊗R2 be a convex cone not containing a
line. If a primitive lattice elementv ∈M ∩C can be written as the sumv = a+b of two classes
in a,b ∈ M ∩ C, then it can be written as a sumv = a

′ + b
′ of two classesa′,b′ ∈ M ∩ C

in such a way that the parallelogram with vertices0,a′,v,b′ does not contain any other lattice
point besides its vertices.

Proof. If the parallelogram0,a,v,b contains an additional lattice pointa′, we may replacea by
a
′ andb by v − a

′. This procedure terminates. �

Lemma 9.3. Leta,b,v ∈ H∩CW be effective classes withv = a+b. Assume that the following
conditions are satisfied:

• The phases ofa,b satisfyφ+(a) < φ+(b).
• The objectsA,B areσ+-stable withv(A) = a,v(B) = b.
• The parallelogram inH ⊗ R with vertices0,a,v,b does not contain any other lattice

point.
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• The extensionA →֒ E ։ B satisfiesHom(B,E) = 0.

ThenE is σ+-stable.

Proof. SinceA andB areσ+-stable, they areσ0-semistable. Therefore, the extensionE is also
σ0-semistable. Letai be the Mukai vector of thei-th HN factor ofE with respect toσ+. By
Proposition5.1part (c) and Remark5.3, we haveai ∈ H. We haveE ∈ P+([φ

+(a), φ+(b)]), and
henceai is contained in the cone generated bya,b. Since the same holds forv − ai =

∑
j 6=i aj,

ai is in fact contained in the parallelogram with vertices0,a,v,b. Since it is also a lattice point,
the assumption on the parallelogram impliesai ∈ {a,b,v}.

Assume thatE is not σ+-stable, and letA1 ⊂ E be the first HN filtration factor. Since
φ+(a1) > φ+(v), we must havea1 = b. By the stability ofA,B we haveHom(A1, A) = 0, and
Hom(A1, B) = 0 unlessA1

∼= B. Either of these is a contradiction, sinceHom(A1, E) 6= 0 and
Hom(B,E) = 0. �

Proof of Proposition9.1. We first consider case (a), sov = a1 + a2 with a1,a2 ∈ PH. Using
Lemma9.2, we may assume that the parallelogram with vertices0,a1,v,a2 does not contain an
interior lattice point. In particular,a1,a2 are primitive. We may also assume thatφ+(a1) <
φ+(a2). By the signature ofH (see the proof of Lemma6.4), we have(a1,a2) > 2. By Theorem
2.15, there existσ+-stable objectsAi of classv(Ai) = ai. The inequality for the Mukai pairing
impliesext1(A2, A1) > 2. By Lemma9.3, any extension

0 → A1 →֒ E ։ A2 → 0

of A2 by A1 is σ+-stable of classv. As all these extensions are S-equivalent to each other with
respect toσ0, we obtain a projective space of dimension at least two that gets contracted byπ+.

Now consider case (b). First assume that̃s is an effective class. Note that(v − s̃)2 ≥ −2 and
(s̃,v − s̃) = (s̃, ṽ) − s̃

2 > 2. Consider the parallelogramP with vertices0, s̃,v,v − s̃, and the
functionf(a) = a

2 for a ∈ P. By homogeneity, its minimum is obtained on one of the boundary
segments; thus

(
s̃+ t(v − s̃)

)2
> −2 + 4t− 2t2 > −2

for 0 < t < 1, along with a similar computation for the other line segments, showsf(a) > −2
unlessa ∈ {s̃,v− s̃}. In particular, if there is any lattice pointa ∈ P other than one of its vertices,
thena2 ≥ 0 and(v−a)2 ≥ 0. Thusv = a+(v−a) can be written as the sum of positive classes,
and the claim follows from the previous paragraph. Otherwise, let S̃ be theσ+-stable object of
class̃s, andF anyσ+-stable object of classv− s̃; thenext1(S̃, F ) = ext1(F, S̃) > 2. Thus, with
the same arguments we obtain a family ofσ+-stable objects parameterized by a projective space
that gets contracted byπ+.

We are left with the case wherẽs is not effective. Set̃t = −s̃, which is an effective class. With
the same reasoning as above, we may assume that the parallelogram with vertices0, t̃,v,v − t̃

contains no additional lattice points. Set

v
′ = ρ

t̃
(v) − t̃ = v−

(
(s̃,v) + 1

)
t̃, ,

and consider the parallelogramP with vertices0,
(
(s̃,v) + 1

)
t̃, v, v′ (see Figure (4)). We have

v
′2 ≥ −2 and(t̃,v′) = (s̃,v) + 2 > 2. The lattice points ofP are given bykt̃ andv′ + kt̃ for
k ∈ Z, 0 ≤ k ≤ (s̃,v)+1 (otherwise, already the parallelogram with vertices0, t̃,v,v− t̃ would
contain additional lattice points).
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0

t̃
v
′

ρ
t̃
(v)

((s̃,v) + 1)t̃ v

s̃

FIGURE 4. -̃s effective.

Let T̃ andF beσ+-stable objects of class̃t andv′, respectively. Let
us assumeφ+(t̃) > φ+(v); the other case follows by dual arguments.
Any subspaceV ⊂ Ext1(T̃ , F ) of dimension(s̃,v) + 1 defines an
extension

0 → F →֒ E ։ T̃ ⊗V → 0

such thatE is of classv(E) = v, and satisfiesHom(T̃ , E) = 0. If E
were notσ+-stable, then the class of the maximal destabilizing subob-
jectA would have to be a lattice point inP with φ+(v(A)) > φ+(v);
therefore,v(A) = kt̃. The onlyσ+-semistable object of this class is
T̃⊕k, and we get a contradiction. Thus, we have constructed a fam-
ily of σ+-stable objects of classv parameterized by the Grassmannian
Gr((s̃,v) + 1, ext1(T̃ , F )) that become S-equivalent with respect to
σ0. ✷

It remains to prove the converse of Proposition9.1:

Proposition 9.4. Assume thatW does not induce a divisorial contraction. Assume thatv cannot
be written as the sum of two positive classes inPH, and that there is no spherical classs ∈ H
with 0 < (s,v) ≤ v

2

2 . ThenW is either a fake wall, or not a wall.

Proof. First consider the case wherev = v0 is the minimal class in its orbitGH.v. We will prove
that everyσ+-stable objectE of classv0 is alsoσ0-stable. Assume otherwise, soE is strictly
σ0-semistable, and thereforeσ−-unstable. Leta1, . . . ,al be the Mukai vectors of the HN filtration
factors ofE with respect toσ−. If all classesai are positive,ai ∈ PH, then we have an immediate
contradiction to the assumptions.

Otherwise,E must have a spherical destabilizing subobject, or a spherical destabilizing quo-
tient. Lets̃ be the class of this spherical object. If there is only oneσ0-stable spherical object, then

it is easy to see thatv0 − s̃ is in the positive cone; therefore,(s̃,v0) <
v
2
0
2 in contradiction to our

assumption.

v
2 = v

2
0

(v − t)2 = −2

(v − s)2 = −2

v0

S1

S2

FIGURE 5. Proof of Proposition9.4

If there are twoσ0-stable spherical objects of classes
s, t, consider the two vectorsv0 − s andv0 − t. The as-
sumptions imply(v0 − s)2 < −2 and(v0 − t)2 < −2;
on the other hand,v0 − s̃ is effective; using Lemma6.2,
this implies thatv0 − s or v0 − t must be effective. We
claim that this leads to a simple numerical contradiction.
Indeed,(v0 − t)2 < −2 constrainsv0 to lie below a
concave down hyperbola, and(v0 − s)2 < −2 to lie
above a concave up hyperbola; the two hyperbolas in-
tersect at the points0 ands + t. Therefore, if we write
v0 = xs + yt, we havex, y < 1. Thus, neitherv0 − s

norv0 − t can be effective (see Figure5).
In the case wherev is not minimal,v 6= v0, letΦ be the sequence of spherical twists given by

Proposition6.8. Since the assumptions of our proposition are invariant under theGH-action, they
are also satisfied byv0. By the previous case, we know that everyσ+-stable objectsE0 of class
v0 is alsoσ0-stable. ThusΦ induces a morphismΦ∗ : Mσ+(v0) →Mσ+(v); sinceΦ∗ is injective
and the two spaces are smooth projective varieties of the same dimension, it is an isomorphism.
The S-equivalence class ofΦ(E0) is determined by that ofE0; since S-equivalence is a trivial
equivalence relation onMσ+(v0), the same holds forMσ+(v), and thusπ+ is an isomorphism.✷

Proposition9.4finishes the proof of Theorem5.7.
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10. MAIN THEOREMS

We will first complete the proof of Theorem1.1.

Proof of Theorem1.1, part (b). We consider a wallW with nearby stability conditionsσ±, and
σ0 ∈ W. SinceMσ±

(v) areK-trivial varieties, it is sufficient to find an open subsetU ⊂Mσ±
(v)

with complement of codimension two, and an (anti-)autoequivalenceΦW of Db(X,α), such that
ΦW(E) is σ−-stable for allE ∈ U .

We will distinguish cases according to Theorem5.7. First consider the case whenW corre-
sponds to a flopping contraction, or whenW is a fake wall. IfW does not admit an effective
spherical classs ∈ HW with (s,v) < 0 then we can chooseU to be the open subset ofσ0-stable
objects; its complement has codimension two, and there is nothing to prove. Otherwise, there
exists a spherical object destabilizing every object inMσ+(v). Letv0 ∈ HW be the minimal class
of theGH-orbit ofv, in the sense of Definition6.6. The subsetU of σ0-stableobjects inMσ±

(v0)
has complement of codimension two. Then the sequence of spherical twists of Proposition6.8,
applied forσ+ andσ−, identifiesU with subsets ofMσ+(v) andMσ−

(v) via derived equivalences

Φ+,Φ−; then the compositionΦ− ◦ (Φ+)
−1 has the desired property.

Next assume thatW induces a divisorial contraction. We have three cases to consider:

Brill-Noether: Again, we first assume thatv is minimal, namely there is no effective spherical
classs with (s,v) < 0. The contracted divisor is described in Proposition7.1, and the HN
filtration of the destabilized objects in Lemma7.4. We may assume that we are in the case
where the Brill-Noether divisor inMσ+(v) is described byHom(S̃, ) 6= 0. Now consider
the spherical twistST

S̃
at S̃, applied to objectsE ∈ Mσ+(v). Note that byσ+-stability, we

haveExt2(S̃, E) = Hom(E, S̃)∨ = 0 for any suchE; since(v(S̃),v(E)) = 0, it follows that
hom(S̃, E) = ext1(S̃, E).

If E does not lie on the Brill-Noether divisor, thenRHom(S̃, E) = 0, and soSTS̃(E) = E.
Also, for generic suchE (away from a codimension two subset), the objectE is alsoσ−-stable.

If E is a generic element of the Brill-Noether divisor, thenHom(S̃, E) ∼= C ∼= Ext1(S̃, E),
and hence we have an exact triangle

S̃ ⊕ S̃[−1] → E → STS̃(E).

Its long exact cohomology sequence with respect to the t-structure ofσ0 induces two short
exact sequences

S̃ →֒ E ։ F and F →֒ STS̃(E) ։ S̃.

By Lemma7.5, the former is the HN filtration ofE with respect toσ−; the latter is the dual
extension, which is aσ−-stable object by Lemma6.9.

Thus, in both cases,STS̃(E) isσ−-stable. This gives a birational mapMσ+(v) 99K Mσ−
(v)

defined in codimension two and induced by the autoequivalence STS̃ , which is the claim we
wanted to prove.

If instead there is an effective spherical classs with (s,v) < 0, we reduce to the previous
case, similarly to the situation of flopping contractions: Letv0 again denote the minimal class
in the orbitGH.v; note thatW also induces a divisorial contraction of Brill-Noether type
for v0. In this case, Lemma7.5 states that the sequenceΦ of spherical twists identifies an
open subsetU+ ⊂ Mσ+(v0) (with complement of codimension two) with an open subset of
Mσ+(v); similarly for U− ⊂ Mσ−

(v0). Combined with the single spherical twist identifying
a common open subset ofMσ±

(v0), this implies the claim.
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Hilbert-Chow: HereW is an isotropic wall and there exists an isotropic primitivevectorw0

with (w0,v) = 1. As shown in Section8, we may assume that shift by one identifiesMσ+(v)

with the(β, ω)-Gieseker moduli spaceMβ
ω (−v) of stable sheaves of rank one on a twisted K3

surface(Y, α′). After tensoring with a line bundle, we may assume that objects inMσ+(v) are
exactly the shiftsIZ [1] of ideal sheaves of 0-dimensional subschemesZ ⊂ Y .

In the setting of Proposition8.2, we haveβ = 0. Since there are line bundles on(Y, α′), the
Brauer group elementα′ is trivial. By the last statement of the same Proposition, the moduli
spaceMσ−

(v) parameterizes the shifts of derived duals ideal sheaf. Thusthere is a natural
isomorphismMσ−

(v) ∼=Mσ+(v) induced by the derived anti-autoequivalence( )∨[2].
Li-Gieseker-Uhlenbeck: HereW is again isotropic, but(w0,v) = 2. We will argue along

similar lines as in the previous case; unfortunately, the details are more involved. The first
difference is that we cannot assumeβ = 0. Instead, first observe thatMσ+(v) = Mβ

ω (−v) is
parameterizing(β, ω)-Gieseker stable sheavesF of rank2 = (v,w), and of slopeµω(F ) =
ω.β. If we assumeω to be generic, then Gieseker stability is independent of thechoice ofβ; we
can considerMσ+(v) = Mω(−v) to be the moduli space of shiftsF [1] of ω-Gieseker stable
sheavesF .

Since(Y, α′) admits rank two vector bundles, the order ofα′ in the Brauer group is one or
two; in both cases, we can identify(Y, α′) with (Y, (α′)−1), and thus the derived dualE 7→ E∨

defines an anti-autoequivalence ofDb(Y, α′).
Write −v = (2, c, d), and letL be the line bundle withc1(L) = c. From the previous

discussion it follows thatΦ( ) = ( )∨ ⊗ L[2] is the desired functor:
Indeed, any object inMσ+(v) is of the formF [1] for aω-Gieseker stable sheafF of class

−v. ThenΦ(F [1]) = F∨ ⊗ L[1] the derived dual of a Gieseker stable sheaf, and has classv.
By Proposition8.2, this is an object ofMσ−

(v).

�

Consider two adjacent chamberC+, C− separated by a wallW; as always, we pick stability
conditionsσ± ∈ C±, and a stability conditionσ0 ∈ W. By the identification of Néron-Severi
groups induced by Theorem1.1, we can think of the corresponding mapsℓ± of equation (6) as
maps

ℓ± : C± → NS(Mσ+(v)).

They can be written as the following composition of maps

Stab†(X,α)
Z−→ H∗

alg(X,α,Z) ⊗ C
I−→ v

⊥ θ
C±−−→ NS(Mσ+(v))

whereZ is the map defined in Theorem2.10, I is given byI(ΩZ) = ℑ ΩZ

−(ΩZ ,v) , and whereθC±

are the Mukai morphisms, as reviewed in Remark2.17.
Our next goal is to show that these two maps behave as nicely asone could hope; we will

distinguish two cases according to the behavior of the contraction morphism

π+ : Mσ+(v) →M
+

induced byW via Theorem2.19:

Lemma 10.1. The mapsℓ+, ℓ− agree on the wallW (when extended by continuity).

(a) (Fake or flopping walls) Whenπ+ is an isomorphism, or a small contraction, then the
mapsℓ+, ℓ− are analytic continuations of each other.

(b) (Bouncing walls) Whenπ+ is a divisorial contraction, then the analytic continuations of
ℓ+, ℓ− differ by the reflectionρD in NS(Mσ+(v)) at the divisorD contracted byℓσ0 .
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As a consequence, in case (a) the wallW is a fake wall whenπ+ is an isomorphism, and induces
a flop whenπ+ is a small contraction; in case (b), corresponding to a divisorial contraction, the
moduli spacesMσ±

(v) for the two adjacent chambers are isomorphic.

Proof. We have to proveθC− = θC+ in case (a), andθC− = ρD ◦ θC+ in case (b). We assume for
simplicity that the two moduli spaces admit universal families; the arguments apply identically to
quasi-universal families.

Consider case (a). If the wall is not totally semistable, then the two moduli spacesMC±(v)
share a common open subset, with complement of codimension two, on which the two universal
families agree. By the projectivity of the moduli spaces, the mapsθC± are determined by their
restriction to curves contained in this subset; this provesthe claim. If the wall is instead totally
semistable, we additionally have to use Proposition6.8. Let Φ+ andΦ− be the two sequences
of spherical twists, sendingσ0-stable objects of classv0 to σ+- andσ−-stable objects of classv,
respectively. The autoequivalence inducing the birational mapMσ+(v) 99K Mσ−

(v) is given by
Φ− ◦ (Φ+)−1. As the classes of the spherical objects occurring inΦ+ andΦ− are identical, this
does not change the class of the universal family in theK-group; therefore, the Mukai morphisms
θC+, θC− agree.

Now consider the case of a Brill-Noether divisorial contraction; we first assume that there is no
effective spherical classs′ ∈ HW with (s′,v) < 0. The contraction induced by a spherical object
S with Mukai vectors := v(S) ∈ v

⊥. By Lemma7.5, the class of the contracted divisor is given
by θC±(s) on either side of the wall. The universal families differ (upto a subset of codimension
two) by the spherical twistSTS( ). This induces the reflection ats in H∗

alg(X,α,Z); thus the
Mukai morphisms differ by reflection atθ(s), as claimed.

If in addition tos ∈ v
⊥, there does exist an effective spherical classs

′ ∈ HW with (s′,v) < 0,
we have to rely on the constructions of Lemma7.5, as in the proof of Theorem1.1. We have
a common open subsetU ⊂ Mσ±

(v0), such that the two universal familiesE±|U are related
by the spherical twist at a spherical objectS0 of classs0. Let Φ± be the sequences of spher-
ical twists obtained from Lemma7.5, applied toσ+ or σ−, respectively. Their induced maps
Φ±
∗ : H∗

alg(X,α,Z) → H∗
alg(X,α,Z) on the Mukai lattice are identical, as they are obtained by

twists of spherical objects of the same classes; it sendsv0 to v, and thuss0 to ±s. Therefore, the
compositionΦ− ◦ STS0 ◦(Φ+)−1 induces the reflection ats, as claimed.

It remains to consider divisorial contractions of Hilbert-Chow and Li-Gieseker-Uhlenbeck type.
We may assumeMσ+(v) is the Hilbert scheme, or a moduli space of Gieseker stable sheaves of
rank two. By the proof of Theorem1.1, there is a line bundleL onX such that

RHomMσ±(v)×X(E , (pX)∗L[2])

is a universal family with respect toσ− onMσ−
(v) = Mσ+(v). We use equation (4) to compare

θC± by evaluating their degree on a test curveC ⊂ Mσ±
(v). Let i denote the inclusioni : C ×

X →֒Mσ±
(v) ×X, and byp the projectionp : C ×X → X. This yields the following chain of

equalities fora ∈ v
⊥:
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θC−(a).C =
(
a,v

(
p∗i

∗(E−)
))

=
(
a,v

(
p∗RHomC×X(i∗E ,OC ⊠ L[2])

))
(23)

=
(
a,v

(
p∗RHomC×X(i∗E , ωC [1]⊠ L[1])

))
(24)

= −
(
a,v

(
RHomX(p∗i

∗E ,L)
))

(25)

= −
(
a
∨ · ch(L),v(p∗i∗E)

)
= −θC+

(
a
∨ · ch(L)

)
.C(26)

Here we used compatibility of duality with base change in (23), a ∈ v
⊥ in (24), and Grothendieck

duality in (25). In (26), we wrotea∨ for the class corresponding toa under duality( )∨.
In the Hilbert-Chow case, withv = −(1, 0, 1 − n), the class of the contracted divisorD is

proportional toθC+(1, 0, n − 1), and we haveL ∼= OX ; in the Li-Gieseker-Uhlenbeck case, we
can writev = (2, c, d), the class of the contracted divisorD is a multiple ofθC+(2, c, c

2

2 − d), and
c1(L) = c. In both cases, the reflectionρD is compatible with the above chain of equalities:

(27) ρD (θC+(a)) = −θC+

(
a
∨ · ch(L)

)
.

Indeed, in the HC case, we can test (27) for a1 = (1, 0, 1 − n) and classes of the forma2 =
(0, c′, 0) ∈ θ−1

C+

(
D⊥): sincea∨1 = a1 anda∨2 = −a2, and since such classes spanv

⊥, the equality

follows. Similarly, in the LGU case, we can usea1 = (2, c, c
2

2 − d) anda2 = (0, c′, c
′.c
2 ). �

Proof of Theorem1.2, (a), (b), (c). Lemma10.1proves part (a). Part (c) follows directly from the
positivity ℓC(C) ⊂ AmpMC(v) once we have established part (b).

Consider a big class in the movable cone, given asθσ(a) for some classa ∈ v
⊥,a2 > 0; we

have to show that it is in the image ofℓ. Recall the definition ofP+
0 (X,α) given in the discussion

preceding Theorem2.10. If we set

Ω′
a
:=

√
−1a− v

v2
∈ H∗

alg(X,Z) ⊗C,

then clearlyΩ′
a
∈ P(X,α). In case there is a spherical classs ∈ H∗

alg(X,α,Z) with (Ω′
a
, s) = 0,

we modifyΩ′
a

by a small real multiple ofs to obtainΩa ∈ P0(X,α), otherwise we setΩa = Ω′
a
;

in either case, we haveΩa ∈ P0(X,α) with (Ωa,v) = −1 andℑΩa = a. In addition, the fact
thatθ(a) is contained in the positive cone givesΩa ∈ P+

0 (X,α).
Let Ωσ ∈ P+

0 (X,α) be the central charge for the chosen basepointσ ∈ Stab†(X,α). Then
there is a pathγ : [0, 1] → P+

0 (X,α) starting atΩσ and ending atΩa with the following additional
property: for allt ∈ [0, 1], the class

−θσ(ℑγ(t))
(γ(t),v)

is contained in the movable cone ofMσ(v).
By Theorem2.10, there is a liftσ : [0, 1] → Stab†(X,α) of γ starting atσ(0) = σ. By the

above assumption onγ, this will never hit a wall of the movable cone correspondingto a divisorial
contraction; by Lemma10.1, the mapℓ extends analytically, withθσ = θσ(0) = θσ(1). Therefore,

ℓσ(1)(σ(1)) = θσ(1)(a) = θσ(a)

as claimed. �

Now recall the Weyl group action ofWExc of Proposition3.3. The exceptional chamber of a
hyperbolic reflection group intersects every orbit exactlyonce. Thus there is a map

W : Pos(Mσ(v)) → Mov(Mσ(v))
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sending any class to the intersection of itsWExc-orbit with the fundamental domain. Lemma10.1
and Theorem1.2immediately give the following global description ofℓ:

Theorem 10.2.The mapℓ of Theorem1.2can be given as the composition of the following maps:

Stab†(X,α)
Z−→ H∗

alg(X,α,Z) ⊗ C
I−→ v

⊥ θσ,v−−→ Pos(Mσ(v))
W−→ Mov(Mσ(v)).

To complete the proof of Theorem1.2, it remains to prove part (d):

Proposition 10.3. LetC ⊂ Stab†(X,α) be a chamber of the chamber decomposition with respect
to v. Then the image ofℓC(C) ⊂ NS(MC(v)) of the chamberC is exactly the ample cone of the
corresponding moduli spaceMC(v).

Proof. In light of Theorems2.18and1.2, (a), (b), (c), the only potential problem is given by walls
W ⊂ ∂C that do not get mapped to walls of the nef cone of the moduli space. These are totally
semistable fake walls induced by an effective spherical classs ∈ HW with (s,v) < 0. The idea is
that there is always a potential wallW ′, with the same latticeHW ′ = HW , for which all effective
spherical classes have positive pairing withv. By Theorem5.7, W ′ is not a wall, and it will have
the same image in the nef cone ofMC(v) as the wallW.

Let σ0 = (Z0,P0) ∈ W be a very general stability condition on the given wall: thismeans we
can assume thatHW contains all integral classesa ∈ H∗

alg(X,α,Z) with ℑZ0(a) = 0. If we write
Z0( ) = (Ω0, ) as in Theorem2.10, we may assume thatΩ0 is normalized by(Ω0,v) = −1
andΩ2

0 = 0, i.e., (ℜΩ0,ℑΩ0) = 0 and(ℜΩ0)
2 = (ℑΩ0)

2 (see [Bri08, Section 10]). We will
now replaceσ0 by a stability condition whose central charge has real part given by(−v, ), and
identical imaginary part.

To this end, letσ1 ∈ C be a stability condition nearbyσ0, whose central charge is defined by
Ω1 = Ω0+ iǫ, whereǫ ∈ H∗

alg(X,α,Z)⊗R is a sufficiently small vector with(ǫ,v) = 0; we may
also assume that multiples ofv are the only integral classesa ∈ H∗

alg(X,α,Z) with (ℑΩ1,a) = 0.
LetΩ2 = −v+iℑΩ1; then a straight-forward computation shows that the straight path connecting
Ω1 with Ω2 lies completely withinP+

0 (X,α). Finally, letΩ3 = −v+ℑΩ0; by Theorem5.7, there
are no spherical classess̃ ∈ HW with (v, s̃) = 0, implying that the straight path fromΩ2 toΩ3 is
also contained inP+

0 (X,α).
By Theorem2.10, there is a lift of the pathΩ0 7→ Ω1 7→ Ω2 7→ Ω3 toStab†(X,α); letσ2 andσ3

the stability conditions corresponding toΩ2 andΩ3, respectively. By choice ofǫ, we may assume
that the pathsσ0 7→ σ1 andσ2 7→ σ3 do not cross any walls. Since(Ω1,v) = (Ω2,v) = −1, and
since the imaginary part on the pathΩ1 7→ Ω2 is constant, the same holds for the pathσ1 7→ σ2.
Henceσ3 is in the closure of the chamberC. In particular,σ3 lies on a potential wall ofC with
hyperbolic lattice given byHW ; by construction, any spherical classs ∈ HW with (v, s) < 0
satisfies(Ω3, s) > 0, and thuss is not effective.

By Theorem5.7, σ3 does not lie on a wall. SinceℑΩ3 = ℑΩ0, the imageslC(σ0) = lC(σ3) in
the Néron-Severi group ofMC(v) agree. �

We conclude this section by proving Corollary1.3 for moduli spaces of Bridgeland stable ob-
jects on twisted K3 surfaces:

Proof of Corollary1.3. (b) ⇒ (c): Let φ : H∗(X,α,Z) → H∗(X ′, α′,Z) be a Hodge isometry
sendingv⊥,tr → v

′⊥,tr. Up to composing with[1], we may assumeφ(v) = v
′. If φ is orientation-

preserving, then Theorem2.12, gives an equivalenceΦ with Φ∗ = φ.
Otherwise, the composition( )∨ ◦ φ defines an orientation-preserving Hodge isometry

φ∨ : H∗(X,α,Z) → H∗(X ′, (α′)−1,Z) with φ∨(v) = (v′)∨.
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Again, Theorem2.12gives a derived equivalenceΨ: Db(X,α) → Db(X ′, (α′)−1); the composi-
tion with ( )∨ : Db(X ′, (α′)−1) → Db(X ′, α′) has the desired property.

(c) ⇒ (d): Assume thatΦ: Db(X,α)
≃−→ Db(X ′, α′) is an (anti-)equivalence withΦ∗(v) = v

′.
Consider moduli spacesMσ(v),Mσ′ (v′) of Bridgeland-stable objects. We claim that we can
assume the existence ofτ ∈ Stab†(X ′, α′) such thatE ∈ Db(X,α) of classv is σ-stable if and
only if Φ(E) is τ -stable:

• if Φ∗ is orientation-preserving, we may replaceΦ by an equivalence satisfying the last
claim of Theorem2.12, and setτ = Φ∗(σ) ∈ Stab†(X,α′);

• otherwise, we may assume that

( )∨ ◦Φ: Db(X,α) → Db(X ′, (α′)−1)

satisfies the same claim, and we letτ ∈ Stab†(X,α′) be the stability condition dual (in
the sense of Proposition2.11) to (( )∨ ◦ Φ)∗ σ ∈ Stab†(X ′, (α′)−1).

By construction,Φ induces an isomorphism

Mσ(v) ∼=Mτ (Φ∗(v)) =Mτ (v
′).

Due to Theorem1.1, part (b), there is an (anti-)autoequivalenceΦ′ of Db(X ′, α′) inducing a
birational mapMΨ∗(σ)(v

′) 99K Mσ′(v′). The compositionΦ′ ◦ Φ has the desired properties.�

11. APPLICATION 1: LAGRANGIAN FIBRATIONS

In this section, we will explain how birationality of wall-crossing implies Theorem1.5, verify-
ing the Lagrangian fibration conjecture.

We will prove the theorem for any moduli spaceMσ(v) of Bridgeland-stable objects on a
twisted K3 surface(X,α), under the assumptions thatv is primitive, andσ generic with respect
to v.

One implication in Theorem1.5 is immediate: iff : Mσ(v) 99K Z is a rational abelian fibra-
tion, then the pull-backf∗D of any ample divisorD onZ has volume zero; by equation (7), the
self-intersection off∗D with respect to the Beauville-Bogomolov form must also equal zero.

To prove the converse, we will first restate carefully the argument establishing part(a) of Con-
jecture1.4, which was already sketched in the introduction; then we will explain how to extend
the argument to also obtain part(b).

Assume that there is an integral divisorD onMσ(v) with q(D) = 0. Applying the inverse of
the Mukai morphismθσ,v of Theorem3.6, we obtain a primitive vectorw = θ−1

σ,v(D) ∈ v
⊥ with

w
2 = 0.
After a small deformation, we may assume thatσ is also generic with respect tow. As in

Section8, we consider the moduli spaceY := Mσ(w) of σ-stable objects, which is a smooth K3
surface. There is a derived equivalence

(28) Φ: Db(X,α)
∼−→ Db(Y, α′)

for the appropriate choice of a Brauer classα′ ∈ Br(Y ); as before, we haveΦ∗(w) = (0, 0, 1).
By the arguments recalled in Theorem2.12, we haveΦ∗(σ) ∈ Stab†(Y, α′). By definition,Φ

induces an isomorphism

(29) Mσ(v) ∼=MΦ∗(σ)(Φ∗(v)),

whereΦ∗(σ) is generic with respect toΦ∗(v).

Lemma 11.1. The Mukai vectorΦ∗(v) has rank zero.
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Proof. This follows directly fromΦ∗(w) = (0, 0, 1) and(Φ∗(w),Φ∗(v)) = (w,v) = 0. �

We writeΦ∗(v) = (0, C, s), with C ∈ Pic(Y ) ands ∈ Z. Sincev2 > 0 we haveC2 > 0.

Lemma 11.2. After replacingΦ by the compositionΨ ◦ Φ, whereΨ ∈ Aut(Db(Y, α′)), we may
assume thatC is ample, and thats 6= 0.

Proof. Up to shift [1], we may assume thatH ′.C > 0, for a given ample classH ′ on Y . In
particular,C is an effective class; it is ample unless there is a rational−2-curveD ⊂ Y with
C.D < 0. Applying the spherical twistSTOD

at the structure sheaf4 of D replacesC by its image
C ′ under the reflection atD, which satisfiesC ′.D > 0. This procedure terminates, as the nef cone
is a fundamental domain of the Weyl group action generated byreflections at−2-curves.

Since tensoring with an (untwisted) line bundle onY induces an autoequivalence ofDb(Y, α′),
we may also assumes 6= 0. �

LetH ′ ∈ Amp(Y ) be a generic polarization with respect toΦ∗(v). The following is a small
(and well-known) generalization of Beauville’s integrable system [Bea91]:

Lemma 11.3. The moduli spaceMH′(Φ∗(v)) admits a structure of Lagrangian fibration induced
by global sections ofθH′,Φ∗(v)((0, 0,−1)).

Proof. LetM ′ := MH′(Φ∗(v)) andL′ := θH′,Φ∗(v)((0, 0,−1)). By an argument of Faltings and
Le Potier (see [LP05, Section 1.3]), we can construct sections ofL′ as follows: for ally ∈ Y , we
define a sectionsy ∈ H0(M ′, L′) by its zero-locus

Z(sy) :=
{
E ∈M ′ : Hom(E, k(y)) 6= 0

}
.

Whenevery is not in the support ofE, the sectionsy does not vanish atE; hence the sections
{sy}y∈Y generateL′. Consider the morphism induced by this linear system. The image ofE is
determined by its set-theoretic support; hence the image ofM ′ is the complete local system ofC.
By Matsushita’s theorem [Mat99, Mat01], the map must be a Lagrangian fibration. �

By Remark2.14, there exists a generic stability conditionσ′ ∈ Stab†(Y, α′) with the property
thatMH′(Φ(v)) = Mσ′(Φ(v)). On the other hand, by the birationality of wall-crossing, The-
orem1.1, the moduli spacesMσ′(Φ∗(v)) andMΦ∗(σ)(Φ∗(v)) are birational; combined with the
identification (29), this shows thatMσ(v) is birational to a Lagrangian fibration.

It remains to prove part(b), so let us assume thatD is nef and primitive. Using the Fourier-
Mukai transformΦ as above, and after replacingσ by Φ∗(σ), we may also assume thatv has
rank zero, and thatw = θ−1

σ,v(D) is the class of skyscraper sheaves of points. Now consider
the autoequivalenceΨ ∈ AutDb(Y, α′) of Lemma11.2. Except for the possible shift[1], each
autoequivalence used in the construction ofΨ leaves the classw invariant. Thus, in the moduli
spaceMΨ∗σ(Ψ∗(v)) = Mσ(v), the divisor classD is still given byD = ±θΨ∗σ,Ψ∗(v)(w), up to
sign.

Let f : Mσ(v) 99K MH(v) be the birational map to the Gieseker moduli spaceMH(v) of
torsion sheaves induced by a sequence of wall-crossings as above. The Lagrangian fibration
MH(v) → Pn is induced by the divisorθH,v(−w). By Theorem10.2, the classesf∗D and
θH,v(−w) are (up to sign) in the sameWExc-orbit. Since they are both nef on a smooth K-trivial
birational model, they are also in the closure of the movablecone (and in particular, their orbits
agree, not just up to sign).

4Note that the restriction ofα to any curve vanishes, hence the structure sheafOD is a coherent sheaf on(Y, α′).
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By Proposition3.3, the closure of the movable cone is the closure of the fundamental chamber
of the action onWExc on Pos(M), which intersects every orbit exactly once. Therefore, the
classesf∗D andθH,v(−w) have to be equal.

SinceMσ(v) andMH(v) are isomorphic in codimension two, the section rings ofD andf∗D
agree. In particular,D is effective with Iitaka dimensionv

2+2
2 . As explained in [Saw03, Section

4.1], it follows from [Ver96] that the numerical Iitaka dimension ofD is also equal tov
2+2
2 . Since

D is nef by assumption,D is semi-ample by Kawamata’s Theorem (see [Kaw85, Theorem 6.1]
and [Fuj11, Theorem 1.1]), and thus induces a morphism toPn. This completes the proof of
Theorem1.5.

Remark 11.4. In fact, the above proof shows the following two additional statements:

(a) If D ∈ NS(Mσ(v)) with q(D) = 0 lies in the closure of the movable cone, then there is
a birational Lagrangian fibration induced byD. (In particular,D is movable.)

(b) AnyWExc-orbit of divisors onMσ(v) satisfyingq(D) = 0 contains exactly one movable
divisor, which induces a birational Lagrangian fibration.

12. APPLICATION 2: MORI CONE, NEF CONE, MOVABLE CONE, EFFECTIVE CONE

Let v be a primitive vector withv2 > 0, let σ be a generic stability condition with respect to
v, and letM := Mσ(v) be the moduli space ofσ-semistable objects. In this section, we will
completely describe the cones associated to the birationalgeometry ofM in terms of the Mukai
lattice ofX.

Recall thatPos(M) ⊂ NS(M)R denotes the (closed) cone of positive classes defined by the
Beauville-Bogomolov quadratic form. LetPos(M)Q ⊂ Pos(M) be the subcone generated by
all rational classes inPos(M); it is the union of the interiorPos(M) with all rational rays in the
boundary∂ Pos(M). We fix an ample divisor classA onM (which can be obtained from Theorem
2.18).

In the following theorems, we will say that a subcone ofPos(M)Q (or of its closure) is “cut
out” by a collection of linear subspaces if it is one of the closed chambers of the wall-and-chamber
decomposition ofPos(M)Q whose walls are the given collection of subspaces. This is easily
translated into a more explicit statement as in the formulation of Theorem12.1given in the intro-
duction.

Theorem 12.1. The nef cone ofM is cut out inPos(M) by all linear subspaces of the form
θ(v⊥ ∩ a

⊥), for all classesa ∈ H∗
alg(X,α,Z) satisfyinga2 ≥ −2 and0 ≤ (v,a) ≤ v

2

2 .

Via the Beauville-Bogomolov form we can identify the groupN1(M) of curves up to numerical
equivalences with a lattice in the Néron-Severi group:N1(M)Q ∼=

(
N1(M)Q

)∨ ∼= N1(M)Q. In
particular, we get an induced rational pairing onN1(M); we then say that thecone of positive
curvesis the cone of classes[C] ∈ N1(M)R with (C,C) > 0 andC.A > 0. Also, we obtain a
dual Mukai isomorphism

(30) θ∨ : H∗
alg(X,α,Z)/v ⊗Q → N1(M)Q.

As the dual statement to Theorem12.1, we obtain:

Theorem 12.2. The Mori cone of curves inM is generated by the cone of positive curves, and
by all curve classesθ∨(a), for all a ∈ H∗

alg(X,α,Z),a
2 ≥ −2 satisfying|(v,a)| ≤ v

2

2 and
θ∨(a).A > 0.
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Some of these classesa may not define a wall bordering the nef cone; in this case,θ∨(a) is in
the interior of the Mori cone (as it intersects every nef divisor positively).

Theorem 12.3. The movable cone ofM is cut out inPos(M)Q by the following two types of
walls:

(a) θ(s⊥ ∩ v
⊥) for every spherical classs ∈ v

⊥.
(b) θ(w⊥ ∩ v

⊥) for every isotropic classw ∈ H∗
alg(X,α,Z) with 1 ≤ (w,v) ≤ 2.

Theorem 12.4. The effective cone ofM is generated byPos(M)Q along with the following ex-
ceptional divisors:

(a) D := θ(s) for every spherical classs ∈ v
⊥ with (D,A) > 0, and

(b) D := θ(v2 · w − (v,w) · v) for every isotropic classw ∈ H∗
alg(X,α,Z) with 1 ≤

(w,v) ≤ 2 and(D,A) > 0.

Note that only those classesD whose orthogonal complementD⊥ is a wall of the movable cone
will correspond to irreducible exceptional divisors.

The movable cone has essentially been described by Markman for any hyperkähler variety;
more precisely, [Mar11, Lemma 6.22] gives the intersection of the movable cone withthe strictly
positive conePos(M). While our methods give an alternative proof, the only new statement of
Theorem12.3concerns rational classesD with D2 = 0 in the closure of the movable cone; such
aD is movable due to our proof of the Lagrangian fibration conjecture in Theorem1.5.

Using the divisorial Zariski decomposition of [Bou04], one can show for any hyperkähler va-
riety that the pseudo-effective cone is dual to the closure of the movable cone. In particular,
Theorem12.4could also be deduced from Markman’s results and Theorem1.5.

Proof of Theorem12.1. Let C be the chamber ofStab†(X,α) containingσ. By Theorem1.2, the
boundary of the ample cone inside the positive cone is equal to the union of the imagesℓ(W), for
all wallsW in the boundary ofC that induce a non-trivial contraction morphism. (These arewalls
that are not “fake walls” in the sense of Definition2.20.) Theorem5.7 characterizes hyperbolic
lattices corresponding to such walls.

For any such hyperbolic latticeH, we get a classa as in Theorem12.1as follows:

• in the cases (a) of divisorial contractions, we leta be the corresponding spherical or
isotropic class;

• in the subcase of (b) of a flopping contraction induced by a spherical classs, we also set
a = s;

• and in the subcase of (b) of a flopping contraction induced by a sumv = a+ b, we may
assume(v,a) ≤ (v,b), which is equivalent to(v,a) ≤ v

2

2 .

Stability conditionsσ = (Z,A) in the corresponding wallW satisfyℑZ(a)
Z(v) = 0, or, equivalently,

ℓ(σ) ∈ θ(v⊥ ∩ a
⊥).

Conversely, givena, we obtain a rank two latticeH := 〈v,a〉. If H is hyperbolic, then it
is straightforward to check that it conversely induces one of the walls listed in Theorem5.7.
Otherwise,H is positive-semidefinite. Then the orthogonal complementH⊥ = v

⊥ ∩ a
⊥ does not

contain any positive classes, and thus its image underθ in NS(M) does not intersect the positive
cone and can be ignored. �

Proof of Theorem12.3. As already discussed in Section10, the intersectionMov(M) ∩ Pos(M)
follows directly from Theorem1.2; the statement of Theorem12.3is just an explicit description
of the exceptional chamber of the Weyl group action.
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A movable classD in the boundary of the positive cone, with(D,D) = 0, automatically
has to be rational. Conversely, by our proof of Theorem1.5, if we have a rational divisor with
(D,D) = 0 that is in the closure of the movable cone, then there is a Lagrangian fibration induced
byD on a smooth birational model ofM ; in particular,D is movable. �

Proof of Theorem12.4. We first claim that the class of an irreducible exceptional divisor is (up to
a multiple) of the form described in the Theorem. For the Brill-Noether case, this was proved in
7.1. In the Hilbert-Chow and Li-Gieseker-Uhlenbeck case, the class of the divisor of non-locally
free sheaves can be computed explicitly; alternatively, itis enough to observe thatθ−1(D) has to
be a multiple of the orthogonal projection ofw to v

⊥.
If D is an arbitrary effective divisor, thenD can be written asD = A+E with A movable and

E exceptional, see [Bou04, Section 4], [Mar11, Theorem 5.8]. The class ofA is a rational point
of Pos(M). Thus the effective cone is contained in the cone described in the Theorem.

For the converse, first recallPos(M) ⊂ Eff(M). Now consider a rational divisor withD2 = 0.
If (D,E) < 0 for some exceptional divisorE, thenD can be written the sumD = ǫE+(D−ǫE)
with D − ǫE ∈ Pos(M); thusD is in the effective cone. Otherwise(D,E) ≥ 0 for every
exceptional divisorE. By Proposition3.3, D is in the closure of the movable cone; by Theorem
1.5and Remark11.4, a multiple ofD induces a birational Lagrangian fibration, soD is effective.

Finally, whenD is one of the classes listed explicitly in the Theorem, consider the orthogonal
complementD⊥. If it does not intersect the movable cone in a face or in the interior, then the
inequality (D, ) ≥ 0 is implied by the inequality(E, ) ≥ 0 for all irreducible exceptional
divisors; henceD is a positive linear combination of such divisors. Since thewall D⊥ is identical
to one of the walls listed in Theorem12.3, the only other possibility is thatD⊥ defines a wall of
the movable cone. The corresponding exceptional divisor isproportional toD. �

Relation to Hassett-Tschinkel’s conjecture on the Mori cone. Hassett and Tschinkel gave a
conjectural description of the nef and Mori cones via intersection numbers of extremal rays in
[HT10]. While their conjecture turned out to be incorrect (see [BM12, Remark 10.4] and [CK12,
Remark 8.10]), we will now explain that it is in fact very closely related to Theorem12.2.

We first recall their conjecture. Via the identificationN1(M)Q ∼= N1(M)Q explained above,
the Beauville-Bogomolov extends to aQ-valued quadratic form onN1(M); we will also denote it
by q( ). The following lemma follows immediately from this definition, and the definition ofθ∨:

Lemma 12.5. Consider the isomorphismv⊥
Q

∼= N1(M)Q induced by the dual Mukai morphism
θ∨ of (30). This isomorphism respects the quadratic form on either side.

Let 2n be the dimension ofM , and as above letA be an ample divisor. LetC ⊂ N1(M)R
be the cone generated by all integral curve classesR ∈ N1(M)Z that satisfyq(R) ≥ −n+3

2 and
R.A > 0. In [HT10, Conjecture 1.2], the authors conjectured that for any hyperkähler variety
M deformation equivalent to the Hilbert scheme of a K3 surface, the coneC is equal to the Mori
cone.

Our first observation shows that the Mori cone is contained inC:

Proposition 12.6. Let R be the generator of an extremal ray of the Mori cone ofM . Then
(R,R) ≥ −n+3

2 .

Proof. It is enough to prove the inequality for some effective curveon the extremal ray. Let
W be a wall inducing the extremal contraction corresponding to the ray generated byR, and
HW ⊂ H∗

alg(X,Z) its associated hyperbolic lattice. Letσ+ be a nearby stability condition in the
chamber ofσ, andσ0 ∈ W. Let a ∈ HW be a corresponding class satisfying the assumptions in
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Theorem12.2: a2 ≥ −2 and|(v,a)| ≤ v
2

2 . Replacinga by −a if necessary, we can also assume
(v,a) ≥ 0.

We first claim that there exists a contracted curve whose integral class is given by±θ∨(a).
We ignore the well-known case of the Hilbert-Chow contraction, and also assume for simplicity
we assume thatW is not a totally semistable wall for any class inHW ; the general case can be
reduced to this one with the same methods as in the previous sections. By assumptions, we have
botha2 ≥ −2 and(v − a)2 ≥ −2; therefore, we can chooseσ0-stableobjectsA andB of class
a andv − a, respectively. We further claim(a,v) ≥ 2 + a

2: this claim is trivial whena2 = −2,
amounts to the exclusion of the Hilbert-Chow case whena

2 = 0, and in casea2 > 0 it follows
from the signature ofHW and the assumption on(a,v):

(a,v)2 > a
2
v
2 ≥ 2a2(a,v) ≥ (a2 + 2)(a,v).

Assume thatφ+(a) < φ+(v) < φ+(v − a); in the opposite case we swith the roles ofA
andB. By the above claim,ext1(B,A) = (a,v − a) ≥ 2. Varying the extension class in
Ext1(B,A) produces curves of objects inMσ+(v) that are S-equivalent with respect toσ0; in
order to compute their class, we have to make the construction explicit. LetP(Ext1(B,A)) be
the projective space of one-dimensional subspaces ofExt1(B,A). Choose a parameterized line
P1 →֒ P(Ext1(B,A)), corresponding to a sectionν of

H0(P1,O(1)⊗ Ext1(B,A)) = Ext1P1×X(OP1 ⊠B,OP1(1)⊠A).

Let E ∈ Db(P1 × X) be the extensionOP1(1) ⊠ A → E → OP1 ⊠ B given byν. By Lemma
6.9, every fiber ofE is σ+-stable. Thus we have produced a rational curveR ⊂ Mσ+(v) of
S-equivalent objects.

To compute its class, it is sufficient to compute the intersection productθ(D).R with a divisor
θ(D), for anyD ∈ v

⊥. We have

θ(D).R = (D,v(Φ(OR)) = (D,v(B) + 2v(A)) = (D,v + a) = (D,a) = θ(D).θ∨(a),

whereΦ: Db(Mσ+(v)) → Db(X) denotes the Fourier-Mukai transform, and where we used
D ∈ v

⊥ in the second-to-last equality.
Leta0 ∈ H∗

alg(X,Z) denote the projection ofa to the orthogonal complement ofv. By Lemma
12.5, we have(R,R) = a

2
0, and for the latter we obtain:

(a0,a0) =

(
a− (v,a)

v2
v,a− (v,a)

v2
v

)
= a

2 − (v,a)2

v2
≥ −2− v

2

4
= −n+ 3

2
.

�

Remark 12.7. WhenM is the Hilbert scheme of points onX, we can make the comparison to
Hassett-Tschinkel’s conjecture even more precise: in thiscase, it is easy to see thatθ∨ induces an
isomorphism

H∗
alg(X,Z)/v → N1(M)

of lattices, respecting the integral structures. Given a classR ∈ N1(M) satisfying the inequality
(R,R) ≥ −n+3

2 of [HT10], let a0 ∈ v
⊥
Q be the (rational) class withθ∨(a0) = R. Let k be any

integer satisfyingk ≤ n − 1 andk2 ≥ (2n − 2)(−2 − a
2
0); by the assumptions,k = n − 1 is

always an example satisfying both inequalities. Thena := a0 +
k

2n−2v is a rational class in the
algebraic Mukai lattice that satisfies the assumptions appearing in Theorem12.2. In addition, it
has has integral pairing with bothv, and with every integral class inv⊥; thus, it is potentially an
integral class. The Hassett-Tschinkel conjecture holds ifand only if for every extremal ray ofC,
there is a choice ofk such thata is an integral class.



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 51

If we are given a latticev⊥ of small rank, then the algebraic Mukai lattice of(X,α) can
be any lattice inv⊥

Q ⊕ Q · v containing bothv⊥ andv, as long asv andv
⊥ are primitive.

In general, the Hassett-Tschinkel conjecture holds for some of these lattices, but not for others.
The question is thus closely related to the fact that a strongglobal Torelli statement needs the
embeddingH2(M) →֒ H∗(X), rather than justH2(M).

13. EXAMPLES OF NEF CONES AND MOVABLE CONES

In this section we examine examples of cones of divisors.

K3 surfaces with Picard number 1... Let X be a K3 surface such thatPic(X) ∼= Z · H, with
H2 = 2d. We letM := Hilbn(X), for n ≥ 2, andv = (1, 0, 1 − n). In this case, everything is
determined by certain Pell’s equations. We recall that a basis ofNS(M) is given by

(31) H̃ = θ(0,−H, 0) and B = θ(−1, 0, 1− n).

Geometrically,H̃ is the big and nef divisor induced by the symmetric power ofH onSymn(X),
and2B is the class of the exceptional divisor of the Hilbert-Chow morphism.

By Theorem5.7, divisorial contractions can be divided in three cases:

Brill-Noether: If there exists a spherical classs with (s,v) = 0.
Hilbert-Chow: If there exists an isotropic classw with (w,v) = 1.
Li-Gieseker-Uhlenbeck: If there exists an isotropic classw with (w,v) = 2.

Elementary substitutions show that the case of BN-contraction is governed by solution to Pell’s
equation

(32) (n − 1)X2 − dY 2 = 1 via s(X,Y ) = (X,−Y H, (n − 1)X).

The case of HC-contractions and LGU-contractions are governed solutions of

(33) X2 − d(n− 1)Y 2 = 1 with X + 1 divisible byn− 1;

we get a HC-contraction or LGU-contraction via

w(X,Y ) =

(
X + 1

2(n − 1)
,−Y

2
H,

X − 1

2

)
or w(X,Y ) =

(
X + 1

n− 1
,−Y H,X − 1

)

depending on wheterY is even or odd. The two equations determine the movable cone:

Proposition 13.1. AssumePic(X) ∼= Z · H. The movable cone of the Hilbert schemeM =
Hilbn(X) has the following form:

(a) If d = k2

h2 (n− 1), with k, h ≥ 1, (k, h) = 1, then

Mov(M) = 〈H̃, H̃ − k

h
B〉,

whereq(hH̃ − kB) = 0, and it induces a (rational) Lagrangian fibration onM .
(b) If d(n − 1) is not a perfect square, and(32) has a solution, then

Mov(M) = 〈H̃, H̃ − d
y1

x1(n− 1)
B〉,

where(x1, y1) is the solution to(32) with x1, y1 > 0, and with smallest possiblex1.
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(c) If d(n − 1) is not a perfect square, and(32) has no solution, then

Mov(M) = 〈H̃, H̃ − d
y′1
x′1
B〉,

where(x′1, y
′
1) is the solution to(33) with smallest possibley

′
1

x′
1
> 0.

Proof. SinceH̃ induces the divisorial HC contraction, it is an extremal rayof the movable cone;
to find the other extremal ray, we need to findΓ > 0 such thatH̃ − ΓB lies on one of the walls
described by Theorem12.3, and such thatΓ is as small as possible.

Also recall Proposition3.3: the movable cone is a fundamental domain for Weyl group action
ofWExc onPos(M). Any solution to (b) or (c) determines a wall in the positive cone via Theorem
12.3; one of its Weyl group translates thus determines a wall bordering the movable cone.

Part (a) follows directly from Theorem1.5. To prove part (b), it follows immediately from the
previous discussion that if (32) has a solution, then one of the solutions determines the second
extremal ray. The claim thus follows from the observation that

D(X,Y ) := H̃ − d
Y

X(n − 1)
B = θ

((
dY

X(n− 1)
,−H, dY

X

))

is obtained as the image underθ of a class orthogonal tos(X,Y ), and the fact thatYX is minimal
if and only ifX is minimal.

A similar computation shows that given a solution of (33) (which always exists), the vector

D′(X,Y ) = H̃ − d
Y

X
B = θ

((
dY

X
,−H, (n− 1)

dY

X

))

is contained inθ(w(X,Y )⊥) in both the HC and the LGU case; this proves part (c). �

Example 13.2. If d = n− 2, then (32) hasX = 1, Y = 1 as a solution. Therefore

Mov(M) = 〈H̃, H̃ − n− 2

n− 1
B〉.

For the nef cone, we start with the easy casen = 2. Consider the Pell’s equation

(34) X2 − 4dY 2 = 5.

The associated spherical class iss(X,Y ) =
(
X+1
2 ,−Y H, X−1

2

)
.

Lemma 13.3. LetM = Hilb2(X). The nef cone ofM has the following form:

(a) If (34) has no solutions, then

Nef(M) = Mov(M).

(b) Otherwise, let(x1, y1) be the positive solution of(34) with x1 > 0 minimal. Then

Nef(M) = 〈H̃, H̃ − d
y1
x1
B〉.

Proof. We apply Theorem12.1. The movable cone and the nef cone agree unless there is a flop-
ping wall, described in Theorem5.7, part (b). Sincev2 = 2, the casev = a+b with a,b positive
is impossible. This leaves only the case of a spherical classs with (v, s) = 1; this exists if and
only if (34) has a solution. �
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Example 13.4. Let d = 31. Then the nef cone forM = Hilb2(X) is

Nef(M) = 〈H̃, H̃ − 3658

657
B〉.

In particular, this gives a negative answer to [CK12, Question 8.4].
Indeed, (34) has a the smallest solution given byx1 = 657 andy1 = 118. This gives a(−2)-

classs = (329,−59 ·H, 328), which induces a flop, by Lemma13.3.

For highern > 2 the situation is more complicated, since the number of Pell’s equations to
consider is higher. But, in any case, everything is completely determined.

Example 13.5. Consider the case in whichd = 1 andn = 7, M = Hilb7(X). This example
exhibits a flop of “higher degree”: it is induced by a decomposition v = a+ b, with a

2,b2 > 0,
and not induced by a spherical or isotropic class. Indeed, ifv = (1, 0,−6), a = (1,−H, 0) and
b = (0,H,−6), then the rank two hyperbolic lattice associated to this wall contains no spherical
or isotropic classes. The full list of walls in the movable cone is given the table below. We can
write the nef divisor associated to a wall as̃H − ΓB, for Γ ∈ Q>0; as before, the value ofΓ is
determined from (31) given an element ofv⊥ ∩ a

⊥.

Γ a a
2 (v,a) Type

0 (0, 0,−1) 0 1 divisorial contraction

1
4 (1,−H, 2) -2 4 flop

2
7 (1,−H, 1) 0 5 flop

1
3 (1,−H, 0) 2 6 flop

6
17 (2,−3H, 5) -2 7 fake wall

4
11 (1,−2H, 5) -2 1 flop

3
8 −(1,−3H, 10) -2 4 flop

2
5 (1,−2H, 4) 0 2 divisorial contraction

...and higher Picard number. LetX be a K3 surface such thatPic(X) ∼= Z · ξ1 ⊕ Z · ξ2.
Example 13.6. We letM := Hilb2(X), andv = (1, 0,−1). We assume that the intersection
form (with respect to the basisξ1, ξ2) is given by

q =

(
28 0
0 −4

)
.

Such a K3 surface exists, see [Mor84, Kov94]. We have:

NS(M) = Z · s⊕NS(X),

wheres = (1, 0, 1). Our first claim is

(35) Nef(M) = Mov(M).
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Indeed, by Theorem5.7, a flopping contraction would have to come from a classa with a
2 ≥ −2

and(v,a) = 1; also, the corresponding latticeH = 〈v,a〉 has to be hyperbolic, which implies
a
2 ≤ 0. In addition,a2 = 0 would correspond to the Hilbert-Chow divisorial contraction, and

thusa2 = −2 is the only possibility. If we writea = (r,D, r− 1) with D = aξ1 + bξ2, this gives

−2r(r − 1) + 28a2 − 4b2 = −2.

This equation has no solutions modulo 4.
The structure of the nef cone is thus determined by divisorial contractions. These are controlled

by the quadratic equation

(36) X2 − 2(7a2 − b2) = 1,

via a = (X,D,X). For example, the Hilbert-Chow contraction corresponds tothe solutiona =
b = 0 andX = 1 to (36). Other contractions arise, for example, ata = 4, b = 0, X = 15, or
a = 2, b = 2, X = 7, etc. The nef cone is locally polyhedral but not finitely generated. Its walls
have an accumulation point at the boundary, coming from a solution to

X2 − 2(7a2 − b2) = 0

corresponding to a Lagrangian fibration.

We continue to consider the case whereX has Picard rank two. To increase the flexibility of
our examples, we now also consider a twist by a Brauer classα ∈ Br(X). We chooseα = eβ0 for
someB-field classβ0 ∈ H2(X,Q) with

β0.NS(X) = 0 and β20 = 0.

(See [HMS08] for more details; in particular, the existence of our examples follows as in [HMS08,
Lemma 3.22].)

Example 13.7. We assume that2β0 is integral, and that the intersection form on

H∗
alg(X,α,Z) = NS(X)⊕ Z · (2, 2β0, 0)⊕ Z · (0, 0,−1)

takes the form

q =




4 0 0 0
0 −4 0 0
0 0 0 2
0 0 2 0


 .

Consider the primitive vectorv = (0, ξ1, 0), and letM := MH(v) be the moduli space ofα-
twistedH-Gieseker semistable sheaves onX, forH a generic polarization onX. Then:

(a) Nef(M) = Mov(M);
(b) Nef(M) is a rational circular cone.

To prove the above statements, observe thatv
2 = 4 and(v,a) ∈ 4Z for all a ∈ H∗

alg(X,α,Z).
According to Theorem5.7, the only possible wall in this situation would be given by a Brill-
Noether divisorial contraction, coming from a spherical classs ∈ v

⊥. But the above lattice
admits no spherical classes, and thus there are no walls.

Thus the nef cone and the closure of the movable cone are both equal to the positive cone. Since
M obviously admits Lagrangian fibrations, the cone is rational.

Modifying the previous example slightly, we obtain a modulispace with circular movable cone
and locally polyhedral nef cone:
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Example 13.8. Now assume3β0 is integral, and that

H∗
alg(X,α,Z) = NS(X)⊕ Z · (3, 3β0, 0)⊕ Z · (0, 0,−1)

has intersection form given by

q =




6 0 0 0
0 −6 0 0
0 0 0 3
0 0 3 0


 .

Consider the primitive vectorv = (0, ξ1, 1), and letM :=MH(v). Then:

(a) Nef(M) is a rational locally-polyhedral cone;
(b) Mov(M) is a rational circular cone.

Indeed, (b) follows exactly as in Example13.7: there are no spherical classes, and, for all
a ∈ H∗

alg(X,α,Z), (a,v) ∈ 3Z. However, flopping contractions are induced by solutions tothe
quadratic equation

a2 − b2 − 2as + s = 0,

where we setD = aξ1+ bξ2, anda = (3(2a− 1), aξ1 + bξ2+3(2a− 1)β0, s). This has infinitely
many solutions. It is an easy exercise to deduce (a) from this.

14. THE GEOMETRY OF FLOPPING CONTRACTIONS

One can also refine the analysis leading to Theorem5.7 to give a precise description of the
geometry of the flopping contraction associated to a floppingwall W.

As in Section5, we letσ0 ∈ W be a stability condition on the wall, andσ+ /∈ W be sufficiently
close toσ0. For simplicity, let us assume throughout this section thatthe hyperbolic latticeHW
associated toW via Definition5.2 does not admit spherical or isotropic classes; in particular, W
is not a totally semistable wall for any classa ∈ H, and does not induce a divisorial contraction.

LetP be the set of unordered partitionsP = [ai]i of v into a sumv = a1+ · · ·+am of positive
classesai ∈ H. We say that a partitionP is a refinement of another partitionQ = [bi]i if it can be
obtained by choosing partitions of eachbi. This defines a natural partial order onP, with P ≺ Q
if P is a refinement ofQ. The trivial partition as the maximal element ofP.

GivenP = [ai]i ∈ P, we letMP ⊂ Mσ+(v) be the subset of objectsE such that the Mukai
vectors of the Jordan-Hölder factorsEi of E with respect toσ0 are given byai for all i. Using
openness of stability and closedness of semistability in families, one easily proves:

Lemma 14.1. The disjoint unionMσ+(v) =
∐

P∈PMP defines a stratification ofMσ+(v) into
locally closed subsets, such thatMP is contained in the closure ofMQ if and only ifP ≺ Q.

In addition, our simplifying assumptions onHW give the following:

Lemma 14.2. Assume thatP = [a1,a2] is a two-element partition ofv. ThenMP ⊂ Mσ+(v) is
non-empty, and of codimension(a1,a2)− 1.

Proof. Sincev is primitive, we may assume thata1 has smaller phase thana2 with respect toσ+.
By assumption onHW and by Theorem2.15, the generic elementAi ∈ Mσ+(ai) is σ0-stablefor
i = 1, 2. In particular,Hom(A1, A2) = Hom(A2, A1) = 0, and thereforedimExt1(A2, A1) =
(a1,a2). By Lemma6.9, any non-trivial extensionA1 →֒ E ։ A2 is σ+-stable. Using Theorem
2.15again, one computes the dimension of the space of such extensions as

a
2
1 + 2 + a

2
2 + 2 + (a1,a2)− 1 = v

2 + 2− ((a1,a2)− 1) .

�
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For P as above, the flopping contractionπ+ contractsMP to the product of moduli spaces
M st

σ0
(a1) ×M st

σ0
(a2) of σ0-stableobjects. The exceptional locus ofπ+ is the union ofMP for

all non-trivial partitionsP . In particular, when there is more than one two-element partition, the
stratification is only partially ordered, and the exceptional locus has multiple irreducible compo-
nents. This leads to a generalization of Markman’s notion ofstratified Mukai flopsintroduced in
[Mar01] (where the stratification is indexed by a totally ordered set).

Using the above two Lemmas, it is easy to construct examples of flops where the exceptional
locus of the small contractionπ+ hasm intersecting irreducible components:

Example 14.3. ChooseM ≫ m for which x2 +Mxy + y2 = −1 does not admit an integral

solution. We define the symmetric pairing onH ∼= Z2 via the matrix

(
2 M
M 2

)
, and letv =

(
1

m− 1

)
. The positive cone contains the upper right quadrant and is bordered by lines of slopes

approximately− 1
M and−M . SinceM ≫ m (in fact,M > 2m is enough), any partition ofv

into positive classes is in fact a partition inZ2
≥0. Therefore, the two-element partitions are given

by Ak =

[(
1
k

)
,

(
0

m− 1− k

)]
for 0 ≤ k ≤ m − 1. There is a unique minimal partition

Q =

[(
1
0

)
,

(
0
1

)
, . . . ,

(
0
1

)]
, with MQ ⊂ MAk

for all k; thus, the exceptional locus hasm

irreducible componentsMAk
intersecting inMQ.

Similarly, one can construct flopping contractions with arbitrarily manyconnectedcomponents:

Example 14.4. Let m be an odd positive integer. ChooseM ≫ m and define the latticeH by

the matrix

(
−4 2M
2M 4

)
. The positive cone lies between the lines of slope approximately + 1

M

and−M . We letv =

(
m
2

)
. Any summand in a partition ofv must be of the form

(
x
y

)
with

x ≥ 0 andy > 0, and thereforey = 1. Besides the trivial element, the only partitions occurring

in P are therefore of the formAk =

[(
k
1

)
,

(
m− k

1

)]
, for 0 ≤ k < m

2 . Each corresponding

stratumMAk
is a connected component of the exceptional locus ofπ+, asAk admits no further

refinement.

Remark 14.5. To show that the latticesH as above occur as the latticeHW associated to a wall, we
only have to find a K3 surfaceX such thatH embeds primitively into its Mukai latticeH∗

alg(X,Z).
For example, we can choosePic(X) ∼= H andv = (0, c, 0) for the corresponding curve class
c. In particular, Example14.3 occurs in a relative Jacobian of curves on special double covers
X → P2, and Example14.4 in special quarticsX ⊂ P3. This wall crossing already occurs
for Gieseker stability with respect to a non-generic polarizationH. The morphismπ+ contracts
sheaves supported on reducible curvesC = C1 ∪C2 in the corresponding linear system; it forgets
the gluing data at the intersection pointsC1 ∩ C2. The induced flop preserves the Lagrangian
fibration given by the Beauville integrable system.

15. LE POTIER’ S STRANGE DUALITY FOR ISOTROPIC CLASSES

In this section, we will explain a relation of Theorem1.5 to Le Potier’s Strange Duality Con-
jecture for K3 surfaces. We thank Dragos Oprea for pointing us to this application.
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We first recall the basic construction from [LP05, MO08]. Let (X,α) be a twisted K3 surface
and letσ ∈ Stab†(X,α) be a generic stability condition. Letv,w ∈ H∗

alg(X,α,Z) be primitive
Mukai vectors withv2,w2 ≥ 0. We denote byLw (resp.,Lv) the line bundleOMσ(v)(−θv(w))
(resp.,OMσ(w)(−θw(v))). We assume:

(I) (v,w) = 0, and
(II) for all E ∈Mσ(v) and allF ∈Mσ(w), Hom2(E,F ) = 0.

Then the locus
Θ = {(E,F ) ∈Mσ(v) ×Mσ(w) : Hom(E,F ) 6= 0}

gives rise to a section of the line bundleLv,w := Lw ⊠ Lv onMσ(v) ×Mσ(w) (which may or
may not vanish). We then obtain a morphism, well-defined up toscalars,

SD: H0(Mσ(v), Lw)
∨ −→ H0(Mσ(w), Lv).

The two basic questions are:

• When ish0(Mσ(v), Lw) = h0(Mσ(w), Lv)?
• If equality holds, is the mapSD an isomorphism?

We answer the two previous questions in the case where one of the two vectors is isotropic:

Proposition 15.1. Let (X,α) be a twisted K3 surface and letσ ∈ Stab†(X,α) be a generic
stability condition. Letv,w ∈ H∗

alg(X,α,Z) be primitive Mukai vectors with(v,w) = 0, v2 ≥ 2

andw2 = 0.
We assume that−θv(w) ∈ Mov(Mσ(v)) and−θw(v) ∈ Nef(Mσ(w)). Then

(a) h0(Mσ(v), Lw) = h0(Mσ(w), Lv), and
(b) the morphismSD is either zero or an isomorphism.

We will see that the caseSD = 0 is caused by totally semistable walls.

Proof. Let Y := Mσ(w). By [Muk87a, Căl02, Yos06], there exist an elementα′ ∈ Br(Y )

and a derived equivalenceΦ: Db(X,α)
≃−→ Db(Y, α′). Replacing(X,α) by (Y, α′), we may

assume thatw = (0, 0, 1) andv = (0,D, s), for somes ∈ Z andD ∈ NS(X), and that
X = Mσ(w) is the moduli space of skyscraper sheaves. Moreover,D = −θw(v) ∈ Nef(X)
is effective, by assumption. By stability and Serre duality, for all E ∈ Mσ(v) and allx ∈ X,
Hom2(E, k(x)) = Hom(k(x), E)∨ = 0, verifying the assumption (II); thus the locusΘ gives a
section ofLw ⊠ Lv.

By Remark11.4, there exists a chamberL∞ in the interior of the movable coneMov(Mσ(v))
whose boundary contains−θv(w). Moreover, there exist a polarizationH onX and a chamber
C∞ ⊂ Stab†(X,α) such thatℓ(C∞) = L∞, MH(v) = MC∞(v), and the Lagrangian fibration
induced byw is the Beauville integrable system onMH(v).

The argument in [MO08, Example 8] shows thath0(MH(v), Lw) = h0(X,O(D)) and the
morphismSD is an isomorphism. SinceMH(v) is connected toMσ(v) by a sequence of flops,
which do not change the dimension of the spaces of sections ofLw, we obtain immediately (a).

To prove (b), we need to study the behavior of the morphismSD under wall-crossing. We pick
a stability conditionσ∞ ∈ C∞. Bothσ andσ∞ belong to the open subsetU(X,α) of Theorem

2.9. The restriction of the mapZ of Theorem2.10 to U(X,α) is injective up to theG̃L
+

2 (R)-
action (i.e., the map separates points that are in differentorbits). Now consider the mapℓ in the
formulation of Theorem10.2, restricted toU(X,α). The composition

θσ,v ◦ I ◦ Z|U(X,α) : U(X,α) → Pos(Mσ(v))
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generically has connected fibers. Since bothσ∞ andσ get mapped to a class in the movable cone,
we can find a pathγ in U(X,α) connectingσ andσ∞ whose image stays within the movable
cone. Thusγ crosses no divisorial walls. Ifγ also crosses no totally semistable walls, then the
morphismSD is compatible with the wall-crossing; since it induces an isomorphism atσ∞, it
induces an isomorphism atσ.

Assume instead that there is a totally semistable wall. We write σ = σω,β. The straight path
from σ∞ to σtω,β , for t ≫ 0, corresponds to a change of polarization for Gieseker stability, and
thus does not cross any totally semistable wall. Therefore,we may replaceσ∞ with σtω,β , for
t≫ 0.

We claim that all objectsE in Mσ(v) must be actual complexes. Indeed, if there exists a
sheafE in Mσ(v), then the generic element is a sheaf. Moreover, sinceD is nef and big, it is
globally generated, and we can assume that the support ofE is a smooth integral curve. Stability
in U(X,α) for torsion sheaves implies, in particular, that the sheaf is actually stable on the curve.
But thenE would be stable fort→ ∞. This shows that we crossed no totally semistable wall.

SoE ∈ Aω,β is an actual complex. Sincerk(E) = 0 and rkH−1(E) > 0, we must have
rkH0(E) > 0; henceHom(E, k(x)) 6= 0 for all x ∈ X. This shows thatΘ is nothing but the
zero-section ofLv,w and the induced mapSD is the zero map. �

In particular, the previous proposition holds for pairs of Gieseker moduli spaces.

Example 15.2. Let X be a K3 surface such thatPic(X) = Z · H, with H2 = 2. Let v =
(1, 0,−1) andw = −(1,−H, 1). Consider a stability conditionσ∞ = σtH,−2H , for t≫ 0. Then,
as observed in [Bea99, Proposition 1.3],Hilb2(X) = Mσ∞

(v) admits a flop to a Lagrangian
fibration induced by the vectorw. The assumptions of Proposition15.1are satisfied. In this case,
for all E[1] ∈ Mσ∞

(w), E ∼= Ipt(−H), and for allΓ ∈ Hilb2(X), we haveHom(IΓ, E[1]) 6= 0.
Hence, the mapSD is the zero map.

The following example shows that the assumption in Proposition 15.1is necessary:

Example 15.3. LetX be a K3 surface withNS(X) = Z · C1 ⊕ Z · C2 and intersection form

q =

(
−2 4
4 −2

)
.

We assume the two rational curvesC1 andC2 generate the cone of effective divisors onX. Let
v = (0, 3C1 +C2, 1) andw = (0, 0, 1). Thenv2 = 4. Pick a generic ample divisorH onX. We
have

H0(MH(v), θv(w)) ∼= C⊕4.

For example, consider the totally semistable wall wherev aligns with the spherical vector(0, C1, 0),
Then Proposition6.8 induces a birational mapMH(v) 99K MH(v0) for v0 = (0, C1 + C2, 1),
and a chain of isomorphisms

H0(MH(v), θv(w)) ∼= H0(MH(v0), θv0(w)) ∼= H0(P3,OP3(1)) ∼= C⊕4,

where the middle isomorphism follows from Proposition15.1. However,

H0(MH(w), θw(v)) ∼= H0(X,OX (3C1 + C2)) ∼= C⊕5.

The last isomorphism follows from the exact sequence

0 → OX(2C1 + C2) → OX(3C1 + C2) → OP1(−2) → 0,

sinceOX(2C1 + C2) is big and nef and thus has no higher cohomology.
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