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MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING:
NEF AND MOVABLE CONES, LAGRANGIAN FIBRATIONS

AREND BAYER AND EMANUELE MACRI

ABSTRACT. We use wall-crossing with respect to Bridgeland stabddpditions to systematically
study the birational geometry of a moduli spadeof stable sheaves on a K3 surfake
(@) We describe the nef cone, the movable cone, and theiefexine of M in terms of the
Mukai lattice of X
(b) We establish along-standing conjecture that predietexistence of a birational Lagrangian
fibration onM wheneverM admits an integral divisor clad3 of square zero (with respect
to the Beauville-Bogomolov form).
These results are proved using a natural map from the spaBedtfeland stability conditions
Stab(X) to the conéMov(X) of movable divisors od/; this map relates wall-crossing #tab(X)
to birational transformations @¥/. In particular, every minimal model a¥/ appears as a moduli
space of Bridgeland-stable objects &n
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A moduli space of Bridgeland stable objects automaticadiyes equipped with a numerically
positive determinant line bundle, depending only on thiikty condition [BM12]. This provides
a direct link between wall-crossing for stability condit®and birational transformations of the
moduli space. In this paper, we exploit this link to systaoadlly study the birational geometry of
moduli spaces of Gieseker stable sheaves on K3 surfaces.
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1. INTRODUCTION

Overview. Let X be a projective K3 surfac&l, andv a primitive algebraic class in the Mukai
lattice with self-intersection with respect to the Mukairpry v2 > 0. For a generic polarization
H, the moduli spacé/y(v) of H-Gieseker stable sheaves is a projective holomorphic senpl
tic manifold (hyperkahler variety) deformation equivaléo Hilbert schemes of points on K3
surfaces. The cone theorem and the minimal model programRMRtuce a locally polyhedral
chamber decomposition of the movable condff(v) (see HT09]):

e chambers correspond one-to-one to smdsthrivial birational models\/ --» Mg (v)
of the moduli space, as the minimal model of the gdifz; (v), D) for any D in the
corresponding chamber, and

¢ walls correspond to extremal Mori contractions, as the naab model of(My (v), D).

Itis a very interesting question to understand this chardbeomposition for general hyperkahler
varieties HT01, HT10, HT09]. It has arguably become even more important in light of \fsky’s
recent proof Yer09 of a global Torelli statement: two hyperkahler varieti€s, X, are isomor-
phic if and only if there exists an isomorphism of integraldge structuresi?(X;) — H?(X3)
that is induced by parallel transport in a family, and thapmtne nef cone ok, to the nef cone
of X5 (see alsofluyll, Marll)]).

In addition, following the recent succe8BGHM10] of MMP for the log-general case, there
has been enormous interest to relate MMPs for moduli space tunderlying moduli problem;
we refer FS13 for a survey of the case of the moduli spatg, ,, of stable curves, known as the
Hassett-Keel program. Ideally, one would like a moduli iptetation for every chamber of the
base locus decomposition of the movable or effective cone.

On the other hand, irgri08] Bridgeland described a connected compor&mle(X) of the
space of stability conditions on the derived categoryXofHe showed thad/ (v) can be recov-
ered as the moduli spadd,, (v) of o-stable objects for € Stab!(X) near the “large-volume
limit”. The manifold StabT(X) admits a chamber decomposition, depending psuch that

¢ for a chambelC, the moduli spacél/,(v) =: M¢(v) is independent of the choice of
o e(C,and
o walls consist of stability conditions with strictly serdbte objects of class.

The main result of our article, Theoreh®, relates these two pictures directly. It shows that any
MMP for the Gieseker moduli space (with movable boundarm)lminduced by wall-crossing for
Bridgeland stability conditions, and so any minimal modas n interpretation as a moduli space
of Bridgeland-stable objects for some chamber. In Thedr2ry we deduce the chamber decom-
position of the movable cone df/; (v) in terms of the Mukai lattice o from a description of
the chamber decomposition $fab’(X), given by Theorens.7.

We also obtain the proof of a long-standing conjecture: #igtence of a birational Lagrangian
fibration My (v) --» P™ is equivalent to the existence of an integral divisor classf square
zero with respect to the Beauville-Bogomolov form, see Taeol.5. We use birationality of
wall-crossing and a Fourier-Mukai transform to reduce thgjecture to the well-known case of a
moduli space of torsion sheaves, studiedBed49]. Further applications are mentioned below.

Birationality of wall-crossing and the map to the movable cme. Leto, 7 € StabT(X) be two
stability conditions, and assume that they geaericwith respect tov. By [BM12, Theorem 1.3],
the moduli spaces/, (v) and M, (v) of stable object§ € D*(X) with Mukai vectorv(€) = v
exist as smooth projective varieties. Choosing a path fsam in Stabf(X) relates them by a
series of wall-crossings. Based on a detailed analysid pbakible wall-crossings, we prove:
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Theorem 1.1. Leto, 7 be generic stability conditions with respectsto

(a) The two moduli space¥,(v) and M, (v) of Bridgeland-stable objects are birational to
each other.

(b) More precisely, there is a birational map induced by aided (anti-)autoequivalence
® of D(X) in the following sense: there exists a common open sulbbset M, (v),
U C M,(v), with complements of codimension at least two, such thatrfpe, € U, the
corresponding object§,, € M, (v) andF, € M,(v) are related viaF, = ®(&,).

An anti-autoequivalence is an equivalence from the oppasitegoryD®(X)°P to D*(X), for
example given by the local dualizing func®Hom(_, Ox).

As a consequence, we can canonically identify the Nérami$groups ofM,, (v) and M (v).
Now consider the chamber decompositiorBeib! (X ) with respect tov as above, and let be a
chamber. The main result dBM12] gives a natural map

(l) ﬁc: C — NS (Mc(v))

to the Néron-Severi group of the moduli space, whose imag®mtained in the ample cone of
Mec(v). More technically stated, our main result describes thbajlbehavior of this map:

Theorem 1.2. Fix a base point € Stab'(X).

(a) Under the identification of the &on-Severi groups induced by the birational maps of
Theoreml.1, the mapd of (1) glue to a piece-wise analytic continuous map

2) ¢: Stab’(X) — NS (M, (v)).

(b) The image of is the intersection of the movable cone with the big conk/pfv).

(c) The mapy is compatible, in the sense that for any generice StabT(X), the moduli
spaceM,.(v) is the birational model corresponding €c’). In particular, every smooth
K-trivial birational model of M, (v) appears as a moduli space.(v) of Bridgeland
stable objects for some chamb@rc Stab’(X).

(d) For a chambeC C Stab'(X), we have/(C) = Amp(M¢(v)).

The image/(7) of a stability conditionr is determined by its central charge; see Theotén2
for a precise statement.

Claims @) and €) are the precise version of our claim above that MMP can beviainvall-
crossing: any minimal model can be reached after wall-angsas a moduli space of stable ob-
jects. Extremal contractions arising as canonical modelgyaven as coarse moduli spaces for
stability conditions on a wall.

Wall-crossing transformation. Our second main result is Theorésv. It determines the loca-
tion of walls inStab'(X), and for each wallV it describes the associated birational modification
of the moduli space precisely. These descriptions are givesly in terms of the algebraic Mukai
lattice H,, (X, Z) of X:

To each wallV we associate a rank two lattiée,, C H;, (X, Z), consisting of Mukai vectors
whose central charges align for stability conditionsi®h Theoremb.7 determines the birational
wall-crossing behavior ofV completely in terms of the paiv, #,y). Rather than setting up the
necessary notation here, we invite the reader to jump dlirexBection5 for the full statement.

The proof of Theoremd.7takes up Sectiorsto 9, and can be considered the heart of this paper.
The ingredients in the proof include Harder-Narasimhargfitins in families, a priori constraints
on the geometry of birational contractions of hyperkakaieties, and the essential fact that every
moduli space of stable objects on a K3 surface has expeatashdion.
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Fourier-Mukai transforms and birational moduli spaces. The following result is a conse-
guence of Mukai-Orlov’s Derived Torelli Theorem for K3 sargs, a crucial Hodge-theoretic re-
sult by Markman, and Theorefnl It completes Mukai’'s program, started {ik81, Muk87h,
to understand birational maps between moduli spaces ofisbadéa Fourier-Mukai transforms.
Following Mukai, considef7* (X, Z) equipped with its weight two Hodge structure, polarized by
the Mukai pairing We writev" ¢ H*(X,Z) for the orthogonal complement of By a result
of Yoshioka [Yos01], v and H?(My(v),Z) are isomorphic as Hodge structures; the Mukai
pairing onH*(X, Z) gets identified with th@eauville-Bogomolopairing onH? (Mg (v), Z).
Corollary 1.3. ! Let X and X’ be smooth projective K3 surfaces. Letc H;lg(X, Z) and
v € H}, (X', Z) be primitive Mukai vectors. Lell (resp., H') be a generic polarization with
respect tov (resp.,v’). Then the following statements are equivalent:
(@) My (v) is birational to My (v').
(b) The embedding ' ¢ H*(X,Z) of integral weight-two Hodge structures is isomorphic
to the embedding’-"* ¢ H*(X',7Z).
(c) There is an (anti-)equivalenck from D®(X) to D?(X") with @, (v) = v'.
(d) There is an (anti-)equivalencé from D®(X) to D?(X’) with ¥, (v) = v’/ that maps a
generic object’ € My (v) to an object¥ (E) € My (v').

The equivalenced] < (b) is a special case oMarll, Corollary 9.9], which is based on
Markman’s description of the monodromy group and Verbitskyobal Torelli theorem. We will
only need the implicationg] = (b), which is part of earlier work by MarkmanMar10, Theorem
1.10 and Theorem 1.14] (when combined with the fundameegallrHuy03, Corollary 2.7] that
birational hyperkahler varieties have isomorphic cohtmmy).

By [Tod0§, stability is an open property in families; thusas in @) directly induces a bira-
tional mapMy (v) --» My (v'); in particular, ¢) = (a). We will prove at the end of SectiatD
that derived Torelli for K3 surface<Or97] gives ) = (c), and that Theorem.1 provides the
missing implication €) = (d). Thus, in the case of moduli spaces of sheaves, we obtaiocd pr
of Markman’s version§arl1, Corollary 9.9] of global Torelli independent of¢r09.

Cones of curves and divisors.As an application, we can use Theorein8and5.7to determine
the cones of effective, movable, and nef divisors (and tluadlylthe Mori cone of curves) of the
moduli spaceMy(v) of H-Gieseker stable sheaves completely in terms of the algebhakai
lattice of X; as an example we will state here our description of the neéco

Recall that we assume primitive andH generic; in particular)M g (v) is smooth. Restricting
the Hodge isomorphism o¥ps01 mentioned previously to the algebraic part, we get an isome
0: vt — NS(Mg(v)) of lattices, wherev! denotes the orthogonal complementvainside the

algebraic Mukai latticet (X, Z). (Equivalently,vt c v is the sublattice of1, 1)-classes

with respect to the induced Hodge structurevani®.) Let Pos(M (v)) denote the cone of strictly
positive classe® with respect to the Beauville-Bogomolov pairing, satisty(D, D) > 0 and
(A, D) > 0 for a fixed ample clasgl € NS(My(v)). We letPos(My(v)) denote its closure,
and by abuse of language we call it {hasitive cone

Theorem 12.1 Consider the chamber decomposition of the closed positwe Bos(My (v))
whose walls are given by linear subspaces of the form

f(vtnal),

Iwe will prove this and the following results more generatly noduli spaces of Bridgeland-stable complexes.
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foralla € H} (X, Z) satisfyinga? > —2 and0 < (v,a) < "72 Then the nef cone df/(v) is
one of the chambers of this chamber decomposition.

In other words, given an ample clagsc NS(My(v)), aclassD € Pos(Mg(v)) is nef if and
only if (D,6(£a)) > 0 for all classesa as above and a choice of sign such thdt 6(+a)) > 0.

We obtain similar descriptions of the movable and effectivee, see Sectial. The intersec-
tion of the movable cone with the strictly positive cone hasrbdescribed by Markman for any
hyperkahler variety§Marll, Lemma 6.22]; the pseudo-effective cone can also easilyedaakd
from his results. Our method gives an alternative wall-sirag proof, and in addition a description
of the boundary, based the proof of the Lagrangian fibratmmecture discussed below.

However, there was no known description of the nef cone éx{oegpecific examples, even in
the case of the Hilbert scheme of points. A general conjediyrHassett and TschinkeHT 10,
Thesis 1.1], suggested that the nef cone (or dually, its Morie) of a hyperkahler variety/
depends only on the lattice of algebraic cyclegfis( M, Z). In small dimension, their conjecture
has been verified inHT01, HT09, HT10, HHT12, BJ11. The original conjecture turned out to
be incorrect, already for Hilbert schemes (sB#[L2, Remark 10.4] and@K12, Remark 8.10]).
However, Theorem2.1is in fact very closely related to the Hassett-Tschinkel j€cture: we will
explain this precisely in Sectioh?, in particular Propositiori2.6 and RemarKl2.7. In Section
13, we give many explicit examples of nef and movable cones.

Using deformation techniques, Theord1and Propositiori2.6have now been extended to
all hyperkahler varieties of the same deformation type,[B&IT13, Mon13.

Existence of Lagrangian fibrations. The geometry of a hyperkahler variety is particularly
rigid. For example, Matsushita proved M#&t01] that any mapf: M — Y with connected fibers
anddim(Y') < dim(M) is a Lagrangian fibration; further, Hwang proved ihwa0q that if Y is
smooth, it must be isomorphic to a projective space.

It becomes a natural question to ask when such a fibratiotsggiswhen it exists birationally.
According to a long-standing conjecture, this can be detegurely in terms of the quadratic
Beauville-Bogomolov form on the Néron-Severi group\df

Conjecture 1.4(Tyurin-Bogomolov-Hassett-Tschinkel-Huybrechts-Sayd_et M be a compact
hyperkahler manifold of dimensio&m, and letq denote its Beauville-Bogomolov form.

(a) There exists an integral divisor clad3 with ¢(D) = 0 if and only if there exists a
birational hyperlahler manifold)/’ admitting a Lagrangian fibration.

(b) If in addition, M admits anef integral primitive divisor classD with ¢(D) = 0, then
there exists a Lagrangian fibratiof: M — P™ induced by the complete linear system
of D.

In the literature, it was first suggested by Hassett-Ts@himk[HTO1] for symplectic fourfolds,
and, independently, by HuybrechtsiiJ03 and Sawon $aw03 in general; see\fer1( for more
remarks on the history of the Conjecture.

Theorem 1.5.Let X be a smooth projective K3 surface. et H;lg(X, Z) be a primitive Mukai
vector withv? > 0 and let H be a generic polarization with respect to Then Conjecturd..4

holds for the moduli spac&/y (v) of H-Gieseker stable sheaves.

The basic idea of our proof is the following: as we recalledva) the Néron-Severi group of
My (v), along with its Beauville-Bogomolov form, is isomorphicttee orthogonal complement
vt C H}, (X, Z) of vinthe algebraic Mukai lattice ok, along with the restriction of the Mukai
pairing. The existence of an integral divisbr = ¢; (L) with ¢(D) = 0 is thus equivalent to
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the existence of an isotropic class € v*: a class with(w,w) = 0 and(v,w) = 0. The
moduli space’” = My (w) is a smooth K3 surface, and the associated Fourier-Mukasfivam

® sends sheaves of classon X to complexes of rank 0 of. While these complexes o¥i
are typically not sheaves—not even for a generic objedt/in(v)—, we can arrange them to
be Bridgeland-stable complexes with respect to a Bridgesdability conditionr onD?(Y). We
then deformr along a path with endpoint’, such that'-stable complexes of clask,(v) are
Gieseker stable sheaves, necessarily of rank zero. In othrels, the Bridgeland-moduli space
M. (®.(v)) is a moduli space of sheav&swith support| 7| on a curve of fixed degree. The map
F +— | F| defines a map from/,.(®.(v)) to the linear system of the associated curve; this map
is a Lagrangian fibration, known as tBeauville integral systenOn the other hand, birationality
of wall-crossing shows that/, (®.(v)) = My(v) is birational toM,./ (P.(v)).

The idea to use a Fourier-Mukai transform to prove Conjeciud was used previously by
Markushevich Mar0g and Sawon $aw07 for a specific family of Hilbert schemes on K3 sur-
faces of Picard rank one. Under their assumptions, the &ohtikai transform of an ideal sheaf
is a stable torsion sheaf; birationality of wall-crossingk®s such a claim unnecessary.

Remark 1.6. By [MM12], Hilbert schemes of. points on projective K3 surfaces are dense in the
moduli space of hyperkahler varieties &B!"-type.

Conjecturel.4 has been proved independently by Markmitaf134 for a very general hy-
perkahler varietyM of K3[-type; more specifically, under the assumption thet (M) @
H"2(M) does not contain any integral class. His proof is compledéfgrent from ours, based
on Verbitsky’s Torelli Theorem, and a way to associate a Kigase (purely lattice theoretically)
to such hyperkahler manifolds with a square-zero divisas

These results have been extended by Matsushita to anyyvafiéf3!"-type Mat13).

Geometry of flopping contractions. As mentioned previously, every extremal contraction of
My (v) is induced by a wall in the space of Bridgeland stability doads. In Sectionl4, we
explain how basic geometric properties of flopping contoast are also determined via the asso-
ciated lattice-theoretic wall-crossing data; this addsngetric content to Theorefm 7. We obtain
examples where the exceptional locus has either arbytnawdny connected components, or arbi-
trarily many irreducible components all intersecting ireqoint.

Strange Duality. In Sectionl5we apply Theorem.5to study Le Potier’'s Strange Duality, in the
case where one of the two classes involved has square zergiviVeufficient criteria for strange
duality to hold, which are determined by wall-crossing, ardch are necessary in examples.

Generality. In the introduction, we have stated most results for Gieselauli spaces\/z(v).
In fact, we will work throughout more generally with modupaces)M,,(v) of Bridgeland sta-
ble objects on a K3 surfaceX, «) with a Brauer twisty, and all results will be proved in that
generality.

Relation to previous work on wall-crossing. Various authors have previously studied examples
of the relation between wall-crossing and the birationaingetry of the moduli space induced
by the chamber decomposition of its cone of movable divisthrs first examples (for moduli of
torsion sheaves o -trivial surfaces) were studied irAB13], and moduli on abelian surfaces
were considered (in varying generality) iM13, Mac12 MYY11a, MYY11b, YY12, Yos1d.
Several of our results have analogues for abelian surfaeebave been obtained previously by
Yoshioka, or by Minamide, Yanagida, and Yoshioka: the kretlity of wall-crossing has been
established inN1YY11a, Theorem 4.3.1]; the ample cone of the moduli spaces is itbestcin
[MYY11b, Section 4.3]; statements related to Theotke&an be found inYos1d; an analogue
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of Corollary 1.3 is contained in Yos09 Theorem 0.1]; and Conjectufie4 is proved in Yos09
Proposition 3.4 and Corollary 3.5] with the same basic aggiio

The crucial difference between abelian surfaces and Kaecesfis the existence of spherical
objects on the latter. They are responsible for the existaridotally semistable wallgwalls
for which there are no strictly stable objects) that are @atd control; in particular, these can
correspond to any possible type of birational transforamatisomorphism, divisorial contraction,
flop). The spherical classes are the main reason our walbitrg analysis in Sectiors—9 is
fairly involved.

A somewhat different behavior was established ABCH13] in many cases for the Hilbert
scheme of points oR? (extended to torsion-free sheavestuf12, BMW13], and to Hirzebruch
surfaces inBC13): the authors show that the chamber decomposition in theespf stability
conditions corresponds to the base locus decompositidmeafftectivecone. In particular, while
the map/; of equation {) exists similarly in their situation, it will behave diffently across walls
corresponding to a divisorial contraction: in our case, fap “bounces back” into the ample
cone, while in their case, it will extend across the wall.
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Notation and Convention. For an abelian groupr and a fieldk(= Q, R, C), we denote by
the k-vector spacér ® k.

Throughout the paperX will be a smooth projective K3 surface over the complex nursbe
We refer to Sectior? for all notations specific to K3 surfaces.

We will abuse notation and usually denote all derived furscts if they were underived. We
write the dualizing functor a§ )" = RHom(_,Ox).

The skyscraper sheaf at a poine X is denoted by:(x). For a complex number € C, we
denote its real and imaginary part iy and<z, respectively.

By simple objecin an abelian category we will denote an object that has netrmaal subob-
jects.

Recall that an objec$ in a K3 category is spherical Hom*(.S, S) = C & C[—2]. We denote
the associated spherical twist®iby STg(_ ); it is defined Muk87a STO1] by the exact triangle

Hom*(S,E) ® S — E — STg(E).

We will write stable(in italics) whenever we are considering strictly stablgeots in a context
allowing strictly semistable objects: for a non-generabdity condition, or for objects with non-
primitive Mukai vector.
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2. REVIEW: DERIVED CATEGORIES OFK3 SURFACES STABILITY CONDITIONS, MODULI
SPACES

In this section, we give a review of stability conditions K@faces, and their moduli spaces of
stable complexes. The main references Bré[/, Bri08, Tod08 Yos01, BM12].

Bridgeland stability conditions. Let D be a triangulated category.

Definition 2.1. A slicing P of the categoryD is a collection of full extension-closed subcategories
P(¢) for ¢ € R with the following properties:

(@) P(o+1) = P(e)[1].

(b) If ¢1 > o2, thenHom(P(¢1), P(¢2)) = 0.

(c) For anyE € D, there exists a collection of real numbefrs > ¢ > --- > ¢, and a
sequence of triangles

(3) 0= Ep Ey Ey— .- —F, E,=F

A A A
with A; € P(¢;).

The collection of exact triangles i8) is called theHarder-Narasimhan (HN) filtratiorof E.
Each subcategor(¢) is extension-closed and abelian. Its nonzero objects #ezlcgemistable
of phasep, and its simple objects are called stable.

We will write ¢in (F) := ¢, @and ¢max(E) := ¢1. By P(¢ — 1, ¢] we denote the full sub-
category of objects withpy,in (E) > ¢ — 1 andépmax(E) < ¢. This is the heart of a bounded
t-structure(D=Y, D=°) given by
D=0 =P(> ¢~1) ={E € D: ¢min > ¢—1} and D=*=P(< ¢) = {E € D: dmax < ¢}.

Let us fix a lattice of finite ranlkd and a surjective map: K (D) — A.

Definition 2.2 ([Bri07, KS08)). A Bridgeland stability conditioron D is a pair(Z, P), where
e 7: A — Cisagroup homomorphism, and
e Pis aslicing ofZ,
satisfying the following compatibilities:
(@) 2argZ(v(E)) = ¢, for all non-zeroE € P(¢);
(b) given a norm|_|| on Ag, there exists a constaat > 0 such that
1Z(v(E))| = Clv(E),
for all E that are semistable with respectio

We will write Z(FE) instead ofZ (v(E)) from now on.

A stability condition is calledalgebraicif Im(Z) Cc Q ® Qv/—1.

The main theorem ingri07] shows that the se$tab(D) of stability conditions orD is a
complex manifold; its dimension equals the rank\of

Remark 2.3([Bri07, Lemma 8.2]) There are two group actions Siab(D). The groupAut(D)
of autoequivalences acts on the left & (Z,P) = (Z o &1, ®(P)), where® € Aut(D)

and @, also denotes the push-forward on the K-group. The univemwdaréi;(ﬂ%) of ma-
trices in GL2(R) with positive determinant acts on the right, lifting theiaotof GLy(R) on
Hom(K (D), C) = Hom(K (D), R?).
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Twisted K3 surfaces. Let X be a smooth K3 surface. The (cohomologidiguer groupBr(X)
is the torsion part of the cohomology groéf? (X, O%) in the analytic topology.

Definition 2.4. Let« € Br(X). The pair(X, «) is called atwisted K3 surface

Since H*(X,Z) = 0, there exists 8-field lift 5 € H*(X,Q) such thain = e”. We will
always tacitly fix both such B-field lift and @ech representative;;,, € I'(U; N U; N Uy, O% ) on
an open analytic covell; } in X; see HS05 Section 1] for a discussion about these issues.

Definition 2.5. An a-twisted coherent shedf consists of a collectiof{ F; }, {¢;;}), whereF; is
a coherent sheaf dii; andy;; : Fj]UZ.mUj — Fi]UZ.nt is an isomorphism, such that:
oi =id; @ = %-_jl; ©Dij © Pjk © Pri = Q) - id.

We denote byCoh(X, o) the category ofi-twisted coherent sheaves ah and byD? (X, o) its
bounded derived category. We refer @100 HS05 Yos0§ Lie07] for basic facts about twisted
sheaves on K3 surfaces.

In [HSO0] Section 1], the authors define a twisted Chern character by

ch: K(D*(X,a)) = H*(X,Q), ch(_) =€ chP( ),
wherech'? s the topological Chern character. By$05 Proposition 1.2], we have
ch( ) e [eﬁo - (HY(X,Q) @ NS(X)g @ H(X, Q))} N H*(X,Z).
Remark 2.6. Let H*(X,«,Z) := H*(X,Z). In [HS0Y, the authors define a weight-2 Hodge
structure on the whole cohomolody* (X, «, Z) with
H*Y(X,0,C) := e . H*?(X,C).
We denote by

Hyo(X,a,2Z) == H"'(X,a,C) N H*(X, Z)

its (1, 1)-integral part. It coincides with the image of the twistede@hcharacter. Whea = 1,
this reduces to the familiar definitioh};, (X, Z) = H°(X,Z) ® NS(X) & H*(X,Z).

The algebraic Mukai lattice. Let (X, «) be twisted K3 surface.
Definition 2.7. (@) We denote by : K (D*(X,a)) — H*

alg
v(E) := ch(E)/td(X).
(b) TheMukai pairing(__,_ ) is defined onH;lg(X,a,Z) by

(X, o, Z) the Mukai vector

((r,e,s), (r',d,s") i=cd —rs’ —sr' € Z.

It is an even pairing of signatur@, p(X)), satisfying—(v(E),v(F)) = x(E,F) =
Si(=Diext!(E, F)forall E,F € D*(X, ).
(c) Thealgebraic Mukai lattices defined to be the pa(rH;lg(X, a,7), (_,_)).

Recall that an embedding V' — L of a latticeV into a latticeL is primitive if L/i(V') is a
free abelian group. In particular, we call a non-zero vestas H, (X, «,Z) primitive if it is

alg
not divisible inH;lg(X,a,Z). Throughout the paper will often denote a primitive class with
v2 > 0.

Given a Mukai vectov € H*

alg(X, «,7), we denote its orthogonal complement-by.
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Stability conditions on K3 surfaces. Let (X, ) be a twisted K3 surface. We remind the reader
that this includes fixing a B-field lift, of the Brauer clasa.

Definition 2.8. A (full, numerical)stability conditionon (X, «) is a Bridgeland stability condition
onD?(X, a), whose lattice\ is given by the Mukai IatticeH;Ig(X, a, 7).

In [Bri08], Bridgeland describes a connected component of the spfaneneerical stability
conditions onX. These results have been extended to twisted K3 surfacédMis08. In the
following, we briefly summarize the main results.

Let 3,w € NS(X)g be two real divisor classes, withbeing ample. FoE € D*(X, a), define

Z,, 5(E) = <eiw+ﬁ+ﬁo,v(E)) .

In [BriO8, Lemma 6.1] Bridgeland constructs a hedr s by tilting at a torsion pair (se¢{MS08,
Section 3.1] for the case # 1). Its objects are two-term complexgs 4 B0 with the property:

e Kerdis atorsion-freex-twisted sheaf such that, for every non-zero subshéaf Ker d,
we havelZ, 5(E') < 0;

o the torsion-free part dfok d is such that, for every non-zero torsion free quotiéok d —
E", we havel Z,, g(E") > 0.

Theorem 2.9([Bri08, Sections 10, 11]HMSO08, Proposition 3.8]) Leto = (Z, P) be a stability
condition such that all skyscraper sheav€s) of points ares-stable. Then there are real divisor
classesw, 8 € NS(X)r with w ample, such that, up to théTJ(]R{)—action, o is equal to the
stability conditions,, 3 determined byP((0,1]) = A, gandZ = Z, g.

We will call such stability conditiongeometri¢ and writeU (X, o) C Stab(X, «) for the the
open subset of geometric stability conditions.
Using the Mukai pairing, we identify any central chargec Hom(H;lg
vectorQdz in H}), (X, a, Z) ® C such that
Z2()=Qz,_).
The vector2; belongs to the domaiR;" (X, «), which we now describe. Let

P(X,a) C Hyo(X,,Z) @ C

(X,,2),C) with a

be the set of vector® such that3(2, (2 span a positive definite 2-plane Iﬂi;lg(X, a,Z) ®R.
The subseP, (X, «) is the set of vectors not orthogonal to any spherical class:

Po(X,a) = {Q e P(X,a): () #0, foralls € Hy, (X, o, Z) with s? = —2}.

Finally, Py(X, «) has two connected components, corresponding to the di@miaduced on
the plane spanned %2, RQ; we letP; (X, ) be the component containing vectors of the form
e™wthA+Po for w ample.

Theorem 2.10([Bri08, Section 8], HMS08, Proposition 3.10]) Let Stab'(X, «) be the con-
nected component of the space of stability conditions @uinta geometric stability conditions
U(X,a). Let Z: Stab’(X,a) — H;lg(X,a,Z) ® C be the map sending a stability condition
(Z,P)toQz, whereZ(_) = (Qz,_).

ThenZ is a covering map 0Py (X, a).

We will need the following observation:



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 11

Proposition 2.11. The stability conditions,, s onU (X, ) ando,, _3 onU(X,a~') are dual to
each other in the following sense: An objégte D°(X, o) is 0., g-(semi)stable of phasgif and
only if its shifted derived duat"[2] € D*(X,a~1) is o, _s-(semi)stable of phase¢.

Proof. By [Bay09 Propositions 3.3.1 & 4.2], this follows as iBMT11, Proposition 4.3.6]. O

Derived Torelli. Any positive definite 4-plane i#/*(X, «, R) comes equipped with a canonical
orientation, induced by the Kahler cone. A Hodge-isometnH*(X, o, Z) — H*(X',a/,Z) is
called orientation-preserving if it is compatible withghirientation data.

Theorem 2.12(Mukai-Orlov). Given an orientation-preserving Hodge isometrpbetween the
Mukai lattice of twisted K3 surface§X, «) and (X', /), there exists a derived equivalence
®: D¥(X,a) — DX’ /) with @, = ¢. Moreover,® may be chosen such that it sends the
distinguished componeftab (X, ) to Stab' (X', o).

Proof. The casex = 1 follows from Orlov’s representability resulO[r197] (based onluk874),
see HLOY04, Plo05 HMSO09. The twisted case was treated #H$064. The second statement
follows identically to the cas& = X’ treated in Har12 Proposition 7.9]; see alséi[ly0g. [

Walls. One of the main properties of the space of Bridgeland stglitinditions is that it admits
a well-behaved wall and chamber structure. This is due tddg&tand and Toda (the precise
statement isBM12, Proposition 2.3]).

Let (X, ) be a twisted K3 surface and let € H;) (X, Z) be a Mukai vector. Then
there exists a locally finite set avalls (real codimension one submanifolds with boundary) in
Stab'(X, «), depending only ow, with the following properties:

(&) Wheno varies within a chamber, the setskemistable and-stable objects of class
does not change.

(b) Whengo lies on a single wallw C StabT(X, «), then there is a-semistable object that
is unstable in one of the adjacent chambers, and semistetble other adjacent chamber.

(c) When we restrict to an intersection of finitely many wadls, . .., W, we obtain a wall-
and-chamber decomposition &%, N - - - N W, with the same properties, where the walls
are given by the intersectiod® N, N - - - N W, for any of the wall$V C Stab' (X, o)
with respect tov.

Moreover, ifv is primitive, theno lies on a wall if and only if there exists a stricysemistable
object of classv. The Jordan-Holder filtration af-semistable objects does not change when
varies within a chamber.

Definition 2.13. Letv € H*

alg(X , o, 7). A stability condition is calledyenericwith respect tov
if it does not lie on a wall.

Remark 2.14. Given a polarizatiorf{ that is generic with respect g there is always a Gieseker
chambelC: for o € C, the moduli spacé/,(v) of Bridgeland stable objects is exactly the moduli
space off -Gieseker stable sheaves; sBe(8, Proposition 14.2].

Moduli spaces and projectivity. Let (X, a) be a twisted K3 surface and lete H;lg(X, o, 7).

Giveno = (Z,P) e Stab’(X,a) and¢ € R such thatZ(v) € Rsq - e™V1, let M, (v, §)
andMis (v, ¢) be the moduli stack of-semistable and-stable objects with phasgand Mukai
vectorv, respectively. We will omitp from the notation from now on.

If o € Stab'(X,a) is generic with respect te, thenMi,(v) has a coarse moduli space
M, (v) of o-semistable objects with Mukai vecter((BM12, Theorem 1.3(a)], which generalizes
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[MYY11b, Theorem 0.0.2]). Itis a normal projective irreducibleigty with Q-factorial singu-
larities. If v is primitive, thenM,, (v) = M$!(v) is a smooth projective hyperkahler manifold (see
Section3).

By results of Yoshioka and Toda, there is a very preciser@itdor non-emptiness of a moduli
space, and it always has expected dimension:

Theorem 2.15.Letv = mvy € H}) (X, a,Z) be a vector withv, primitive andm > 0, and let
o€ StabT(X, «) be a generic stability condition with respectyo

(@) The coarse moduli spacd,,(v) is non-empty if and only ¥2 > —2.

(b) Eitherdim M, (v) = vZ+2and M5t (v) # (), orm > 1 andv < 0.

In other words, whew? # 0 and the dimension of the moduli space is positive, then iivisrg
by dim M, (v) = v + 2.

Proof. This is well-known: we provide a proof for completeness.stof all, claim @) follows
from results of Yoshioka and Toda (sé&M12, Theorem 6.8]). Since is generic with respect
to v, we know that), (v) exists as a projective variety, parameterizing S-equiceclasses of
semistable objects. Moreover,if € M, (v), and we letF’ — E be such that, (F) = ¢,(E),
thenv(F) = m'vy, for somem’ > 0. Hence, the locus of strictly semistable objects\ip(v)
coincides with the image of the natural map

SSL: [ Mo(mave) x Ms(mavo) — My(v), SSL((E1, E,)) = By & Ea.

mi1+mao=m

If we assumevZ > 0 (and so> 2), then we can proceed by induction en Form = 1,
M5t (vg) = M, (vo) and the conclusion follows from the Riemann-Roch Theoredkuk874.

If m > 1, then we deduce from the inductive assumption that the inohgke mapSSL has
dimension equal to the maximum @f3 + m3)v2 + 4, for m; + ma = m.

We claim that we can construct a semistable objéatvith vectorv which is also a Schur
object, i.e. Hom(E, F) = C. Indeed, again by the inductive assumption, we can consider
stableobject F,,,_; with vector(m — 1)vq. Let F' € M, (vy). Then, again by the Riemann-Roch
TheoremExt!(F, F,,_1) # 0. We can take any non-trivial extension

0—F,.1—F,—F—0.

Since bothF;,, 1 andF' are Schur objects, and they have no morphism between eagth Bthis
also a Schur object.

Again by the Riemann-Roch Theorem amdiuk84], we deduce that the dimension df, (v)
is equal toext! (F,,, F,,) = m?v3 + 2. Since, for allmy, ms > 0 with my + ma = m, we have

(m? +m3)va +4 <m?v3 +2,
this shows that/5!(v) # () as claimed.
For the caser? < 0, see BM12, Lemma 7.1 and Lemma 7.2]. g
Let us also point out that the proof shows a stronger statemen

Lemma 2.16. Letv = mvy with v3 > 0, ando € Stab'(X, a), not necessarily generic with
respect tov. If there existr-stableobjects of class, then the same holds fer.

Proof. Let I be a generic deformation &f,,, and assume that it is strictly semistable;Het+ £’
be a semistable subobject of the same phase. The above pme$ she Mukai vectow (E)
cannot be a multiple of,. Using the universal closedness of moduli spaces of seniéstdjects,
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it follows as in [Tod08 Theorem 3.20] thak,, also has a semistable subobject with Mukai vector
equal tov(E). This is not possible by construction. O

Line bundles on moduli spaces.In this section we recall the main result &W12]. It shows
that every moduli space of Bridgeland-stable objects caegegoped with a numerically positive
line bundle, naturally associated to the stability cooditi

Let (X, «) be a twisted K3 surface. L&t be a proper algebraic space of finite type oller
leto = (Z,P) € Stab'(X,«), and let§ € D*(S x (X, a)) be a family ofs-semistable objects
of classv and phasep: for all closed pointss € S, & € P(¢) with v(&) = v. We write
dg: DP(S) — DP(X, «) for the Fourier-Mukai transform associatedto

We construct a class, € NS(S)g on S as follows: To every curvé’ C S, we associate

C—1l,.C:=S _M )
Z(v)
This defines a numerical Cartier divisor classSyrsee BM12, Section 4].

Remark 2.17. The classical construction of determinant line bundles (sk.10, Section 8.1])
induces, up to duality, the so-calldtlikai morphismde: v — NS(S). It can also be defined by

4) bs(w).C := (w,v(Pe(Oc))).
If we assumeZ(v) = —1, and writeZ(_) = (2z,_) as above, we can also write
(5) Uy = 05(3Qy2).

Theorem 2.18([BM12, Theorem 4.1 & Remark 4.6])The main properties df, are:
(a) ¢, is a nef divisor class oty. Additionally, for a curveC' C S, we havel,.C' = 0 if
and only if, for two general closed points¢’ € C, the corresponding object., £ €
D’(X, ) are S-equivalent.
(b) For any Mukai vector € H;lg(X, o, Z) and a stability conditionr € Stab'(X, «) that

is generic,/,, induces an ample divisor class on the coarse moduli spdgév).

For any chambef C Stabf(X, a), we thus get a map
(6) le: C — Amp(Mc(v)),

where we used the notatiavi(v) to denote the coarse moduli spakk (v), independent of the
choices € C. The main goal of this paper is to understand the global beha¥this map.

We recall one more result fromBM12], which will be crucial for our wall-crossing analysis.
Letv € H}, (X, a,Z) be aprimitive vector withv? > —2. Let)V be a wall forv and letsy € W
be a generic stability condition on the wall, namely it does Ipelong to any other wall. We
denote byr, ando_ two generic stability conditions near in opposite chambers. Then all
o-semistable objects are alsg-semistable. Hencé,,, induces two nef divisoré;, , and/,, _
on M, (v) andM,_(v) respectively.

Theorem 2.19([BM12, Theorem 1.4(a)]) The divisors(,, . are big and nef on\/,, (v). In
particular, they are semi-ample, and induce birational tantions

7t My, (V) — M,

where)M . are normal irreducible projective varieties. The curvesitacted byr* are precisely
the curves of objects that are S-equivalent with respeet to

Definition 2.20. We call a wall:
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(a) afake wall if there are no curves i/, (v) of objects that are S-equivalent to each other
with respect targ;

(b) atotally semistable wallif M5! (v) = 0;

(c) aflopping wall if we can identify A/, = M_ and the induced map/,, (v) --»
M,_(v) induces a flopping contraction;

(d) adivisorial wall, if the morphismsr*: M, (v) — M+ are both divisorial contractions.
By [BM12, Theorem 1.4(b)], ibV is not a fake wall and/$ (v) ¢ M, (v) has complement

o0

of codimension at least two, thef is a flopping wall. We will classify walls in Theore7.

3. REVIEW: BASIC FACTS ABOUT HYPERKAHLER VARIETIES

In this section we give a short review on hyperkahler mdd#fo The main references are
[Bea83 GHJO3 Marll]].

Definition 3.1. A projective hyperlithler manifoldis a simply connected smooth projective va-
riety M such thatH°(M, Q3,) is one-dimensional, spanned by an everywhere non-degenera
holomorphic2-form.

The Néron-Severi group of a hyperkahler manifold cardesatural bilinear form, called the
Fujiki-Beauville-Bogomolov formlt is induced by a quadratic form on the whole second coho-
mology groupg : H?(M,Z) — 7Z, which is primitive of signaturé3, by(M) — 3). It satisfies the
Fujiki relation

@) / o® = Fyr-qla), o€ HX(M,Z),
M

where2n = dim M andF}y is theFujiki constant which depends only on the deformation type of
M. We will mostly use the notatiofi ,_ ) := ¢(_,_) for the induced bilinear form oNS(M).

The Hodge structur(aHz(M, Z), q) behaves similarly to the case of a K3 surface. For example,
by [VerQ09, there is a weak global Hodge theoretic Torelli theorem(f@formation equivalent)
hyperkahler manifolds.

Moreover, some positivity properties of divisors &h can be rephrased in terms@fWe first
recall a few basic definitions on cones of divisors.

Definition 3.2. An integral divisorD € NS(M) is called

e big, if its litaka dimension is maximal;
e movableif its stable base-locus has codimensiore;
o strictly positive if (D, D) > 0 and(D, A) > 0 for a fixed ample clasg on M.

The real (not necessarily closed) cone generated by bip.(me®vable, strictly positive, effec-
tive) integral divisors will be denoted B9ig(M) (resp.,Mov (M), Pos(M), Eff(M)). We have
the following inclusions:

Pos(M) C Big(M) C Eff(M)
Nef(M) € Mov(M) C Pos(M) C Big(M) = Eff(M).

The only non-trivial inclusion iPos(M) C Big(M), which follows from Huy99, Corollary
3.10]. Divisors inPos(M ) are calledpositive

We say that an irreducible divisd? C M is exceptionaif there is a birational map: M --»
M’ contractingD. Using the Fuijiki relations, one proveés? < 0 and (D, E) > 0 for every
movable divisorE’ [Huy99, Section 1]. We lepp be the reflection ab, i.e., the linear involution
of NS(M)q fixing D+ and sendingD to —D.
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Proposition 3.3([Mar131). The reflectiorpp at an irreducible exceptional divisor is an integral
involution of NS(M). Let Wgy. be the Weyl group generated by such reflectipps The cone
Mov (M) N Pos(M) of big movable divisors is the fundamental chamber, for tt@a of Wy,
on Pos(M), given by(D, _) > 0 for every exceptional divisab.

The difficult claim is the integrality ofop; in our case, we could also deduce it from our
classification of divisorial contractions in Theorény. As explained inlMarll, Section 6], the
remaining statements follow from Zariski decompositiondivisors Bou04 and standard results
about Weyl group actions on hyperbolic lattices.

Definition 3.4. Let M be a projective hyperkahler manifold of dimensidn. A Lagrangian
fibration is a surjective morphism with connected fibérs M — B, where B is a smooth
projective variety, such that the generic fiber is Lagramgigth respect to the symplectic form
w € HO(M,Q32)).

By the Arnold-Liouville Theorem, any smooth fiber of a Lagyan fibration is an abelian
variety of dimensiom. Moreover:

Theorem 3.5([Mat99, Mat01] and Hwa0q). Let M be a projective hypedhler manifold of
dimension2n. Let B be a smooth projective variety of dimension< dim B < 2n and let
h: M — B be a surjective morphism with connected fibers. Thés a Lagrangian fibration,
and B = P".

This result explains the importance of Conjectliré In addition, the existence of a Lagrangian
fibration is equivalent to the existence of a single Lagrangdorus inM (see [GLR11h HW13,
Matl12], based on previous results iAhel2 GLR113).

The examples of hyperkahler manifolds we will considemacgluli spaces of stable complexes,
as explained by the theorem below. It has been proven for nhoidsheaves in Yos0l, Sections
7 & 8], and generalized to Bridgeland stability conditiondBM12, Theorem 6.10 & Section 7]:

Theorem 3.6(Huybrechts-O’Grady-Yoshioka)Let (X, «) be a twisted K3 surface and let €
H;lg(X,a,Z) be a primitive vector with? > —2. Leto € Stab'(X, ) be a generic stability
condition with respect t&. Then:
(a) M, (v)isaprojective hypei&hler manifold, deformation-equivalent to the Hilbert soie
of points on any K3 surface.
(b) The Mukai morphism induces an isomorphism
e 0,y: vt = NS(M,(v)), if v2 > 0;
e O,y: vt/v = NS(M,(v)), if v2 = 0.
Under this isomorphism, the quadratic Beauville-Bogomdtorm forNS(1/,(v)) coin-
cides with the quadratic form of the Mukai pairing OX, «).

Hered, . is the Mukai morphism as in Remagk17, induced by a (quasi-)universal family.
We will often dropo or v from the notation. It extends to an isomorphism of Hodgecstmes,
identifying the orthogonal complement-*" inside the whole conomolog§f*(X, a, Z) (rather
than its algebraic part) witl/?(M, (v), Z). The following result is Corollary 9.9 inlar11] for
the untwisted case = 1; by deformation techniques, the result also holds in thetes case:

Theorem 3.7([Ver09, [Mar11]). For v primitive andv? > 0, the embeddindl? (M, (v),Z) =
vbi <y H*(X,,Z) of integral Hodge structures determines the birationakslafM, (v).

However, as indicated in the introduction, we only need thplication that birational moduli
spaces have isomorphic extended Hodge structures.
We will also the need the following special case of a resulNaynikawa and Wierzba:
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Theorem 3.8([Wie03, Theorem 1.2 (ii)] andNlamOZ, Proposition 1.4]) Let M be a projective
hyperkahler manifold of dimensio@n, and letM be a projective normal variety. Let: M —
M be a birational projective morphism. We denote $iythe set of pointp € M such that
dim 7=!(p) = i. Thendim S; < 2n — 2i.

In particular, if = contracts a divisotD C M, we must haveim 7(D) = 2n — 2.

Consider a non-primitive vecter. As shown by O’'Grady and Kaledin-Lehn-Sorger, the moduli
spaceM, (v) can still be thought of as a singular hyperkahler manifoldhe following sense:

Definition 3.9. A normal projective varietyM! is said to havesymplectic singularitiesf
o the smooth pard/,., C M admits a symplectic 2-fornw, such that
e for any resolutionf : M — M, the pull-back ofv to f~1(M,,) extends to a holomor-
phic form onlM.

Given a hyperkahler manifold/ and a dominant rational map/ --» M, whereM is a
normal projective variety with symplectic singularitigben it follows from the definitions that

dim(M) = dim(M ). This explains the relevance of the following theorem; @suits in BM12]
reduce it to the case of moduli of sheaves:

Theorem 3.10([0’G99] and [KLS06]). Let (X, «) be a twisted K3 surface and let= mvy €
H}, (X, o, Z) be a Mukai vector withv, primitive andv? > 2. Lets € Stab'(X, a) be a generic

stability condition with respect te. ThenM,(v) has symplectic singularities.

4. HARDER-NARASIMHAN FILTRATIONS IN FAMILIES

In this section, we will show that results by AbramovichiBlathuk and Toda imply the exis-
tence of HN filtrations in families, see Theoreh3.

The results we present will work as well in the twisted cotjitéx simplify notation, we only
state the untwisted case. L¥tbe a smooth projective variety ov€r We will write D.(Y") for
the unbounded derived of quasi-coherent sheaves. PickicelAtandv for the bounded derived
categoryD’(Y") as in Definition2.2, and letos be a Bridgeland stability ob®(Y").

Definition 4.1. We sayo satisfiesopenness of stabilitif the following condition holds: for any
schemes of finite type overC, and for any€ € D?(S x Y') such that its derived restrictiafy, is
ao-semistable object dd®(Y") for somes € S, there exists an open neighborhood U C S of
s, such that, is o-semistable for all’ € U.

Theorem 4.2([Tod08 Section 3]) Openness of stability holds whéhis a K3 surface and is a
stability condition in the connected compongnab!(Y').?

Theorem 4.3. Leto = (Z, A) € Stab(Y") be an algebraic stability condition satisfying openness
of stability. Assume we are given an irreducible varistgverC, and an object € D?(S x Y).
Then there exists a system of maps

(8) 0=t 52 5...56m=¢

in D®(S x Y'), and an open subsét c S with the following property: for any € U, the derived
restriction of the system of maf®)

0=E0 &l &2 5. . 5em=¢,
is the HN filtration of&;.

2In [Tod08 Section 3], this Theorem is only stated for famili€satisfyingExt<°(&s, &) = 0 forall s € S.
However, Toda’s proof in Lemma 3.13 and Proposition 3.18&neges that assumption.
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The proof is based on the notion of constant family of t-dtries due to Abramovich and
Polishchuk, constructed i\P0Og (in caseS is smooth) andRol07 (in general).

Throughout the remainder of this section, we will assumedhend.S satisfy the assumptions
of Theorem4.3. A t-structure is callectlose to Noetheriaiif it can be obtained via tilting from
a t-structure whose heart is Noetherian. Bot R, the categoryP((¢ — 1,¢]) C D°(Y) is the
heart of a close to Noetherian bounded t-structuré’agiven by D=<" = 77(((15 —1,400)) and
D=0 = P((—o0, ¢]) (see the example discussed at the endPof(7, Section 1]). In this situation,
Abramovich and Polishchuk’s work induces a bounded t-tire¢ D5, D3°) onDP(S x V); we
paraphrase their main results as follows:

Theorem 4.4(JAPOG, Pol07). Let.A be the heart of a close to Noetherian bounded t-structure
(D=0, D=%) on D*(Y). Denote byA,. C Dy (Y) the closure ofd under infinite coproducts in
the derived category of quasi-coherent sheaves.

(a) For any schemé of finite type ofC there is a close to Noetherian bounded t-structure
(D5°, D3 onD(S x Y), whose hearids is characterized by

e As < (py)«(Elyxu) € Ay for every open affin€ C S

(b) The above construction defines a sheaf of t-structures $v whenS = [J, U; is an
open covering of, then& € Ag if and only if€|y xu, € Ay, for everyi. In particular,
fori: U C S open, the restriction functar* is t-exact.

(c) Wheni: S’ C S'is a closed subscheme, thanis t-exact, and* is t-right exact.

We briefly comment on the statements that are not explicityntioned in Pol07, Theorem
3.3.6]: From part (i) of Pol07, Theorem 3.3.6], it follows that the t-structure consteacthere on
D(S x Y) descends to a bounded t-structureldf{S x Y). To prove that the push-forward in
claim (c) is t-exact, we first use the sheaf property to reduce to the wénereS is affine; in this
case, the claim follows by construction. By adjointnesflibws that:* is t-right exact.

For an algebraic stability conditiom = (Z,P) on D*(Y") and a phase € R, we will from
now on denote its associated t-structurey> ¢) = D="1, P(< ¢) = D=0, and the associated
truncation functors by->¢, 7=¢. By [Pol07, Lemma 2.1.1], it induces a t-structure By.(Y),
which we denote bP,.(> ¢), P,(< ¢). For the t-structure ob®(S x V') induced via Theorem
4.4, we will similarly write Ps(> ¢), Ps(< ¢), andr>¢ <¢.

We start with a technical observation:

Lemma 4.5. The t-structures o’(S x Y) constructed via Theorem.4 satisfy the following
compatibility relation:

9) [V Ps(< ¢+e) =Ps(< 9).
e>0

Proof. Assumef is in the intersection of the left-hand side 8j.(By the sheaf property, we may
assume tha$ is affine. The assumption implig¢py ).£ € Pye(< ¢ +€) forall e > 0.

By [Pol07, Lemma 2.1.1], we can descrilie,.(< ¢ + €) C Dq.(Y) as the right orthogonal
complement ofP(> ¢ + ¢) C D?(Y) insideD.(Y'); thus we obtain

NPel<o+9=NPGo+a) " = (JPEo+9) = (P(>9) =Pul< o).

e>0 e>0 e>0

Hence(py )€ € Pye(< ¢), proving the lemma. O
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We next observe that the truncation functets’, 75 induce a slicing oD?(S x Y). (See
Definition 2.1 for the notion of slicing on a triangulated category.)

Lemma 4.6. Assume that = (Z, P) is an algebraic stability condition, anBg(> ¢), Ps(< ¢)
are as defined above. There is a sliciRg on D®(S x Y) defined by

Ps(¢) = Ps(< ¢) N [ Ps(> & —e).

e>0

Note thatPgs(¢) cannot be characterized by the analogue of Thedrdnpart @). For example,
consider the case whekéis a curve andZ, P) the standard stability condition corresponding to
classical slope-stability iCoh Y. ThenP(1) C CohY is the category of torsion sheaves, and
Ps(1) € Coh S x Y is the category of sheaveés that are torsion relative ovet. However, for
U c S affine and a non-trivial familyF, the push-forwardpy ). F|v is never a torsion sheaf.

Proof. By standard arguments, it is sufficient to construct a HNHfilbm for any objecf € Ag :=

Ps(0,1]. In particular, sincer is algebraic, we can assume that both= P (0, 1] and.Ag are
Noetherian. For any € (0,1], we havePs(¢, ¢ + 1] C (Ag, As[1]). By [Pol07, Lemma 1.1.2],
this induces a torsion paif74, F) on Ag with

Ty = AsNPs(d,¢+1] and Fy =AsNPs(d—1,9]

Let Ty, — £ — F, be the induced short exact sequencelin Assumeyp < ¢'; sinceFy, C Fy,
the surjection® — F; factors via& — Fy — Fy. SinceAg is Noetherian, the set of induced
quotients{F;, : ¢ € (0,1]} of & must be finite. In addition, i, = F,, we must also have
Fyn = Fy forany¢” € (¢, ¢).

Thus, there exist real numbetg = 1 > ¢ > ¢2 > --- > ¢ > ¢41 = 0 such thatFy,
is constant forp € (¢;+1, ¢;), but such thatry,, . # Fy, ... Let us assume for simplicity that
Fy, e = &; the other case is treated similarly by settifiy= Fy, ., and shifting all other indices
by one. Fori =1,...,] we set

o [':i=Fy .,
o & :=Ker(£ - F'),and
o Al = 5i/5i_1.

We haveE’ € Ps(> ¢; — €) and&i~1 = 75 %*& for all e > 0. Hence the quotient’ satisfies,
forall e > 0,

o A" €Ps(> ¢ —e),

o A" € Ps(< i + ).
The latter impliesd® € Ps(< ¢;) by Lemma4.5. By definition, we obtaimd? € Ps(¢;). Finally,
we haveF! € Pg(0,1] N Ps(< ¢) for all e > 0. Using Lemmad.5again, we obtaiF’ = 0, and
thus&! = £. Thus theS? induce a HN filtration as claimed. O

The following lemma is an immediate extension AP[06, Proposition 3.5.3]:

Lemma 4.7. Assume thaf € Pg(¢) for somep € R. and thatE; # 0 for s € S generic. Then
there exists a dense subsetC S, such thatg, is semistable of phasgfor all s € Z.

Proof. By [APOG, Proposition 3.5.3], applied to the smooth locusothere exists a dense subset
Z C Ssuchthat; € P((¢ — 1,¢]). Since€ € Ps(> ¢ — ¢) for all e > 0, and since is t-right
exact, we also hav&; € P(> ¢ —¢) for all e > 0. Considering the HN filtration of, this shows
that&; € P(¢) forall s € Z. O
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Proof of Theorend.3. The statement now follows easily from the above two lemmast &f alll,
under the assumption of openness of stability, the densesdlnf Lemmad.7 may of course be
taken to be open.

Given any€ € D?(S x Y), let

(10) 0= ... 5em=¢

be the HN filtration with respect to the slicing of Lemnis6, and letA’ be the HN filtration
quotients fitting in the exact triangle’—! — & — AJ. Letjy,. .., Ji be the indices for which
the generic fibei? A’ does not vanish, and |t be the phase ofi’i. Then we claim that

(11) 0=E0 &t 5&2 ... 56m=¢

has the desired property. Indeed, there is an open slbseth that for alk € U, the fibersAZ

are semistable for afl = 1,...,1, and such thatl] = 0 for all j ¢ {i1,...,4;}. Then, for each
suchs, the restriction of the sequence of maps)(via i} induces a sequence of maps that satisfies
all properties of a HN filtration. O

5. THE HYPERBOLIC LATTICE ASSOCIATED TO A WALL

Our second main tool will be a rank two hyperbolic latticecassted to any wall. LetX, «)
be a twisted K3 surface. Fix a primitive vectorc H;lg(X, «, Z) with v2 > 0, and a wallV of
the chamber decomposition with respectto

Proposition 5.1. To each such wall, let,y C H, (X, «,Z) be the set of classes

alg
weHy <& %@:O forallo = (Z,P) € W.

Then#,y has the following properties:

(a) It is a primitive sublattice of rank two and of signature —1) (with respect to the re-
striction of the Mukai form).

(b) Leto,,o_ be two sufficiently close and generic stability conditionsopposite sides of
the wall)V, and consider any_ -stable objectl € M, (v). Then any HN filtration
factor A; of E with respect tar_ has Mukai vectow (4;) contained intyy.

(c) If og is a generic stability condition on the wal, the conclusion of the previous claim
also holds for anyg-semistable objeck of classv.

(d) Similarly, letE be any object withv(E) € H,y, and assume that it is,-stable for a
generic stability conditiorrg € V. Then every Jordan-dlder factors ofE with respect
to oo will have Mukai vector contained i .

The precise meaning of “sufficiently close” will become agpe in the proof.

Proof. The first two claims ofd) are evident. To verify the claim on the signature, first nbg by
the assumption? > 0, the lattice?,y is either hyperbolic or positive (semi-)definite. On theasth
hand, consider a stability condition= (Z, A) with Z(v) = —1. Since(3Z)? > 0 by Theorem
2.1Q since?H,y is contained in the orthogonal complementydt, and since the algebraic Mukai
lattice has signatur, p(X)), this leaves the hyperbolic case as the only possibility.

In order to prove the remaining claims, consideeareighborhoodB, (7) of a generic stability
conditionT € W, with 0 < e < 1. Let &, be the set of object& with v(E) = v, and that are
semistable for some stability condition By (7). Letily be the set of classas € H ), (X, o, Z)
that can appear as Mukai vectors of Jordan-Holder factofs e S, for any stability condition
(Z',A") € B(1). As shown in the proof of local finiteness of walls (s&i(8, Proposition
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9.3] or BM11, Proposition 3.3]), the sét,, is finite; indeed, such a class would have to satisfy
|Z'(u)| < |Z'(v)|. Hence, the union of all walls for all classestlp is still locally finite.

To prove claim ), we may assume thad’ is the only wall separating. ando_, among
all walls for classes inl,. Letog = (Zy, Py) € W be a generic stability condition in the wall
separating the chambers @f ,o_. It follows that £ and all A; are oy-semistable of the same

phase, i.eﬁ%&“;)) = 0. Since this argument works for genesig, we must haver(A4;) € Hyy
by the definition ofH .
Claim (c) follows from the same discussion, ard) similarly by considering the set of all walls

for the classesl, ) instead ofl . O

Our main approach is to characterize which hyperbolicdest{ C H;lg(X, «, 7)) correspond
to a wall, and to determine the type of wall purely in term&{fWe start by making the following
definition:

Definition 5.2. LetH C H;lg(X,a,Z) be a primitive rank two hyperbolic sublattice containing
v. A potential wallV associated tG@{ is a connected component of the real codimension one
submanifold of stability conditions = (Z, P) which satisfy the condition thaf (# ) is contained

in aline.

Remark 5.3. The statements of Propositi@nl are still valid whenV is a potential wall as in the
previous definition.

Definition 5.4. Given any hyperbolic latticé{ C H;lg(X,a,Z) of rank two containingv, we

denote byPy, C H®R the cone generated by integral clasaes # with u? > 0 and(v,u) > 0.
We call Py the positive coneof 4, and a class itPy N H is called gpositive class

The condition(v,u) > 0 just picks out one of the two components of the set of reakelas
with u?> > 0. Observe thaf;, can be an open or closed cone, depending on whether the lattic
contains integral classes that are isotropicw? = 0.

Proposition 5.5. Let W be a potential wall associated to a hyperbolic rank two sttda # C
H;lg(X,a,Z). Foranyo = (Z,P) € W, letC, C H ® R be the cone generated by classes
u € H satisfying the two conditions

Z

uw’>-2 and ﬁﬁ > 0.

Z(v)

This cone does not depend on the choice ef VW, and it containsPy,.
If u € C,, then there exists a semistable object of clader everys’ € W. If u ¢ C,, then

there does not exist a semistable object of clagsr generico’ € W.

From here on, we will write”),, instead ofC,,, and call it the cone of effective classes#h
Given two different wallgV,;, Ws, the corresponding effective con€$y, , Cyy, will only differ
by spherical classes.

Proof. If u? > —2, then by Theoren2.15there exists a-semistable object of classfor every

o= (Z,P) € W. HenceZ(u) # 0, i.e, we cannot simultaneously hauec H (which implies
%% =0) and%% = 0. Therefore, the conditiom% > 0 is invariant under deforming a
stability condition insidé/V, andC,, does not depend on the choicecof W.

Now assume for contradiction th#t, is antEJ)contained irCyy. Sincev € C)y, this is only

possible if there is a real classc Py with %m = 0; after deformingr € W slightly, we may
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assumeu to be integral. As above, this impligs(u) = 0, in contradiction to the existence of a
o-semistable object of class
The statements about existence of semistable objectsvfdilectly from Theoren2.15 [

Remark 5.6. Note that by constructioryy, C H ® R is strictly contained in a half-plane. In
particular, there are only finitely many classe€y N (v — CW) N H (in other words, effective
classear such thatv — u is also effective).

We will use this observation throughout in order to freelykeayenericity assumptions: a
generic stability conditiorry € W will be a stability condition that does not lie on any additib
wall (other than)V) for any of the above-mentioned classes. Similarly, byibtaltonditions
o1, o0_ nearbyoy we will mean stability conditions that lie in the two chambeadjacent te for
the wall-and-chamber decompositions with respect to attigeotlasses iy, N (v — Cyy) N H.

The behavior of the potential wall’ is completely determined I3 and its effective conéyy:

Theorem 5.7. LetH C H*lg(X, a, 7)) be a primitive hyperbolic rank two sublattice containing

a.

v. LetW c Stabf(X, a) be a potential wall associated # (see Definitiorb.2).
The setV is a totally semistable wall if and only if there exists eitha isotropic classw € H
with (v, w) = 1, or an effective spherical classe C)y N H with (s, v) < 0. In addition:

(a) The se?V is a wall inducing a divisorial contraction if one of the foWing three condi-
tions hold:
(Brill-Noether): there exists a spherical classs H with (s,v) = 0, or
(Hilbert-Chow): there exists an isotropic class € H with (w,v) =1, or
(Li-Gieseker-Uhlenbeck): there exists an isotropic class € H with (w,v) = 2.

(b) Otherwise, ifv can be written as the sum = a + b of two positivé classes, or if there
exists a spherical class€ H with0 < (s,v) < "—22 then)V is a wall corresponding to
a flopping contraction.

(c) In all other cases)V is either a fake wall (if it is a totally semistable wall), dris$ not a
wall.

The Gieseker-Uhlenbeck morphism from the moduli space et&ier semistable sheaves to
slope-semistable vector bundle was constructediBg]. Many papers deal with birational trans-
formations between moduli spaces of twisted Gieseker s$abissheaves, induced by variations
of the polarization. In particular, we refer tohia9 DH98] for the general theory of variation of
GIT quotients andEG95 FQ95 MW97] for the case of sheaves on surfaces. Thedsehcan be
thought as a generalization and completion of these reisutte case of K3 surfaces.

Proof outline. The proof of the above theorem will be broken into four sewiowe will distin-
guish two cases, depending on whethecontains isotropic classes:

Definition 5.8. We say thadV is anisotropicwall if 7,y contains an isotropic class.

In Section6, we analyze totally semistable non-isotropic walls, andtiSe 7 describes non-
isotropic walls corresponding to divisorial contractions Section8, we use a Fourier-Mukai
transform to reduce the treatment of isotropic walls to tke#-known behavior of the Li-Gieseker-
Uhlenbeck morphism from the Gieseker moduli space to themnt#dck space. For the remaining
cases, Sectiofi describes whether it is a flopping wall, a fake walls, or nolagall.

To give an example of the strategy of our proof, consider a with a divisor D C M, (v)
of objects that become strictly semistable on the wall. Wethe contraction morphism™ of

3In the sense of DefinitioB.4.
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Theorem2.19 Theorem3.8impliesdim 7 (D) > dim D — 1 = v2. Recall thatr* contracts a
curve if the associated objects have the same Jordan-Haltters. Intuitively, this means that the
sum of the dimensions of the moduli spaces parameteriziegahdan-Holder factors is at least
v?2; a purely lattice-theoretic argument (using that modudicsts always have expected dimension)
leads to a contradiction except in the cases listed in therEine. To make this argument rigorous,
we use the relative Harder-Narasimhan filtration with respeo_ in the family parameterized
by D; it induces a rational map from» to a product of moduli spaces of -stable objects. The
most technical part of our arguments deals with totally stmbie walls induced by a spherical
class. We use a sequence of spherical twists to reduce todhieys cases, see Propositios.

6. TOTALLY SEMISTABLE NON-ISOTROPIC WALLS

In this section, we will analyztotally semistable wallsvhile some of our intermediate results
hold in general, we will focus on the case whéfedoes not contain an isotropic class. The
relevance of this follows from Theore15 in this case, if the dimension of a moduli space
M, (u) is positive, then it is given by? + 2.

We will first describe the possible configurations of effeetspherical classes ify, and of
corresponding spherical objects witfiS) € Hyy.

We start with the following classical argument of Mukai (¢Bri08, Lemma 5.2]):

Lemma 6.1 (Mukai). Consider an exact sequenbe—~ A — E — B — 0 in the heart of a
bounded t-structured C D*(X, ) with Hom(A, B) = 0. Then

ext’(E, E) > ext' (A, A) + ext! (B, B).
The following is a well-known consequence of Mukai’s lemroft. [HMS08 Section 2]):

Lemma 6.2. Assume thafS is a o-semistable object witlixt!(S,S) = 0. Then any Jordan-
Holder filtration factor ofS is spherical.

Proof. Pick any stable subobjed C S of the same phase. Then there exists a short exact
sequencd’ — S — R with the following two properties:

(a) The object is an iterated extension .
(b) Hom(T, R) = 0.
Indeed, this can easily be constructed inductively: wellet= S/T'. If Hom(7', S/T) = 0, the
subobjectf = T already has the desired properties. Otherwise, any nanmerphisml” — R,
is necessarily injective; if we leR, be its quotient, then the kernel 85f— Rs is a self-extension
of T', and we can proceed inductively.
It follows thatHom (7', R) = 0, and we can apply Lemnalto conclude thaExt' (T, T) = 0.
Hence(v(T), v(T))) < 0, which also impliegv(T), v(T)) < 0. Thusv(T) is spherical, too.
The lemma follows by induction on the length &f O

Proposition 6.3. Let W be a potential wall associated to the primitive hyperbadittite +, and
let oy = (Zy, Poy) € W be a generic stability condition witdy(#) C R. ThenH and o satisfy
one of the following mutually exclusive conditions:
(a) The latticeH does not admit a spherical class.
(b) The latticeH admits, up to sign, a unique spherical class, and there £xstinique
op-stable objectS € Py(1) withv(S) € H.
(c) The latticeH admits infinitely many spherical classes, and there exiattbx two og-
stable spherical objects, T € Py(1) with v(S),v(T) € H. In this case,H is not
isotropic.
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Proof. Given any spherical class, € H, then by Theoren?2.15 there exists arg-semistable
objectS with v(S) = s andS € Py(1). If H admits a unique spherical class, then by Proposition
5.1and Lemm&.2, S must be stable.

Hence it remains to consider the case wheteadmits two linearly independent spherical
classes. If we consider the Jordan-Holder filtrations@gemistable objects of the corresponding
classes, and apply Propositibriand Lemméb.2, we see that there must be twg-stable objects
S, T whose Mukai vectors are linearly independent.

Now assume that there are three stable spherical olfjects, S5 € Py(1), and lets; = v(.5;).
Since they are stable of the same phase, we hae(S;,S;) = 0 for all i # j, as well as
Ext*(S;, S;) = 0 for k < 0. Combined with Serre duality, this impligs;, s;) = ext!(S;, S;) >
0.

However, a rank two lattice of signatuf@, —1) can never contain three spherical classes
s1,82,83 With (s;,s;) > 0 for ¢ # j. Indeed, we may assume that s, are linearly indepen-
dent. Letm := (s;,s2) > 0; since’H has signatur€l, —1), we havemn > 3. If we write
s3 = xs1 + yse, we get the following implications:

2
(s1,83) >0 = y>—zx
m
(s2,83) >0 = y< %x
(s3,83) = =2 = —2z% 4 2may — 2> <0

However, by solving the quadratic equation §oit is immediate that the term in the last inequality
is positive in the rangén—a: <y < Fux (see also Figure).

Finally, if H admits two linearly independent spherical class, then the group generated
by the associated reflectiops, p¢ is infinite; the orbit ofs consists of infinitely many spherical
classes. Additionally, an isotropic class would be a raiGolution of—222 + 2may — 2y? = 0,
but the discriminantn? — 4 can never be a square whenis an integerm > 3. O

Whenever we are in case)( we will will denote
the twoog-stable spherical objects iy, 7. We may
assume thab has smaller phase thah with respect
to o ; conversely,S has bigger phase thanwith re-
spect tao_. We will also writes := v(S),t := v(T),
andm := (s,t) > 2. We identify R? with Hy, ® R
by sending the standard basig#0t); under this iden-
tification, the ordering of phases &? will be consis-
tent with the ordering induced by, . We denote by
Q(z,y) = —222 + 2mxy — 2y? the pull-back of the
guadratic form induced by the Mukai pairing &ty .
Letr; < 7, be the two solutions of2r2 +2mr —2 = FIGURE 1. H,y, as oriented by
0; they are both positive and irrational (a8 — 4 can-
not be a square for > 3 integral). The positive con®, is thus the cone between the two lines
y = r;x, and the effective con€)y is the upper right quadrant y > 0.

We will first prove that the condition for the existence ofatt semistable walls given in
Theoremb.7 is necessary in the case of non-isotropic walls. We stat ait easy numerical
observation:
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Lemma 6.4. Givenl > 1 positive classea;,...,a; € Py with a? > (0,seta=a;+---+ ay.
Then

l
Z (a?+2) < a’

i=1

Proof. Since thea; are integral classes, afidy is an even lattice, we hawe > 2. If a; # a;,
thena;, a; span a lattice of signaturg, —1), which gives

I I
(ai,a;) > \/a?a? > 2, andthus a® > Za? +20(1—1) > Za? +21.
i=1 i=1
]

Lemma 6.5. Assume that the potential waly associated td{ satisfies the following conditions:

(a) The wall is non-isotropic.
(b) There does not exist an effective spherical ctassCyy with (s, v) < 0.

Then)V cannot be a totally semistable wall.

In other words, there existsag-stable object of clase. Note that by Lemm&.16 this state-
ment automatically holds in the case of non-primitivas well.

Proof. We will consider two maps from the moduli spat&; , (v). On the one hand, by Theorem
2.19 the line bundle/,, on M, (v) induces a birational morphism

" My, (v) = M.

The curves contracted by" are exactly curves of S-equivalent objects.

For the second map, first assume for simplicity that, (v) is a fine moduli space, and I€tbe
a universal family. Consider the relative HN filtration #mith respect tar_ given by Theorem
4.3 Letay,...,a, be the Mukai vectors of the semistable HN filtration quoseot a generic
fiber &, for m € M, (v); by assumptiond), we havea? # 0. On the open subséf of the
Theorem4.3, the filtration quotientsS?/£¢~1 are flat families ofr_-semistable objects of class
a;; thus we get an induced rational map

HN: M, (v) -=» My_(a;) x --- X My_(ay,).

Let] C {1,2,...,m} be the subset of indiceswith a? > 0, and leta = 3", a;.

Our first claim isa? < v2, with equality if and only ifa = v, i.e., if there are no classes with
a? <0:Letb=v-—a= Digr i If b2 > 0, and sob? > 2, the claim follows trivially from
(a,b) > 0:

(12) vZ=a’+2(a,b) +b?>a’+4.

Otherwise, observe that by our assumptien_ ) is non-negative on all effective classes; in par-
ticular, (v,b) > 0. Combined withb? < —2 we obtain

(13) a’?=v?— 2(v,b) + b2 <v?-—2.
Lemma6.4then implies
(14) v2+22a2+222(a?+2),

el
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with equality if and only if|I| = 1. By Theorem2.15 part {), this says that the target of the
rational mapHN has at most the dimension of the source:

(15) dim M, (v) > idim M, _(a;).
i=1

However, if HN(FE;) = HN(FE,), then £y, E; are S-equivalent: indeed, they admit Jordan-
Holder filtrations that are refinements of their HN filtratsowith respect ta_, which have the
same filtration quotients.

It follows that any curve contracted BN is also contracted by™; therefore

Z dim M,_(a;) > dim M = dim M, (v)
i=1

Hence we have equality in each step of the above inequaliieselative HN filtration is trivial,
and the generic fibef,, is o_-stable. In other words, the generic objectidf, (v) is alsoo_-
stable, which proves the claim.

In caselM,, (v) does not admit a universal family, we can constididt by first passing to an
étale neighborhood: U — M, (v) admitting a universal family; the induced rational map from
U induced by the relative HN filtration will then factor vja O

We recall some theory of Pell's equation in the language béspal reflections of the hyper-
bolic lattice:

Proposition and Definition 6.6. LetGy C Aut H be the group generated by spherical reflections
ps for effective spherical classes= Cyy. Given a positive clase € Py NH, theGy-orbit Gy .v
contains a unique claseg, such that(vy,s) > 0 for all effective spherical classesc Cyy.

We callvy theminimal classof the orbitGy.v.

Note that the notion of minimal class depends on the potena#l V), not just on the lattice
H.

Proof. Again, we only treat the case)(of Proposition6.3, the other cases being trivial. It is
sufficient to prove thatvg,s) > 0 and(vg,t) > 0. Assume(v,s) < 0. Thenps(v) = v —
|(v,s)| - sis still in the upper right quadrant, with smallercoordinate tharw, and with the same
y-coordinate. Similarly if(v,t) < 0. If we proceed inductively, the procedure has to terminate,
thus reachingg.

The uniqueness follows from Propositiér below. O

Assume additionally tha#{ admits infinitely many spherical classes, so we are in cgsef (
Proposition6.3. The hyperbolav? = —2 intersects the upper right quadranty > 0 in two
branches, starting at andt, respectively. Lety = s,s_1,s_9,... be the integral spherical
classes on the lower branch startingsandt; = t,ts,ts,... be those on the upper branch
starting att, see also Figur@. Thes; can be defined recursively By ; = ps(t), ands;_; =
ps. (sk+1) for & < —1; similarly for thet;.

Proposition 6.7. Given a minimal class of a Gy-orbit, definev;, i € Z viav; = pg,(v;—1) for
i >0, andv; = ps,,, (viq1) for i < 0. Then the orbitG.vy is given by{v; : i € Z}, where the
latter are ordered according to their slopesRt.

Note that these classes may coincide pairwise, in eg$e orthogonal tas or t.
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FIGURE 2. The orbit ofvg

Proof. The groupGy is the free produck, x Z,, generated byg andpy. It is straightforward to
check that withv; defined as above, we have
vo1=ps(Vo), V-2=pspt(Vo), V-3 = psptps(vo),..-,

and similarlyv; = p¢(v() and so on. This list containgvy) for all g € Zs x Z,. That thev; are
ordered by slopes is best seen by drawing a picture; see i@iseR. d

Fori > 0, letT;" € Py(1) be the uniquer.-stable object withv(T;") = t;; similarly for S;"
with v(S;") ='s; for i < 0. We also writel;” andS;” for the corresponding _-stable objects.
Proposition 6.8. Let W be a potential wall, and assume there is an effective sphledlass
s € Cy with (v,s) < 0. ThenWV is a totally semistable wall.

Additionally, letvy be the minimal class in the orbity,.v, and writev = v; as in Proposition

6.7. If T (v) > ¢T(vp), then
STTI+ o STTlfl 0---0 STT1+(E0)

is o -stable of classs, for everyo(-stable objectF, of classvy.

Similarly, if o1 (v) < ¢ (vo), then

STl oST7l o---0ST_L(Ep)
st KA

is o4-stable of classs for everyoy-stable object of classy.

The analogous statement holds for.

Note that when we are in cask) (of Proposition6.3 the above sequence of stable spherical
objects will consist of just one object.
Before the proof, we recall the following statement (#BI11, Lemma 5.9]):

Lemma 6.9. Assume thatl, B are simple objects in an abelian category.Hfis an extension of
the form
A— E - B%"

with Hom (B, E) = 0, then any quotient o is of the formB®". Similarly, given an extension
A®" < E - B
with Hom(E, A) = 0, then any subobject df is of the formA®"",
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Proof. We consider the former case, i.e., an extenslons £ — B®"; the latter case follows by
dual arguments. Lel — N be any quotient ofv. SinceA is a simple object, the composition
¥: A — E — N is either injective, or zero.

If v/ = 0, thenN is a quotient ofB®", and the claim follows. Ify is injective, letM be the
kernel of £ — N. ThenM N A = 0, and soM is a subobject oB%". SinceB is a simple object,
M is of the formB®"" for somer’ < r; sinceHom(B, E) = 0, this is a contradiction. O

Proof of Propositior5.8. Continuing with the convention of Propositién3, we use th@i;(R)-
action to assumey(#) C R, andZy(v) € Ro.

Consider the first claim. By assumption, we may find an effecsipherical class such that
(v,8) < 0. Pick aogp-semistable object with v(S) = s. By considering its Jordan-Holder
filtration, and using Lemma.2, we may find ar,-stablespherical objecS with (v, v(S)) < 0.
Assume, for a contradiction, th&V is not a totally semistable wall. Then there existg)astable
object E of classv. By stability, sinceE’ and S have the same phase, we hd¥em(S, F) =
Hom(E, S) = 0; hence(v, v(S5)) = ext!(S, E) > 0, a contradiction.

To prove the construction ef, -stable objects, let us assume that we are in the case otéhfini
many spherical classes. Let us also assumejthét) > ¢*(vy), the other case is analogous; in
the notation of Propositiof.7, this means, = v; for somel > 0. We defineE; inductively by

E;, = STT* (Ei—l)-

By the compatibility of the spherical twiStI'r, for 7" a spherical object, with the reflection )
and Propositior6.7, we havev(E;) = v;. Lemma6.9 shows thatF; is o -stable; however, for
the following induction steps, we cannot simply use Len@réiagain, as neithef; norT;r are
simple objects iPy(1).

Instead, we will need a slightly stronger induction
statement. Using Propositidnl, in particular part If),
we can define a torsion paif7;, F;) in Ay := Poy(1)
as follows: we let7; be the extension closure of ail, -
stable objectd” € Ay with ¢ (F') > ¢*(T;+1); by The-
orem2.15 since the Mukai vectors of stable objects have
self-intersection> —2 and all objectst’ as before have
self-intersection< 0, we deduce th&f; is the extension-
closure7; = (T}",...,T;"). Then let4; = (F;, T;[-1])
(see Figured). We can also describd; . ; inductively as
the tilt of A; at the torsion pait 7, F) with 7 = (T )
andF = (T4 )+ .
Induction claim: We haveFE; ¢ F;, and bothE; and

T;%, are simple objects ofl;.

By construction of the torsion paif7;, F;), this also
shows thatF; is o, -stable. Indeed, the fact that; is
in F; shows thatHom(F, E;) = 0, for all o -stable ob- _
jects F with ¢*(F) > ¢+(Tj41). Also, the fact that ~ FIGURE 3. The categoriesl;
it is simple in A; shows thatHom(F, E;) = 0, also for allo-stable objects" # E; with
ot (E;) < ¢t (F) < ¢7(T;41). By definition, this means thdt; is o -stable.

The case = 0 follows by the assumption thdf, is og-stable To prove the induction step,
we first considefT’ |. By stability, we havel}t, € T+ = F;. Using stability again, we also
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see that any non-trivial quotient @f’, is contained ir;, so7}" , is a simple object of7;. Since
Tij‘rl is stable of maximal slope i;, there also cannot be a short exact sequence as$)it¢low.
Therefore, Lemma&.10shows thafl’, is a simple object of4;.

SinceE; (by induction assumption) is also a simple objectipn this showdom (E;, TZ.TH) =
Hom(T}, |, E;) = 0. SoORHom(T}%,, E;) = Ext'(T}1,, E;)[~1], andE; 41 = STy (E;) fits

i+
into a short exact sequence
0— E; < Eipq — T4 @ Ext! (T, E;) — 0.

In particular,E; 1 is also an object of;. Note that

RHom(T} |, Eiy1) = RHom(ST;_%l(I}il), ST;}+1 (Ei+1)) = RHom(T; 1, [1], E;)

is concentrated in degree -2; this shows both fiat; € (7;;,)* C A;, and that there are no

extensions®; 1 — F’ — Tﬁ’i Applying Lemma6.10via the inductive description ofl; . as a
tilt of .4;, this proves the induction claim. O

Lemma 6.10. Let (7, .F) be a torsion pair in an abelian categoryl, and let FF € F be an
object that is simple in the quasi-abelian categdfy and that admits no non-trivial short exact
sequences

(16) 0+F—F T -0
with F/ € F andT € 7. ThenF is a simple object in the tilted catego = (F, T[-1]).

Proof. Consider a short exact sequende— F — B in Af. The long exact cohomology se-
guence with respect td is

0—HYA) = F— F - HLA) -0

with HY(A) € F,F' € F andHY4(A) € T. SinceF is a simple object inF, we must have
7—[94(/1) = 0. Thus we get a short exact sequence ad@), @ contradiction. O

7. DIVISORIAL CONTRACTIONS IN THE NON-ISOTROPIC CASE

In this section we examine Theoreh/ in the case of divisorial contractions when the lattice
‘Hyy does not contain isotropic classes. The goal is to provedll@ing proposition.

Proposition 7.1. Assume that the potential walV is non-isotropic. TheV is a divisorial wall
if and only if there exists a spherical class #,y with (s, v) = 0. If we choose to be effective,
then the class of the contracted divisbris given byD = 6(s).

If S is a stable spherical object of clasg§.S) = §, thenD can be described as a Brill-Noether
divisor of S: it is given either by the conditiollom(S, ) # 0, or byHom(_, S) # 0.

One can use more general results of MarkmanMarfL3 to show that a divisorial contraction
implies the existence of an orthogonal spherical classeémtn-isotropic case. We will instead
give a categorical proof in our situation.

We first treat the case in which there existg;estableobject of class:

Lemma 7.2. Assume thal{ is non-isotropic, and thatV is a potential wall associated tH. If v
is @ minimal class of &'y -orbit, and if there is no spherical classc H,y with (§,v) = 0, then
the set ofry-stableobjects in)M,,, (v) has complement of codimension at least two.

In particular,)V cannot induce a divisorial contraction.
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Proof. The argument is similar to Lemn&5; additionally, it uses Namikawa’s and Wierzba’s
characterization of divisorial contractions recalled me®rem3.8.

For contradiction, assume that there is an irreduciblesdivb C M, (v) of objects that are
strictly semistable with respect t. Letr™: M, (v) — M be the morphism induced Wy, ; it
is either an isomorphism or a divisorial contraction. Thesdir D may or may not be contracted
by nT; by TheorenB.8 we havedim 7+ (D) > dim D — 1 = dim M, (v) — 2 = v? in either
case.

On the other hand, consider the restriction of the univdesally £ on M, (v) to the divisor
D, and its relative HN filtration with respect to_. As before, this induces a rational map

HND: D --» Mgf(al) X oo X Mgi(al).

Again, let/ C {1,...,l} be the subset of indiceswith a > 0, anda = ", a;. The arguments
leading to inequalities1) and (L3) still apply, and shova? < v2.

If I # {1,...,1}, there exists a class; appearing in the HN filtration of the form; = ms,
§2 = —2. Under the assumptions, we now have shiéct inequality (3, v) > 0; thus, in equation
(13), we also havév,b) > 0, and saa? < v? — 4 in all cases.

Otherwise, ifl = {1,...,1}, we havelI| > 1, and we can apply Lemnfa4; in either case we
obtain

l

> dimM,_(a;)) = (af +2) < v’ =dim7 (D).
i=1 i€l

As before, this is a contradiction to the observation that eurve contracted byIN, is also

contracted byr™. O

The case of totally semistable walls can be reduced to thegu®one:

Corollary 7.3. Assume that{ is non-isotropic, and that there does not exist a spheritzgdss
‘H with (8, v) = 0. Then a potential wall associated 1 cannot induce a divisorial contraction.

In fact, we will later see that all potential walls assodibte?/ are mapped to the same wall in
the movable cone of the moduli space; thus they have to éxtdntical birational behavior.

Proof. As before, consider the minimal clasg of the orbit G4.v, in the sense of Definition
6.6. By Lemma7.2 there is an open subsEt C M, (v¢) of objects that are-stablethat has
complement of codimension at least two.

Let ® be the composition of spherical twists given by Proposifd such thatb(Ey) is o.-
stable of classs for every [Ey] € U. Observe thatb(E,) has a Jordan-Holder filtration such
that Ey is one of its filtration factors (the other factors are stadpberical objects). Therefore,
the induced mag,: U — M, (v) is injective, and the image does not contain any curve of
S-equivalent objects with respectdg. Also, @, (U) has complement of codimension at least two
(see e.g. GHJIO3 Proposition 21.6]). Sincé,, does not contract any curvesdn.(U), it cannot
contract any divisors i/, (v). O

The next step is to construct the divisorial contraction mtieere exists an orthogonal spherical
class. To clarify the logic, we first treat the simpler casa wfall that is not totally semistable:

Lemma 7.4. AssumeH is non-isotropic,VV a potential wall associated té{, and thatv is a
minimal class of a&y-orbit. If there exists a spherical clagse H with (8,v) = 0, thenWV
induces a divisorial contraction.
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If we assume that is effective, then the contracted divisbr C M, (v) has clasg)(s). The
HN filtration of a generic elemenE] € D with respect tar_ is of the form
05S<E—-»F—0 or O—>F<—>E—»§—>0,
whereS and F are o,-stable objects of classand v — s, respectively.

Proof. As before, we only treat the case whnadmits infinitely many spherical classes. In that
case, we must havie= s or s = t; we may assuma = s, and the other case will follow by dual
arguments.

We first prove thav — s is a minimal class in it€74-orbit by a straightforward computation.
If v2 = 2, then(v — s)?2 = 0 in contradiction to the assumption; therefar& > 4. If we write
v = zs + yt, then(v,s) = 0 givesy = 2. Plugging inv? > 4 givesz? (1 — %) > 2. Since

m > 3, we obtain
4 \?2 4\1
2 2
x<1_m2> - (1_m2>§21’

(v —s) = m(z—1)— 22 oA >0
V—S8S)=m\xr — — 42— =T — —= —m .
’ m m2 -

and therefore

Also, (s,v —s) = 2 > 0, and thereforer — s has positive pairing with every effective spherical
class.

By Lemma6.5, the generic element € M, (v — s) is alsoo,-stable Since(s,v —s) = 2
andHom(F, S) = Hom(S, F') = 0, there is a family of extensions

0=+S—=E,»F—=0

parameterized by € P! = P(Ext'(F,S)). By Lemma6.9, they ares -stable. Since alE,
are S-equivalent to each other, the morphism: M, (v) — M associated tdV contracts
the image of this rational curve. Varying € M3 (v — s), these span a family of dimension
1+ (v —s)? +2 = v? + 1; this is a divisor in}M,, (v) contracted byrT.

Sincernr™ has relative Picard-rank equal to one, it cannot contragcbéimer component.  [J

The following lemma treats the general case, for which wéfirgt set up notation. As before,
we letv, be the minimal class in th@x-orbit of v. By sy we denote the effective spherical class
with (vg,Sp) = 0; we haves, = t or §, = s. Accordingly, in the list of the=4-orbit of v given
by Proposition6.7, we have eitheko; = vo;11, OFr vo; = vo;_1 for all 4, sincevy is fixed under
the reflectionps, atsy. We choosé such thatv = v;, and such that the corresponding sequence
of reflections send§, to s:

§— ptloptlflo’”opto(é()) if 1 >0
Ps, © Ps,_, ©- - 0ps_(8g) FI<O

Depending on the ordering of the slopgs(v), ™ (vy), we let® be the composition of spherical

twists appearing in Propositidh8.

Lemma 7.5. Assume tha#{ is non-isotropic, and le¥V be a corresponding potential wall. If
there is an effective sphericale Cyy with (v,s) = 0, then)V induces a divisorial contraction.

The contracted divisoD has clas¥/(s). For E € D generic, there arer-stable objects”
and S of classv — § ands, respectively, and a short exact sequence

a7 0SS E—»F—0 or 05F<—E-—»S—0.
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The inclusionS < E or F < E appears as one of the filtration steps in a Jordadldiéer
filtration of E.

In addition, there exists an open subsgt C M, (vo), with complement of codimension two,
such that® (E)) is o4.-stable for everyr, -stable objectt, € U*.

Proof. We rely on the construction in the proof of Propositi®®. Let S be the stable spherical
object of class; we haveSy = S or Sy, = T. As in the proof of Lemm&.4, one shows that
vo — Sg is the minimal class in ité74-orbit.

Let F; be a generizy-stableobject of classvg — s¢. Applying Proposition6.8 to the class
v — §, we see thal” := ®(Fy) is o4-stable of that class.

We may again assume thatis of the formSTTl+ 0---0 STT1+; the other case follows by dual

arguments. Inductively, one shows tkgtS) = 7;% , and®(T') = 7;"[-1]. These are both simple

objects of the category; defined by tilting in the proof of Propositich g, therefore,S := <I>(§o)
is simple inA;. By the induction claim in the proof of Propositidh8, F' = ®(Fp) is also a
simple object in this category. In particulatom(S, F) = Hom(F, S) = 0 andext!(S, F) = 2.
Applying Lemma6.9 again, and using the compatibility of; with stability, we obtain a stable
extension of the form1(7).

This gives a divisor contracted hy", and we can proceed as in the previous lemma.

Let Dy C M, (vo) be the contracted divisor for the clags. The above proof also shows
that for a generic object, € Dy (whose form is given by Lemm@.4), the object®(FE)) is a
o -stable (contained in the contracted divigey. Thus we can tak& ™ to be the union of the
set ofop-stableobjects inM,, (vo) with the open subset dP, of objects of the form given in
Lemma7.4 ]

Proof of Proposition7.1 The statements follow from Corollaff.3and Lemmar.5. d

8. ISOTROPIC WALLS AREUHLENBECK WALLS

In this section, we study potential walld’ in the case wherg{ admits an isotropic class
w € H,w? = 0. Following an idea of Minamide, Yanagida, and Yoshiok&[Y11b], we study
the wallV via a Fourier-Mukai transform after whiokr becomes the class of a point. Thep
corresponds to Gieseker stability and, as provehaip], the wall corresponds to the contraction
to the Uhlenbeck compactification, as constructed by Jun [LiB3].

Parts of this section are well-known. In particula¥p§99 Proposition 0.5] deals with the
existence of stable locally-free sheaves. For other géeresalts, seeYos01].

The Uhlenbeck compactification. We let (X, ) be a twisted K3 surface. For divisor classes

B,w € NS(X)q, with w ample, and for a vectov € H; (X, «a,Z), we denote bny(v)
the moduli space of3,w)-Gieseker semistable-twisted sheaves oX with Mukai vectorv.
Here, (3, w)-Gieseker stability is defined via the Hilbert polynomialrfally twisted bye” (see
[MW97, Yos0§ Lie07]). Wheng = 0, we obtain the usual notion af-Gieseker stability. In such
a case, we will omif3 from the notation.

We start with the following observation:

Lemma 8.1. Assume that there exists an isotropic clas#{inThen there are two effective, prim-
itive, isotropic classesvg andw in H, such that, for a generic stability conditianm € W, we
have

(8) Moy (wo) = M (wo), and
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(b) either M, (w1) = Mt (w1), or there exists a-stable spherical objec§, with Mukai
vectors, such that(s, w;) < 0 and WV is a totally semistable wall fow.

Any positive class’ € Py, satisfiegv',w;) > 0fori=1,2.

Proof. Letw € H be primitive isotropic class; up to replacikgby —w, we may assume it to be
effective. We completev to a basis{v, w} of H{g. Then, for all(a, b) € Q, we have

(aV 4+ bW)? = a - (a¥® + 2b(V, W)) .
This shows the existence of a second integral isotropisclsve choose it to be effective, then
the positive coné?, is given byR> - wo + R>( - wi. The claim(v’, w;) > 0 follows easily.

By Theorem2.15 we haveM,,(w) # . If W does not coincide with a wall fo&, then we
can takewy = w, and claim § will be satisfied.

Otherwise, let € Stab'(X, o) be a generic stability condition nearby; by [BM12, Lemma
7.2], we haveMl, (w) = M3t (W) # ().

Up to applying a Fourier-Mukai equivalence, we may assuraewh= (0,0, 1) is the Mukai
vector of a point on a twisted K3 surface; then we can applydhssification of walls for
isotropic classes ingri08, Theorem 12.1], extended to twisted surfacesHMB0g. If W is
a totally semistable wall fo&, then we are in cased™) or (A~) of [Bri08, Theorem 12.1]:
there exists a spherical-stable twisted vector bundl€ such thatS or S[2] is a JH factor of the
skyscraper shedf(z), for everyz € M,(w); moreover, the other non-isomorphic JH factor is
eitherSTg(k(z)), or STgl(kz(m)). In both cases, the Mukai vecter, of the latter JH factor is
primitive and isotropic, andV is not a wall forw.

Finally, if W is a wall forw, but not a totally semistable wall, it must be a wall of ty(ge,),
still in the notation of Bri08, Theorem 12.1]: there is a rational curveC M, (W) such that(x)
is strictly semistable iffc € C. But then the rank two lattice associated to the wall is negat
semi-definite by BM12, Remark 6.3]; on the other hand, by Proposittad, claim (d), it must
coincide with?{, which has signaturél, —1). This is a contradiction. O

Letwo, w; € Cyy be the effective, primitive, isotropic classes given byabeve lemma, and
letY := M,,(wo). ThenY is a K3 surface and, byMuk87a Cal02 Yos06 HS04, there exist a
classa/ € Br(Y') and a Fourier-Mukai transform

®: D(X,a) 5 DO(Y, )

such that®(wg) = (0,0,1). By construction, skyscraper sheaves of pointstoare @, (o)-
stable. By Bridgeland’'s Theorefh9, there exist divisor classes 5 € NS(Y)q, with w ample,

such that up to thé:Ai;(R)-action,@*(ao) is given byo,, g. In particular, the categor,, (1) is
the extension-closure of skyscraper sheaves of pointsharshiftsF'[1] of u,,-stable torsion-free
sheaved with slopep,, (F') = w - 8. Sinceoy by assumption does not lie on any other wall with
respect tov, the divisorw is generic with respect t@..(v).

By abuse of notation, we will from now on writeX, «) instead of(Y, /), v instead ofd,(v),
andoy instead ofo,, 3. Letoy = o, 35— ando_ = o, g.; heree is a sufficiently small positive
multiple of w.

Proposition 8.2([Lo12, LQ11]). An object of clasy is o -stable if and only if it is the shiff’[1]
of a (8, w)-Gieseker stable shedf on (X, «); the shift[1] induces the following identification of
moduli spaces:

M, (v) = Mf(—v).
Moreover, the contraction morphisat™ induced via Theorer2.19 for genericog € W is the
Li-Gieseker-Uhlenbeck morphism to the Uhlenbeck comipzatibn.
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Finally, an objectF of classv is o_-stable if and only if it is the shiff"V[2] of the derived dual
of a(—f3,w)-Gieseker stable sheaf ¢iX, a~1).

Proof. The identification ofi/,, (v) with the Gieseker moduli space is well-known, and follows
with the same arguments as Br[08, Proposition 14.2]. Fos, two torsion-free sheaves, F’
become S-equivalent if and only if they have the same imaghenUhlenbeck spacel($p12,
Theorem 3.1], [Q11, Section 5]): indeed, iF; are the Jordan-Holder factors afwith respect

to slope-stability, ther is S-equivalent to

Do E/E),

precisely as infIL10, Theorem 8.2.11]. Thus, Theoreil 9identifiesw™ with the morphism to
the Uhlenbeck space.

The claim ofo_-stability follows by Propositior?.11from the case o0&, -stability; see also
see MYY11a, Proposition 2.2.7] in the case= 1. O

In other words, the coarse moduli spakg,,(v) is isomorphic to the Uhlenbeck compact-
ification ([Li93, Yos0q) of the moduli space of slope-stable vector bundleg 8n«). Given a

(8,w)-Gieseker stable she&f € M (—v), theo, -stable objec[1] becomes strictly semistable
with respect targ if and only if F' is not locally free, or ifF' is not slopestable

In particular, when the rank of v equals one, then the contraction morphismis the Hilbert-
Chow morphisnHilb™(X) — Sym"(X); see alsoBM12, Example 10.1].

Totally semistable isotropic walls. We start with the existence of a unique spherical stablecbbje
in the case the wall is totally semistable:

Lemma 8.3. Assume thalV is a totally semistable wall foy.

(a) There exists a unique spherical-stable objectS € P,,(1).
(b) LetE € M, _(v) be ageneric object. Then its HN filtration with respecttohas length
2 and takes the form

(18) S% . E s F o F—E— 8%
with a € Z~(. Theo_-semistable objeck’ is generic inM,,_(v'), for v/ := v(F'), and
dim M, (v') = dim M,, (v) = v? + 2.

The idea of the proof is very similar to the one in Lemf& The only difference is that we
cannot use a completely numerical criterion like LemBndand we will replace it by Mukai's
Lemma6.1

Proof of LemmaB.3. We first prove §). We consider again the two maps
My, (v) = M,
HN: M, (v) -=» My_(a1) x -+ X My_(ay,).

The first one is induced by,, and the second by the existence of relative HN filtrations. By
[HL10, Section 4.5], we have, for all=1,...,m and for allA; € M, _(a;),

dim M07 (al-) < extl(Ai, Az)
Hence, by Mukai’'s Lemm@&.1, we deduce

(19) dim M, (v) > idim M, _(a;).
i=1
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Equation (9) is the analogue ofl) in the non-isotropic case. Since any curve contracteH Ny
is also contracted by ™, it follows that

Z dim M,_(a;) > dim M = dim My, (V).
i=1

Therefore equality holds, aridN is a dominant map.
This shows that the projections

My, (v) --» M,_(a;)

+

are dominant. By Theore®.1Q M, (a;) has symplectic singularities. Hence, we deduce that
eitherM,,_(a;) is a point, ordim M, (a;) = dim M, (v) = v? + 2. Sincem > 2, by Lemma
6.2 this shows the existence of a spherieatstable object irP,,(1). By Proposition6.3 there
can only be one such spherical object.

To prove p), we first observe that by uniqueness (and by Len@n2aagain), allo_-spherical
objects appearing in a HN filtration of a generic element M, (v) must besy-stable as well.
As a consequence, the length of a HN filtrationfofvith respect tar_ must be2 and have the
form (18). Since the mapd/, (v) --» M,_(a;) are dominant, the._-semistable object” is
generic. d

We can now prove the first implication for the characteraaf totally semistable walls in the
isotropic case. We lat := v(.S), whereS is the uniquer,-stable object irfP,, (1).

Proposition 8.4. Let W be a totally semistable wall fov. Then either there exist an isotropic
vectorw with (w, v) = 1, or the effective spherical classsatisfies(s, v) < 0.

Proof. We continue to use the notation of Lem®3&; in particular, leta > 0 be as in the short
exact sequencd ), andv’ = v — as.

If (v/)?2 > 0, then by Lemma8.3 and Theoren®?.15b), we have(v')? = v2. Sincev’ =
v — as,a > 0, this implies(s, v) < 0.

So we may assume? = 0. Thenv? = 0 + 2a(v’,s) — 242, and it follows thatv’,s) > 0. In
the notation of Lemma&.1, this means that’ is a positive multiple ofw, which we can take to
be the class of a poink’ = cwy = ¢(0,0,1).

Then the coarse moduli spadé,, (v’) is the symmetric productym® X; if we definen by
v2 = 2n — 2, then the equality of dimensions in Lem@& becomes: = n. Therefore

2n — 2 = v? = (as + nw)? = —2a® + 2an(s, wy)
or, equivalently,
(20) n—1=a(n(s,wo) — a)

Recall that(s, wp) > 0. If the right-hand side is positive, then it is at leags, wy) — 1. Thus,
(20) only has solutions ifs,wy) = 1, in which case they are = 1 anda = n — 1. In the
former case(v, wy) = 1. In the latter case, observe that = w, + s, and(v, w;) = 1 follows
directly. d

The converse statement follows from Propositio8above, and Lemm@.5 below.

Lemma 8.5. Let)V be a potential wall. If there exists an isotropic clagse H)y with (w,v) =
1, thenW is a totally semistable wall.
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Proof. Note that by Lemma.1, the primitive classw is automatically effective. Lety € W be
a generic stability condition. I3 (w) # 0, then we can assume = (0,0,1). In this case
—v has rank one),_ (v) is the Hilbert scheme, and’ is the Hilbert-Chow wall discussed in
[BM12, Example 10.1]; in particular, it is totally semistable.

Otherwise M5! (w) = (); hence, in the notation of Lemngal, we are in the case = w, and
there exists ay-stable spherical objed, with Mukai vectors, such thais, w;) < 0.

Write w; = wq + s, wherer = (s, wq) € Z~¢. Then
1= (V7W1) = (VaWO) + T(V,S).

By Lemma8.1, (v, wy) is strictly positive, and s¢v,s) < 0. If the inequality is strict, Proposition
6.8 applies. Otherwise(v,s) = 0 and(v,w;) = (v, wq) = 1; thus we are again in the case of
the Hilbert-Chow wall, andV is a totally semistable wall fov. O

Divisorial contractions. We now deal with divisorial contractions for isotropic v&llThe case
of a flopping wall, a fake wall, and no wall will be examined iacion9.

Proposition 8.6. Let )V be a wall inducing a divisorial contraction. Assume tigt w) # 1,2,
for all isotropic vectorsw € #H. Then there exists an effective spherical class H with
(s,v) =0.

Proof. The proof is similar to the one of Lemn¥aZ in particular, we are going to use Theorem
3.8 LetD C M, (v) be an irreducible divisor contracted by : M, (v) — M. We know that
dim 7+ (D) = v2. Consider the rational map

HNp: D -~ M,_(a;) x --- x M,_(a;)

induced by the relative HN filtration with respectéa. We let/ C {1,...,l} be the subset of
indicesi with a? > 0, anda = > icr ai- We can assumgd| < [, otherwise the proof is identical
to Lemmar.2

Step 1.We show that there is ansuch that; is a multiple of a spherical class

Assume otherwise. Then we can write= nowg + n1wy + a. By symmetry, we may assume
ny > np; in particularn, # 0. Also note that fori = 0,1 we have(wg,wy) > 1, (v,w;) > 3
and(w;,a) > 1 aslong aa # 0.

Incase|I| > 1, i.e.,a # 0, we obtain a contradiction by

vZ = ((a + nowo) + n1W1)2 —a%+ 2no(a, wg) + 2n1 (v, wy)

(21) > a?+ 2ng + 6ny > a® + 2+ 2ng + 2m
l
(22) > (@7 +2)+2n0+ 20y = »_dimM,_(a;) > dimmt (D) = v?,
el =1

where we used the numerical observationit) (and Lemméb.4 for the casel| > 1 in (22).
Otherwise, if|I| = 0, thenv = nowq + nyw; with ng,n; > 0 andn;(wo,w;) > 3 by the
assumptior{v, w;) > 3. We get a contradiction from

vZ? = 2ngni(wo, w1) = 2ng + 2n1 +2(ng — 1)(ny — 1) — 2+ 2nonq ((wo, w1) — 1)

l
> 2ng + 2nq = Z:dimM(L (a;) > v2.
i=1

Step 2.We show(s, v) < 0.
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Assume for a contradiction thét, v) > 0. Usingw; = ps(w() we can writev = as+bwy+a.
By Step 1, we have > 0. In casea # 0, we use(a, wg) > 0 to get

a’ = (v —as)— bw0)2

= v? — 2a(v,s) — 2a® — 2b(a + bwg, wy)
< v? —2a(v,s) — 2a* — 2b.

This leads to a contradiction:

!
vZ>v?—2a(v,s) —2a* +2>a2+2+4+2b> ZdimML(ai) > v2.
i=1
If a = 0, our assumptions give(s, wy) = (v,wq) > 2 and—2a + b(s,wg) = (s,v) > 0. This
leads to

l
v? = —2a% + 2ab(s, wq) > ab(s, wg) > 2b = Zdim M, (a;) > v
=1
Step 3.We show(s, v) = 0.
Assume for a contradiction thés, v) < 0. By Proposition6.8, WV is a totally semistable wall
for v. We considenv’ = pg(v) as in LemmaB.3 The wall )V induces a divisorial contraction

for v if and only if it induces one fowv’. But, since(v,w) # 1,2, for all w isotropic, then
(v, w) # 1,2 as well. Moreover(s,v’) > 0. This is a contradiction, by Step 2. O

The converse of Propositidh6is a consequence of the following three lemmas:

Lemma 8.7. Assume thatv, wg) = 2. ThenW induces a divisorial contraction.

Proof. It suffices to show thaMf(—v) contains a divisor of non-locally free sheaves. Since
(v,wq) = 2, we can writev = —(2, D, s), whereD an integral divisor which is either primitive
or D = 0. Consider the vectov’ = —(2,D, s + 1) with (v/)?> = v —4 > —2. By Theorem
2.15 we getM (—v') # (. Given a sheaf” € M (—v') and a pointz € X, the surjections
F — k() induce aP! of extensions

k(x) — E[1] = F[1] — k(z)[1]
of objects inM,_ (v) that are S-equivalent with respectdg. Dimension counting shows that
they sweep out a divisor. O

Lemma 8.8. Assume that there exists an effective spherical dass# such that(v,s) = 0.
ThenW induces a divisorial contraction.

Proof. Let S be the uniquery-stable spherical object with Mukai vectarLeta = v — s; then
a’=(v—s)? =v*-2 and (a,s)=-s?>=2.

If v2 > 2, thena? > 0. By Lemma8.1, w; = bs + wo with b > 0; hence(wy,a) > (wg,a).
If (wg,a) > 2, then Propositior8.4 implies thatVV is not a totally semistable wall fat, since
(a,s) = 2. Hence, giverA € M, (a), all the extensions

S—F— A

give a divisorD C M, (v), which is aP!-fibration over)3! (a) and which gets contracted by
crossing the wally.
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If (wg,a) = 1, then there is a spherical class of the faim- kw(. By the uniqueness up to
sign, s must be of this form; hence algevy,s) = 1. From this we getwy,v) = 2, and soV
induces a divisorial contraction by Lemr8&.

Finally, assume that> = 2. Thena is an isotropic vector witl{a,v) = (a,s) = 2. But
this implies thatwy,v) = 1,2. Indeed, by Lemm&.1, the fact that is an effective class with
(a,s) > 0 implies thata has to be a positive multiple ofy. The casgwy,v) = 2 is again
Lemma8.7; and if (wg, v) = 1, then—v has rankl, and we are in the case of the Hilbert-Chow
wall. O

Lemma 8.9. Let)V be a potential wall. If there exists an isotropic classsuch that(v,w) €
{1, 2}, thenW induces a divisorial contraction.

Proof. By Lemma8.1], the classw is automatically effective. By Lemm&7, the only remaining
case isw = wq, with w; = bs + wq, b > 0, wheres is the class of the unigus,-stable spherical
object. By LemmaB.8, we can assume thét, v) # 0.

If (s,v) >0, then

(w1,v) =b(s,v) + (wo,v) € {1,2}.
Since (wg,v) > 0 andb > 0, this is possible only ifwg,v) = 1, which corresponds to the
Hilbert-Chow contraction.

Hence, we can assunie v) < 0. By Proposition6.8, )V is a totally semistable wall for, and
W induces a divisorial contraction with respectvaf and only if it induces one with respect to
v/ = ps(v). Butthen(v',wy) = (v,w;) € {1,2}. Again, we can use Lemnta7 to finish the
proof. O

9. FLOPPING WALLS

This section deals with the remaining case of a potential Wal assuming thatV does not
correspond to a divisorial contraction, we describe in Witiases it is a flopping wall, a fake wall,
or not a wall. This is the content of Propositiofd and9.4.

Proposition 9.1. Assume thal¥V does not induce a divisorial contraction. If either
(a) v can be written as the sum= a; + ay of two positive classes;,a; € Py N'H, or
(b) there exists a spherical clagss W with 0 < (§,v) < "—22

then)V induces a small contraction.

Lemma 9.2. Let M be a lattice of rank two, and’ ¢ M ® R? be a convex cone not containing a
line. If a primitive lattice element € M N C can be written as the sum= a + b of two classes
ina,b € M N C, then it can be written as a sum = a’ + b’ of two classe®’,b’ €¢ M N C

in such a way that the parallelogram with verticesa’, v, b’ does not contain any other lattice
point besides its vertices.

Proof. If the parallelogran®, a, v, b contains an additional lattice poiat, we may replaca by
a’ andb by v — a’. This procedure terminates. O

Lemma9.3. Leta, b, v € HNCyy be effective classes with= a+b. Assume that the following
conditions are satisfied:
e The phases df, b satisfy¢™ (a) < ¢*(b).
e The objects4, B are o -stable withv(A) = a,v(B) = b.
e The parallelogram inH ® R with vertices0, a, v, b does not contain any other lattice
point.
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e The extensioml — E — B satisfiesHom(B, FE) = 0.
ThenF is o -stable.

Proof. Since A and B areo . -stable, they are(-semistable. Therefore, the extensibris also
op-Semistable. Leh; be the Mukai vector of the-th HN factor of £ with respect tor,.. By
Propositiorb.1part () and Remarl6.3, we havea; € H. We haveE € P, ([¢T (a), T (b)]), and
hencea; is contained in the cone generatedahy. Since the same holds fer—a; = 3., a;,
a; is in fact contained in the parallelogram with vertidea, v, b. Since it is also a lattice point,
the assumption on the parallelogram implgesc {a, b, v}.

Assume thatF is not o, -stable, and letA; C F be the first HN filtration factor. Since
¢t (a1) > ¢7(v), we must have; = b. By the stability ofA, B we haveHom(A;, A) = 0, and
Hom(A;, B) = 0 unlessA; = B. Either of these is a contradiction, sindem (A, E') # 0 and
Hom(B, E) = 0. O

Proof of Proposition9.1 We first consider casel), sov = a; + ay with a;,a, € Py. Using
Lemma9.2, we may assume that the parallelogram with vertites , v, a5 does not contain an
interior lattice point. In particulara;,as are primitive. We may also assume that(a;) <
¢ (az). By the signature oH (see the proof of Lemm@.4), we have(a;,ay) > 2. By Theorem
2.15 there exist . -stable objectsA; of classv(A;) = a;. The inequality for the Mukai pairing
impliesext! (A3, A;) > 2. By Lemma9.3, any extension

0— A =< F— A; =0

of A, by A; is o, -stable of classr. As all these extensions are S-equivalent to each other with
respect targ, we obtain a projective space of dimension at least two tats gontracted by ™.

Now consider caseyj. First assume thatis an effective class. Note that — §)2 > —2 and
(8,v —8) = (3,v) — 82 > 2. Consider the parallelograi® with vertices0, 8, v, v — §, and the
function f(a) = a2 for a € P. By homogeneity, its minimum is obtained on one of the bounda
segments; thus

B+t(v—58)"> 244t — 26> > -2

for 0 < ¢t < 1, along with a similar computation for the other line segrseshowsf(a) > —2
unlessa € {8, v—Ss}. In particular, if there is any lattice poiate P other than one of its vertices,
thena? > 0 and(v —a)? > 0. Thusv = a+ (v —a) can be written as the sum of positive classes,
and the claim follows from the previous paragraph. Othesnist S be theo, -stable object of
classs, andF any o -stable object of clase — §; thenext! (S, F') = ext!(F, S) > 2. Thus, with
the same arguments we obtain a familyoof-stable objects parameterized by a projective space
that gets contracted by".

We are left with the case whegds not effective. Set = —8§, which is an effective class. With
the same reasoning as above, we may assume that the paraifelavith vertice®,t,v,v — t
contains no additional lattice points. Set

v =p(v) —t=v—((8v)+1)t,,

and consider the parallelograBhwith vertices0, ((é,v) + 1)‘E, v, v’ (see Figure4)). We have
v2 > —2and(t,v') = (5,v) + 2 > 2. The lattice points oP are given bykt andv’ + kt for
ke€Z,0<k<(5v)+1 (otherwise, already the parallelogram with vertioes, v, v — t would
contain additional lattice points).
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; - ; . (B, v) +1)F_ -V

LetT andF beo . -stable objects of clagsandv’, respectively. Let -
us assume™ (t) > ¢*(v); the other case follows by dual arguments.
Any subspaceld C Ext! (T, F) of dimension(s, v) + 1 defines an
extension B

0> F—>FE>TRU—0

such thatE is of classv(E) = v, and satisfieslom(T', E) = 0. If E
were notr_ -stable, then the class of the maximal destabilizing subob-
ject A would have to be a lattice point i with ¢ (v(A)) > ¢™(v);
therefore,v(A) = kt. The onlyo, -semistable object of this class is
T%, and we get a contradiction. Thus, we have constructed a fam—0
ily of o -stable objects of class parameterized by the Grassmannian
Gr((8,v) 4 1,ext!(T, F)) that become S-equivalent with respectto g
ago-

It remains to prove the converse of Propositbf

FIGURE 4. =S effective.

Proposition 9.4. Assume thalV does not induce a divisorial contraction. Assume thaiannot
be written as the sum of two positive classeip and that there is no spherical classe H
with0 < (s,v) < "—22 ThenWV is either a fake wall, or not a wall.

Proof. First consider the case wheve= v is the minimal class in its orbitry.v. We will prove
that everyo_ -stable objectE of classvy is alsoog-stable Assume otherwise, sf' is strictly
op-semistable, and therefose -unstable. Lehy, ..., a; be the Mukai vectors of the HN filtration
factors of £ with respect tar_. If all classes; are positivea; € Py, then we have an immediate
contradiction to the assumptions.

Otherwise,FF must have a spherical destabilizing subobject, or a spattestabilizing quo-
tient. Lets be the class of this spherical object. If there is only ogstable spherical object, then

it is easy to see thaty — s is in the positive cone; thereforés, vo) < %g in contradiction to our
assumption.

If there are twas-stable spherical objects of classes
s, t, consider the two vectong, — s andvy — t. The as-
sumptions imply(vy — s)? < —2 and(vp — t)? < —2;
on the other hand;y — s is effective; using Lemma.2,
this implies thatvg — s or v — t must be effective. We
claim that this leads to a simple numerical contradiction?
Indeed, (v — t)? < —2 constrainsv, to lie below a
concave down hyperbola, anfg — s)? < —2 to lie
above a concave up hyperbola; the two hyperbolas 4
tersect at the point§ ands + t. Therefore, if we write
vo = zs + yt, we haver,y < 1. Thus, neithenvy — s
nor vy — t can be effective (see Figugs.

In the case where is not minimal,v # v, let ® be the sequence of spherical twists given by
Proposition6.8. Since the assumptions of our proposition are invarianeutiteGy-action, they
are also satisfied by,. By the previous case, we know that every-stable objectd, of class
v is alsooy-stable Thus® induces a morphisn®,.: M, (vo) — M, (v); sinced, is injective
and the two spaces are smooth projective varieties of the siimension, it is an isomorphism.
The S-equivalence class @f(Ey) is determined by that of; since S-equivalence is a trivial
equivalence relation oft/, (vo), the same holds fa¥/,, (v), and thust™ is an isomorphism®

Proposition9.4 finishes the proof of Theorem7.

FIGURE 5. Proof of Propositior®.4
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10. MAIN THEOREMS

We will first complete the proof of Theorefnl

Proof of Theoren..1, part (b). We consider a wall}/ with nearby stability conditions ., and
oo € W. SincelM,, (v) areK-trivial varieties, it is sufficient to find an open subgetc M, (v)
with complement of codimension two, and an (anti-)autoeance®,, of D’(X, a), such that
®yy(E) is o_-stable for allE € U.

We will distinguish cases according to Theorénd. First consider the case whefy corre-
sponds to a flopping contraction, or wh¥W is a fake wall. If)V does not admit an effective
spherical class € H,y with (s,v) < 0 then we can choosg to be the open subset af-stable
objects; its complement has codimension two, and theretlimgpto prove. Otherwise, there
exists a spherical object destabilizing every objedtiin, (v). Letvy € Hyy be the minimal class
of the Gy-orbit of v, in the sense of Definitiofi.6. The subsel/ of o-stableobjects inM,, (vo)
has complement of codimension two. Then the sequence ofisghtwists of Propositior6.8,
applied foro ando_, identifiesU with subsets of\/, (v) andM,,_(v) via derived equivalences
&+, &~ ; then the compositio®~ o (®+) ™" has the desired property.

Next assume thaty induces a divisorial contraction. We have three cases tesiden
Brill-Noether: Again, we first assume that is minimal, namely there is no effective spherical
classs with (s,v) < 0. The contracted divisor is described in Propositiofy and the HN
filtration of the destabilized objects in Lemniad. We may assume that we are in the case

where the Brill-Noether divisor in/,_ (v) is described byHom (S, ) # 0. Now consider
the spherical twis§ Tz at S, applied to object® € M, . (v). Note that byo -stability, we
haveExt?(S, E) = Hom(E, S)¥ = 0 for any such®; since(v(S), v(E)) = 0, it follows that

hom(S, E) = ext!(S, E).

If E does not lie on the Brill-Noether divisor, th&Hom (S, E) = 0, and SBTg(E) = E.

Also, for generic suclly (away from a codimension two subset), the objgds alsoo_-stable.

If E is a generic element of the Brill-Noether divisor, tHéam (S, E) = C = Ext'(S, E),
and hence we have an exact triangle

S® S[-1] — E — STg(E).

Its long exact cohomology sequence with respect to theuttstre ofoy induces two short
exact sequences

S E-—-»F and F< STg(E)—»S.

By Lemma7.5, the former is the HN filtration oF with respect tar_; the latter is the dual
extension, which is a_-stable object by Lemm@.9.

Thus, in both caseSTz(E) iso_-stable. This gives a birational mag,  (v) --» M,_(v)
defined in codimension two and induced by the autoequivelgiig;, which is the claim we
wanted to prove.

If instead there is an effective spherical classith (s, v) < 0, we reduce to the previous
case, similarly to the situation of flopping contraction&t i, again denote the minimal class
in the orbit G.v; note that)V also induces a divisorial contraction of Brill-Noether ¢yp
for vo. In this case, Lemmd.5 states that the sequendeof spherical twists identifies an
open subset/* C M, (vo) (with complement of codimension two) with an open subset of
M, (v); similarly for U~ C M,_(vo). Combined with the single spherical twist identifying
a common open subset 81, (vo), this implies the claim.
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Hilbert-Chow: Here )V is an isotropic wall and there exists an isotropic primitixgztor wy
with (wo, v) = 1. As shown in Sectio®, we may assume that shift by one identifies (v)

with the (3, w)-Gieseker moduli spach(—v) of stable sheaves of rank one on a twisted K3
surface(Y, o’). After tensoring with a line bundle, we may assume that dabjexc),,, (v) are
exactly the shiftdz[1] of ideal sheaves of 0-dimensional subschetfies Y.

In the setting of PropositioB.2, we have3 = 0. Since there are line bundles 61, /), the
Brauer group element’ is trivial. By the last statement of the same Propositios, rtfoduli
spaceM,_(v) parameterizes the shifts of derived duals ideal sheaf. Tere is a natural
isomorphismM,,_(v) = M, (v) induced by the derived anti-autoequivalerfce[2].

Li-Gieseker-Uhlenbeck: Here WV is again isotropic, bufwy,v) = 2. We will argue along
similar lines as in the previous case; unfortunately, thmitbeare more involved. The first
difference is that we cannot assuie= 0. Instead, first observe that, (v) = Mf(—v) IS
parameterizing 8, w)-Gieseker stable sheavésof rank2 = (v, w), and of slopeu,,(F) =
w.f5. If we assumev to be generic, then Gieseker stability is independent ofltoéce of3; we
can considetM,_ (v) = M,,(—v) to be the moduli space of shifig[1] of w-Gieseker stable
sheaved-.

Since(Y, ') admits rank two vector bundles, the orderadfin the Brauer group is one or
two; in both cases, we can identify’, o) with (Y, (o/)~!), and thus the derived dual — EY
defines an anti-autoequivalenceldf(Y, o).

Write —v = (2,¢,d), and letL be the line bundle witle; (L) = ¢. From the previous
discussion it follows tha®(_) = (_ )" ® L[2] is the desired functor:

Indeed, any object id/,, (v) is of the form F'[1] for a w-Gieseker stable she#f of class
—v. Then®(F[1]) = F¥ ® L[1] the derived dual of a Gieseker stable sheaf, and has¢lass
By Proposition8.2, this is an object of\/,_(v).

0

Consider two adjacent chamb@r,C~ separated by a wallV; as always, we pick stability
conditionsos € C*, and a stability conditiom, € Y. By the identification of Néron-Severi
groups induced by Theorefnl, we can think of the corresponding mafs of equation 6) as
maps

ly: CF — NS(M,, (V).
They can be written as the following composition of maps

Stabt (X, 0) 2 H,(X,0,2) @ C L v 25 NS (M, (v)

where Z is the map defined in Theorethl1Q I is given byI(Qz) = %% and whered+
are the Mukai morphisms, as reviewed in Remark?.

Our next goal is to show that these two maps behave as nicetypasould hope; we will
distinguish two cases according to the behavior of the ectitm morphism

™ My, (V) — M
induced byW via Theoren®2.19

Lemma 10.1. The mapg™*, £~ agree on the wallV (when extended by continuity).

(a) (Fake or flopping walls) When™ is an isomorphism, or a small contraction, then the
maps/, {_ are analytic continuations of each other.

(b) (Bouncing walls) When™ is a divisorial contraction, then the analytic continuat®of
¢+, ¢~ differ by the reflectiopp in NS(M,_ (v)) at the divisorD contracted by, .
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As a consequence, in cas the wall)V is a fake wall whenr ™ is an isomorphism, and induces
a flop whens™ is a small contraction; in case)( corresponding to a divisorial contraction, the
moduli spaces\/,, (v) for the two adjacent chambers are isomorphic.

Proof. We have to prové.- = 6.+ in case §), andf.- = pp o -+ in case ). We assume for
simplicity that the two moduli spaces admit universal fa@sil the arguments apply identically to
guasi-universal families.

Consider caseg]. If the wall is not totally semistable, then the two modyasesM+ (v)
share a common open subset, with complement of codimensmnon which the two universal
families agree. By the projectivity of the moduli space® thapsi.+ are determined by their
restriction to curves contained in this subset; this prdatiesclaim. If the wall is instead totally
semistable, we additionally have to use Proposifidh Let ®* and®~ be the two sequences
of spherical twists, sendingy-stable objects of clasg, to o, - ando_-stable objects of class,
respectively. The autoequivalence inducing the biratiomap M, , (v) --» M,_(v) is given by
®~ o (®#7)~!. Asthe classes of the spherical objects occurring hand®~ are identical, this
does not change the class of the universal family inthgroup; therefore, the Mukai morphisms
Oc+, 00— agree.

Now consider the case of a Brill-Noether divisorial conti@t, we first assume that there is no
effective spherical class € H,y with (s’,v) < 0. The contraction induced by a spherical object
S with Mukai vectors := v(S) € v*. By Lemma7.5, the class of the contracted divisor is given
by 6+ (s) on either side of the wall. The universal families differ ¢opa subset of codimension
two) by the spherical twistTs(_). This induces the reflection atin ) (X, «, Z); thus the
Mukai morphisms differ by reflection &f’s), as claimed.

If in addition tos € v+, there does exist an effective spherical ckdss 7y with (s’,v) < 0,
we have to rely on the constructions of Lemm&, as in the proof of Theoreri.1. We have
a common open subsét C M, (vo), such that the two universal familie&*|; are related
by the spherical twist at a spherical objes of classsy. Let ®* be the sequences of spher-
ical twists obtained from Lemma@.5, applied too or o_, respectively. Their induced maps
F: Hy, (X, 0,Z) — Hj,(X,a,Z) on the Mukai lattice are identical, as they are obtained by
twists of spherical objects of the same classes; it sepds v, and thussy to +s. Therefore, the
compositiond~ o ST, o(®*+)~! induces the reflection at as claimed.

It remains to consider divisorial contractions of Hilb@itow and Li-Gieseker-Uhlenbeck type.
We may assumé/, (v) is the Hilbert scheme, or a moduli space of Gieseker staldavels of
rank two. By the proof of Theorerh.1, there is a line bundI€ on X such that

RHomu,, ,xx (€, (px)"L[2])

is a universal family with respect o on M,_(v) = M, (v). We use equatiord] to compare
8-+ by evaluating their degree on a test cutVeC M, (v). Leti denote the inclusion: C' x
X — M,, (v) x X, and byp the projectiorp: C' x X — X. This yields the following chain of

equalities fora € v-=:
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23) o (a).C = <a,v(p*i*(5_))) - (a,v(p* RHomexx (i*E,0c K 5[2])))
(

(24) = (a, v(p* RHomexx ("€, well] K E[l])))
(25) = — a,v(RHomX(p*i*g,ﬁ)))
(26) _ (av : ch(ﬁ),v(p*i*8)> = e+ (2 - ch(L)).C

Here we used compatibility of duality with base change2®) (a € v in (24), and Grothendieck
duality in 25). In (26), we wrotea" for the class corresponding tounder duality(_)".

In the Hilbert-Chow case, witk = —(1,0,1 — n), the class of the contracted divisor is
proportional tof-+(1,0,n — 1), and we havel = Oy in the Li-Gieseker-Uhlenbeck case, we
can writev = (2, ¢, d), the class of the contracted divisbris a multiple off.+ (2, c, % —d), and
c1(L£) = c. In both cases, the reflectigrn, is compatible with the above chain of equalities:

(27) pp (Oc+(a)) = —fc+ (27 - ch(L)) .

Indeed, in the HC case, we can te8t)(for a; = (1,0,1 — n) and classes of the form, =
(0,¢,0) € 6, (D*): sinceay = a; anday = —ay, and since such classes spah the equality
follows. Similarly, in the LGU case, we can use = (2, c, % —d) anday = (0, ¢, %). 0

Proof of Theorem..2, (a), (b), (c). Lemmal0.1proves partd). Part €) follows directly from the
positivity £¢(C) C AmpM¢c(v) once we have established pas}.(

Consider a big class in the movable cone, givedda) for some clasa € v*,a? > 0; we
have to show that it is in the image &fRecall the definition o} (X, ) given in the discussion
preceding Theorerf.1Q If we set

QL =/ 1a— % € H3,(X,Z) ®C,

then clearly2, € P(X,a). In case there is a spherical class ), (X, o, Z) with (Q,s) =0,
we modify Q2 by a small real multiple o to obtain{2, € Py(X, «), otherwise we seR, = ;
in either case, we hav@, € Py(X, a) with (Q,,v) = —1 and3Q, = a. In addition, the fact
thatf(a) is contained in the positive cone giveg € Py (X, a).

Let Q, € Py (X,«) be the central charge for the chosen basepsift Stab' (X, ). Then
there is a pathy: [0,1] — P (X, «) starting at2, and ending a©, with the following additional
property: for allt € [0, 1], the class

05(37(1))

(v(2),v)
is contained in the movable cone bf, (v).
By Theorem2.1Q there is a lifto: [0,1] — Stab'(X,a) of v starting ato(0) = o. By the
above assumption op this will never hit a wall of the movable cone correspondiog@ divisorial
contraction; by Lemmao0.1, the map/ extends analytically, with, = 6, = 0,(1). Therefore,

loy(0(1)) = O51)(a) = O (a)
as claimed. O

Now recall the Weyl group action dig,. of Proposition3.3. The exceptional chamber of a
hyperbolic reflection group intersects every orbit exaotige. Thus there is a map

W Pos(My(v)) = Mov(M,(v))
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sending any class to the intersection oflitg,.-orbit with the fundamental domain. Lemrit8.1
and Theoreni.2immediately give the following global description &f

Theorem 10.2. The mag of Theoreni.2can be given as the composition of the following maps:

Stabt(X, ) 2 HY (X, 0, Z) © C L vt 2% Pos(M, (v)) Ys Mov (M, (v)).

;lg
To complete the proof of Theorefn2, it remains to prove party:

Proposition 10.3. LetC C StabT(X, a) be a chamber of the chamber decomposition with respect
to v. Then the image of:(C) € NS(Mc¢(v)) of the chambec is exactly the ample cone of the
corresponding moduli spackélc(v).

Proof. In light of Theorem®.18and1.2, (a), (b), (c), the only potential problem is given by walls
W C 0C that do not get mapped to walls of the nef cone of the moduktespahese are totally
semistable fake walls induced by an effective sphericalsslae #,y with (s,v) < 0. The idea is
that there is always a potential wal’, with the same latticé{,,» = H,y, for which all effective
spherical classes have positive pairing withBy Theorenmb.7, VW' is not a wall, and it will have
the same image in the nef coneldf:(v) as the wally.

Letog = (Zp,Py) € W be a very general stability condition on the given wall: thisans we
can assume that,y contains all integral classesc H ), (X, a, Z) with SZy(a) = 0. If we write
Zo(_) = (Q0,_) as in Theoren?.1Q we may assume th&l, is normalized by(Qg,v) = —1
andQ? = 0, i.e., (RQ, IQ) = 0 and (RQ)? = (SNQ)? (see Bri08, Section 10]). We will
now replacer by a stability condition whose central charge has real paengby (—v, ), and
identical imaginary part.

To this end, letr; € C be a stability condition nearly,, whose central charge is defined by
Q1 = Qg +ie, wheree € H;lg(X, a, Z) @ R is a sufficiently small vector witke, v) = 0; we may
also assume that multiples ofare the only integral classass H), (X, «, Z) with (31, a) = 0.
LetQy, = —v+i3€Qy; then a straight-forward computation shows that the sttgigth connecting
Q with Q5 lies completely withirP; (X, «). Finally, letQ; = —v +S€q; by Theorenb.7, there
are no spherical class@ss H,y with (v,s) = 0, implying that the straight path frof, to Q3 is
also contained i} (X, a).

By Theoren®?.1Q there is a lift of the patf)y — Q; — Q3 — Q3 toStab’ (X, a); letoy andos
the stability conditions corresponding @ and(23, respectively. By choice of, we may assume
that the paths — o, andos — o3 do not cross any walls. Sing€;,v) = (Q2,v) = —1, and
since the imaginary part on the pdth — ()5 is constant, the same holds for the path— 0.
Henceos is in the closure of the chambér In particular,o3 lies on a potential wall of with
hyperbolic lattice given byH,y; by construction, any spherical class= Hyy with (v,s) < 0
satisfiegQ23,s) > 0, and thuss is not effective.

By Theoremb5.7, o3 does not lie on a wall. Sinc&Q; = 3, the images¢(og) = l¢(o3) in
the Néron-Severi group af/.(v) agree. O

We conclude this section by proving Corollaky3 for moduli spaces of Bridgeland stable ob-
jects on twisted K3 surfaces:

Proof of Corollary1.3 (b) = (c): Let¢: H*(X,a,Z) — H*(X',d/,Z) be a Hodge isometry
sendingv-t" — v/, Up to composing with1], we may assume(v) = v'. If ¢ is orientation-
preserving, then Theoreth12 gives an equivalencé with ¢, = ¢.

Otherwise, the compositiof )" o ¢ defines an orientation-preserving Hodge isometry

¢V H*(X,a,7) — H*(X', (/)71 Z) with ¢Y(v)=(v)".
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Again, Theoren®.12gives a derived equivalence: D°(X, a) — D(X’, (¢/)~!); the composi-
tion with (_)V: D¥(X’, (/)~!) — Db(X’, /) has the desired property.

(c) = (d): Assume thafb: D¥(X, o) = D’(X’, o) is an (anti-)equivalence witlh, (v) = v'.
Consider moduli spaces/,(v), M, (v') of Bridgeland-stable objects. We claim that we can
assume the existence ofc Stab'(X’,a’) such thate € D®(X, a) of classv is o-stable if and
only if ®(E) is -stable:

e if @, is orientation-preserving, we may repla®eby an equivalence satisfying the last
claim of Theoren?.12 and setr = &, (o) € Stab! (X, &/);
e otherwise, we may assume that

(L) o®: D°(X,a) = DX/, (o)1)

satisfies the same claim, and wetet Stab'(X, /) be the stability condition dual (in
the sense of Propositich11) to ((_)Y o @), o € Stab' (X', (a/)~1).

By construction® induces an isomorphism
My(v) 2= M (®.(v)) = M-(V').

Due to Theoreml.1, part (), there is an (anti-)autoequivalendg of D?(X’, /) inducing a
birational mapMy, () (v') --+ My (v'). The compositiond’ o ® has the desired properties[

11. APPLICATION 1: LAGRANGIAN FIBRATIONS

In this section, we will explain how birationality of walkassing implies Theorer.5, verify-
ing the Lagrangian fibration conjecture.

We will prove the theorem for any moduli spadé,(v) of Bridgeland-stable objects on a
twisted K3 surfac€ X, ), under the assumptions thats primitive, ando generic with respect
tov.

One implication in Theorem.5is immediate: iff: M,(v) --+ Z is a rational abelian fibra-
tion, then the pull-baclkf* D of any ample divisoD on Z has volume zero; by equatioi)( the
self-intersection off * D with respect to the Beauville-Bogomolov form must also ¢geeo.

To prove the converse, we will first restate carefully theuargnt establishing paf&) of Con-
jecturel.4, which was already sketched in the introduction; then wé explain how to extend
the argument to also obtain pdi).

Assume that there is an integral divisbron M, (v) with ¢(D) = 0. Applying the inverse of
the Mukai morphisn®,, ,, of Theorem3.6, we obtain a primitive vectow = 9;,‘1,(D) € v+ with
w2 =0.

After a small deformation, we may assume thais also generic with respect @. As in
Section8, we consider the moduli spa&é := M, (w) of o-stable objects, which is a smooth K3
surface. There is a derived equivalence

(28) ®: DX, a) 5 DO(Y, o)

for the appropriate choice of a Brauer classs Br(Y'); as before, we havé, (w) = (0,0, 1).
By the arguments recalled in Theorém2 we haved, (o) € Stab'(Y, /). By definition, ®
induces an isomorphism

(29) My (v) = Mg, (5)(P(V)),
where®, (o) is generic with respect t@..(v).

Lemma 11.1. The Mukai vecto®,.(v) has rank zero.
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Proof. This follows directly from®,(w) = (0,0,1) and(®.(w), ®.(v)) = (w,v) = 0. O
We write ®.(v) = (0,C, s), with C' € Pic(Y) ands € Z. Sincev? > 0 we haveC? > 0.

Lemma 11.2. After replacing® by the compositio o ®, where¥ ¢ Aut(D°(Y,«’)), we may
assume tha€’ is ample, and that # 0.

Proof. Up to shift [1], we may assume thdi’.C' > 0, for a given ample clas&’ on Y. In
particular,C is an effective class; it is ample unless there is a ratierizcurve D C Y with
C.D < 0. Applying the spherical twis$To,, at the structure shebbf D replaces” by its image
C" under the reflection @b, which satisfies”.D > 0. This procedure terminates, as the nef cone
is a fundamental domain of the Weyl group action generategtgctions at-2-curves.

Since tensoring with an (untwisted) line bundleXnduces an autoequivalencedf (Y, o),
we may also assume## 0. 0

Let H' € Amp(Y') be a generic polarization with respect®g(v). The following is a small
(and well-known) generalization of Beauville's integralslystem Bea91:

Lemma 11.3. The moduli spacé/y (®.(v)) admits a structure of Lagrangian fibration induced
by global sections At ¢, (+((0,0, —1)).

Proof. Let M’ := Mp:(®.(v)) andL’ := 0y 5, (+((0,0,—1)). By an argument of Faltings and
Le Potier (seel[P05, Section 1.3]), we can construct sectiong.6fas follows: for ally € Y, we
define a section,, € H°(M’, L') by its zero-locus

Z(sy):={E € M': Hom(E, k(y)) # 0} .

Whenevery is not in the support of’, the sections, does not vanish ak’; hence the sections
{sy}yey generatel’. Consider the morphism induced by this linear system. TragerofE is
determined by its set-theoretic support; hence the imagdé’aé the complete local system 6f.
By Matsushita’s theoreniMat99, Mat01], the map must be a Lagrangian fibration. d

By Remark2.14 there exists a generic stability conditieh € StabT(Y, o) with the property
that M/ (®(v)) = My (®(v)). On the other hand, by the birationality of wall-crossingneT
orem1.1, the moduli spaced/, (®.(v)) and Mg, ) (P«(v)) are birational; combined with the
identification @9), this shows thaf\/, (v) is birational to a Lagrangian fibration.

It remains to prove paib), so let us assume thal is nef and primitive. Using the Fourier-
Mukai transform® as above, and after replacimgby ®.(c), we may also assume thathas
rank zero, and thawv = Hgi(D) is the class of skyscraper sheaves of points. Now consider

the autoequivalenc& < Aut D’(Y, ) of Lemmall.2 Except for the possible shift], each

autoequivalence used in the constructionofeaves the classs invariant. Thus, in the moduli
spaceMy,, (V. (v)) = M,(v), the divisor classD is still given by D = +0y v, (v)(W), Up to

sign.

Let f: M,(v) --» Mpg(v) be the birational map to the Gieseker moduli spaég(v) of
torsion sheaves induced by a sequence of wall-crossingbas&.a The Lagrangian fibration
Mpg(v) — P" is induced by the divisofy v (—w). By Theorem10.2 the classes.D and
81 v(—w) are (up to sign) in the sami&g.-orbit. Since they are both nef on a smooth K-trivial
birational model, they are also in the closure of the movablee (and in particular, their orbits
agree, not just up to sign).

“4Note that the restriction of to any curve vanishes, hence the structure stieafs a coherent sheaf qiY, o).
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By Proposition3.3 the closure of the movable cone is the closure of the fundéahehamber
of the action onWgy. on Pos(M), which intersects every orbit exactly once. Therefore, the
classesf.D andfy (—w) have to be equal.

SinceM,(v) and My (v) are isomorphic in codimension two, the section ring£adénd f.. D
agree. In particularD is effective with litaka dimensioﬁ%. As explained in $aw03 Section

4.1], it follows from [Ver9g that the numerical litaka dimension &f is also equal td’zi. Since
D is nef by assumptionD is semi-ample by Kawamata's Theorem (sEeW85 Theorem 6.1]
and [Fujll, Theorem 1.1]), and thus induces a morphisnPto This completes the proof of
Theoreml.5.

Remark 11.4. In fact, the above proof shows the following two additionaltsments:

(@) If D € NS(M,(v)) with ¢(D) = 0 lies in the closure of the movable cone, then there is
a birational Lagrangian fibration induced by, (In particular,D is movable.)

(b) Any W -orbit of divisors onl, ., satisfyingq(D) = 0 contains exactly one movable
divisor, which induces a birational Lagrangian fibration.

12. APPLICATION 2: MORI CONE, NEF CONE MOVABLE CONE, EFFECTIVE CONE

Let v be a primitive vector withv? > 0, let o be a generic stability condition with respect to
v, and letM := M,(v) be the moduli space of-semistable objects. In this section, we will
completely describe the cones associated to the biratgeahetry ofM in terms of the Mukai
lattice of X.

Recall thatPos(M) C NS(M)g denotes the (closed) cone of positive classes defined by the
Beauville-Bogomolov quadratic form. Lé&os(M)g C Pos(M) be the subcone generated by
all rational classes iffos(M); it is the union of the interioPos(M ) with all rational rays in the
boundaryo Pos(M). We fix an ample divisor clasd on M (which can be obtained from Theorem
2.18.

In the following theorems, we will say that a subconePok(M )q (or of its closure) is “cut
out” by a collection of linear subspaces if it is one of theseld chambers of the wall-and-chamber
decomposition ofPos(M )g whose walls are the given collection of subspaces. Thissgyea
translated into a more explicit statement as in the formanadf Theoremil2.1given in the intro-
duction.

Theorem 12.1. The nef cone of\/ is cut out inPos(M) by all linear subspaces of the form
f(vt Nnat), forall classesa € Hj, (X, o, Z) satisfyinga® > —2 and0 < (v,a) < L

Via the Beauville-Bogomolov form we can identify the grolp( ) of curves up to numerical
equivalences with a lattice in the Néron-Severi grodp(M)g = (N'(M)g)" = N'(M)g. In
particular, we get an induced rational pairing &()); we then say that theone of positive
curvesis the cone of classd§’| € Ni(M)r with (C,C) > 0 andC.A > 0. Also, we obtain a
dual Mukai isomorphism

(30) A alg(Xs o, Z) /v @ Q — N1(M)q.
As the dual statement to Theorel.1, we obtain:

Theorem 12.2. The Mori cone of curves it is generated by the cone of positive curves, and
by all curve classe$"(a), for all a € H;lg(X,a,Z),a2 > —2 satisfying|(v,a)| < V; and
6V(a).A > 0.
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Some of these classasmay not define a wall bordering the nef cone; in this c%éa) is in
the interior of the Mori cone (as it intersects every nefstivipositively).

Theorem 12.3. The movable cone ¥/ is cut out inPos(M)g by the following two types of
walls:

(@) (st nv+) for every spherical class € v+.

(b) 6(w* Nnvt) for every isotropic classv € H,

ag(X . Z) with1 < (w,v) < 2.

Theorem 12.4. The effective cone d¥/ is generated byos(M)g along with the following ex-
ceptional divisors:

(@) D := 6(s) for every spherical class € v+ with (D, A) > 0, and

(b) D := 6(v? - w — (v,w) - v) for every isotropic classv € H

(X a,Z) with 1 <
(w,v) < 2and(D, A) > 0, *

Note that only those classé&swhose orthogonal complemeht! is a wall of the movable cone
will correspond to irreducible exceptional divisors.

The movable cone has essentially been described by Markoraanf/ hyperkahler variety;
more precisely,jlarll, Lemma 6.22] gives the intersection of the movable cone thigstrictly
positive conePos(M ). While our methods give an alternative proof, the only neateshent of
Theorem12.3concerns rational classéswith D2 = 0 in the closure of the movable cone; such
a D is movable due to our proof of the Lagrangian fibration cotojexin Theoreni.5.

Using the divisorial Zariski decomposition d8$u04, one can show for any hyperkahler va-
riety that the pseudo-effective cone is dual to the closdrth@ movable cone. In particular,
Theoreml2.4could also be deduced from Markman’s results and Thedré&m

Proof of Theoremi 2.1 LetC be the chamber dtab' (X, «) containingos. By Theoreml.2, the
boundary of the ample cone inside the positive cone is equaktunion of the image§)V), for
all walls WV in the boundary of that induce a non-trivial contraction morphism. (Theseveatls
that are not “fake walls” in the sense of Definiti@Q) Theoremb5.7 characterizes hyperbolic
lattices corresponding to such walls.

For any such hyperbolic lattick, we get a clasa as in Theoreni2.1as follows:

e in the casesd) of divisorial contractions, we lea be the corresponding spherical or
isotropic class;
¢ in the subcase obj of a flopping contraction induced by a spherical classe also set
a=s,
e and in the subcase db) of a flopping contraction induced by a sum= a + b, we may
assumdv,a) < (v, b), which is equivalent tgv, a) < "72
Stability conditionsr = (Z, A) in the corresponding wally satisfy3 75 = 0, or, equivalently,
(o) € O(vtnat).
Conversely, givera, we obtain a rank two lattic/ := (v,a). If H is hyperbolic, then it
is straightforward to check that it conversely induces oh¢he walls listed in Theorend.7.
Otherwise} is positive-semidefinite. Then the orthogonal compleni¢tt= v N a'’ does not

contain any positive classes, and thus its image udeiNS(1/) does not intersect the positive
cone and can be ignored. O

Z(a)
(

~

Proof of Theoreni2.3 As already discussed in Secti@f, the intersectiomov (M) N Pos(M)
follows directly from Theoreni.2, the statement of Theoref®.3is just an explicit description
of the exceptional chamber of the Weyl group action.
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A movable classD in the boundary of the positive cone, witl, D) = 0, automatically
has to be rational. Conversely, by our proof of Theore if we have a rational divisor with
(D, D) = 0thatis in the closure of the movable cone, then there is adragan fibration induced
by D on a smooth birational model @ff; in particular,D is movable. O

Proof of Theoreni2.4 We first claim that the class of an irreducible exceptionaisdir is (up to
a multiple) of the form described in the Theorem. For thelBtibether case, this was proved in
7.1 In the Hilbert-Chow and Li-Gieseker-Uhlenbeck case, fassof the divisor of non-locally
free sheaves can be computed explicitly; alternativeig énough to observe that (D) has to
be a multiple of the orthogonal projection wfto v-.

If D is an arbitrary effective divisor, theb can be written a® = A + E with A movable and
E exceptional, seeou04 Section 4], Marll, Theorem 5.8]. The class df is a rational point
of Pos(M). Thus the effective cone is contained in the cone describéuei Theorem.

For the converse, first recatos(M) C Eff(M). Now consider a rational divisor with? = 0.
If (D, E') < 0for some exceptional divisdr, thenD can be written the su® = eE+ (D —¢E)
with D — eE € Pos(M); thus D is in the effective cone. Otherwigd), E) > 0 for every
exceptional divisor®. By Proposition3.3, D is in the closure of the movable cone; by Theorem
1.5and Remarki 1.4 a multiple of D induces a birational Lagrangian fibration, Bds effective.

Finally, whenD is one of the classes listed explicitly in the Theorem, adeisthe orthogonal
complementD-. If it does not intersect the movable cone in a face or in therior, then the
inequality (D, _) > 0 is implied by the inequalitf £, _) > 0 for all irreducible exceptional
divisors; henceD is a positive linear combination of such divisors. Sincewladl D is identical
to one of the walls listed in Theorefi?.3 the only other possibility is thab- defines a wall of
the movable cone. The corresponding exceptional divispraportional toD. O

Relation to Hassett-Tschinkel’'s conjecture on the Mori coe. Hassett and Tschinkel gave a
conjectural description of the nef and Mori cones via irget®n numbers of extremal rays in
[HT10]. While their conjecture turned out to be incorrect (sB®[L2, Remark 10.4] andGK12,
Remark 8.10]), we will now explain that it is in fact very cédg related to Theorerh2.2

We first recall their conjecture. Via the identificatiov (M) = N'(M)g explained above,
the Beauville-Bogomolov extends tdavalued quadratic form ofv; (M ); we will also denote it
by ¢(_). The following lemma follows immediately from this defiiti, and the definition of ':

Lemma 12.5. Consider the isomorphism@ = N;(M)qg induced by the dual Mukai morphism
6V of (30). This isomorphism respects the quadratic form on eithe.sid

Let 2n be the dimension o/, and as above lett be an ample divisor. Let’ C Ni(M)r
be the cone generated by all integral curve clagses N, (M )z that satisfyg(R) > —"T” and
R.A > 0. In [HT10, Conjecture 1.2], the authors conjectured that for any Hgder variety
M deformation equivalent to the Hilbert scheme of a K3 surfétoe coneC' is equal to the Mori
cone.

Ouir first observation shows that the Mori cone is contained:in

Proposition 12.6. Let R be the generator of an extremal ray of the Mori conelMéf Then
(R, R) > -2,

Proof. It is enough to prove the inequality for some effective cuovethe extremal ray. Let
W be a wall inducing the extremal contraction correspondmght ray generated bj, and
Hw C H;lg(X,Z) its associated hyperbolic lattice. Let be a nearby stability condition in the
chamber obr, andoy € W. Leta € Hyy be a corresponding class satisfying the assumptions in
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Theorem12.2 a%? > —2 and|(v,a)| < "—22 Replacinga by —a if necessary, we can also assume
(v,a) > 0.

We first claim that there exists a contracted curve whoseiateclass is given by-6V(a).
We ignore the well-known case of the Hilbert-Chow contr@attiand also assume for simplicity
we assume thatV is not a totally semistable wall for any class#fiy; the general case can be
reduced to this one with the same methods as in the previatisrse By assumptions, we have
botha? > —2 and(v — a)2 > —2; therefore, we can choose-stableobjectsA and B of class
aandv — a, respectively. We further clairta, v) > 2 + a?: this claim is trivial whem? = —2,
amounts to the exclusion of the Hilbert-Chow case whénr= 0, and in casea?® > 0 it follows
from the signature of{,y and the assumption da, v):

(a,v)? > a’v? > 2a%(a,v) > (a? + 2)(a, V).

Assume thatp™(a) < ¢(v) < ¢T(v — a); in the opposite case we swith the roles of
and B. By the above claimext! (B, A) = (a,v —a) > 2. Varying the extension class in
Ext!(B, A) produces curves of objects i, (v) that are S-equivalent with respectdg; in
order to compute their class, we have to make the construetiplicit. LetP(Ext!(B, A)) be

the projective space of one-dimensional subspacédsxof(B, A). Choose a parameterized line
P! — P(Ext!(B, A)), corresponding to a sectianof

HO(PY,0(1) @ Ext!(B, A)) = Extpi, (Op B B, Op1 (1) K A).

Let£ € DP(P! x X) be the extensio®p: (1) X A — £ — Op X B given byv. By Lemma
6.9, every fiber of€ is o -stable. Thus we have produced a rational culvec M, (v) of
S-equivalent objects.

To compulte its class, it is sufficient to compute the intereagroductd (D). R with a divisor
9(D), forany D € v. We have

0(D).R = (D,v(®(Or)) = (D, v(B) + 2v(A)) = (D,v + a) = (D,a) = (D).0"(a),

where ®: D(M, . (v)) — D!(X) denotes the Fourier-Mukai transform, and where we used
D € v' in the second-to-last equality.

Letag € H;lg(X, Z) denote the projection af to the orthogonal complement of By Lemma
12.5 we have(R, R) = a2, and for the latter we obtain:

(ag,ag) = (a— Va) . (V’a)v> _ a2 (v,a) _2_V_2 _ n+3

v

vz v2 4 2
O

Remark 12.7. When M is the Hilbert scheme of points o, we can make the comparison to
Hassett-Tschinkel's conjecture even more precise: inddse, it is easy to see th#t induces an
isomorphism

alg(X, Z) /v — N1(M)
of lattices, respecting the integral structures. Givereasi® € Ny (M) satisfying the inequality
(R,R) > —"T*?’ of [HT10], letag € v@ be the (rational) class with"(ag) = R. Letk be any
integer satisfyingk < n — 1 andk? > (2n — 2)(—2 — a3); by the assumptiong; = n — 1 is
always an example satisfying both inequalities. Ther= a) + 5~V is a rational class in the
algebraic Mukai lattice that satisfies the assumptions ajomg in Theoreml2.2 In addition, it
has has integral pairing with both and with every integral class #-; thus, it is potentially an
integral class. The Hassett-Tschinkel conjecture holdsdf only if for every extremal ray af’,
there is a choice of such that is an integral class.



MMP FOR MODULI OF SHEAVES ON K3S VIA WALL-CROSSING 51

If we are given a latticev- of small rank, then the algebraic Mukai lattice @X, ) can
be any lattice inv(ég @ Q - v containing bothv- andv, as long asv and v’ are primitive.
In general, the Hassett-Tschinkel conjecture holds foresofrthese lattices, but not for others.
The question is thus closely related to the fact that a stglalgal Torelli statement needs the
embedding?(M) — H*(X), rather than just?(M).

13. EXAMPLES OF NEF CONES AND MOVABLE CONES

In this section we examine examples of cones of divisors.

K3 surfaces with Picard number 1... Let X be a K3 surface such th&tic(X) = Z - H, with
H? = 2d. We letM := Hilb"(X), forn > 2, andv = (1,0,1 — n). In this case, everything is
determined by certain Pell's equations. We recall that s&slid&NS(M) is given by

(31) H=60(0,—H,0) and B=060(—1,0,1—n).

Geometrically,H is the big and nef divisor induced by the symmetric poweHobn Sym"(X),
and2B is the class of the exceptional divisor of the Hilbert-Chowarphism.
By Theoremb.7, divisorial contractions can be divided in three cases:

Brill-Noether: If there exists a spherical clasith (s, v) = 0.
Hilbert-Chow: If there exists an isotropic clase with (w,v) = 1.
Li-Gieseker-Uhlenbeck: If there exists an isotropic class with (w,v) = 2.

Elementary substitutions show that the case of BN-contracs governed by solution to Pell’s
equation

(32) (n—1)X%2-dy?=1 via s(X,Y)=(X,-YH,(n—1)X).
The case of HC-contractions and LGU-contractions are gagkesolutions of
(33) X% _d(n—-1)Y?=1 with X + 1 divisible byn — 1;

we get a HC-contraction or LGU-contraction via

w(X,Y) = ﬂ,—zH,E or w(X,Y)= ﬂ,—YH,X—l
2n—1)" 2 2 1

depending on whetér is even or odd. The two equations determine the movable cone:

Proposition 13.1. AssumePic(X) = Z - H. The movable cone of the Hilbert scheme =
Hilb™(X) has the following form:

@) Ifd = 5 (n — 1), withk, h > 1, (k,h) = 1, then

Mov(M) = (H, H — %B),

whereq(hf[ — kB) = 0, and it induces a (rational) Lagrangian fibration oy .
(b) If d(n — 1) is not a perfect square, an@2) has a solution, then

om0
Mov(M) = (H,H e 1)B>,

where(z1, y1) is the solution tq32) with 21, y; > 0, and with smallest possible, .
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(c) Ifd(n — 1) is not a perfect square, an@2) has no solution, then

- /
Mov(M) = (H, H — d‘z—}B>,
1

where(z/, y}) is the solution tq33) with smallest possibl%ﬁ; > 0.

Proof. Since d induces the divisorial HC contraction, it is an extremal ohyhe movable cone;
to find the other extremal ray, we need to find> 0 such thatd — I'B lies on one of the walls
described by Theoreri2.3 and such thal' is as small as possible.

Also recall Propositior8.3: the movable cone is a fundamental domain for Weyl groupmacti
of Wgx. onPos(M). Any solution to b) or (c) determines a wall in the positive cone via Theorem
12.3 one of its Weyl group translates thus determines a walldromg the movable cone.

Part @) follows directly from Theoreni.5. To prove partlf), it follows immediately from the
previous discussion that i3R) has a solution, then one of the solutions determines thenslec
extremal ray. The claim thus follows from the observatiost th

is obtained as the image undeof a class orthogonal t&( X, Y"), and the fact tha% iS minimal
if and only if X is minimal.
A similar computation shows that given a solution 88) (which always exists), the vector

DY) =i =0 (G-t o= 05 )

X’ X
is contained ird(w(X,Y)") in both the HC and the LGU case; this proves pajt ( O
Example 13.2.1f d = n — 2, then 32) hasX = 1,Y = 1 as a solution. Therefore
Mov (M) = (H, H — Z = iB).

For the nef cone, we start with the easy case 2. Consider the Pell's equation
(34) X2 —4dy? =5.
The associated spherical class(&,Y) = (£, -V H, £31).
Lemma 13.3. Let M = Hilb?(X). The nef cone ai/ has the following form:
(a) If (34) has no solutions, then
Nef (M) = Mov(M).
(b) Otherwise, letz1,y;) be the positive solution gf34) with z; > 0 minimal. Then

Nef(M) = (H, H — d* B).
z1
Proof. We apply Theoreni2.1 The movable cone and the nef cone agree unless there is a flop-
ping wall, described in Theorem7, part 0). Sincev? = 2, the caser = a+ b with a, b positive
is impossible. This leaves only the case of a spherical elagh (v,s) = 1; this exists if and
only if (34) has a solution. d
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Example 13.4.Letd = 31. Then the nef cone fab/ = Hilb?(X) is

~ ~ 3658
Nef(M)=(H,H — ——B).
of (M) = (H,H ~ =)
In particular, this gives a negative answer @K[12, Question 8.4].
Indeed, 84) has a the smallest solution given by = 657 andy; = 118. This gives & —2)-

classs = (329, —59 - H, 328), which induces a flop, by Lemni8.3

For highern > 2 the situation is more complicated, since the number of $eljuations to
consider is higher. But, in any case, everything is completetermined.

Example 13.5. Consider the case in whiah= 1 andn = 7, M = Hilb’(X). This example
exhibits a flop of “higher degree”: it is induced by a deconifims v = a + b, with a%, b? > 0,
and not induced by a spherical or isotropic class. Indeed,4f (1,0,—6), a = (1,—H,0) and

b = (0, H, —6), then the rank two hyperbolic lattice associated to thid e@itains no spherical
or isotropic classes. The full list of walls in the movableneds given the table below. We can
write the nef divisor associated to a wall Bs— I'B, for I’ € Qs0; as before, the value df is
determined from%1) given an element of - N at.

T a a’ | (v,a) Type

0 (0,0,—1) 0 1 | divisorial contraction
Lo, -H2) |-2| 4 flop

2| (1,-H,1) [0] 5 flop

: (1,—H,0) 2 6 flop

L| (2,-3H,5) |-2| 7 fake wall

& a,—2H5) |-2| 1 flop
31-(1,-3H,10) |-2| 4 flop

21 (1,-2H,4) | 0| 2 |divisorial contraction

...and higher Picard number. Let X be a K3 surface such thBic(X) X Z-& @ Z - &.

Example 13.6. We let M := Hilb?(X), andv = (1,0, —1). We assume that the intersection
form (with respect to the basfs, &) is given by

28 0
(0 %),
Such a K3 surface exists, séddr84, Kov94]. We have:
NS(M)=7Z-s®NS(X),
wheres = (1,0,1). Our first claim is
(35) Nef(M) = Mov(M).
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Indeed, by Theorerf.7, a flopping contraction would have to come from a clasgith a? > —2
and(v,a) = 1; also, the corresponding lattidé = (v,a) has to be hyperbolic, which implies
a? < 0. In addition,a? = 0 would correspond to the Hilbert-Chow divisorial contraati and
thusa®? = —2 is the only possibility. If we writea = (r, D,r — 1) with D = a&; + b3, this gives

—2r(r — 1) + 28a® — 4b* = —2.

This equation has no solutions modulo 4.
The structure of the nef cone is thus determined by divisoaatractions. These are controlled
by the quadratic equation

(36) X2 - 2(7a®> - b¥?) =1,

viaa = (X, D, X). For example, the Hilbert-Chow contraction correspond$éosolutiona =

b =0andX = 1to (36). Other contractions arise, for examplegat 4, b = 0, X = 15, or

a=2,b=2,X =17, etc. The nef cone is locally polyhedral but not finitely gexted. Its walls
have an accumulation point at the boundary, coming fromatisol to

X% —2(7a®> - 1*) =0
corresponding to a Lagrangian fibration.

We continue to consider the case whéfehas Picard rank two. To increase the flexibility of
our examples, we now also consider a twist by a Brauer clas$3r(X). We chooser = ™ for
someB-field class3, € H?(X, Q) with

Bo-NS(X)=0 and pB2=0.

(See HMSO0§ for more details; in particular, the existence of our exéspollows as in HMS08
Lemma 3.22].)

Example 13.7. We assume th&g, is integral, and that the intersection form on
alg(X; o, Z) = NS(X) ® Z - (2,25,0) © Z - (0,0, —1)
takes the form

4 0 00
o -4 0 0
10 0 0 2
0 0 20

Consider the primitive vector = (0,&;,0), and letM := Mpy(v) be the moduli space of-
twisted H-Gieseker semistable sheavesXnfor H a generic polarization oX . Then:

(@) Nef(M) = Mov(M);

(b) Nef(M) is a rational circular cone.

To prove the above statements, observetfiat 4 and(v, a) € 4Z foralla € H}| (X, o, Z).
According to Theoren®.7, the only possible wall in this situation would be given by allB
Noether divisorial contraction, coming from a sphericassls € v'. But the above lattice
admits no spherical classes, and thus there are no walls.

Thus the nef cone and the closure of the movable cone are tpodth te the positive cone. Since
M obviously admits Lagrangian fibrations, the cone is rationa

Modifying the previous example slightly, we obtain a modylace with circular movable cone
and locally polyhedral nef cone:
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Example 13.8. Now assume 3 is integral, and that
alg(X; 0, Z) = NS(X) ® Z - (3,35,0) ® Z - (0,0, —1)
has intersection form given by

6 0 0 0
o =6 0 0
=10 0 o0 3
0 0 30

Consider the primitive vector = (0,5, 1), and letM := Mg (v). Then:

(a) Nef(M) is a rational locally-polyhedral cone;
(b) Mov(M) is a rational circular cone.

Indeed, b) follows exactly as in Exampld3.7 there are no spherical classes, and, for all
a € H) (X,a,Z), (a,v) € 3Z. However, flopping contractions are induced by solutionthéo
guadratic equation

a?— b —2as+s=0,
where we seD = a&; + b2, anda = (3(2a — 1), a&1 + b&2 + 3(2a — 1) By, s). This has infinitely
many solutions. It is an easy exercise to dedagdrém this.

14. THE GEOMETRY OF FLOPPING CONTRACTIONS

One can also refine the analysis leading to Theobento give a precise description of the
geometry of the flopping contraction associated to a floppialty WV .

As in Sectiorb, we leto € W be a stability condition on the wall, ard. ¢ VV be sufficiently
close tooy. For simplicity, let us assume throughout this section thathyperbolic latticeH,y,
associated t®V via Definition 5.2 does not admit spherical or isotropic classes; in particia
is not a totally semistable wall for any classs 7, and does not induce a divisorial contraction.

Let3 be the set of unordered partitiof’s= [a;]; of v into a sumv = a; +- - - +a,,, of positive
classes; € H. We say that a partitiof’ is a refinement of another partiti@p = [b,]; if it can be
obtained by choosing partitions of ealsh This defines a natural partial order g with P < @
if Pis arefinement of). The trivial partition as the maximal elementpf

GivenP = [a;]; € B, we letMp C M, (v) be the subset of objecfs such that the Mukai
vectors of the Jordan-Holder factals of £ with respect targ are given bya; for all i. Using
openness of stability and closedness of semistabilityrimilfas, one easily proves:

Lemma 14.1. The disjoint unionM, (v) = [[pcy Mp defines a stratification at/,, (v) into
locally closed subsets, such thafp is contained in the closure @l if and only if P < Q.

In addition, our simplifying assumptions 6, give the following:

Lemma 14.2. Assume thal®> = [a;, ay] is a two-element partition of. ThenMp C M, (v)is
non-empty, and of codimensiéa;, az) — 1.

Proof. Sincev is primitive, we may assume that has smaller phase thana with respect tar, .
By assumption orH,y and by Theoren2.15 the generic elememt; € M, (a;) is og-stablefor

i = 1,2. In particular,Hom(A;, Ay) = Hom(As, A1) = 0, and thereforelim Ext!(Ay, A;) =
(a1,a2). By Lemma6.9, any non-trivial extensiol; < FE — A, is o -stable. Using Theorem
2.15again, one computes the dimension of the space of such exisras

al+24a2+2+ (aj,ay) —1=v>+2—((a;,az) —1).
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For P as above, the flopping contractien™ contractsMp to the product of moduli spaces
Mgt (a;) x Mg!(ag) of op-stableobjects. The exceptional locus of is the union ofMp for
all non-trivial partitionsP. In particular, when there is more than one two-elemenitart the
stratification is only partially ordered, and the excepdiolocus has multiple irreducible compo-
nents. This leads to a generalization of Markman’s notiostidtified Mukai flopsntroduced in
[Mar01] (where the stratification is indexed by a totally orderet).se

Using the above two Lemmas, it is easy to construct examflfieps where the exceptional

locus of the small contractiom™ hasm intersecting irreducible components:
Example 14.3. ChooseM > m for which 22 + Mxy + y?> = —1 does not admit an integral
solution. We define the symmetric pairing #h = Z? via the matrix <]\2/[ ]\24> and letv =

m—1
approximately—% and—M. SinceM > m (in fact, M > 2m is enough), any partition of
into positive classes is in fact a partitionzﬁo. Therefore, the two-element partitions are given

( 1 > The positive cone contains the upper right quadrant andriddoed by lines of slopes

by A, = ]i , m—ol g for0 < k < m — 1. There is a unique minimal partition
Q = [(é) , <(1)> e <?>} with Mg C My, for all £; thus, the exceptional locus has

irreducible components/ 4, intersecting inV/.
Similarly, one can construct flopping contractions withitagily manyconnectedcomponents:

Example 14.4.Let m be an odd positive integer. Choosé > m and define the latticé({ by

the matrix < —4 M

oM 4 > The positive cone lies between the lines of slope appraeiya-;;

2
x > 0 andy > 0, and thereforg) = 1. Besides the trivial element, the only partitions occugrin

in %3 are therefore of the forml;, = [(f) , (m 1_ k)} , for 0 < k < 7. Each corresponding

stratumMy, is a connected component of the exceptional locus™afas A;, admits no further
refinement.

and—M. We letv = (). Any summand in a partition of must be of the forn(i) with

Remark 14.5. To show that the latticed as above occur as the lattigg, associated to a wall, we
only have to find a K3 surfac& such that{ embeds primitively into its Mukai lattic ;1g(X, 7).

For example, we can choo$¥dc(X) = H andv = (0,¢,0) for the corresponding curve class
c. In particular, Examplel4.3 occurs in a relative Jacobian of curves on special doublersov
X — P?, and Examplel4.4in special quarticsY c P3. This wall crossing already occurs
for Gieseker stability with respect to a non-generic paktion . The morphismr™ contracts
sheaves supported on reducible curges: C; U (5 in the corresponding linear system; it forgets
the gluing data at the intersection poirits N C5. The induced flop preserves the Lagrangian

fibration given by the Beauville integrable system.

15. LE POTIER'S STRANGE DUALITY FOR ISOTROPIC CLASSES

In this section, we will explain a relation of Theorelrbto Le Potier's Strange Duality Con-
jecture for K3 surfaces. We thank Dragos Oprea for pointimtpithis application.
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We first recall the basic construction fromH05 MOO08§]. Let (X, «) be a twisted K3 surface
and leto € Stab'(X, ) be a generic stability condition. Let w & H}, (X, o, Z) be primitive
Mukai vectors withv2, w? > 0. We denote byL,, (resp.,Ly) the line bundleD;, (v)(—0(w))
(resp.,0O, (w) (—0w(v))). We assume:

() (v,w)=0,and
() forall E € M,(v)and allF € M,(w), Hom?(E, F) = 0.
Then the locus
© ={(E,F) € M,(v) x My(w) : Hom(E, F) # 0}
gives rise to a section of the line bundlg v, := L X L, on M, (v) x M,(w) (which may or
may not vanish). We then obtain a morphism, well-defined wgttdars,

SD: HY(M,(v), Ly)" — H°(M,(w), Ly).
The two basic questions are:
e When ish® (M, (v), L) = h®(M,(w), Ly)?
o If equality holds, is the mapD an isomorphism?
We answer the two previous questions in the case where ohe ofvb vectors is isotropic:

Proposition 15.1. Let (X, a) be a twisted K3 surface and let € Stab(X,«) be a generic
stability condition. Lewv, w € H;lg(X, «, Z.) be primitive Mukai vectors wittv, w) = 0, vZ > 2
andw? = 0.
We assume that, (w) € Mov(M,(v)) and—0y,(v) € Nef(M,(w)). Then
(@) h°(My(v), Lw) = h°(Ms(w), Ly), and
(b) the morphisn$D is either zero or an isomorphism.

We will see that the caseD = 0 is caused by totally semistable walls.

Proof. Let Y := M,(w). By [Muk873 Cal02 Yos04, there exist an element’ € Br(Y)
and a derived equivalence: D’(X,a) = D’(Y,o/). Replacing(X,a) by (Y,o/), we may
assume thatv = (0,0,1) andv = (0,D,s), for somes € Z and D € NS(X), and that
X = M,(w) is the moduli space of skyscraper sheaves. Moredvet: —0y,(v) € Nef(X)
is effective, by assumption. By stability and Serre duglity all £ € M,(v) and allz € X,
Hom?(E, k(x)) = Hom(k(x), E)" = 0, verifying the assumption (1I); thus the loc@sgives a
section ofL, X L.

By Remark11.4 there exists a chambgl,, in the interior of the movable condov (M, (v))
whose boundary containsé,, (w). Moreover, there exist a polarizatidié on X and a chamber
Coo C Stab'(X,a) such that/(Cos) = Lo, Mu(v) = Mc, (v), and the Lagrangian fibration
induced byw is the Beauville integrable system atfiz; (v).

The argument inj1008, Example 8] shows that®(My (v), Lw) = h°(X,O(D)) and the
morphismSD is an isomorphism. Sinc#/y (v) is connected tdl/,(v) by a sequence of flops,
which do not change the dimension of the spaces of sectiohg, pfve obtain immediatelyd).

To prove ), we need to study the behavior of the morphishunder wall-crossing. We pick
a stability conditiono,, € C». Botho ando, belong to the open subsBt X, «) of Theorem

2.9. The restriction of the mag of Theorem2.10to U (X, «) is injective up to theﬁi;(R)-
action (i.e., the map separates points that are in diffeygsits). Now consider the mapin the
formulation of Theoreni0.2, restricted td/ (X, «). The composition

Oov 010 Z|y(x,a): U(X,a) = Pos(Mq(v))
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generically has connected fibers. Since hothando get mapped to a class in the movable cone,
we can find a pathy in U(X, «) connectinge and o, whose image stays within the movable
cone. Thusy crosses no divisorial walls. H also crosses no totally semistable walls, then the
morphismSD is compatible with the wall-crossing; since it induces asmsrphism atr, it
induces an isomorphism at

Assume instead that there is a totally semistable wall. Wewr= o, 3. The straight path
from o, to 0y, g, for ¢ > 0, corresponds to a change of polarization for Giesekerlgtalzind
thus does not cross any totally semistable wall. Therefeeemay replacer, with oy, 5, for
t>0.

We claim that all objectd” in M, (v) must be actual complexes. Indeed, if there exists a
sheafFE in M,(v), then the generic element is a sheaf. Moreover, sinde nef and big, it is
globally generated, and we can assume that the suppati®h smooth integral curve. Stability
in U(X, «) for torsion sheaves implies, in particular, that the sheaftually stable on the curve.
But thenFE would be stable fot — oo. This shows that we crossed no totally semistable wall.

SoE € A,z is an actual complex. Sina&k(E) = 0 andrkH~!(E) > 0, we must have
rkH(E) > 0; henceHom(E, k(z)) # 0 for all z € X. This shows tha® is nothing but the
zero-section of,, , and the induced magD is the zero map. d

In particular, the previous proposition holds for pairs aésgker moduli spaces.

Example 15.2. Let X be a K3 surface such th@tic(X) = Z - H, with H?> = 2. Letv =
(1,0,—-1) andw = —(1, —H, 1). Consider a stability conditiof., = o¢r,—2m, fort > 0. Then,
as observed ingea99 Proposition 1.3]Hilb?(X) = M,_(v) admits a flop to a Lagrangian

[

fibration induced by the vectar. The assumptions of Propositid.1are satisfied. In this case,
forall E[1] € M,_ (w), E = I,(—H), and for allT" € Hilb*(X), we haveHom(Ir, E[1]) # 0.
Hence, the mafD is the zero map.

The following example shows that the assumption in Projowosit5.1is necessary:

Example 15.3. Let X be a K3 surface witiNS(X) = Z - C; & Z - Cs and intersection form

o= (7 1)

We assume the two rational curv€s and C, generate the cone of effective divisors &n Let
v = (0,3Cy + Cy,1) andw = (0,0, 1). Thenv? = 4. Pick a generic ample divisdi on X. We
have

HO(Mpy (v), 0y (w)) = C#4,
For example, consider the totally semistable wall wheatigns with the spherical vectdd, C , 0),
Then Propositior6.8 induces a birational map/z (v) --+ Mg (vg) for vo = (0,Cy + Cs, 1),
and a chain of isomorphisms

HO(Mp(v), 8y (w)) 2 HO (Mg (vo), by, (w)) = HO(P?, Ops(1)) = €4,
where the middle isomorphism follows from Propositith 1. However,
HO(Mpy(w), 0w (v)) = HY(X,0x (30 4+ Cy)) = C,
The last isomorphism follows from the exact sequence
0— Ox(2C + C3) = Ox(3C1 + C3) — Op1(—2) — 0,
sinceOx (2C + Cs) is big and nef and thus has no higher cohomology.
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