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Abstract. We use topological surgery theory to give sufficient conditions for the zero framed
surgery manifold of a 3-component link to be homology cobordant to the zero framed surgery on
the Borromean rings (also known as the 3-torus), via a topological homology cobordism preserving
the free homotopy classes of the meridians.

This enables us to give examples of 3-component links with unknotted components and van-
ishing pairwise linking numbers, such that any two of these links have homology cobordant zero
surgeries in the above sense, but the zero surgery manifolds are not homeomorphic. Moreover the
links are not concordant to one another, and in fact they can be chosen to be height h but not
height h + 1 symmetric grope concordant, for each h which is at least three.

1. Introduction

It is well known that the study of homology cobordism of 3-manifolds is essential for
understanding the concordance of knots and links: homology cobordism of the ezteriors
of links in S? is equivalent to concordance in a homology S3 x I, and an additional mild
normal generation condition for 71 is equivalent to topological concordance in S x I (this
also holds modulo the 4-dimensional Poincaré conjecture in the smooth case).

We recall the definitions: two m-component links Ly and L; in S® are said to be
topologically (respectively smoothly) concordant if there exist m locally flat (respectively
smoothly embedded) disjoint annuli in S x [0, 1] cobounded by components of Ly x {0} and
—Ly x{1}. Two 3-manifolds My and M; bordered by a 2-manifold ¥, that is endowed with
a marking p;: X =5 OM;, are topologically (respectively smoothly) homology cobordant if
there is a topological (respectively smooth) 4-manifold W with OW = My U —M; U X X
[0,1])/(po(x) ~ xx{0}, pa1(z) ~ xx{1}, z € £), such that the inclusions M; — W (i = 0,1)
induce isomorphisms on integral homology groups. In this paper links are oriented, and
link exteriors are always bordered by | |, S L x S' under the zero framing.

In high dimensions, concordance classification results were obtained by studying ho-
mology surgery, with the aim of surgeries being to produce a homology cobordism of the
exteriors (for example, see [CS74, [CS80, [LD8S]). On the other hand, for knots and links
in dimension three, the zero surgery manifolds and their 4-dimensional homology cobor-
disms have been extensively used in the literature in order to understand the structure
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peculiar to low dimensions, especially in the topological category. Recall that performing
zero framed surgery on a link in S® yields a closed 3-manifold, called the zero surgery
manifold.

The classical invariants such as the knot signature and Levine’s algebraic knot concor-
dance class [Lev69al [Lev69b] are obtained from the zero surgery manifold of a knot, via
the Blanchfield form. Also higher order knot concordance obstructions, such as Casson-
Gordon invariants [CGT78| [CG8E], and Cochran-Orr-Teichner L2-signatures [COT03] are
obtained from the zero surgery manifold (often together with the homology class of the
meridian).

A natural interesting question is whether the homology cobordism class of a zero surgery
manifold determines the concordance class of a knot or link or if it determines the homology
cobordism class of the exterior.

In this paper we show, in a strong sense involving homotopy of meridians, that the
answer is negative for a large class of links satisfying a certain nonvanishing condition
on Milnor’s fi-invariants, even in the framework of symmetric grope and Whitney tower
generalisations of concordance and homology cobordism in the sense of [COT03| [Cha.
Also we employ topological surgery in dimension 4 to give a new construction of homology
cobordisms of zero surgery manifolds. Next we state our main theorems, after which we
will discuss these aspects further.

Theorem 1.1. Suppose h > 3. Then there are infinitely many 3-component links Lo, L1,
. with vanishing pairwise linking numbers and with unknotted components, satisfying the
following for any i # j.
(1) The zero surgery manifolds My, and My, are not homeomorphic.
(2) There is a topological homology cobordism between My, and My, in which the kth
meridians of L; and L; are freely homotopic for each k =1,2,3.
(3) The links L; and L; are height h but not height h+1 symmetric grope concordant.
In particular L; and L; are not concordant.

For a definition of height h symmetric grope concordance, see Definition Our links
are obtained from the Borromean rings, which will be our Lg for all h, by performing
a satellite construction along a curve lying in the kernel of the inclusion induced map
7T1(S3 AN Lo) — 7T1(ML0).

As a counterpoint to Theorem [[.I] we show that there are infinite families of links
with the same non-vanishing Milnor invariants with homeomorphic zero surgery manifolds
preserving the homotopy classes of the meridians, but which are not concordant.

The Milnor invariant of an m-component link associated to a multi-index I = i1i9 - - - i,
with i; € {1,...,m}, as defined in [Mil57], will be denoted by %, (I). We denote its length
by |I| := r. Define k(m) := |logy(m —1)].

Theorem 1.2. Let I be a multi-index with non-repeating indices with length m > 2. For
any h > k(m) + 2 there are infinitely many m-component links Lo, L1, ... with unknotted
components, satisfying the following.

(1) The L; have identical fi-invariants: Ty (J) = fg,(J) for all J. In addition
ip, (1) = 1, and iy, (J) = 0 for |J] < |1,

(2) There is a homeomorphism between the zero surgery manifolds My, and My, which
preserves the homotopy classes of the meridians.

(3) The links L; and L; are height h but not height h+1 symmetric grope concordant.
In particular L; and L; are not concordant.
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The case of m > 3 should be compared with Theorem [[T] since then the links L; have
vanishing pairwise linking numbers. To construct such links we start with certain iterated
Bing doubles constructed using T. Cochran’s algorithm which realise the Milnor invariant
required. We then perform satellite operations which affect the concordance class of the
link but do not change the homeomorphism type of the zero surgery manifold.

We remark that we could also phrase Theorems [[T] and in terms of symmetric
Whitney tower concordance instead of grope concordance.

In the three subsections below, we discuss some features of Theorem [[L1] regarding:
(i) the use of topological surgery in dimension 4, (ii) link concordance versus zero surgery
homology cobordism, and (iii) link exteriors and the homology surgery approach.

1.1. Topological surgery for 4-dimensional homology cobordism

An interesting aspect of the proof of Theorem [[T]is that we employ topological surgery in
dimension 4 to give a sufficient condition for certain zero surgery manifolds of 3-component
links to be homology cobordant. It is well known that topological surgery in dimension
4 is useful for obtaining homology cobordisms (and consequently concordances), although
the current state of the art in terms of “good” groups, for which the 7r1-null disc lemma
is known, is still insufficient for the general case. M. Freedman and F. Quinn showed that
knots of Alexander polynomial one are concordant to the unknot [FQ90, Theorem 11.7B].
J. Davis extended the program to show that two component links with Alexander poly-
nomial one are concordant to the Hopf link [Dav06]. The above two cases use topological
surgery over fundamental groups Z and Z? respectively. Due to the rarity of good groups
for 4-dimensional topological surgery, there are not many other situations where such
positive results on knot and link concordance can currently be proven. As another case,
S. Friedl and P. Teichner in [FT05] found sufficient conditions for a knot to be homotopy
ribbon, and in particular slice, with a certain ribbon group Z x Z[1/2].

We give another instance of the utility of topological surgery for constructing homology
cobordisms, using the group Z3, which is manageable from the point of view of topological
surgery in dimension 4. Indeed, our sufficient condition for zero surgery manifolds to
be homology cobordant focuses on the Borromean rings as a base link. The zero surgery
manifold Mp,, of the Borromean rings is the 3-torus 72 = S x S x S', whose fundamental
group is Z3.

To state our result, we use the following notation: let A := Z[Z%] = Z[tF, 5, t31].
Denote the zero surgery manifold of a link L by My, as before. For a 3-component link
L with vanishing pairwise linking numbers, there is a canonical homotopy class of maps
fr: My, = Mgo, = T2 which send the homotopy class of the ith meridian of L to that of
the Borromean rings, namely the ith circle factor of 7°. After choosing an identification
of m(T3) = Z3, we can use this to define the A-coefficient homology Hi(Mp;A). We
say that a map f: My — T2 is a A-homology equivalence if f is homotopic to fr and f
induces isomorphisms on H,(—;A).

Theorem 1.3. Suppose L is a 3-component link whose components have trivial Arf in-
variants and there exists a A-homology equivalence My — T3. Then there is a homol-
ogy cobordism W between My and T® = Mp,, for which the inclusion induced maps
T (Mp) = m (W) <= 71 (T®) are such that the composition from left to right takes merid-
ians to meridians.
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1.2. Link concordance versus zero surgery homology cobordism

We review the general question of whether links with homology cobordant zero surgery
manifolds are concordant. The answer to the basic question is easily seen to be no,
once one knows of a result of C. Livingston that there are knots not concordant to their
reverses [Liv83]. Note that a knot and its reverse have the same zero surgery manifold.
This leads us to consider some additional conditions on the homology cobordism, involving
the meridians. In what follows meridians are always positively oriented.

First, observe the following: the exteriors of two links are homology cobordant if and
only if the zero framed meridians cobound framed annuli disjointly embedded in a homol-
ogy cobordism of the zero surgery manifolds. (For the if direction, note that the exterior
of the framed annuli is a homology cobordism of the link exteriors.) In particular it holds
if two links (or knots) are concordant.

Regarding the knot case, in [CFHH]|, T. Cochran, B. Franklin, M. Hedden and P. Horn
considered homology cobordisms of zero surgery manifolds in which the meridians are
homologous: in the smooth category, they showed that the existence of such a homology
cobordism is insufficient for knots to be concordant. In the topological case this is still
left unknown.

Concerning a stronger homotopy analogue, the following is unknown in both the smooth
and topological cases:

Question 1.4. If there is a homology cobordism of zero surgery manifolds of two knots
in which the meridians are homotopic, are the knots concordant? Or concordant in a
homology S3 x I?

For the link case, results in the literature give non-concordant examples whose zero
surgery manifolds admit a homology cobordism with homotopic meridians. As a generic
example in the topological category, consider a 2-component link with linking number
one. The zero surgery manifold is a homology 3-sphere, which bounds a contractible
topological 4-manifold by [FQ90, Corollary 9.3C]. Taking the connected sum of such 4-
manifolds, one obtains the following: the zero surgery manifolds of any two linking number
one 2-component links cobound a simply connected topological homology cobordism. Note
that in this case the meridians are automatically homotopic. There are many linking
number one 2-component links which are not concordant, as can be detected, for example,
by the multivariable Alexander polynomial [Kaw78| [Nak78]. For related in-depth study,
the reader is referred to, for instance, [CK99, [FPl [Cha]. With our respective coauthors, we
gave non-concordant linking number one links with two unknotted components, for which
abelian invariants such as the multivariable Alexander polynomial are unable to obstruct
them from being concordant.

There are other examples, which have knotted components: in [CFHH] end of Sec-
tion 1], they discuss 2-component linking number zero links with homeomorphic zero
surgery manifolds which have non-concordant (knotted) components. These links are ob-
viously not concordant, and it can be seen that the homeomorphisms preserve meridians
up to homotopy.

By contrast with the above examples, our links have unknotted components and van-
ishing pairwise linking numbers. Another feature exhibited by the links of Theorems [l
and is that a great deal of the subtlety of symmetric grope concordance of links can
occur within a single homology cobordism/homeomorphism class of the zero surgeries,
even modulo local knot tying.
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We remark that all the links of Theorems [[.T] and lie in the same ‘k-solvequivalence
class’ for all k in the sense of [CKO08| Definition 2.5].

1.3. Link exteriors and the homology surgery approach

Our results serve to underline the philosophy that when investigating the relative problem
of whether two links are concordant, and neither of them are the unlink, one should
consider obstructions to homology cobordism of the link exteriors viewed as bordered
manifolds, rather than to homology cobordism of the zero surgery manifolds, even in low
dimensions. This was implemented in, for example [Kaw78, [Nak78| [Cha] (see also [FP]
for a related approach).

Although we stated our results in terms of grope concordance of links, in Theorems [[.1]
and given above, in fact we show more: the link exteriors are far from being homology
cobordant, as measured in terms of Whitney towers. A more detailed discussion is given
in Section Bl For the purpose of distinguishing exteriors, we use the amenable Cheeger-
Gromov p-invariant technology for bordered 3-manifolds (particularly for link exteriors)
developed in [Chal, generalising applications of p-invariants to concordance and homology
cobordism in [COT03| [CHLO0Y. [CO12].

We will now discuss our results from the viewpoint of the homology surgery approach
to link concordance classification, initiated by S. Cappell and J. Shaneson [CS74] [CS80)
and implemented in high dimensions by J. Le Dimet [LD88] using P. Vogel’s homology
localisation of spaces [Vog78]. The strategy consists of two parts. Consider the problem
of comparing two given link exteriors. First we decide whether the exteriors have the
same “Poincaré type,” which roughly means that they have homotopy equivalent Vogel
homology localisations. If so, there is a common finite target space, into which the exteriors
are mapped by homology equivalences rel. boundary. Once this is the case, a surgery
problem is defined, and one can try to decide whether homology surgery gives a homology
cobordism of the exteriors. The first step is obstructed by homotopy invariants (including
Milnor fG-invariants in the low dimension). The failure of the second step is measured
by surgery obstructions, which are not yet fully formulated in the low dimension (even
modulo that 4-dimensional surgery might not work), since the fundamental group plays
a more sophisticated central role; see [Powl2] for the beginning of an algebraic surgery
approach to this problem in the context of knot slicing.

Our examples illustrate that for many Poincaré types, namely those in Theorems [[]
and [[L2] we get a rich theory of surgery obstructions within each Poincaré type, which
is invisible via zero surgery manifolds. We remark that for our links L; in Theorems [[T]
and [[L2] there is a homology equivalence of the exterior of each L; into that of a fixed one,
say L1, since we use satellite constructions (see Section []). It follows that the exteriors
have the same Poincaré type in the above sense. In this paper, (parts of the not-yet-
fully-formulated) homology surgery obstructions in dimension 4 have their incarnation in
Theorem [5.2] the Amenable Signature Theorem.

Organisation of the paper

In Section Bl we explore the implications of the hypothesis that a homology equivalence
f: My — T? as in Theorem[[Jexists, and we prove Theorem[[.3in SectionBl In Sectiond]
we construct links with a given Milnor invariant with non-repeating indices, and perform
satellite operations on the links to construct the links of Theorems 1] and [.2] which are
height h symmetric grope concordant. In Section Bl we show that none of these links are
height h + 1 grope concordant to one another.
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2. Homology type of zero surgery manifolds and the 3-torus

This section discusses the hypotheses of Theorem We begin the section by briefly
reminding the reader who is familiar with Kirby calculus of a nice way to see the following
well known fact.

Lemma 2.1. The zero surgery manifold of the Borromean rings is homeomorphic to the
3-torus.

Proof. Place dots on two components of the Borromean rings and a zero near the other.
Each component of the Borromean rings is a commutator in the meridians of the other
two components, so this is a Kirby diagram for 72 x D?, whose boundary is 73. The
1-handles (dotted circles) can be replaced with zero framed 2-handles without changing
the boundary. O

In the following proposition we expand on the meaning and implications of the condition
in Theorem [[L3l Denote the exterior of a link L by X, := S3 \ vL as before.

Proposition 2.2. Suppose that L is a 3-component link. Then the following are equiva-
lent.

(1) There is a A-homology equivalence f: My — T3.
(2) The preferred longitudes generate the link module Hy(Xp; A).
(3) The pairwise linking numbers of L vanish and Hy(Mp;A) = 0.

Furthermore, (any of) the above conditions imply that L has multi-variable Alexander
polynomial Ay, = (t1 — 1)(t2 — 1)(t3 — 1), and Ap = (t1 — 1)(t2 — 1)(t3 — 1) implies that
the Milnor invariant 17, (123) is equal to 1.

Proof. First we will observe ([2)) and (B]) are equivalent. Longitudes of L represent elements
in Hy (Xz;A) =2 (X)) /7 (X 1)@ if and only if they are zero in Hy(Xp;7Z) = Z3; that
is, the pairwise linking numbers are zero. If this is the case, Hy(Mp;A) is isomorphic to
H,(X1; A)/(longitudes), since My, is obtained by attaching three 2-handles to Ey, along
the longitudes and then attaching three 3-handles along the boundary. It follows that
longitudes generate Hy(Xr; A) if and only if Hy(Mp;A) = 0.

Suppose (I) holds. Denote the meridians of L by u; (i = 1,2,3) and the linking
number of the ith and jth components by ¢;;. The ith longitude A;, which is homolo-
gous to » ., lijhi, is zero in Hy(Mp;Z) = Hy(T3;Z). Since {f«([pi])} forms a basis of
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H1(T3;7Z) = 73, it follows by linear independence that ¢;; = 0 for any i and j. Also,
Hi(Mp;A) = Hi(T3;A) = 0. This shows that (@) holds.

Suppose (@) holds. Start with a map g: 0X = | |35 x ST — T that sends p; to
the ith S? factor and \; to a point. Observe that g.: H1(0X;Z) — Hy(T3;Z) factors
through the inclusion induced map i,: H1(0X1;Z) — H1(Mr;Z) and the identifications
Hy(Mp;7Z) = 73 & Hy(T3;Z); this follows from the fact that H1(0Xp;Z) = Z° is
generated by the u; and A; and that both g, and 7. are quotient maps, with their kernels
generated by the \;. Since T3 is a K(Z?,1), elementary obstruction theory shows that g
extends to a map f: My — T3.

Consider the universal coefficient spectral sequence (see e.g. [Lev77, Theorem 2.3])
E?, = Ext} (Hy(Mp;A),A) = H"(Mg;A). We have E§, = 0 since H(Mp;A) = 0,
and E1270 = BExt)(Z,A) = H' (T3 A) = 0. It follows that H'(Mp;A) = 0. By duality,
Ho(Mp;A) = 0. Also, H3(Mp;A) = 0 since the Z3-cover of My, is non-compact. Since
Ho(Mp;A) 27 = Ho(T3; A) and H;(T3; A) = 0 for i > 0, it follows that f is a A-homology
equivalence. This completes the proof of the equivalence of (), (@) and (3.

Suppose ([), @) and (@) hold. Recall that the scalar multiplication of a loop by ¢; in
the module H;(Xp;A) is defined to be conjugation by ;. Since A; and p; commute as
elements of the fundamental group, we have (t; — 1)A\; = 0 in H;(Xr;A). From this and
@), it follows that there is an epimorphism of A := @?:1 A/(t;—1) onto Hy(Xr;A). Since
the zero-th elementary ideal of A is the principal ideal generated by (t1 —1)(t2 —1)(t3 — 1),
it follows that Ay, is a factor of (t; —1)(t2 —1)(¢t5 —1). We now invoke the Torres condition
(see e.g. [Kaw96, Theorem 7.4.1]): AL (1,2, t3) = (t52t5% — 1)AL:(t2, t3) where L' is the
sublink of L with the first component deleted and ¢;; is the pairwise linking number. Since
¢;; = 0 by (3), we have Ar(1,t2,t3) = 0. It follows that ¢; — 1 is a factor of Ay. Similarly
to — 1 and t3 — 1 are factors. Therefore Ay (t1,t2,t3) = (t1 — 1)(t2 — 1)(t3 — 1).

To show the last part, suppose that Ay (t1,ta,t3) = (t1 —1)(t2 — 1)(¢3 — 1). By [Kaw96,
Proposition 7.3.14], the single-variable Alexander polynomial Ay, (¢) of L is given by

AL(t) = (t - DAL LD = (t - D' = (VD' = VO™

It follows that L has Conway polynomial V (z) = 2%, by the standard substitution z =
(vVt)~' — v/t. In [Coc85, Theorem 5.1], Cochran identified the coefficient of z* in V()
with (ur(123))? for 3-component links with pairwise linking number zero. Applying this
to our case, it follows that 77 (123) = £1. O

3. Construction of homology cobordisms using topological surgery

This section gives the proof of Theorem [[L3l The proof will use surgery theory, and will
parallel the proof given by Davis in [Dav06] (see also [Hil02, Section 7.6]). We will provide
some details in order to fill in where the treatment in [Dav06] was terse, and to convince
ourselves that the analogous arguments work in the case of interest.

For the convenience of the reader we restate Theorem [[3] here.

Theorem [I.3l Suppose L is a 3-component link whose components have trivial Arf in-
variants and there exists a A-homology equivalence My — T3. Then there is a homol-
ogy cobordism W between My and T® = Mp,, for which the inclusion induced maps
1 (Mp) = m (W) <= 71 (T®) are such that the composition from left to right takes merid-
ians to meridians.
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Remark 3.1. It is an interesting question to determine whether there are extra conditions
which can be imposed in order to see that the Arf invariants of the components are forced
to vanish by the homological assumptions. In the cases of knots and two component links
with Alexander polynomial one, the Arf invariants of the components are automatically
trivial. For knots A (—1) computes the Arf invariant by [Lev66]. For two component links
one observes that Ay (¢,1) and A (1,t) give the Alexander polynomials of the components,
by the Torres condition, and then applies Levine’s theorem. These arguments do not seem
to extend to the three component case of current interest.

The proof of Theorem will occupy the rest of this section. In order to produce a
homology cobordism, we will first show that there is a normal cobordism between normal
maps f: My — T3 and Id: T2 — T3. Interestingly, we can work with smooth manifolds
in order to establish the existence of a normal cobordism. This will make arguments which
invoke tangent bundles and transversality easier to digest. Only at the end of the proof of
Theorem [[.3] where we take connected sums with the Eg-manifold, and where we claim
that the vanishing of a surgery obstruction implies that surgery can be done, do we need
to leave the realm of smooth manifolds.

Definition 3.2. Let X be an n-dimensional manifold with a vector bundle v — X. A
degree one normal map (F,b) over X is an n-manifold M with a map F: M — X which
induces an isomorphism F, : H,(M;Z) = H,(X;Z), together with a stable trivialisation
b: TM & F*v @el = ek,

A degree one normal cobordism (J,e) between normal maps (F: M — X,b) and
(G: N — X,c) is an (n + 1)-dimensional cobordism between M and N with a map
J: W — X x I extending F: M — X x {0} and G: M — X x {1}, which induces an
isomorphism

Je: Hya(W,0W;2) = H, (X x I, X x {0,1};Z),
together with a stable trivialisation e: TW @ J*(v x I) @ e’ =¥

For us, let X = T3, and let v be its tangent bundle. We fix a framing on the stable tan-
gent bundle of the target torus 7 once and for all. Note that this canonically determines
a trivialisation of the tangent bundle of F*v, for any map F': M — X, by the following
diagram, in which the bottom composition is the constant map, denoted *, and the top
composition is the pull back F*v. The middle composition is the induced framing.

FxId

M x {0} T3 x {0} —~ BO(n)

| | |

Mx]— 21 s BO

| | |

Mx {1} —2 1y —— -~ BO(n).

A framing of the tangent bundle of the domain will therefore determine a normal map.

Lemma 3.3. Let L be a link whose components have trivial Arf invariants, and let
f: My — T3 be a degree one normal map which induces a Z-homology isomorphism and
which maps a chosen meridian p; to the ith S factor of T? for i =1,2,3. We can make
a homotopy of f and choose a framing on My, so that f: My — T2 and Id: T® — T3 are
degree one normal cobordant.
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Proof. We need to show that we can choose a framing on M|, such that the disjoint union
M7y, U —T?3 represent the trivial element of QI (7). We compute this bordism group:

QO (T%) = QfF(5T3) = O (S2v 2 v S2v §3 v §3 v §% v 8y,

with this last isomorphism induced by a homotopy equivalence of spaces. There is a copy
of S for each i—cell of T3, for i = 1,2,3. To see this homotopy equivalence, we need
to see that the attaching maps of the cells are null-homotopic. The suspension of the
1-skeleton of T3 is $? v S? Vv §2. The Hilton-Milnor theorem [Hil55, Theorem A] computes
the homotopy groups of a wedge of spheres. The attaching maps for the 2-cells of T3
become the attaching maps for the 3-cells of T, namely maps in

m(S? Vv S? v §?) = Pm(S?) = Pz,
3 3

where the first isomorphism is by the Hilton-Milnor theorem. The commutator attaching
maps become trivial in the abelian 72 (.5?). Therefore the 3-skeleton of 37 is a wedge S?V
S2v 82V 83V 83V .83, The attaching map for the 3-cell of T2 becomes the attaching map
for the 4-cell of XT3, a map in
m3(S7V SPv STV Sty Sty st = (P m(Sh e Prs(SH e P ws(S?),
1<i<3 3 1<i<; <3

again by the Hilton-Milnor theorem, where the last three 73(S%) summands include into
73(52V.82Vv.$2Vv $3Vv S3V S3) via composition with the Whitehead product: let f;: S* — S?
be a generator of my(S?), where S? is the ith S? component in the wedge. Then the
Whitehead product is the homotopy class of the map [f;, f;] € m3(S? V Sf), which is
the attaching map for the 4-cell in a standard cellular decomposition of S? x S2. Since
Wg(sl) =y (S’1 V Sl) = (, the summands associated to the 52 components of the wedge
do not arise from a suspension. The summands associated to the S® components are null-

homotopic since the 3-cell of T2 is attached to each 2-cell twice, once on either side. This
completes the explanation of the claimed homotopy equivalence:

Y13~ S52vSZvsZvsdvsivsiv st

By Mayer-Vietoris, the bordism group Qf (S2 Vv $2v 2V §3 v §3 v §3 v §4) is a direct
sum

D Qi(s*) o PO (s*) @ Qf (57

3 3

=~ (P 05 (s°) & P A (S°) @ Qff (5°)
3 3

= o o Dot o 0
3 3

~PzoPz. 0z
3 3

Therefore
T2 o@D o P02 L@ Zoo PL o L.

3 3 3 3

The isomorphism is given as follows. Let

pr,: T2 = 8" x St x 81 — &t



NON-CONCORDANT LINKS WITH HOMOLOGY COBORDANT ZERO SURGERIES 10

be given by projection onto the ith factor. Similarly let
qr;: T3 = 8" x §' x 81 — ' x St

be given by forgetting the ith factor. Let F': M — T3 be an element of Q (73). Making
all maps transverse to a point, called %, we obtain an 8-tuple:

(1M1, (ory oF) ™ (4), (pry oF) ™ (¥), (13 oF) ™ (), (ar, oF) ™ (3),
(ary oF) 7 (+), (ars oF) ™ (+), F 1 (+))
cofe@PbePaoreat=zue@P rePr.az

3 3 3 3

We consider each of the summands in turn.

By choosing the appropriate orientation on My, and making the degree one normal
maps transverse to a point, it can be arranged so that the disjoint union f=1(x) U
—Id7 (%) = {pt} U —{pt} = 0 € Q.

As observed in [Dav06, Proof of the Lemmal, we can change the framing so that the
elements of Qff agree. First, we change the framing on each of three chosen meridians y;
to the link components L;.

Orientable k-plane vector bundles over S! are classified by homotopy classes of maps
[S1, BSO(k)]. Consider the exact sequence:

T9(BSO) — m3(BSO, BSO(k)) — w1 (BSO(k)) — w1 (BSO).

A stably trivial vector bundle over S! gives us an element of ker(y). A choice of triv-
ialisation of the vector bundle gives us a null homotopy and therefore an element of
m2(BSO, BSO(k)). The possible choices of stable trivialisations, or framings, are indexed
by WQ(BSO) = 7T1(SO) = ZQ.

We can therefore, if necessary, change the framing on each u; to be the bounding
framing using an element of 7 (SO(2)) which maps to the non-trivial element of m1(SO).
Use the element of 71 (SO(2)) to change the framing on the normal bundle of u; in M.
We claim that these changes in the framing can be extended to the whole of M. To
see this, we argue as follows. The dual of the inclusion map H'(Mp;Z) — H'(u;;7Z)
is surjective, since each [u;] is a generator of Hy(Mp;Z). The change of framing map
wi — SO(2) represents a homotopy class of maps in [u;, S'] and therefore an element of
H'(u;;7). Since this pulls back to an element of H'(Mp;Z), which can in turn produce
a map My — SO(2), the change of framing map can be extended as claimed.

Let N; C My, be the submanifolds given by (qr; of)~1(%), after perturbing f to make
qr; of transverse to a point. As the inverse image of the ith S factor of T3 (e.g. f~1(S* x
{x} x {*})), N; is a collection of circles. After a homotopy of f, it can be arranged, by
the assumption on f, that IV; is a single meridian u;, which has the bounding framing
and therefore represents the zero element in Qff. To make this arrangement, it suffices
to be able to remove circles N; whose image in 72 is null homologous. But in 73, a null
homologous curve is also null homotopic. Therefore we can make a homotopy of f so that
N; misses St x {x} x {x}.

After another homotopy, the inverse image (pr; of)~!(x) can be arranged to be a
capped-off Seifert surface F; U D2, where F; is a Seifert surface for L; (possibly with
closed connected components). To see this, we again use our assumption that f sends the
7th meridian p; to the ith circle. This assumption enables us to homotope f so that pr; of
sends a regular neighbourhood j; x D? to S' by projection onto the first factor. Then
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the inverse image is as desired. A homotopy of f preserves the framed bordism class of
(pr; of)~1(%), and the class [F; U D?] € QF is determined by the Arf invariant of L;. By
hypothesis, this vanishes.

Finally, again following [Dav06] (see also [FQ90, Proof of Lemma 11.6B]), the framing
can be altered in the neighbourhood of a point to change the element [M] € QI to the
trivial element. We recall the definition of the J homomorphism J: 73(SO) — 75 = QF,
for the convenience of the reader, where ﬁ,f is the kth stable homotopy group of spheres.
(Incidentally, m3(SO) = Z and 75 = Zgy.) Given 6: S® — SO, choose a k sufficiently
large so that we can represent § by a map 6: S® — SO(k). We proceed to construct a
map (J(6): S¥+3 — S*) € 75. So:

Sk+3 — 63 5 DF Ugs x pk—1 D* x §F1L,
Define a map:
j(0): S3x D* — S3x DF
(@,y) = (2,0(x)(y)),

since O(x) € SO(k) acts on D¥ by identifying D* with the unit ball in R¥. This map
extends to a homeomorphism 5 () of S x D¥ Ugs, pr—1 D* x S¥~1. Form the composition:

(0
Sk+3 = 63 « Dk Ugsx pk—1 D* x k-1 £> S3 x DF Ugs x pk-1 D* x k-1
col Sg « Sk proji Sk,

where col is the collapse map which squashes D* x S*~1 and proj; is the projection onto
the first factor. This gives an element of 75, which is the image of 6 under J: 73(SO) —
71'59 o Qgr.

This J homomorphism is onto [Ada66l, Example 7.17], so that composing the framing in
aneighbourhood D? of a point with the choice of map in 6 € w3(SO) = [(D?,0D?3), (SO, )]
such that —J(0) = [M] € QF, changes the class in Qf as desired.

This shows the existence of a normal cobordism W’. To see that this is of degree one,
note that the map to 73 which extends over W’ can be used to define a map to 72 x I,
by defining a map g: W’ — I such that g(M) = {0} and g(T?) = {1}. Now consider the
commutative diagram:

Hy(W', OW"; ) ————— H3(0W"; Z)

l |

Hy (T3 x I,T3 x {0,1}; Z) — H3(T? x {0,1}; Z).
Going right, then down, the fundamental class [W’, OW’] maps to
(1,-1) € H3(T? x {0,1};Z) = Z & Z.

By commutativity, the relative fundamental class [W’, OW'] must map to a generator of
Hy(T? x 1,73 x {0,1}; Z) O

A A-homology equivalence is also an integral homology equivalence, by the following
argument. By definition, (see above the statement of Theorem [[3)), a A-homology equiv-
alence induces an isomorphism on H;(—;Z). By duality, we also have an isomorphism
on Hy(—;Z). Tt remains to see that f: My — T3 is a degree one map. The assumption
that f,: H,(Mz;A) = H,(T3;A) is an isomorphism implies that the relative homology
vanishes: H,(T%, Mp;A) = 0. The universal coefficient spectral sequence then implies
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that H, (T3, Mp;7Z) = 0 since all the E? terms Torﬁ (H, (T3, Mp; A),Z) vanish. Therefore
a A-homology equivalence as in Theorem [[L3] is a degree one map.

Lemma B.3] then establishes the existence of a choice of stable framing b on My, such
that there is a degree one normal cobordism

(F': W —T?x I,¢)

between (f: My — T3,b) and (Id: T2 — T3, ¢). Choosing such a framing, we proceed to
apply surgery theory to alter W’ into a homology cobordism. Davis’ observation in [Dav06]
was that the framing on W' is not an intrinsic part of the concordance problem, but rather
necessary additional data which is required in order to be able to apply surgery theory.
Without the information provided by the self intersection form, it is not possible to obtain
algebraic sufficient conditions which ensure that surgery can be performed. Nevertheless,
as we shall see, there is a certain amount of freedom in the choice of framing data.

Before giving the proof of Theorem [[3] we first give the definition of the Wall even
dimensional surgery obstruction groups, which we will use in the proof.

Definition 3.4 ([Wal99], Chapter 5). Let A be a ring with involution. A (—1)*-Hermitian
sesquilinear quadratic form on a free based A-module M is a (—1)*-Hermitian sesquilinear
form A\: M x M — A together with a quadratic enhancement. A quadratic enhancement
of a form \: M x M — A is a function pu: M — A/{a — (—1)¥a@|a € A} such that

(1) Az, ) = p(z) + p(x);
(2) wlx +y) — plx) = uly) = A=, y);
(3) wlax) = ap(z)a;
for all z,y € M and for all a € A.
A hyperbolic quadratic form is a direct sum of standard hyperbolic forms, where the
standard hyperbolic form (H, x,v) is given by

(424, <(_2)k é) (1,07 =0 = (0, 1)7)).

The even dimensional surgery obstruction group Lok (A) is defined to be the Witt group
of nonsingular (—1)*-Hermitian sesquilinear quadratic forms on free based A-modules,
where addition in the Witt group is by direct sum, and the equivalence class of the hyper-
bolic forms is the identity element, where the equivalence relation is as follows. Quadratic
forms (M, \, ) and (M’ N, u') are said to be equivalent if there are hyperbolic forms
(H,x,v) and (H', x',v") such that there is an isomorphism of forms (M & H, A& x, pbv) =
(M'® H', N @ X',/ ®v'). This completes the definition of Lok (A).

For us A will be the group ring Z[r| of some group 7; initially 7 will be Z3 so that we
take A = Z[Z3] = A. We omit the definition of the odd dimensional L-groups since they
will only play a peripheral réle in the proof of Theorem

Proof of Theorem[.3 First, do surgery below the middle dimension [Wal99, Chapter 1]
on (W', F’,¢e’) to create a normal cobordism (F: W — T3 x I, e) which is 2-connected i.e.
W is connected and m (W) = 71 (T%) =2 Z®. The induced map Fi: ma(W) — mo(T? x I)
is automatically surjective since T is aspherical.

The Wall surgery obstruction [Wal99, Chapter 5] of the normal cobordism (F': W —
T3 x I,e) is now defined in L4(Z[Z?]), to be given by the intersection form

Awr s Ho(W'5 A) x Ho(W'5 A) — A,
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together with the quadratic enhancement
i Hy(W; A) — Z[2%)/{a = )

defined by counting the self intersections of an immersion of a sphere S? 9+ W representing
an element of Ha(W;A) = mo(W), where the regular homotopy class of the immersion
is fixed by the framing e to be the unique class of immersions for which the induced
trivialisation of T'S? extends over the null-homotopy of S? in 7.

The fact that the homology of the boundary H;(Mp;A) = H;(T3;A) =0 for j = 1,2,
is used crucially here to see that the intersection form Ay is non-singular, as observed by
the surgeon in the “dialogue” of [Dav06].

By [Wal99, Proposition 13B.8], which is based on Shaneson’s formula L, (Z[r x Z]) =
L, (Z[r]) ® L,—1(Z[r]), when 7 has trivial Whitehead group [Sha69], we have that:

3
MMWN@qumwm@@@m@@@m@@mm
3 3

=0 ‘
=~ Lo(Z) ® €P La(2),
3

where the last isomorphism is by periodicity of the L-groups and the fact that the odd
dimensional simply connected L-groups vanish. The even dimensional simply-connected
L-groups Lok (Z) are computed [KM63], when k = 0 mod 2, as

Lo(Z) = Z
(M, M\ p) — o(R®z M, Id®N)/8,

while for the dimensions where £ = 1 mod 2 they are computed via

Ly(Z) = Zs
(M, M\, 1) —  Arf(Zo @z M, Id@A, Id@u).

We need to see that we can make further alterations to W in order to make the surgery
obstruction vanish.

First, we take the connected sum with —o(W)/8 copies of the Eg manifold, namely
the simply connected 4-manifold which is constructed by plumbing disc bundles D? x D?
according to the Fg lattice. It turns out that the boundary of the resulting 4-manifold is the
Poincaré homology sphere. One then caps off with the contractible topological 4-manifold
whose boundary is the Poincaré homology sphere [FQ90, Corollary 9.3C]. This produces
the Eg manifold, a closed topological 4-manifold. It has a non-singular intersection form,
with a quadratic enhancement induced from a normal map to S*, and its signature is 8.
By a negative copy of this 4 manifold we of course mean the same manifold but with
the opposite choice of orientation. By making such a modification to W, we obtain a
new normal map, which by abuse of notation we again denote by (W, F,e), for which
the obstruction in Lg(Z) is trivial. Note that W s till has fundamental group Z? since
m1(Es manifold) = {1}, and moreover W is unchanged.

Next, we may need to alter W again, so that the three Arf invariant obstructions in
L2(Z) vanish. For i = 1,2,3, define maps

qri: T3 x T =8 x S x §* x I — S x §*
which forget the ith S' factor and the I factor. Perform a homotopy of F to ensure
that qr; oF is transverse to * € S! x S1, and such that F~1(S* x {x} x {x} x {9I}) —

St x {x} x {*} x {9I} is a homotopy equivalence (and similarly with the x terms moved
appropriately for 7 = 2,3). This homotopy equivalence was already arranged in the proof



NON-CONCORDANT LINKS WITH HOMOLOGY COBORDANT ZERO SURGERIES 14

of Lemma [333] when we saw that the elements of Qff can be removed. Let S; be the
surface (qr; oF)~1(x); each surface has boundary 9S; given by the meridian p; and the
corresponding S! factor of T3.

Let pr;: T2 x I = St x S* x St x I — S' x I be the map which remembers the ith
S1 factor and the I factor. Making F transverse to a point, (pr; oF)~!(x) is a surface
Y, C W. Since F(S; NY;) is a single point and F is of degree one, we can assume that
S; and ¥; intersect in a single point. By choosing different points in the I factor, we can
ensure that the X; are all distinct.

Now as in [Dav06], for each ¢ with nonzero surgery obstruction in the corresponding
L5(Z) summand of L4(Z[Z3]), remove a neighbourhood X; x D? of ¥; and replace it with
¥; x cl(ST x ST\ D?). That is, replace the D? factor with a punctured torus, but define
the framing on the torus to be the framing which yields Arf invariant one, that is the Lie
framing on both S! factors. Since ¥; is dual to S;, this adds one to the Arf invariant of
the element of Ly(Z) represented by S;, and so changes the Arf invariant one summands
to having Arf invariant zero.

After these alterations we have a normal map (G’: V' — T3 x I,k'), with vanishing
surgery obstruction. Since the fundamental group Z3 is good in the sense of Freedman
(poly-cyclic groups are good [FQ90, Theorem 5.1A]), the surgery sequence is exact in the
topological category—see [FQ90, Theorem 11.3A]. We can therefore find embedded two
spheres representing a half-basis for m2(G’), perform surgery, and obtain a topological
4-manifold V' which is homotopy equivalent to 7% x I; in particular, V is a homology
cobordism between My, and T°.

Moreover, the following diagram commutes.

T (Mp) (V) m(T?)

|

T (T3) ——= 71 (T3 x I) =—— m,(T3)

Since the meridians j; of L are mapped to standard generators of 71 (T°), an easy diagram
chase shows that the homotopy classes of the meridians are preserved in the homology
cobordism V. O

4. Construction of links and grope concordance

In this section we give constructions of certain links with a given Milnor invariant, and
construct grope concordances, using the methods of [Coc90] and [Chal.

4.1. Iterated Bing doubles with a prescribed Milnor invariant

Let I be a multi-index with non-repeating indices with length m := |I| > 2. We describe
a rooted binary tree T'(m) associated to m > 2, which has m leaves: the right subtree of
the root just consists of a single vertex, and the left subtree T7(m) is the complete binary
tree of height h(m) := [logy(m — 1)] with the rightmost 2(m — h(m) — 1) pairs of leaves
(and edges ending at these) removed. (By convention, a binary tree is always embedded
in a plane with the root on the top.) That is, 77T(m) is a minimal height binary tree with
m — 1 leaves. For example, T'(m) for m = 7 is shown in Figure[ll

Following the proof of [Coc90, Theorem 7.2], a rooted binary tree T describes a link
with components corresponding to the leaves of T'. First, a complete binary tree of height
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FIGURE 1. The tree T'(m) for m = 7, labeled with I = 1234567.

one is associated to a Hopf link. If T is obtained from 7" by attaching two new leaves to
a leaf v of T', then the link associated to T is obtained from that of T by Bing doubling
the component corresponding to v.

Consider the link described by the tree T'(m). Labelling the leaves of T'(m) from left
to right with the multi-index I (see Figure[llfor I = 1234567), the components of the link
are ordered. We denote this ordered link by L;. Then, by [Coc90, Theorem 8.1], the link
Ly has fip (I) = £1 and 7y, (I') = 0 for |[I'| < |I].

4.2. Satellite construction and grope concordance of links

To construct links which are grope concordant, we employ the method of [Chal, Section 4].
We begin by giving the definition of grope concordance. The use of gropes in this context
first appeared in [COT03].

Definition 4.1 ([FT95]). A grope is a pair (2-complex, base circle) of a certain type
described below. A grope has a height h € N. For h = 1 a grope is precisely a compact
oriented surface ¥ with a single boundary component which is the base circle. A grope of
height h + 1 is defined inductively as follows: let {a;|i =1,...,2 - genus} be a standard
symplectic basis of circles for ¥. Then a grope of height h + 1 is formed by attaching
gropes of height h to each «; along the base circles.

An annular grope is defined by replacing the bottom stage surface by a surface with
two boundary components.

Definition 4.2 ([Chal, Definition 2.16). Two m-component links L and L’ in S* are
height n grope concordant if there are m framed annular gropes G; of height n, i =1,...m,
disjointly embedded in S3 x [0, 1], with the boundary of G; the zero framed ith component
of L; € §3 x {0} and —L} C S3 x {1}.

As mentioned in the introduction we could also phrase our theorems in terms of Whitney
towers, but for simplicity of exposition we stick to gropes. See [Chal Section 2] for an
exposition on gropes, Whitney towers, and n-solvable cobordisms (Our Section [ also
contains a limited discussion of n-solvable cobordisms).

We recall that a capped grope of height k is a grope of height k together with 2-discs
attached along each standard symplectic basis curves of the top layer surfaces. The at-
tached 2-discs are called caps, and the grope itself is called the body. We always assume
that a capped grope embedded in a 4-manifold is framed.

We denote the exterior of a link L by Xp. If L is a link in S3, 7 is an unknotted
circle in S? disjoint from L, and K is a knot, then we denote the satellite link of L with
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axis 77 and companion K by L(n, K); this is the image of L under the homeomorphism
Xy Us X Z, 53, where the glueing identifies the longitude of 7 with the meridian of K,
and vice versa.

Following [Chal Definition 4.2], we call (L, n) a satellite configuration of height k if L is
a link in $3, n is an unknotted circle in $2 disjoint from L, and the 0-linking parallel of n
in X,, = X, x {0} bounds a capped grope of height k£ embedded in X, x [0, 1] with body
disjoint from L x [0,1]. The caps should be embedded in X, x [0,1] but may intersect
L x [0,1].

Lemma stated below describes how iterated satellite constructions using satellite
configurations give us grope concordant links. The setup is as follows. Fix n. (To obtain
Theorems [T and [[2] set h = n + 2.) Suppose that (Lo, n) is a satellite configuration of
height k < n. (Later we will use the link L; described above as Lg.) Suppose that (K, a;)
is a satellite configuration of height one, with K; a slice knot, for i = 0,...,n —k — 1.
Let JJ be the connected sum of N; copies of the knot described in [CT07, Figure 3.6],
where {N,} is an increasing sequence of integers which will be specified later. (Indeed
these will be given in terms of the Cheeger-Gromov bound on the p-invariants and, for
the links of Theorem [[11] in terms of the Kneser-Haken bound on the number of disjoint
non-parallel incompressible surfaces. See Section[dl just before the proof of Proposition5.3]
and Section 4] just before Lemma [L7) Define J! := K;_1(a;_1,J] ;) inductively for
i=1,...,n— k. Finally define L; := Lo(n, J]_,).

Lemma 4.3 ([Chal Proposition 4.7]). The link L; is height n+ 2 grope concordant to Lo
for all j.

Proof. The same as the proof of [Chal, Proposition 4.7], except that Ly replaces the Hopf
link in the last sentence. (|

The following observation on the satellite construction is useful.

Lemma 4.4. If L' = L(n, K) is obtained from L by a satellite construction, then L and
L' have the same Milnor fi-invariants.

Proof. Tt is well known that a satellite construction L' = L(n, K) comes with an integral
homology equivalence f: (Xr.,0Xy/) — (X1,0Xr) which restricts to a homeomorphism
on the boundary preserving longitudes and meridians (see e.g. [ChalQ, Proof of Proposi-
tion 4.8], [CO13, Lemma 5.3]). As in [CEP| Lemma 2.1], by Stallings [Sta65], it follows
that f induces an isomorphism m (Xp,)/m1(X1)q = m(X1)/m (X1 ), that preserves the
classes of meridians and longitudes for any ¢, and consequently L and L’ have identical
QA-invariants. O

4.3. Satellite configuration of iterated Bing doubles

The goal of this section is to construct the examples needed for Theorem [[2] and to show
that they satisfy (1) and () of that theorem. Now we consider again the link L; described
in Section Il Recall that k(m) := |log,(m —1)] where m = |I|. Let n be the zero framed
longitude of the component of L; labelled with m, namely the component of the original
Hopf link that is never Bing doubled in the construction of L;j.

Lemma 4.5.
(1) The pair (L1, n) is a satellite configuration of height k(m).
(2) The curve n is nonzero in w1 (L) /m1(L1)m.
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(3) For any knot K, the link L;(n, K) has zero surgery manifold homeomorphic to the
zero surgery manifold of Ly, via a homeomorphism which preserves the homotopy
classes of the meridians.

We remark that Lemma (@) will be used in Section

Proof. Denote L := Ly for this proof.

(1) We go back to the construction of L, and construct the grope as we construct L.
We begin with the Hopf link (i.e. m = 2), and the curve n as a longitude of Ly. We also
begin with a thickened cap D? x [—1,1], such that 9D? x {0} = 5. This intersects the
other component of the Hopf link in a single point.

Every time a component K is Bing doubled in the construction of L, we arrange that
one of the clasps lies in D? x [—1, 1], and then replace the thickened cap that intersected K
with a genus one capped surface with a single boundary component, whose body surface
misses the new Bing doubled components, and such that each cap intersects one of the
two new components. See Figure [2] which is somewhat reminiscent of a figure in [FQ90,
Chapter 2.1].

FIGURE 2. Replacing a cap with a capped surface

Since a complete binary tree of height k(m) can be embedded in T'(m), we obtain a
symmetric embedded capped grope of the required height, with the body lying in the link
exterior X7 and the caps intersecting the link transversely.

(2) The nonvanishing of the Milnor invariant 7, (I) implies that all of the longitudes of
L are nontrivial in m (Xr)/71(XL)1-

(3) A Kirby diagram for the 3-manifold My, given by zero framed surgery on L can
be produced by putting a 0 next to every component of L. If we perform a satellite
construction with pattern K and with 7 as axis, this is equivalent to tying all the strands
of L which intersect a disc D, whose boundary is 7, in the knot K, with framing zero. In
other words, replace the trivial string link in D x [0, 1] with the string link obtained by
taking suitably many parallel copies of K.

But we can make a crossing change of these parallel copies of K at will, by performing
handle slides, sliding the parallel strands over the zero framed 2-handle attached along the
component parallel to n. This gives a Kirby presentation of a homeomorphic 3-manifold.

By making sufficiently many such crossing changes/handle slides, all the parallel strands
which the satellite construction ties in the knot K can be unknotted, recovering the link
L. Thus the zero surgery manifolds of the satellite link and the original link are homeo-
morphic. It is easy to see that the homotopy classes of the meridians of L are preserved
under such homeomorphisms. O
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Now, let n > k(|I|) = k(m). Let L; be the links obtained by the construction just before
Lemma [£3] using our (L, n) as (Lg,n), and using the Stevedore satellite configuration
described in [Chal Figure 6], which for the reader’s convenience is shown in Figure Bl as
the (K, ;). Then by Lemma 3] and Lemma (@), the links L; are height n + 2 grope
concordant to the link Lo = Lj.

=

FIGURE 3. Stevedore satellite configuration (K;, o).

Lemma E4] shows that the links L; satisfy Theorem (. They also satisfy The-
orem @) by Lemma @). We have also proved, in Lemma 3] the first part of
Theorem @): the links L; are mutually height n + 2 grope concordant. The second
part of Theorem @), namely the failure of the links to be pairwise height n + 3 grope
concordant, will be shown in Section

4.4. Examples with non-homeomorphic zero surgery manifolds

In order to produce examples satisfying Theorem [IL1] (Il), we alter the construction of
Sections and to give examples with non-homeomorphic zero surgery manifolds.
We consider the case of m = 3 and I = 123 only. Then the link L := L; described in
Section E]is the Borromean rings. Let n be the simple closed curve in S \. L shown in
Figure[dt z, y, and z denote the components of L.

="

FIGURE 4. A satellite configuration on the Borromean rings
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The pair (L,n) also has two of the properties stated in Lemma 5] for m = 3:

Lemma 4.6.
(1) The pair (L,n) is a satellite configuration of height one.
(2) Inm(Xyp), n=z,y][[z,v], z], where x, y, and z are the Wirtinger generators cor-
responding to the dotted arcs in Figure[d Also, n is nontrivial in w1 (Xp)/m1(X1)s.

Here [a, b] denotes the commutator aba=1b~1.

Proof. (1) Tubing the obvious disc bounded by 7 along the components of L that intersect
it, we obtain a genus two surface V' with boundary n which is shown in Figure[@l This is
the body of the desired capped grope. The whole capped grope is the body taken together
with the four caps shown in Figure Bl as shaded discs.

FiGURE 5. The capped grope bounded by 7.

(2) The claim that n = [z,y][[x, y], z] follows from a straightforward computation in
terms of the Wirtinger generators, reading undercrossings of n starting from the dot on
7 in Figure @ Since L has vanishing linking number, due to Milnor [Mil57] (see also
Stallings [Sta65]), m1(Xr)/m1(XL)s is isomorphic to F/F5 where F is the free group gen-
erated by z, y, and z. Consequently, [[z,y],z] € m1(X1)s and [z,y] ¢ 71(X1)s. From this
the second conclusion follows. O

As in Section [£3] we apply the construction described just before Lemma [43] using
our (L, n) as the seed link (Lo, n) and using the Stevedore satellite configuration described
in [Chal Figure 6] (see our Figure [B) as (K;,a;) for ¢ = 0,...,n — 2 as above. Let the
resulting links be the L;. Then by Lemma L3 the L; are height n + 2 grope concordant
to the Borromean rings L, so these satisfy the first part of Theorem [[T] ). The second
part of Theorem [Tl (B, on the failure of the links to be pairwise height n + 3 grope
concordant, will be shown in Section

Furthermore, the links L; satisfies the hypothesis of Theorem[[.3] First note that since
our satellite operation does not change the knot type of the components, L; has unknotted
components. In particular the Arf invariants of the components vanish. Recall, from the
proof of Lemma[4.4] that there is a homology equivalence f: X1, — X, obtained from the
satellite construction L; = Lo(n, J7J;71)§ indeed f is obtained by glueing the identity map
of Xp,n with the standard homology equivalence (X ;; ,0X; ) — (S x D?, 81 x S1)
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along S x S1. Since our curve n C S3— Ly lies in the commutator subgroup of 7 (S® — L),
f is indeed a A-homology equivalence Xy, — X, by a Mayer-Vietoris argument. Filling
it in with 3 solid tori, we obtain a A-homology equivalence My, — T3 = My, as desired.
Therefore, by applying Theorem [[3] it follows that the links L; satisfy Theorem [IT] (Z)).

We need to confirm that the L; satisfy Theorem [LT] (I)), namely the M, are not
homeomorphic. The underlying idea is as follows. Recall that L; is defined by a satellite
construction, starting with a knot Jg. In many cases, the JSJ pieces of the exterior of
Jg become parts of the JSJ decomposition of My, so that the My, have distinct JSJ
decompositions. But a complete proof of this seems to require complicated arguments (a
technical issue is that an essential torus might not be parallel to a JSJ torus, because
of Seifert fibred pieces). In order to avoid these complications from JSJ decompositions,
we will present a simpler argument using only the number of incompressible tori; this is
enough for our purpose.

We need the following. The Kneser-Haken finiteness theorem [Hak61] states that for
each 3-manifold M, there is a bound, say Cx (M), on the number of disjoint pairwise
non-parallel incompressible surfaces that can be embedded in M. Recall that the knot
J§ used in the construction of the link L; is a connected sum of N; knots, where {N;}
was an increasing sequence to be specified (see the paragraph before Lemma [£3]). Here
is the first requirement on the N;: we choose the N; inductively in such a way that
Nj > maX{C’KH(MLk) | k=0,1,...,5— 1}

Lemma 4.7. The zero surgery manifolds My, and My, are not homeomorphic for i # j.

Proof. Recall that My, = My, is the 3-torus 7°. Consider Y := M}, \ v(n), where v(n)
is an open tubular neighbourhood of 7. For notational convenience, denote the exterior
of JJ_; by X := X,; . The 3-manifold My, is obtained by glueing ¥ and X along

n—1
their boundaries. Let T' = 0Y = 0X be the common boundary torus. Note that M,
can also be described in the same way, using J?_,; := unknot; in this case, the torus 7T is
compressible in My, since X is a solid torus.

Claim. For j > 1, the torus T is incompressible in Y .

Using the claim, we will show that the 3-manifolds M7,; are not pairwise homeomorphic.
Suppose j > 1. Since the knot J£—1 is obtained from an iterated satellite construction
with the first stage knot Jg a connected sum of N; nontrivial knots, the exterior X of
J£—1 has at least N; incompressible tori, including the boundary 7. Since M, =Y Ur X
and 7' is incompressible in Y, it follows that there are N; non-parallel incompressible tori
in My,. For any k < j, since N; > Cxpu(Mp,), it follows that My is not homeomorphic
to MLk .

Now, to complete the proof, we will show the claim. If there is an essential curve on
T which bounds a disc in Y, then it must be a zero-linking longitude, say 7', of 7, since
the meridian of 7 is a generator of H;(Y \ n) = Z*. By the following lemma, we have a
contradiction. (|

Lemma 4.8. The class of ' is nontrivial in the fundamental group m (Y ~ n).

Proof. We consider a Wirtinger presentation of 71 (Y ~\ 7)) given as follows: it has 24 gener-
ators denoted by 1, ...,xa4 associated to arcs in Figure @ Here (z1,...,210), (11, Z12),
(213, ...,716), and (x17,...,224) are those associated to the arcs of the components x, y,
y, and 7, respectively. In each component, the arc with a dot on it is the first one, and
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other arcs are ordered along the orientation. There are 27 relators:
121171712, 112121172, T2T18T2T19, L1922T19T3, T3L20T3T21,
T3X23T3T22, T22T4T22T3, T2124T21T5, L5T16T5T13, 13T5T13%6,
2112721176, T7L11T7212, T13L8T13T7, L8L16T8T15, L21L9T 2178,

T22%9T22%10, T10T23T10T24, £10T20210219, L19X1T19%10, T12X18T1T17,
T15T22T15T21, L22L15222T14, L24L13224T14, T13224T13T17,
T11T19T22T21T13T11L13L21T22L19, T1L7, T24L22T8T5-

Indeed, the first 24 are the standard Wirtinger relators for the 4-component link L U7
(thus one of these may be omitted), and the last 3 relators arise from the zero surgery
performed along L. It is straightforward to read off the curve 7’

n = X1 Tax10T321523T10T13.

We define a representation p: 71 (Y ~\ 1) — SL(2,7Z5) by mapping the above 24 genera-
tors, respectively, to:

0 4 4 0 0 4 4 4] 2 1 4 0
L o3]7 |1 471 317 [0 4] |1 1] |1 4)°
0 4] [4 o] [r 1] [r 1] [4 1] [3 1]
L 3]7 (4 471 2171 2|74 0] |2 1}’
4 3] [1 3] [2 2] [4 2] [0 1] [0 1]
2 3|70 1] |2 07 [3 3] |4 2" |4 2|’
1 1] [3 4] [2 1] [4 4] [o 4] [1 0
0 1" 1[4 4] [4 o] |4 3]7 |1 2]7 |1 1]
It can be verified that all the relators are sent to the identity, by a straightforward com-
putation. Also, we have that
n_ 3 1]

is not the identity. (We found the representation p using a computer program that performs
a brute force search in the representation variety.) This completes the proof. (]

5. Grope concordance and amenable signatures

In this section we show that the links described in Sections 3] and 4] are not height
n + 3 grope concordant, by using amenable signature obstructions from [Cha]. In fact
the amenable signatures we use are obstructions to being n-solvably cobordant, which is a
relative analogue for manifolds with boundary, or bordered manifolds, of the notion of n-
solvability of [COT03]. For our purpose it suffices to consider the case of link exteriors; an
n-solvable cobordism between the exteriors X and X’ of two links with the same number of
components is a 4-manifold W with OW = X Uy — X' satisfying the conditions described
in [Chal Definition 2.8], where the boundary tori of X and X’ are identified along the
zero framing. Since we do not use the defining condition right now, instead of spelling
it out here, we begin with its relationship to grope concordance. The following theorem
originates from [COTO03| Theorem 8.11], and was given in our context in [Chal.

Theorem 5.1 ([Cha] Theorems 2.16 and 2.13, and Remark 2.11). If two links are height
n+2 grope concordant then their exteriors are n-solvably cobordant as bordered 3-manifolds.
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As our key ingredient to detect non-solvably-cobordant 3-manifolds and therefore non-
grope-concordant links, we will use the Amenable Signature Theorem, which was first
introduced in [CO12] for homology cobordism of closed 3-manifolds and then generalised to
n-solvable cobordisms of bordered 3-manifolds in [Chal]. We state a special case which will
be sufficient for our purpose. For a closed 3-manifold M and a homomorphism ¢: w1 (M) —
G, denote the von Neumann-Cheeger-Gromov p-invariant by p (M, ¢) € R. See e.g.
[COTO03, Section 5] as well as [CWO03| [Har08| [Cha08|, [CO12] for definitions and useful
properties of p(2)(M ,®). Precise references for the properties that we need will be recalled
as we go along.

Theorem 5.2 (A special case of [Chal Amenable Signature Theorem 3.2]). Suppose W is
an (n + 1)-solvable cobordism between two bordered 3-manifolds X and X', and G admits
a subnormal series

G=GyDG1 D DG, DGpt1 ={e}

with each quotient G;/Giy1 torsion-free abelian. Then for any ¢: m (X Usg —X') = G
which factors through m (W), we have p® (X Us —X', ¢) = 0.

Recall that in our construction of the links L; the knot Jg was the connected sum of
N, copies of Cochran-Teichner’s knot, say J. Now we proceed to specify the integers N;.
Denote, by p? (K) := Js1 0K (w) dw, the integral of the Levine-Tristram signature function
over the circle normalized to length one. For Mk the zero surgery on K and ¢g: m (Mg) —
7 the abelianisation homomorphism, p® (K) = p(® (Mg, ¢o) by [COT04, Proposition 5.1].
We have p®)(JI) = N;p®(J) = 4N;/3 by additivity under connected sum and [CTQOT,
Lemma 4.5]. Due to Cheeger and Gromov [CG85|, for any closed 3-manifold Y there is
a constant Cy > 0 such that |p®(Y,1)| < Cy for any v. From now on we abbreviate
¢:=n — k(m). Define

-1
R .= CXLOU67XLO + 2ZCMKi'
i=0
We choose the large integers N; inductively in such a way that

Nj > 3R/4+maX{Nk | k <]}

Then we have
PP () > R+ pP(J))

whenever j > k. For Theorem [LT] we make these choices so that the condition in the
preamble to Lemma (.7 relating to the Kneser-Haken bound is simultaneously satisfied.

Now we start the proof that our links L; are not height n 4 3 grope concordant to one
another. Let X and X’ be the exteriors of L; and Ly, respectively. To distinguish them
in the notation, we denote the axis curve n in X by 7;, and we denote the corresponding
axis curve in X' by 7.

Recall that m = |I| and that k(m) = |[logy(m — 1)|. Also note that k(m) + 1 =
[logy(m)]. By Theorem [B.1 it suffices to show the following:

Proposition 5.3. For n > k(m), the bordered 3-manifolds X and X' are not (n + 1)-
solvably cobordant when j # k.

By Theorem 511 it then follows that our links L; and Ly are not height n + 3 grope
concordant when j # k.
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Proof. The proof proceeds almost identically to that of [Chal Theorem 4.8], which com-
bines the Amenable Signature Theorem of [Cha] with a higher order Blanchfield duality
argument for a certain 4-dimensional cobordism introduced in [CHLO9| (see our Wy below).
So we will give an outline for our case and discuss differences from [Chal Theorem 4.8].

Suppose W is an (n + 1)-solvable cobordism with OW = X Uy —X'. Similarly to [Chal,
Section 4.3] (see the paragraph entitled “Cobordism associated to an iterated satellite
construction”), we consider a cobordism V' with

OV =My =M U Mg, U —Mp, U---UMg, ,U—=Mp, |
U (XL, Up —Xp,) U—(X Ug —X")
which is built by stacking cobordisms associated to satellite constructions [CHLO9L p. 1429],
where M}ﬂ is a copy of Mk,, and then construct a cobordism Wy with
OWo = M ;3 L =My LI M, U —Mype U U Mg, U—=Mp, U(Xr,Us—Xz,)

by attaching V' to W along X Uy —X'. We omit the detailed construction of V' and Wy
but state a couple of useful facts which can be verified as in [Chal, Section 4.3]. Let {P"G}
be the rational derived series of a group G, i.e. P°G := G and P"t'G is the kernel of
PTG — H1(P"G;Q). Let ¢¢ be the quotient map 71 (W) — G := m (W) /P Lry (Wh).
Also we denote by ¢¢ the restrictions of ¢g to the components of W, and to W C Wy,
as an abuse of notation. Then we have the following facts.

(1) p® (Mg, 60) = ™ (M5, 60) + p'* (X1 Y = X1, 60)

-1 -1
+ Zop@) (MKiaqu) - Eop(Q) (M;(Iaqjo) = p(2)(X L6J _X/a ¢0)

(2) The image of the meridian of JJ in M ;i C OWp under ¢q is a nontrivial element
0

in the torsion-free abelian subgroup P"m(W)/P"m (W) of G. Similarly for k
instead of j.

The proof of ([I)) is completely identical to that given in [Chal Section 4.3] (see the para-
graphs entitled “Cobordism associated to an iterated satellite construction” and “appli-
cations of Amenable Signature Theorem”): briefly, the p(®)-invariant of Wy, which is the
left hand side of (), is equal to the L?-signature defect of Wy = V Uxy,—x W (this is
a standard fact from index theory, or can be taken as the definition of p(?)). Tt turns out
that V has no contribution to the L?-signature defect by [CHL09, Lemma 2.4]. So the
left hand side of () is equal to the L?-signature defect of W, which is the p(®-invariant
of OW, namely the right hand side of ().

The proof of @) is almost identical to that given in [Chal, Theorem 4.10]. Only the
following change is required: in the initial step of the inductive argument in [Chal Theo-
rem 4.10], it was shown that the image of (a parallel copy of) n C X C OW is nontrivial
under the quotient map 71 (W) — 71 (W)/P?m1 (W) (see the fourth paragraph of [Chal,
Proof of Theorem 4.10]) using a Blanchfield duality argument.

In our case, instead we use Lemma [54] below, which is a generalisation of [CFP]
Lemma 3.5], to show that the image of 5 is nontrivial in 7 (W)/P*)+ D7 (W). The
argument used in Lemma [5.4] is essentially an application Dwyer’s theorem.

Lemma 5.4. If W is an n-solvable cobordism between two link exteriors (or more generally
bordered 3-manifolds) X and X', then the inclusions induce isomorphisms

(X)) /m1(X)g = (W) /m(W)g = m(X') /71 (X)g.
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forg<2m+1.

Proof. Recall Dwyer’s theorem [Dwy75]: if f: X — Y induces an isomorphism H; (X;7Z) 2
H,(Y;Z) and an epimorphism

Hy(X;Z) — Ho(Y;Z2) ) Im{Ho(Y; Z[m (W) /71 (W)4]) — Ha(Y;Z)},

then f induces an isomorphism 7 (X )q/m1(X) g1 = m1(Y)g/m1(Y) g1

In our case, by the definition of an n-solvable cobordism [Chal Definition 2.8], we
have H1(X;Z) = H (W;Z) = H1(X';Z), where the isomorphisms are induced by the
inclusion maps. Also, by [Chal Definition 2.8] there are elements ¢1,...,¢,, dy,...,d,
lying in Hy(W; Z[my (W) /m1 (W)(™)]) such that the images of ¢; and d; generate Hy(W;Z).
Since 71 (W)™ is contained in 71 (W)an, the Ha condition of Dwyer’s theorem is satisfied.
Therefore it follows that

(X ) g/ (X) g1 Z T (W)g/m(W)ga1 = mi(X')g/m1(X g1
for ¢ < 2™ by Dwyer’s theorem. From this the desired conclusion follows by the five
lemma. (]

Recall that 7 C X represents a nontrivial element in 71 (X) /71 (X ), by Lemma L5 ([2I).
Since the above isomorphisms preserve longitudes (and meridians), 7; C X represents a
nontrivial element in m (W) /71 (W).,. Since L; has vanishing Milnor invariants of length
less than |I| = m, we have w1 (X)/71(X)m = F/F,,, where F is the free group with rank
m, by [Mil57, Theorem 4]. Consequently 71 (W) /71 (W), is torsion free.

We note that for any group 7, we have x(*(@+1) = pllogz(a)]) C mq. Therefore
there is a quotient map 7y (W) /my (W)Fr)+D 70 (W) /701 (W), and this map fac-
tors through 7 (W) /P*m)+Dr (W) by the definition of P*(™)+1) and the fact that the
codomain is torsion free. Since n; is nontrivial in w1 (W) /w1 (W),,, n; is also nontrivial in
71 (W) /PEE)+ 1 (W). By replacing j with k and X with X’ we obtain the correspond-
ing fact for ng in X'.

To complete the proof of Proposition 5.3l we proceed as in [Chal Section 4.3]. Ob-
serve that for the normal subgroups G; := Plm(Wy) /P im (Wy) of our G, the quo-
tient G;/Gi41 is torsion-free abelian. So by Amenable Signature Theorem we have
p? (X Up —X') = 0. Since the curve 7; represents a nontrivial element in a torsion-free
abelian normal subgroup of G, the image of m; (M.]g) in G under ¢q is the infinite cyclic
group. By L?-induction (see e.g. [CG85, page 8 (2.3)], [COT03, Proposition 5.13]) and
[COT04, Proposition 5.1], we have p(?) (M3, ¢0) = p(J3), and similarly for J§. Now
combining these two facts with (IJ) we obtain:

(3) PR = P (I5) + PP (Xpy Y =Xy, 60)
-1 -1
+Y P (M, d0) = > pP (Mg, o) = 0.
i=0 i=0
Recall that

-1 -1
p(2)(XLU %7XL05¢0)+§ ( MKI;QI)O Zop@ MK 5¢0

£—1

<R:= CXLOLJ&,XLO + 2ZCMK1"
1=0
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and in the preamble to Proposition 53] we chose N, in such a way that

1pP(J5) = pP ()| > R

whenever k # j. Therefore (3) implies that j = k. Thus the existence of the (n+1)-solvable
cobordism W implies that j = k, which is the contrapositive of the desired statement. [
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