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SHRINKING OF TOROIDAL DECOMPOSITION SPACES

DANIEL KASPROWSKI AND MARK POWELL

Abstract. Given a sequence of oriented links L1, L2, L3, . . . each of which has a
distinguished, unknotted component, there is a decomposition space D of S3 nat-
urally associated to it, which is constructed as the components of the intersection
of an infinite sequence of nested solid tori. The Bing and Whitehead continua
are simple, well known examples. We give a necessary and sufficient criterion to
determine whether D is shrinkable, generalising previous work of F. Ancel and
M. Starbird and others. This criterion can effectively determine, in many cases,
whether the quotient map S3 → S3/D can be approximated by homeomorphisms.

1. Introduction

In this paper N := N>0, the set of positive integers, and N0 := N ∪ {0}.

A decomposition of a manifold X is a collection D = {∆i} of pairwise disjoint

closed subsets of X with
⋃

D = X . A decomposition of a compact manifold is said

to be shrinkable, in the sense of R. H. Bing, if the associated quotient map which

identifies the elements of D to points can be approximated by homeomorphisms, so

that there is a sequence of homeomorphisms {fj : X → X/D} converging to the quo-

tient map f : X → X/D. The adjective shrinkable arises from the method typically

used to construct such a sequence. One constructs homeomorphisms hj : X → X

such that the subsets hj(∆i) become progressively smaller; that is, they shrink. See

Section 2 for more details.

In particular, for a shrinkable decomposition, the spaces X and X/D are seen to

be homeomorphic. When specifying a decomposition D, following custom we only

specify the subsets which are not singletons.

Suppose we are given a sequence of oriented links L = L1, L2, L3, . . . in S3, where

Li = Li
0 ⊔ Li

1 ⊔ · · · ⊔ Li
ni

is an oriented (ni + 1)-component link with a specified

component Li
0 unknotted. The aim of this paper is to give general conditions to
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decide whether the following decomposition D of S3 associated to L shrinks. Each

link Li determines a link Li
1 ⊔· · ·⊔ Li

ni
in S3\νLi

0, the complement of an open regular

neighbourhood of Li
0. The orientation of Li

0 and the embedding in S3 determine a

canonical diffeomorphism (up to ambient isotopy) S3 \ νLi
0

∼=
−→ S1 × D2, since they

determine an orientation of the S1 factor and a zero framing. A closed regular

neighbourhood cl(ν(Li \Li
0)) of L

i \Li
0 is in the same way canonically diffeomorphic

to a disjoint union of solid tori. Therefore, every link Li determines an embedding

L̂i :
⊔ni

k=1 S1 ×D2 →֒ S1 ×D2. These embeddings determine a sequence T0 ⊃ T1 ⊃

T2 ⊃ . . . where T0 ⊂ S3 is a single unknotted solid torus and each subsequent term

Ts =
⋃

Is
S1 × D2 is a disjoint union of solid tori, where Is :=

∏s
i=1 ni and I0 := 1.

For s ∈ N, the subset Ts ⊂ Ts−1 is obtained as

Ts =
⋃

Is−1

ns⊔

k=1

S1 ×D2
⋃

L̂s

−֒→
⋃

Is−1

S1 ×D2 = Ts−1.

We define the decomposition D as the connected components of their intersection⋂
s∈N Ts. Such decomposition spaces are called toroidal. As above the notions of a

link in S3 with a distinguished unknotted component L0 and a link in a solid torus

are considered as interchangeable in this paper via S3 \ νL0
∼= S1 ×D2.

We note that our results also apply if S3 is replaced by a submanifold of S3 which

contains T0. Isotopies of the defining links can change the actual decomposition,

although the homeomorphism type of the quotient S3/D remains unaltered.

A good example to keep in mind, and indeed one of the motivating examples

which this work aims to generalise, is when Li is either the Whitehead link or the

Borromean rings. Then in a solid torus we have, respectively, either a Whitehead

double of the unknot S1 × {0} ⊂ S1 ×D2 or a Bing double of this unknot. We say

that a decomposition is pure if the same link is used at every step of its defining

sequence i.e. Li is a fixed link L for all i. The pure decompositions arising from the

Borromean rings and the Whitehead link are referred to as the Bing and Whitehead

continua respectively.

The Bing continua are shrinkable [Bin52]; it turns out that this implies that the

double of the complement in S3 of the Alexander horned ball (this complement has

also been called the Alexander gored ball) is homeomorphic to S3.
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The Whitehead continuum Wh is not shrinkable, although interestingly the de-

composition {Wh×{r} | r ∈ R} is shrinkable in S3 × R [AR65].

A decomposition which is defined using a combination of these two links is known

as a mixed Bing-Whitehead decomposition. These decomposition spaces describe

the frontiers of Freedman-Quinn handles, which are constructed in the proof of the

4-dimensional disc embedding theorem in [FQ90]. For a concise discussion of the

relationship between mixed Bing-Whitehead decomposition spaces and convergent

grope-disc towers see the introduction of [AS89], where F. Ancel and M. Starbird

give a precise answer to the shrinking question for these spaces.

Now we turn to describing our results, which generalise the results of Ancel and

Starbird to decompositions defined using arbitrary links. To every link L in a solid

torus we will associate, in Definition 2.9, a function DL : N0 → N0 called the disc

replicating function of L. These functions provide a way to decide whether a decom-

position obtained from a sequence of such links is shrinkable. Now we state our main

theorem.

Theorem 3.1. A decomposition D of S3 obtained from a sequence of links {Li}i∈N
is shrinkable if and only if

lim
p→∞

(DLm+p ◦ . . . ◦DLm)(k) = 0

for all k,m ∈ N.

We note that in fact due to [Arm66, Theorems 3 and 9], for the decompositions

we consider the quotient S3/D is homeomorphic to S3 if and only if D is shrinkable.

For details see Remark 3.3.

The proof of Theorem 3.1 is given in Section 3. As mentioned above, the main

idea is to associate, to each link L in a solid torus of the defining sequence, a function

DL : N0 → N0 which we call the disc replicating function of L. To define DL we need

the notion of a k-interlacing of a solid torus (Definition 2.3); roughly speaking this is

a collection of 2k meridional discs labelled alternately A and B. Given a k-interlacing

the defining property of the functionDL is that it gives the maximal integerDL(k) for

which, after any ambient isotopy of L inside the solid torus, there exists a component

Lj of L such that cl(νLj) has at least a DL(k)-interlacing arising from a subset of its

intersections with the A and B discs. Equivalently, these functions can be defined
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by the property that with input k they give the minimal nonnegative integer such

that there exists an ambient isotopy of L so that all components have at most a

DL(k)-interlacing. Intersections with the A and B discs are then used to control the

size of decomposition elements, and thus to show that the Bing shrinking criterion

(Theorem 2.1) is either satisfied, or not, as appropriate.

The initial reason for thinking about this was to try to understand and provide

some context for the arguments of Bing [Bin52, Bin62] and Ancel and Starbird [AS89]

that describe when certain decompositions do and do not shrink; see also R. Dav-

erman [Dav07, Section 9]. These arguments were first introduced to the authors in

lectures of M. Freedman on the 4-dimensional disc embedding theorem for the se-

mester on 4-manifolds and their combinatorial invariants hosted by the Max Planck

Institute for Mathematics in Bonn.

We reformulate and generalise results of Sher [She67, Theorem 4] and S. Armen-

trout [Arm70, Theorem 1] on this topic, and as mentioned above we generalise the

formula of Ancel and Starbird [AS89] (also proved later by D. Wright [Wri89]) that

describes precisely which mixed Bing-Whitehead decompositions shrink. We give

new examples of decompositions for which we can determine whether they shrink.

As far as the authors are aware, our conditions supersede all previously known results

on the shrinking or nonshrinking of these toroidal decompositions.

While upper bounds on DL can be found easily by repositioning the link, in Sec-

tion 4 we will show how to compute lower bounds for DL using Milnor invariants.

With these methods we can determine the function DL for every (n,m)-link L. An

(n,m)-link is formed from a meridian of a solid torus and a chain of n unknots inside

this solid torus, each of which links the previous and the next with linking number 1,

with the last also linking the first, such that the whole chain has winding number m

around the solid torus, and there is no additional entangling of the links in the chain.

Figure 1 shows a (4, 3)-link. The (n,m)-links give a nice and large class of examples

which we will investigate thoroughly. Note that the Bing link is a (2, 1)-link and the

Whitehead link is a (1, 1)-link.

Proposition 5.1. Let L be an (n,m)-link. Then the disc replicating function DL is

given by

DL(k) = max{
⌈
2mk
n

⌉
− 1, 0}.
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Figure 1. A (4, 3)-link with the meridian of the solid torus omitted.

In particular the disc replicating function for the Bing link is DL(k) = k−1, while

for the Whitehead link it is DL(k) = 2k−1; these functions appear in [AS89, Wri89].

From this and Theorem 3.1 we deduce the following. Let D be a decomposition

of S3 arising from a sequence of links L1, L2, L3, . . . where Li is an (ni, mi)-link.

Corollary 5.2. Define τi := ni/2mi.

(1) If
∑

∞

j=1

∏j
i=1 τi converges, then the decomposition D does not shrink.

(2) If
∑

∞

j=1
1
nj

∏j
i=1 τi diverges, then D does shrink.

In particular we have:

(3) If supi∈N ni < ∞, then D shrinks if and only if
∑

∞

j=1

∏j
i=1 τi diverges.

(4) If the sequence of links is periodic; that is if there exists p ∈ N with Li = Li+p

for all i ∈ N, then D shrinks if and only if
∏p

i=1 τi ≥ 1.

More background on (n,m)-links and the proof of Proposition 5.1 and Corollary 5.2

is given in Section 5. Furthermore we will use these criteria to show how the afore-

mentioned results of Ancel-Starbird, Sher and Armentrout follow as corollaries of

Theorem 3.1 and Proposition 5.1.

We finish the introduction by noting a possible extension of our work.

Challenge. Extend our techniques to deal with decompositions which have defining

sequences given by nested handlebodies. See [Bin57] for an example.
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2. Background and definitions

2.1. Shrinking a decomposition. A decomposition of a compact metric space X

is a collection D = {∆i} of pairwise disjoint closed subsets of X with
⋃

D = X .

Following custom we abuse notation and refer to the decomposition as the elements

of D which are not singletons, with the understanding that once the nontrivial de-

composition elements have been specified the rest of the space is decomposed into

singleton sets. We are interested in the topology of the space X/D obtained by col-

lapsing each ∆i to a point. We say that a decomposition D of a compact manifold

X is shrinkable if the quotient map q : X → X/D can be approximated by home-

omorphisms. That is, there exists a sequence of homeomorphisms which converges

to q in the supremum norm. In particular this implies that X is homeomorphic to

X/D.
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Note that we may have to appeal to the Urysohn metrisation theorem in order to

endow the quotient space with a metric. We assume that decompositions are such

that the quotient is Hausdorff, in order to apply the Urysohn metrisation theorem.

This follows if the decomposition is upper semi-continuous [Dav07, Pages 8-15], which

will always hold for the toroidal decompositions studied in this paper.

Approximating a map by homeomorphisms is possible if and only if the Bing

Shrinking Criterion holds, which in R. Edwards’ formulation [Edw80, Section 9] is

as follows.

Theorem 2.1 (Bing Shrinking Criterion). A surjective map f : X → Y of compact

metric spaces can be approximated by homeomorphisms if and only if for any ε > 0,

there exists a homeomorphism hε : X → X such that the following two conditions are

satisfied.

(1) The homeomorphism hε does not move points very far in the metric of Y :

dY (f(x), f ◦ hε(x)) < ε

for all x ∈ X; and

(2) The inverse image sets become sufficiently small under hε:

diamX(hε(f
−1(y))) < ε

for all y ∈ Y .

�

A detailed proof is given in [Dav07, Section 5]. We provide a brief heuristic. If we

can find a sequence h1/n which converges in the supremum norm (see [Fer, Pages 5 -

7] for how to construct such a sequence) then we can see that f can be approximated

by homeomorphisms as follows. Let h∞ be the limit of the sequence of functions h1/n

in the supremum norm. Then f factors through h∞, as in the diagram below.

X
f

//

h∞   ❆
❆❆

❆❆
❆❆

❆ Y

X
f ′

>>⑦
⑦

⑦
⑦

Here f ′ is defined by f ′(x) := f(h−1
∞
(x)). This makes sense because h∞ and f have the

same point inverses by property (2), i.e. h∞(z) = h∞(z′) if and only if f(z) = f(z′).
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The map f ′ is a bijection. It is continuous, by the following argument. For a closed

subset C ⊆ Y we have (f ′)−1(C) = h∞(f−1(C)) and we claim this is closed: f is

continuous, so f−1(C) is closed and therefore compact since X is compact. Then h∞

is continuous, so h∞(f−1(C)) is a compact subset of a metric space and therefore

closed as claimed. Thus f ′ is a continuous bijection between compact Hausdorff

spaces and is therefore a homeomorphism. By construction f ′ ◦h1/n approximates f .

The beauty of the Bing Shrinking Criterion is that in order to see that a map

can be approximated by homeomorphisms, we do not need to see the existence of

homeomorphisms hε which converge; rather for different ε they can be constructed

independently.

2.2. Interlacing discs in a solid torus. The following two definitions appear in

Ancel-Starbird [AS89] and in Wright [Wri89, Appendix A].

Definition 2.2 (Meridional discs). A meridian of a solid torus T is a simple closed

curve in ∂T which bounds a disc in T but not in ∂T . A meridional disc of T is a

locally flat disc ∆ ⊂ T such that ∂T ∩∆ = ∂∆ is a meridian of T .

Definition 2.3 (Interlacing discs). Let T be a solid torus. Two disjoint collections

of pairwise disjoint meridional discs A =
⋃k

i=1 Ai and B =
⋃k

i=1 Bj for T are called

a k-interlacing collection of meridional discs, if each component of T \ (A ∪ B)

has precisely one Ai and one Bj in its closure. We make the convention that a

0-interlacing of meridional discs is the empty set.

We say that two disjoint subsets A,B ⊂ T form a k-interlacing for T , for k ≥ 1,

if there are subsets A′ ⊆ A and B′ ⊆ B which form a k-interlacing collection of

meridional discs for T , as in the previous paragraph, such that it is impossible to

find such subsets which form a (k + 1)-interlacing collection of meridional discs for

T .

Definition 2.4 (Meridional k-interlacing). We call a k-interlacing a meridional k-

interlacing if all components of A and B are meridional discs of T .

For a decomposition inside a torus T defined as the intersection of nested tori as

above we will use k-interlacings for T to measure the size of the nested tori. We will

show that the decomposition is shrinkable if and only if there is an ambient isotopy

of the nested tori such that for every interlacing there exists a stage such that each
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torus of this stage meets at most one of the discs of the interlacing. This motivates

the next definition.

We will define a function DL : N0 → N0 called the disc replicating function of

a link L. First we will define functions UL, DL which assign a number to each k-

interlacing. Then we will show that these functions only depend on k and not on the

specific interlacing. Furthermore we will show that UL = DL for all interlacings.

Definition 2.5. Let A,B be a meridional k-interlacing of a torus T . For a link L in

T we define UL(A,B) to be the maximal integer k such that for any link L′ which is

ambient isotopic to L and any closed regular neighbourhood cl(νL′) which intersects

A,B only in meridional discs there is at least one connected component cl(νL′

j)

of cl(νL′) such that the intersection with A,B gives rise to at least a UL(A,B)-

interlacing for the solid torus cl(νL′

j). Since cl(νL
′) intersects A,B only in meridional

discs this will always be a meridional UL(A,B)-interlacing. In particular, UL(∅) = 0.

Definition 2.6. Let A,B be a meridional k-interlacing of a torus T . For a link L in

T we define DL(A,B) to be the maximal integer k such that for any link L′ which is

ambient isotopic to L and any closed regular neighbourhood cl(νL′) whose boundary

intersects A,B transversely and only in meridians, there is at least one connected

component cl(νL′

j) of cl(νL′) such that the intersection with A,B gives rise to at

least a DL(A,B)-interlacing for the solid torus cl(νL′

j). In particular, DL(∅) = 0.

Remark 2.7. The difference between Definitions 2.5 and 2.6 is that for UL, only

intersections in meridional discs of cl(νL′) are allowed, while for DL intersections

where the boundary ∂(cl(νL′)) intersects A,B in meridians are permitted. In the

latter case, for example, there might be an annulus in (A ∪ B) ∩ cl(νL′) such that

both boundary curves are meridians of cl(νL′).

Now we show that the interlacing numbers defined above do not depend on the

interlacing A,B.

Lemma 2.8. For any two meridional k-interlacings (A,B) and (A′, B′), and any

link L, the numbers DL(A,B) and DL(A
′, B′) agree; moreover the numbers UL(A,B)

and UL(A
′, B′) also agree.
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Proof. We first note that for two collections of k meridional discs A and A′ in T ,

by the Schönflies theorem, there exist an orientation preserving homeomorphism

h : T → T such that h(A) = A′.

Now let two meridional k-interlacings (A,B) and (A′, B′) and a link L be given.

Let L′ be a link ambient isotopic to L and let νL′ be a regular neighbourhood

of L′ such that the intersection of each component of cl(νL′) with A,B gives rise

to a (meridional) m-interlacing with m ≤ DL(A,B) (respectively m ≤ UL(A,B)).

Such an ambient isotopy can always be found by definition of DL(A,B) (respectively

UL(A,B)). We can push off enough copies of parallel discs of the discs in A and B

such that there exists an orientation preserving homeomorphism h : T → T with

h(A′) ⊆ A and h(B′) ⊆ B. (There might be extra consecutive A or B discs in a

given k-interlacing, which get deleted in order to form a k-interlacing collection of

meridional discs.)

Let E be the union of A together with the discs pushed off A, and let F be the union

of B together with the discs pushed off B. Since we can push off copies in a small

neighbourhood, we can achieve that E, F is again a meridional k-interlacing and that

the intersection of each component of cl(νL′) with E, F gives rise to a (meridional)m-

interlacing with m ≤ DL(A,B) (respectively m ≤ UL(A,B)). By [BZ85, Proposition

1.10], which says that a homeomorphism of the ambient space carrying one link to

another is the same as an ambient isotopy between the links, the link h−1(L′) is

ambient isotopic to L and the intersection of each component of h−1(cl(ν(L′))) with

A′, B′ gives rise to a (meridional) m-interlacing with m ≤ DL(A,B) (respectively

m ≤ UL(A,B)), since h(A′) ⊆ E and h(B′) ⊆ F . Therefore, DL(A
′, B′) ≤ DL(A,B)

(and UL(A
′, B′) ≤ UL(A,B)). Since the situation is symmetric in A,B and A′, B′

this proves the lemma. �

Definition 2.9 (Disc replicating function). For a link L in a torus T the func-

tions UL : N0 → N0 and DL : N0 → N0 are defined by UL(k) := UL(A,B) and

DL(k) := DL(A,B) where A,B is any meridional k-interlacing of T , UL(A,B) is

from Definition 2.5 and DL(A,B) is from Definition 2.6. These functions are well

defined by Lemma 2.8 and have the property DL(0) = UL(0) = 0.

By Lemma 2.11 below, these two functions coincide. Thus we call DL the disc

replicating function for the link L.
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In Lemma 2.11 we will make use of the following Technical Lemma of Ancel and

Starbird [AS89, Page 301], which we state here for the convenience of the reader.

Lemma 2.10 (Ancel-Starbird Technical Lemma). Suppose P1, P2, . . . , Pm is a se-

quence of parallel planes in R3 such that if 1 ≤ i < j < k ≤ m, then Pj separates Pi

and Pk. Set P = P1 ∪ P2 ∪ · · · ∪ Pm. Suppose T is a solid torus in R3 such that ∂T

is transverse to P , each component of ∂T ∩P is a meridian of T , and T ∩Pi 6= ∅ for

1 ≤ i ≤ m. Then there is a sequence A1, A2, . . . , A2m of pairwise disjoint meridional

discs of T in cyclic order on T such that Ai ∪ A2m+1−i ⊂ Pi for 1 ≤ i ≤ m.

In general, even though intersections of the planes Pi with ∂T are always meridians,

the intersections with T may be discs, annuli, or discs with holes. Ancel and Starbird

define a notion of the height of a component of Pi∩∂T , which is the maximal integer

h such that there is a subset of Pi ∩ ∂T which comprises h concentric circles, whose

outside circle is the given component of Pi∩∂T . If the height is one for all components

of P ∩T , then all intersections are meridional discs and the proof is straightforward;

it is given in the proof of Lemma 4.7. Their proof uses induction to lower the number

of components with height greater than one.

Lemma 2.11. The functions UL, DL : N0 → N0 coincide.

Proof. Since, in the definition of UL, only regular neighbourhoods which intersect the

interlacing in meridional discs are allowed, we have the inequality UL(k) ≥ DL(k) for

all k ∈ N0. It is a priori possible that ambient isotopies which allow disc-with-holes

intersections could reduce the number of the induced interlacing. The current proof

shows that this is not possible.

Our aim is to show that UL(k) ≤ DL(k) for all k ∈ N0. To achieve this we start

with a k-interlacing of a solid torus T which intersects a regular neighbourhood of the

link components in such a way that the intersections with the boundary ∂ cl(νLi),

are in meridians, for all i. We want to alter the interlacing so that intersections with

cl(νLi), for all i, are meridional discs, without increasing the interlacing number.

Then since the interlacing number is independent of the interlacing, by Lemma 2.8,

we will see that UL(k) ≤ DL(k) for all k ∈ N0.

So let T be a solid torus, let Li be a component of a link L ⊂ T and let a meridional

k-interlacing A,B of T be given. For the rest of this proof we denote T1 := cl(νLi).



12 D. KASPROWSKI AND M. POWELL

Claim. Either (A ∪ B) ∩ T1 = ∅ or there exists at least one meridional disc ∆ in

(A ∪ B) ∩ T1.

To prove the claim suppose that (A∪B)∩T1 6= ∅. Let G be a disc of the interlacing

which intersects T1. Look at an innermost circle in G, of the intersections of ∂T1

and G. This either bounds a disc inside T1 or outside T1, since it is innermost. The

circle of intersection is a meridian of T1, and so if it bounds a disc in the complement

of T1, then a meridian of the knot Li would be null homotopic in the complement

S3 \ νLi of Li. Thus the innermost circle bounds a meridional disc in T1, as desired.

This completes the proof of the claim.

Choose one meridional disc ∆ in (A ∪ B) ∩ T1, and let C ∈ {Ai, Bj} be the disc

of the k-interlacing which gives rise to it. Starting at the meridian of ∆ on the

boundary of T1 and travelling in the direction of the orientation of Li, let E be the

disc of the interlacing from which arises the next intersection of T1 with A∪B; since

we only have intersections in meridians on the boundary there is a well defined next

intersection. Also let F be the disc of the interlacing from which arises the next

intersection in a meridional disc.

Claim. Either E = C or E = F .

Suppose that E is neither equal to C nor to F . Then the discs C and F give rise

to two parallel planes in R3, thought of as R2×R, the universal cover of the interior

of T ). Since E intersects T1 in between C and F it gives rise to a parallel plane in

R3 between the other two. Now cut off T1 at its meridional discs of intersection with

C and F and build a new torus as in Figure 2. In Figure 2, the additional cylinder

added is labelled Y.

The additional part of this new torus is embedded in a standard way, and chosen

so as to have its intersections with C,E and F to be meridional discs. This new

torus only intersects E in one meridional disc, a contradiction to Lemma 2.10. Thus

we deduce that the claim holds.

Now we change the interlacing of T in the following way. We cut off E at its

intersection with Li and replace it with a parallel copy of the boundary of T1 and

a parallel copy of C ∩ T1 = ∆. See Figure 3 for an indication of how to alter the

interlacing. Here the new interlacing disc is labelled E ′.
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C E FT

T1

Y

Figure 2. Adding a cylinder Y to build a solid torus intersecting C,
E and F (at least) twice each.

C

E

T

T1

E ′

Figure 3. Altering the interlacing disc E to E ′, so that the intersec-
tion E ′ ∩ T1 is a meridional disc.

The new interlacing of T gives rise to an interlacing of T1 with only one new

meridional disc in T1 (and maybe fewer interlacings in T1 or other components of νL,

since E might intersect νL elsewhere). But since T1 had a meridional disc coming

from E at the same position anyway this new meridional disc only gives rise to an

interlacing of T1 of the same number as before. Also the move has not changed the

number of the interlacing of T : this is still k. Inductively, by repeating this move as

many times as required (which is finitely many times since discs are locally flat and

both the discs and tori are compact), we can remove all intersections which are not
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meridional discs and obtain an induced interlacing of T1 which has at most the same

interlacing number as the old induced interlacing of T1. Therefore UL(k) ≤ DL(k).

Since we already know that DL(k) ≤ UL(k), we have equality. �

As stated in Definition 2.9, from now on we denote both UL and DL by DL.

3. Proof of the main theorem

We remind the reader of our main theorem.

Theorem 3.1. A decomposition D of S3 obtained from a sequence of links {Li}i∈N
is shrinkable if and only if

lim
p→∞

(DLm+p ◦ . . . ◦DLm)(k) = 0

for all k,m ∈ N.

For the proof we need the following lemma.

Lemma 3.2. Suppose that there are nonnegative integers k,m such that for some r

and for any k-interlacing A ∪ B for (Tm−1)r we have that for any s ≥ m there is a

connected component (Ts)r′ of Ts which has nonempty intersection with both of the

collections of discs A and B. Then D is not shrinkable.

It suffices to have the hypothesis hold for some r, but due to the symmetry of the

construction of our decompositions, if the hypothesis holds for one r then it holds

for all r.

Lemma 3.2 follows the strategy employed by Bing [Bin62] and others after him

e.g. [She67], [Dav07], [AS89], [Wri89]. For the convenience of the reader we provide

a proof.

Proof. We need to show that the Bing shrinking criterion (Theorem 2.1) does not

hold. Assume, for a contradiction, that it does. That is, assume the existence of

homeomorphisms hε with the required properties, for all ε. Note that hε moves points

outside of T0 by at most δ(ǫ), with limǫ→0 δ(ǫ) = 0. Otherwise hǫ would move points

too far in the quotient space for the first condition of the Bing shrinking criterion

to hold. Indeed, there is an integer s, depending on ε and tending to infinity as

ε → 0, such that hε must be arbitrary close to the identity outside Ts in order to
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satisfy Theorem 2.1 (1). We restrict our interest to ε small enough so that s ≥ m.

In particular, the image hǫ(Tm−1)r of (Tm−1)r will not shrink as ǫ goes to zero but

will be close to (Tm−1)r itself.

We then choose a k-interlacing of meridional discs A ∪ B in the solid torus

hǫ(Tm−1)r, after the putative homeomorphism hε has acted on S3. The discs A

and B must chosen to be sufficiently far apart, so that dS3(A,B) > ε. For suffi-

ciently small ε, this is always possible; we only require a contradiction for suitably

small values of ε. We now have two reasons to restrict to small values of ε. The

separation of A and B will imply the existence of a decomposition element which

has large diameter, as we now explain.

Note that h−1
ε (A∪B) is a k-interlacing of (Tm−1)r. By hypothesis, for every s ≥ m

there is a component (Ts)r which intersects both h−1
ε (A) and h−1

ε (B). Therefore

hε((Ts)r) intersects both A and B. By passing to the infinite intersection there must

be a decomposition element which intersects both of the subsets A and B in the

k-interlacing. As the collections of discs A and B are far apart (their distance apart

is bounded below by some ε), that element has diameter at least ε, which contradicts

the assumptions on hε.

We have shown that for sufficiently small ε there does not exist a homeomorphism

hε : S
3 → S3 which satisfies the conditions of the Bing shrinking criterion (Theo-

rem 2.1) with respect to f = q : S3 → S3/D, and thus that D is not shrinkable. �

Using this we are now able to prove Theorem 3.1.

Proof of Theorem 3.1. For the only if direction suppose there exist k,m such that

bs := (DLs ◦ . . . ◦ DLm)(k) is positive for all s ≥ m. Let A,B be a k-interlacing of

(Tm−1)r.

For all s, we can perturb A and B keeping them away from any component (Ts)r

they did not intersect before and such that they intersect the boundary of all Ts

transversely and only in meridians. We refer to [Bin62, Theorem 3] and [AS89,

Proof of Lemma 3], where an innermost disc argument is used to discount intersec-

tions of ∂Ts with A and B which are inessential curves in ∂Ts and a small ambient

isotopy is used to remove longitudinal intersections. By [Bin62, Theorem 1] all inter-

sections are either inessential, a meridian or a longitude. In general these operations
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require moving a given A and B; first remove inessential and longitudinal intersec-

tions of A and B with the tori Tm, and then proceed inductively.

For the proof of nonshrinking we use the definition of the disc replicating functions

DLi via Definition 2.6. By the property of theDLi , at each stage s ≥ m of the defining

sequence there is always at least one solid torus (Ts)r′ for which the intersections with

A and B form a bs-interlacing. In the inductive procedure here, at each stage of the

application of the property of disc replicating functions we forget any component of

(A ∪ B) ∩ (Ts)r′ which is not a meridional disc.

Since bs is always positive the assumptions of Lemma 3.2 are satisfied (the as-

sumptions of this lemma are also satisfied for the old interlacing i.e. the interlacing

before perturbation, since our perturbations did not create any new intersections).

Then by Lemma 3.2, D does not shrink.

Now assume that

lim
p→∞

(DLp ◦ . . . ◦DLm)(k) = 0

for all m, k ∈ N. We need to show that the Bing shrinking criterion (Theorem 2.1)

holds. Let ε > 0. As in Bing’s original argument [Bin52], by going sufficiently deep

into the defining sequence, we only need to measure diameter along the S1 direction

of the solid torus T0. Also go sufficiently deep in the defining sequence, to a collection

of tori Ts, so that as long as we apply a homeomorphism of S3 which is the identity

outside of Ts, we will always satisfy Theorem 2.1 (1).

Look at the collection of tori Ts ⊆ T0. For k large enough we can find meridional

k-interlacings Ar, Br for each component (Ts)r such that each component of (Ts)r \

(Ar ∪ Br) has diameter less than ε/2, measured longitudinally in T0.

For the proof of shrinking we use the definition of the disc replicating functions DLi

via Definition 2.5. For a link Li, we may also regard DLi(k) as giving the minimal

integer such that there exists a link L′ ambient isotopic to Li and a regular neigh-

bourhood cl(νL′) which intersects a given meridional k-interlacing only in meridional

discs, and for which all components of cl(νL′) have at most a DLi(k)-interlacing aris-

ing from their intersections with Ar, Br. Such an ambient isotopy of Li determines

a homeomorphism of S3 \ νLi
0 which fixes the boundary, and maps a given regular
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neighbourhood νLi \ Li
0 to νL′ \ L′

0. Each connected component of Ts is identified

with S3 \ νLs
0.

Apply, to each connected component of Ts, the homeomorphism which the defining

property of the disc replicating function DLs gives to us. This homeomorphism

arranges the components of Ts+1 so that each of them has a meridional q-interlacing

for some q ≤ DLs+1(k). Then apply the homeomorphism given to us by the defining

property of the disc replicating function DLs+2 to the connected components of Ts+2,

and so on. That is, apply the homeomorphism arising from DLs+p to the connected

components of Ts+p.

Since the sequence bp := (DLp+s ◦ . . . ◦DLs+1)(k) contains only nonnegative inte-

gers, note that converging to 0 is equivalent to ending with infinitely many zeros.

Thus after finitely many steps we will have a homeomorphism of S3 such that every

component of Ts′ , for some s′, has a 0-interlacing from its intersections with A ∪ B.

Thus each component of Ts′ intersects at most one of A and B, and therefore has

diameter less than ε. Passing to the infinite intersection, the decomposition elements

have therefore also been arranged to all have diameter less than ε, so (2) of the Bing

shrinking criterion of Theorem 2.1 is also satisfied.

�

Remark 3.3. If D shrinks, then S3/D is homeomorphic to S3. As remarked in

the introduction, the converse also holds. This was pointed out by Sher [She67,

Preamble to Theorem 4]. Suppose D does not shrink. The decompositions which

we consider are monotone (that is, the decomposition elements are compact con-

tinua), and the image of the nondegenerate elements of D under the quotient map

S3 → S3/D is a compact 0-dimensional set, since it is a subset of some Cantor set.

Therefore by [Arm66, Theorems 3 and 9] the quotient S3/D is not homeomorphic to

S3. We use [Arm66, Theorem 9] to show that the hypothesis of [Arm66, Theorem 3]

that the decomposition is point-like holds, given that it is monotone, the image of the

nondegenerate elements of D is a compact 0-dimensional set and the decomposition

is definable by 3-cells with handles. A decomposition is point-like if the complement

of each decomposition element is homeomorphic to S3 \ {point}. Armentrout’s The-

orem 3 says that a point-like decomposition satisfying the assumptions above whose

quotient space is homeomorphic to S3 would satisfy the Bing Shrinking Criterion.
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4. Computable lower bounds via Milnor invariants

To show that a decomposition is shrinkable or nonshrinkable, it often suffices to

have a sufficiently strong upper or lower bound respectively, for the disc replicating

functions DL. For convenience we make the following definition.

Definition 4.1 (Upper and lower disc replicating functions). We say that a function

fL : N0 → N0 is a lower disc replicating function for a link L if fL(k) ≤ DL(k) for all

k. Similarly we say that a function gL : N0 → N0 is an upper disc replicating function

for a link L if gL(k) ≥ DL(k) for all k.

To construct lower disc replicating functions we will use Milnor invariants.

4.1. Background onMilnor invariants. J. Milnor defined his µ-invariants in [Mil57].

These (residue classes of) integers µI(L) are ambient isotopy invariants which are

associated to an n-component oriented link L and a multi-index I. For a given I,

µI(L) measures the non-triviality of the longitudes of L in a certain lower central

series quotient of the link group. The depth in the lower central series corresponds

to the length of I. See e.g. [Coc90] for a comprehensive study of Milnor invariants.

For the convenience of the reader we now briefly recall the definition of Milnor

invariants. The ensuing exposition follows [Mil57, Pages 289–92]. The fundamental

group π1(S
3 \ νL) of the link complement is normally generated by choices of merid-

ians m1, . . . , mn of the link components. Let x1, . . . , xn denote generators of the free

group F on n generators and define ρ : F → π1(S
3 \ νL) by sending xi to mi. Let

λi be the zero framed longitude of the component Li and let wi be a word in the xi

such that ρ(wi) = λi.

The beginning of the construction of Milnor invariants is the following theorem.

For a group G we denote its qth lower central subgroup by Gq; recall that G1 := G

and Gq+1 := [Gq, G] for q ≥ 1.

Theorem 4.2 ([Mil57] Theorem 4). The nilpotent quotients of the fundamental group

of the exterior of an n-component oriented link L ⊂ S3 are such that:

π1(S
3 \ νL)/π1(S

3 \ νL)q ∼= 〈x1, . . . , xn | [x1, w1], . . . , [xn, wn], Fq〉.

This means that if the longitudes of the link lie in Fq−1, i.e. wi ∈ Fq−1 for all i,

then the link group has the same qth lower central series quotient as the free group.
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Non-vanishing Milnor invariants associated to I of length q measure the failure of

the zero framed longitudes to lie in Fq.

The Magnus expansion of wi is obtained by substituting

xj = 1 + κj and x−1
j =

∞∑

ℓ=0

(−1)ℓκℓ
j.

Multiplying out, wi determines a formal power series in non-commuting variables

κ1, . . . , κn. Let µj1...jsi(L) denote the coefficient of κj1 . . . κjs, so that:

wi = 1 +
∑

µj1...jsi(L) κj1 . . . κjs.

Equivalently, in terms of the Fox differential calculus:

µj1...jsi(L) = ϕ

(
∂swi

∂xj1 . . . ∂xjs

)
,

where ϕ : Z[F ] → Z is the augmentation homomorphism.

Let ∆i1...ir(L) denote the greatest common divisor of all integers of the form

µj1...jp(L), where 2 ≤ p < r, and where j1 . . . jp ranges over all multi-indices ob-

tained by deleting one or more of the indices from i1 . . . ir and permuting those

which remain cyclically.

Let µi1...ir(L) denote the residue class of µi1...ir(L) modulo ∆i1...ir(L).

Theorem 4.3 ([Mil57] Theorem 5). For r ≤ q, the residue classes µi1...ir(L) ∈

Z∆i1...ir
(L) are ambient isotopy invariants of L.

4.2. Computable lower bounds. In this section we define a lower disc replicating

function fL : N0 → N0 (as in Definition 4.1), associated to an oriented link L with L0

unknotted, which bounds the link’s disc fertility from below. More precisely, recall

that fL should satisfy the property that if a component of a solid torus Ts has a

k-interlacing, and the next stage of the defining sequence is determined by L, then

there is at least one component Lj of L \ L0 for which the intersections of the k-

interlacing discs with cl(νLj) give rise to an h-interlacing for the solid torus cl(νLj),

for some h ≥ fL(k).

Let L = L0 ⊔ L1 ⊔ · · · ⊔ Lm be an m-component oriented link in S3 where L0

is unknotted. From this, we produce another link J by some choice of the following

sequence of operations.
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(1) Take the d-fold branched cover of S3 with branching set L0, and let J̃ be the

pre-image of L, where J̃0 is the pre-image of L0. This is again a link in S3.

(2) Take a sublink Ĵ of J̃ which includes J̃0 as Ĵ0.

(3) Blow down (perform ±1 Dehn surgery) along ℓ unknotted components of

Ĵ \ Ĵ0, each of which lies in an open 3-ball in S3 \ νĴ0. Call the resulting link

J , with Ĵ0 becoming J0.

For k = 0 define fJ
L (k) = 0. If J is such that no multi-index I exists which contains

at least one zero and for which the corresponding Milnor invariant is nonzero, then

we define:

fJ
L(k) := 0

for all k ∈ N.

Now suppose that a link J can be produced from L with µI(J) 6= 0 for some multi-

index I which contains at least one 0. If there is such a multi-index with |I| = 2, i.e.

I = (0j) or I = (j0) for some j, then we define:

fJ
L (k) := µI(J)k

for all k ∈ N. Let n+ 1 be the number of components of J = J0 ⊔ J1 ⊔ · · · ⊔ Jn. If

|I| > 2, then we define:

fJ
L (k) :=

⌈
2dk

n+ ℓ

⌉
− 1

for all k ∈ N. Finally define the function:

fL(k) := max{fJ
L(k) | J reached from L by operations (1), (2) and (3)}.

Remark 4.4. In practice, it is usually not necessary to find the function fL precisely,

only to find a J which gives a sufficiently large lower bound. Even if we did find

fL precisely, it still may not equal DL. Nevertheless, this will not overly concern

us since if a sequence of integers defined using functions fL never reaches zero, then

neither does a sequence defining using the functions DL.

Having said that we actually will be able to determine DL precisely for (n,m)-links

in Section 5.
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Now we show that the functions fL defined above are indeed lower disc replicating

functions.

Theorem 4.5 (Lower disc replicating functions). Suppose T = S3\νL0 has a merid-

ional k-interlacing A,B. Then for any link L′ which is ambient isotopic to L and

such that cl(νL′) intersects A,B only in meridional discs, there is a component L′

j

of L′ such that cl(νL′

j) has an h-interlacing arising from its intersections with the

k-interlacing for T , for some h ≥ fL(k).

Remark 4.6. Theorem 4.5 implies that fL(k) ≤ UL(A,B) = UL(k) = DL(k), by

Definition 2.5, Lemma 2.8 and Lemma 2.11 respectively.

Proof of Theorem 4.5. First observe that it suffices to prove the result for a given

choice of link J obtained from L by the operations (1), (2) and (3) above. Since

the Milnor invariants which define fL are ambient isotopy invariants, and since an

ambient isotopy of L induces ambient isotopies of Ĵ and J , the conclusion also holds

for any L′ ambient isotopic to L.

For the case that there is no multi-index I for which µI(J) 6= 0, so that fJ
L (k) = 0

for all k, the theorem is immediate.

Let T̃ be the d-fold cover of the solid torus T with covering map π : T̃ → T . A

k-interlacing for T lifts to a kd-interlacing for T̃ . We will refer to the discs of this

kd-interlacing as Ã = Ã1 ⊔· · ·⊔ Ãkd and B̃ = B̃1 ⊔· · ·⊔ B̃kd. In this proof we forget

about any extra discs and focus on a subset of the interlacing which is an interlacing

collection of meridional discs (recall Definition 2.3).

In the case that |I| = 2, so that we can assume I = (0j) for some j, the def-

inition of linking number implies that every meridional disc in the collections Ã

and B̃ must intersect Jj at least µ0j(J) times all with the same intersection num-

ber. Each intersection gives rise to an intersection with cl(νJj) which by hypothesis

must be a meridional disc. Ignoring any other intersections, this translates to a

µI(J)kd-interlacing, which at least descends to a µI(J)k-interlacing of cl(π(νJj)).

The function fJ
L (k) = µI(J)k, when the Milnor invariant has length 2, will offer the

sharpest possible bound when d = 1.

We now turn to the case that |I| > 2. After performing operations (1) and (2) we

have a link Ĵ . Not including Ĵ0, we have n+ ℓ components.
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Define a function [ · ]1/2 : R → 1
2
Z by [x]1/2 :=

1
2
⌈2x⌉. The effect is to round up to

the nearest half integer.

Our aim is to show that some component of Ĵ \ Ĵ0 intersects at least [kd/(n+ℓ)]1/2

pairs of consecutive discs in the kd-interlacing of T̃ . We have the following lemma,

in which perhaps unsurprisingly we interpret half a pair of discs to mean a single

disc. We do not specify whether the extra disc is an Ã or a B̃ disc. We also regard

a negative number of pairs of discs as zero discs.

Let T be a solid torus and let T∞ ≈ R×D2 be the infinite cyclic cover of T . Let

S ⊂ T be an embedded solid torus and let S̃ be its pre-image in T∞.

Lemma 4.7. Suppose that S̃ is such that ∂S̃ has nonempty intersections with each

disc in r ∈ 1
2
Z consecutive pairs of meridional discs P for T∞, which are a subset of

the pre-images of an m-interlacing collection of meridional discs for T , for some m.

Suppose that each component of S̃ ∩ P is a meridional disc of S̃. Moreover suppose

that the winding number of S in T is zero. Then the intersections of S with the

m-interlacing collection of meridional discs for T give rise to an n-interlacing of S

for some n ≥ 2r − 1.

Proof of Lemma 4.7. Since S has winding number zero the lift S̃ is again a solid

torus in T∞. Forgetting the A and B labels we denote the r pairs of meridional discs

by P1 ∪ P2 ∪ · · · ∪ P2r. The interior int(T∞) is homeomorphic to R3 in such a way

that the discs P are sent to disjoint parallel planes {pi} × R2, p1 < p2 < · · · < p2r

which we also denote by Pi. By hypothesis every intersection of S̃ with a plane Pi is

a meridional disc of S̃ and therefore can contribute to an interlacing of S.

The proof is now the same as the (straightforward) height one case of the Technical

Lemma of Ancel and Starbird [AS89, Page 301], stated as our Lemma 2.10. For the

convenience of the reader we give it here. Choose a simple closed curve γ starting

at a point q on ∂S̃ with first coordinate in R3 less than p1, which intersects each

component of Pi ∩ ∂S̃ transversely in a single point. Let u be a point on γ with first

coordinate in R3 greater than p2r. For i = 1, . . . , 2r, let Ci be the meridional disc in

S̃ ∩ Pi which one meets first while traversing γ from q to u and let C4r+1−i be the

meridional disc in S̃ ∩ Pi which one meets first while traversing γ from u to q. The

meridional discs C1, . . . , C4r for S̃, with their appropriate A and B labels reinstated,
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give rise to a (2r − 1)-interlacing of S̃ and therefore their images in T give rise to a

(2r − 1)-interlacing for S. �

Continuing the proof of Theorem 4.5, we make the following claim.

Claim. Some component of Ĵ ′ := Ĵ \ Ĵ0 intersects at least [kd/(n + ℓ)]1/2 pairs of

consecutive discs in the kd-interlacing of T̃ .

Assuming that the claim holds, the lift of that component to T∞ also intersects

at least [kd/(n+ ℓ)]1/2 pairs of discs. Then Lemma 4.7 implies that this component

has at least a 2[kd/(n+ ℓ)]1/2 − 1 = ⌈2kd/(n+ ℓ)⌉ − 1 = fJ
L (k)-interlacing, which is

what we want to show. Lifting the intersections to T∞ we see that the hypotheses of

Lemma 4.7 apply. Then observe that intersections of cl(νĴ ′) with Ã and B̃ descend

to similar intersections of cl(π(νĴ ′)) with A and B; once we know that the requisite

interlacing arises in T∞ we can deduce its existence in T̃ and in T , since there is a

tower of covering spaces T∞ → T̃ → T .

Thus it remains to prove the claim that some component of Ĵ ′ = Ĵ \ Ĵ0 intersects

at least [kd/(n+ ℓ)]1/2 pairs of consecutive discs in the kd-interlacing of T̃ .

Since each blown down component Ĵ ′

p is contained in a 3-ball in T̃ and is unknotted,

it also bounds a disc in that 3-ball. This 3-ball can be shrunk so that it misses all

discs C of Ã ∪ B̃ for which Ĵ ′

p ∩ C = ∅. Blowing down along the component Ĵ ′

p can

be realised by twisting along a disc whose boundary is Ĵ ′

p. Thus if a meridional disc

of T̃ misses Ĵ ′ then there is an ambient isotopy of J \ J0 such that after the ambient

isotopy we have that J \J0 misses that meridional disc. However, this is not possible,

as the non-vanishing of a Milnor invariant µI(J) with at least one zero in the multi-

index implies that the longitude λ0 of J0 is nontrivial in π1(S
3 \ νJ)/π1(S

3 \ νJ)q

for q = |I|. Therefore each meridional disc of Ã ∪ B̃ must intersect at least one

component of Ĵ ′.

So, we have an (n + ℓ)-component link Ĵ ′ in T̃ . Suppose that each component

hits fewer than [kd/(n + ℓ)]1/2 pairs of meridional discs of T̃ ; that is, at most

[kd/(n + ℓ)]1/2 − 1/2. We will show that this implies that fewer than kd pairs of

discs in total can be intersected by the link Ĵ ′. Then the contrapositive of this im-

plication coupled with our knowledge from the previous paragraph that every disc is

intersected, implies the claim.
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To see that fewer than kd pairs of discs are intersected, we note that:
[

kd

n + ℓ

]

1/2

−
1

2
<

kd

n+ ℓ
+

1

2
−

1

2
=

kd

n+ ℓ
,

so that

(n + ℓ)

([
kd

n+ ℓ

]

1/2

−
1

2

)
< (n+ ℓ)

kd

n + ℓ
= kd.

The left hand side of the last inequality is the maximum number of pairs of meridional

discs in the interlacing Ã ∪ B̃ which Ĵ ′ can intersect given the assumption that

each component intersects fewer than [kd/(n+ ℓ)]1/2 pairs of meridional discs. This

completes the proof of Theorem 4.5. �

Remark 4.8. We point out that we could conceivably use some method other than

blow downs and Milnor invariants to see that there exists a component of Ĵ which

intersects each meridional disc. However this method lends itself nicely to geometric

computation, as we will see in the next section. Moreover using Milnor invariants

means that Theorem 3.1 can be applied to vast classes of examples, whereas previous

results in the literature focused on certain special links.

The examples in the next section constitute a large class of links, but we note

that the class of links with nonvanishing Milnor invariants is of course much larger,

and the lower disc replicating functions defined in this section can be applied to

decompositions constructed using these as well.

5. Examples: (n,m)-links

Let n ≥ 1 and m ≥ 1. Suppose we have a chain of n unknots in T0, each of which

links the next in the chain with linking number ±1, such that the last knot of the

chain (in the world outside topology it would be called a ‘link’ of the chain) also links

the first with linking number ±1, and such that the whole chain travels around T0

with winding number m. There should be no additional entangling of the links in the

chain. If n = 1 then the knot clasps itself after winding m times around T0. Taking

the union of the resulting link with a meridian of T0, we obtain an (n,m)-link. See

Figure 1 for a picture of a (4, 3)-link.
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Note that the single defining link of the Bing decomposition of [Bin52] is a (2, 1)-

link, while Bing’s example of a decomposition which does not shrink [Bin62], [Dav07,

Chapter 9, Example 6], [Fre82, Page 416] has a (2, 2)-link as its defining link.

Let L be an (n,m)-link. The m-fold covering space of T0 contains m copies of

a chain of length n with winding number 1 in T̃0, i.e. there is an (n, 1)-link Ĵ as a

sublink of J̃ ; see Figure 4.

Figure 4. A (4, 1)-link as a sublink of the 3-fold covering link J̃ of
the (4, 3)-link from Figure 1.

Assume n ≥ 2. Perform (n−2) blow downs on this link, to obtain the 2-component

link of the Bing decomposition inside the solid torus; see Figure 5. The link J is

the 3-component link obtained by including a meridian of the solid torus. Note that

J is the Borromean rings (or the Borromean rings with a clasp changed, depending

on the signs of the original linking numbers and of the blow downs) and so has

µ012(J) = ±1. Even if a clasp is changed so that two of the components have linking

number 2, the length 3 Milnor invariant is still well-defined mod 2.

Proposition 5.1. For an (n,m)-link L the disc replicating functions DL is given by

DL(k) = max{⌈2mk
n

⌉ − 1, 0}.

Proof. For n > 1, to see that DL(k) ≥ max{⌈2mk
n
⌉ − 1, 0} construct J by taking

an m-fold cover, and as described above blow down n − 2 components. This leaves

2 components inside the solid torus, and the meridian of the solid torus as J0. By

Theorem 4.5 we have fJ
L(k) = max{⌈2mk

n
⌉ − 1, 0}. If n = 1, then a sublink J of the
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Figure 5. The link J obtained by blowing down two of the compo-
nents of the link of Figure 4. With the meridian of the solid torus, this
is the Borromean rings with a clasp changed.

m-fold cover is the Whitehead link. The Whitehead link has µ0011(J) = ±1, so we

obtain the lower disc replicating function fJ
L(k) = 2mk − 1. This proves the lower

bound.

As shown in an example in Figure 6 it is not too hard to isotope the link so that

every component inherits at most a
(
⌈2mk

n
⌉ − 1

)
-interlacing. Since we can arrange

that every intersection of the regular neighbourhood of the link with the meridional

k-interlacing is again a meridional disc, this is an upper bound for DL(k). This

completes the proof. �

Combining Theorem 3.1 and Proposition 5.1 we get the following criteria for

shrinking or nonshrinking of a decomposition arising from a sequence of (ni, mi)-

links. The answer is particulary nice when the sequence of links is periodic, and still

quite nice when supi∈N ni < ∞.

Corollary 5.2. Let Li be an (ni, mi)-link. Define τi :=
ni

2mi
.

(1) If
∑

∞

j=1

∏j
i=1 τi converges, then the decomposition D does not shrink.

(2) If
∑

∞

j=1
1
nj

∏j
i=1 τi diverges, then D does shrink.

In particular we have:

(3) If supi∈N ni < ∞, then D shrinks if and only if
∑

∞

j=1

∏j
i=1 τi diverges.

(4) If the sequence of links is periodic; that is if there exists p ∈ N with Li = Li+p

for all i ∈ N, then D shrinks if and only if
∏p

i=1 τi ≥ 1.
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Figure 6. A (3, 2)-link with an 8-interlacing. In this case DL(8) = 10.

Proof.

(1) Assume that
∑

∞

j=1

∏j
i=1 τi converges. Let gi : Q → Q be defined by gi(k) =

τ−1
i k − 1 and choose k0 >

∑
∞

j=1

∏j
i=1 τi. Such an integer k0 exists since we

assume that the right hand side converges. Then for all r ≥ 1 we compute

that

gr ◦ . . . ◦ g1(k0) =

( r∏

i=1

τ−1
i

)
k0 −

r∑

j=1

r∏

i=j+1

τ−1
i

=

( r∏

i=1

τ−1
i

)(
k0 −

r∑

j=1

j∏

i=1

τi

)

> 0.

By Proposition 5.1, for all k > 0, and in particular for k = k0, we have

that DLi(k) = ⌈τ−1
i k⌉ − 1 ≥ gi(k), so by Theorem 3.1 the above inequality

therefore implies that D does not shrink.
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(2) For any fixed k0, m ∈ N, let r be such that

r+m∑

j=m

1

nj

j∏

i=1

τi >

(m−1∏

i=1

τi

)
k0.

The right hand side is now a fixed integer. Since we are assuming that

the series
∑

∞

j=1
1
nj

∏j
i=1 τi diverges, so does the sequence

∑
∞

j=m
1
nj

∏j
i=1 τi.

Therefore there exists a partial sum larger than any given integer.

Now define gi(k) := τ−1
i k − 1

ni
. Then for all r ≥ 0 we compute that:

gr+m ◦ . . . ◦ gm(k0) =

( r+m∏

i=m

τ−1
i

)
k0 −

r+m∑

j=m

(
1
nj

r+m∏

i=j+1

τ−1
i

)

=

( r+m∏

i=1

τ−1
i

)((m−1∏

i=1

τ−1
i

)
k0 −

r+m∑

j=m

(
1
nj

j∏

i=1

τi

))

< 0.

By Proposition 5.1, for all k > 0 we haveDLi(k) = ⌈τ−1
i k⌉−1 ≤ max{gi(k), 0},

so by Theorem 3.1 the above inequality therefore implies that D does shrink.

(3) Let B := supj∈N nj , then

∞∑

j=1

1
nj

j∏

i=1

τi >
1

B

∞∑

j=1

j∏

i=1

τi

and therefore
∑

∞

j=1
1
ni

∏j
i=1 τi diverges if

∑
∞

j=1

∏j
i=1 τi diverges, so D shrinks

by (2). The only if direction is immediate.

(4) In this case supi∈N ni < ∞ and so (3) applies. Since τi is also periodic with

period p, we have that:

∞∑

j=1

j∏

i=1

τi =

( p∑

j=1

j∏

i=1

τi

) ∞∑

j=0

( p∏

i=1

τi

)j

and
∑

∞

j=0 (
∏p

i=1 τi)
j
diverges if and only if

∏p
i=1 τi ≥ 1.

�

5.1. The results of Ancel and Starbird. Let w0 < w1 < w2 < . . . be a sequence

of positive integers. Let Lwi be the Whitehead link and let Lj be the Borromean

rings for j /∈ {wi | i ∈ N}. Then the associated links in the solid torus are the
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Bing and Whitehead doubles of the unknot respectively. Let D be the associated

decomposition. By Proposition 5.1 a disc replicating function for the Borromean

rings is D1(k) = k − 1 and a disc replicating function for the Whitehead link is

D2(k) = 2k−1. These agree with the formulae in Lemma 4 and Lemma 5 of [AS89].

Let c1 := w1 − 1 and ci := wi − wi−1 − 1 for i > 1. These denote the number of

Bing/Borromean links in between successive Whitehead links.

The following theorem was proved by F. Ancel and M. Starbird [AS89], and also

later by D. Wright [Wri89].

Theorem 5.3 (Ancel, Starbird). The decomposition D shrinks if and only if
∑

∞

i=1
ci
2i

diverges.

The proof follows easily from Corollary 5.2.

Proof. Let τwi
= 1

2
and let τℓ = 1 for ℓ /∈ {wi | i ∈ N}, as is consistent with the

definition of the τj in Corollary 5.2. By Corollary 5.2 (3) the decomposition D shrinks

if and only if
∑

∞

j=1

∏j
i=1 τi = 2

∑
∞

j=1
cj
2j

diverges. �

5.2. The results of Sher and Armentrout. Sher’s theorem [She67, Theorem 4]

was generalised by Armentrout [Arm70, Theorem 1] as follows. Let Li be an (ni, mi)-

link for i ∈ N. As always let D denote the associated decomposition space of S3.

Theorem 5.4 (Armentrout, Sher). Suppose that ni < 2mi for all i. Then D does

not shrink.

Proof. By Proposition 5.1 the disc replicating function DLi of Li is given by

DLi(k) =
⌈
2mik
ni

⌉
− 1

Since ni < 2mi it follows that ⌈
2mik
ni

⌉ > k and therefore DLi(k) ≥ k. By Theorem 3.1

this implies that D does not shrink. �

5.3. More examples of (n,m)-links. In this subsection we give two examples

of mixed decomposition of (n,m)-links for which neither criterion of Corollary 5.2

applies. The first does not shrink, the second does. This shows that Corollary 5.2 (1)

and (2) are not sharp. In these examples both ni and mi tend to infinity as i tends

to infinity.
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Example 5.5. For our first example, let Li be a (2i, i+ 1)-link. Then τi =
i

i+1
and

we have
∞∑

j=1

j∏

i=1

τi =

∞∑

j=1

1

j + 1
= ∞

and
∞∑

j=1

1

j + 1

j∏

i=1

τi =
∞∑

j=1

1

(j + 1)2
< ∞.

Thus none of the conditions from Corollary 5.2 are satisfied. However since τi < 1

for all i we know from the theorem of Sher and Armentrout (Theorem 5.4) that D

does not shrink.

Example 5.6. For our second example, let L2s be a (2s2, 1)-link and let L2s+1 be a

(2, (s+ 1)2)-link. Then τ2s = s2, τ2s+1 =
1

(s+1)2
, n2s = 2s2 and n2s+1 = 1. Therefore,

∞∑

j=1

j∏

i=1

τi =

∞∑

j=1

(
1 + 1

j2

)
= ∞

and
∞∑

j=1

1
nj

j∏

i=1

τi =
∞∑

j=1

3

2j2
< ∞.

So once again none of the conditions from Corollary 5.2 are satisfied. This time, by

Proposition 5.1 we have D2s(k) = ⌈ k
s2
⌉ − 1 and D2s+1(k) = (s+1)2k− 1. Therefore,

D2s+2(D2s+1(k)) = ⌈k − 1
(s+1)2

⌉ − 1 = k − 1

and so by Theorem 3.1 we see that D does shrink.
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