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On the domain of meromorphy of a multivariate Euler product

of Igusa type.

Ludovic DELABARRE∗
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Abstract

This work is an answer to a problem posed by N. Kurokawa and H. Ochiai concerning the
natural boundary of meromorphy of a multivariate Euler product of Igusa type. More generally,
we introduce and determine the maximal domain of meromorphy of a class of multivariate pseudo-
uniform Euler products.
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1 Introduction.

The aim of this work is to study the domain of meromorphy of some pseudo-uniform Euler

products of many variables of the form: (s1, . . . , sn) 7−→
∏

p prime

h(p−s1 , . . . , p−sn , p−c), where

h(X1, . . . , Xn, Xn+1) ∈ Z[X1, . . . , Xn, Xn+1] and c ∈ Z \ {0}1.
When n = 1, the following conjectures formulated by Z. Rudnick and M. du Sautoy (see for

example [9], 1.4 ; [8], 1.11) predicts the maximal domain of meromorphy of products of the form
Z (s) =

∏
p prime h

(
p−s, p

)
, where h (X1, X2) ∈ Z[X1, X2].

∗Université de Saint-Etienne, Faculté des Sciences, Laboratoire de Mathématiques LaMuse, 23 rue du Docteur Paul
Michelon 42023 Sant-Etienne cedex 2, FRANCE. Email: ludovic.delabarre(a)univ-st-etienne.fr Keywords: multivari-
ables Euler products, meromorphic continuation, natural boundary, cyclotomic polynomial. Classif. math.: 11M32
11M41 32D15 11N99

1Here “pseudo-uniform” means that the coefficients of h do not depend on p, but the expression h(p−s1 , . . . , p−sn , p−c)
depends both on p−si (i = 1, . . . , n) and on p.
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Conjecture 1. Z (s) =
∏

p prime h
(
p−s, p

)
can be meromorphically continued to the whole

complex plane if and only if there exist cyclotomic polynomials gi (U) (i = 1, . . . ,m) (mean-
ing divisors of (1− Umi)ni for a certain ni and a certain mi) and integers ui, vi such that:
h (X1, X2) = g1 (X

u1
1 Xv1

2 ) · · · gm (Xum
1 Xvm

2 ) .

Conjecture 2. Let h(X1, X2) = 1 +
∑r

i=1(ai0 + ai1X1 + · · · + ainiX
ni
1 )Xi

2 ∈ Z[X1, X2] which
is not a finite product of cyclotomic polynomials as in Conjecture 1 and suppose that all cy-
clotomic factors of h(X1, X2) have been removed. Let β = max

{
ni
i

: i ∈ {1, . . . , r}
}
. Then

Z (s) =
∏

p prime h
(
p−s, p

)
admits ℜ(s) = β as natural boundary of meromorphy; meaning that

Z(s) can be meromorphically continued to {s ∈ C : ℜ(s) > β} but there does not exist any
meromorphic continuation beyond the line ℜ(s) = β.

Eighty years ago, Theodor Estermann ([10]) determined completely the exact domain of mero-
morphy of the uniform Euler products of one variable

∏
p h(p

−s) (h(X) ∈ Z[X]): if h is a finite
product of cyclotomic polynomials then the corresponding product has a meromorphic continua-
tion to whole C whereas if h is not then the line ℜ(s) = 0 is a natural boundary of meromorphy.

Many years later, some results, obtained by Bhowmik, Essouabri and Lichtin in [2] then com-
pleted by the author in [6], have generalized Estermann’s theorem to uniform Euler product of
many variables.

In this paper, we are interested in a multivariate analogue of the class of products considered
in Conjecture 1 and 2 and we consider the maximal domain of meromorphy of a pseudo-uniform
Euler product of the following form:

Z(s1, . . . , sn) =
∏

p prime

h
(
p−s1 , . . . , p−sn , p−c) := Zn+1(s1, . . . , sn, c),

where n > 1, c ∈ Z \ {0} is a fixed nonzero integer and h(X1, . . . , Xn+1) ∈ Z[X1, . . . , Xn+1] is a
polynomial with integral coefficients of constant coefficient equal to 1.

What has mainly motivated this study is the resolution of a problem posed by N. Kurokawa
and H. Ochiai (see [17] page 12).

If A is a ring, the multivariate global Igusa zeta function is defined as follows (for n > 1):

Zring(s1, . . . , sn;A) :=
∑

m1,...,mn≥1

∣∣∣∣Homring

(
A,

Z

m1 · · ·mnZ

)∣∣∣∣m
−s1
1 · · ·m−sn

n .

By the Chinese remainder theorem, we know that this zeta function can be expressed as an
Euler product:

Zring(s1, . . . , sn;A) =
∏

p

Zring
p (s1, . . . , sn;A)

where

Zring
p (s1, . . . , sn;A) =

∑

k1,...,kn≥0

∣∣∣∣Homring

(
A,

Z

pk1+···+knZ

)∣∣∣∣ p
−k1s1−···−knsn .

In particular the problem posed in [17] page 12 consists in establishing the maximal domain of
meromorphy of

Zring(s1, . . . , sn;Z[T, T
−1]) =

∑

m1,...,mn≥1

ϕ(m1 · · ·mn)

ms1
1 · · ·msn

n
,

where ϕ designates the classical Euler function.
As it is pointed out in [17] (page 12), the analytic behavior of this product is complicated;

nevertheless we manage to determine here its domain of meromorphy by taking full advantage of
methods which have been developped in [6] to describe the maximal domain of meromorphy of
multivariable uniform Euler products of the form

∏
p h(p

−s1 , . . . , p−sn).
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Notation:
In what follows we will use these notations:
For r ≥ 1 and n > 1 we write:

h(X) = h(X1, . . . , Xn+1) = 1 +
r∑

j=1

ajX
α1,j

1 · · ·Xαn+1,j

n+1 ;

with α·j = (α(n)j , αn+1,j) = (α1,j , . . . , αn,j , αn+1,j) ∈ Nn+1 \{0} for j ∈ {1, . . . , r} and aj ∈ Z.
We put α := (αℓ,j)(ℓ,j)∈{1,...,n+1}×{1,...,r} ∈ Mn+1,r(N) the matrix encoding the exponents of

h.
For ℓ ∈ {1, . . . , n+ 1}, the ℓ-th row of this matrix will be written αℓ· = (αℓ,1, . . . , αℓ,r).
For j ∈ {1, . . . , r}, the j-th column of α will be written α·j = t(α1,j , . . . , αn,j , αn+1,j) =

t(tα(n)j , αn+1,j), where
tα(n)j = (α1,j , . . . , αj,n) denotes the first n components of the vector α·j .

By setting, for j ∈ {1, . . . , r}, Xα·j := X
α1,j

1 X
α2,j

2 · · ·Xαn+1,j

n+1 , we obtain:

h(X) = h(X1, . . . , Xn+1) = 1 +
r∑

j=1

ajX
α·j

= 1 +

r∑

j=1

aj (X1 · · ·Xn)
α(n)j X

αn+1,j

n+1 .

For m = (m1, . . . ,mr) ∈ Nr, we put ‖m‖ =
∑r

j=1 mj .

For s ∈ Cn+1, s = (s(n), sn+1) = (s1, ..., sn+1) and for ℓ ∈ {1, ..., n+ 1} we write:

σℓ = ℜ (sℓ) ; τℓ = ℑ (sℓ) ;
σ = ℜ (s) = (σ(n), σn+1) = (σ1, . . . , σn+1) ;
τ = ℑ (s) = (τ (n), τn+1) = (τ1, . . . , τn+1) .

Finally we recall for ν = (ν1, . . . , νm) and w = t(w1, . . . , wm) the classical matrix product
between ν and w:

ν ·w :=
m∑

i=1

νiwi.

We must underline the natural appearing of a supplementary hypothesis which permits to
distinguish Conjectures 1 and 2 from their multivariate analogues since a priori these multivariate
analogues contain the conjectures themselves.

So from now on we will suppose that

Rank
(
α(n)j , j ∈ {1, . . . , r}

)
> 1. (1)

Indeed, if this hypothesis is not satisfied, we would have the existence of e such that for all j ∈
{1, . . . , r}, α(n)j = qjα(n)e (qj ∈ Q); which would give h(X) = 1+

∑r
j=1 aj ((X1 · · ·Xn)

α(n)e)qj X
αn+1,j

n+1 .

And we would be led to study a one variable product of the form
∏

p h(p
−s, p−c).

The aim of this work is to establish the maximal domain of meromorphy of products
∏

p h(p
−s1 , . . . , p−sn , p−c)

(n > 1) which cannot be reduced to a one variable product.

We also suppose that for all j ∈ {1, . . . , r},α(n)j = (α1,j , . . . , αn,j) 6= 0.

Remark 1. We must notice that, contrary to the one variable case, the multivariate case permits
to take full advantage of methods developped in [6]. These methods consist in considering the
product in a suitable direction in a neighbourhood of a point of the supposed natural boundary.
The multivariate framework allows to move a point lying on the boundary if necessary and thus
it is possible to restrict our attention to “good” points (i.e. points for which we are able to prove
that no meromorphic continuation is possible beyond) provided that (and it is crucial) these points
are generic points (see Definition 6 and Remark 2) on the boundary.
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Definition 1. We will say that h (X1, . . . , Xn+1) is cyclotomic if there exists a finite subset I of

Nn+1 \{0} such that we have h (X1, . . . , Xn+1) =
∏

λ=(λ1,...,λn)∈I

(
1−Xλ1

1 · · ·Xλn+1
n

)γ(λ)
, where

the γ (λ) for λ ∈ I are positive or negative integers.

If h is cyclotomic, it is easy to see that the corresponding Euler product is a finite product of
classical Riemann zeta function; and consequently it can be meromorphically continued to whole
Cn.

So from now on, we will suppose that h is not cyclotomic and does not contain any

cyclotomic factor.

Definition 2. For all δ ≥ 0 write W(δ) =
{
s ∈ Cn+1 : σ ·α·j > δ,∀j ∈ {1, ..., r}

}
; and Wc(δ) ={

s(n) ∈ Cn | σ(n) ·α(n)j + c αn+1,j > δ,∀j ∈ {1, . . . , r}
}
.

2 Statements of main results.

It is straightforward to check that Z(s1, . . . , sn) is holomorphic on Wc(1). Moreover, we will prove
(see Theorem 4) that one can continue meromorphically Z(s1, . . . , sn) to Wc(0). The main result
of this paper consists in verifying, in most cases, that the edge ∂Wc(0) of Wc(0) is a natural
boundary of meromorphy.

Before announcing the results, firstly we introduce a definition.
Since W(0) = {s ∈ Cn+1 : ℜ(s · α·j) ≥ 0,∀j = 1, . . . , r}, then the edge ∂W(0) of W(0) is

a polyhedron whose faces are of the form F(α·e) = {s ∈ W(0) : ℜ(s · α·e) = 0}; for a vector
α·e ∈ {α·1, . . . ,α·r}. We will say by abuse of language that F(α·e) is a face of polar vector α·e.

Now let F(α·e) be a face of the edge ∂W(0) of W(0) as above and consider in particular
α̂·e ∈ Nn, α̂·e ∈ Qα·e the vector collinear with α·e whose nonzero components are relatively
prime.

Definition 3. Given e ∈ {1, . . . , r} we denote by 〈α·e〉 the line connecting 0 and the integer point

α·e in Rn, and then define the e-th main part of h [h]e(X) =
∑

α·j∈〈α·e〉

ajX
α·j .

Definition 4. Given e ∈ {1, . . . , r} we set

Λe =
{
j ∈ {1, . . . , r} : α·j ∈ 〈α·e〉

}

Be =
{
β ∈ Nr : βj = 0 if j /∈ Λe

}
.

It is clear that for all j ∈ Λe there exists qj ∈ N∗ such that α·j = qjα̂·e. Then we define

[̃h]e(T ) := 1 +
∑

j∈Λe

ajT
qj ∈ Z[T ] verifying [̃h]e(X

α̂·e) = [h]e(X).

Definition 5. We will say that the face F(α·e) is a non-degenerate face if the one variable

polynomial [̃h]e(T ) has no multiple root.

We suppose here that h is such that ∂W(0) contains at least one non-degenerate face F(α·e)
in the sense of Definition 5.

The aim of this article is essentially to prove two complementary results concerning the natural
boundary (meaning the boundary beyond which there does not exist any meromorphic continua-
tion) of

∏
p h(p

−s1 , . . . , p−sn , p−c) which depend on the validation of an hypothesis that we will
note (H) (see Theorem 1).

We will see that if this property (H) is satisfied we are able to determine the natural boundary in
a strong sense (see Theorem 1) whereas if it is not verified, we still obtain the natural boundary but
in a weaker sense (see Theorem 2): we will see that it cannot exist any meromorphic continuation
by translating the boundary to the left.
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Theorem 1. Let c ∈ Z\{0} and Z(s1, . . . , sn) =
∏

p h(p
−s1 , . . . , p−sn , p−c). The product (s1, . . . , sn) 7−→

Z(s1, . . . , sn) converges absolutely in the domain Wc(1) and admits a meromorphic continuation
to Wc(0). Moreover, assume that the polynomial h(X1, . . . , Xn, Xn+1) is not cyclotomic, does not
contain any cyclotomic factors, admits at least one non-degenerate face F(α·e), verifies (1) and
satisfies in addition the following property (H):

for all j ∈ {1, . . . , r} such that α·j /∈ Qα·e, α(n)j /∈ Qα(n)e.

Then the set {(s1, . . . , sn) ∈ Cn : (s1, . . . , sn, c) ∈ F(α·e)} ⊆ ∂Wc(0) is a natural boundary (in
the strong sense): there does not exist any continuation of Z(s1, . . . , sn) to a domain containing
an open ball B (of dimension n) centered in a point s0(n) such that (s0(n), c) ∈ F(α·e).

Theorem 2. Let c ∈ Z\{0} and Z(s1, . . . , sn) =
∏

p h(p
−s1 , . . . , p−sn , p−c). The product (s1, . . . , sn) 7−→

Z(s1, . . . , sn) converges absolutely in the domain Wc(1) and admits a meromorphic continuation
to Wc(0). Moreover, assume that the polynomial h(X1, . . . , Xn, Xn+1) is not cyclotomic, does not
contain any cyclotomic factors, verifies (1) and admits at least one non-degenerate face F(α·e)
but does not satisfy the property (H) of Theorem 1. Suppose in addition the following property:

if α(n)j0 /∈ Qα(n)e then the polynomials 1+
∑

α·j∈Qα·e

ajX
α·j and

∑

j:α·j−α·j0
∈Qα·e

ajX
α·j are relatively prime.

(2)

Then the edge ∂Wc(0) of Wc(0) is a natural boundary (in the weak sense): Z(s1, . . . , sn) does
not admit a meromorphic extension to Wc(δ) for any δ < 0. In particular, Z(s1, . . . , sn) does not
admit any meromorphic continuation to Cn.

As an application, we will see that we can determine the natural boundary (in the strong sense)
of Igusa’s zeta function Zring(s1, . . . , sn;Z[T, T

−1]) by obtaining the following result:

Theorem 3. The maximal domain of meromorphy M of Igusa’s zeta function:

Zring(s1, . . . , sn;Z[T, T
−1]) =

∑

m1,...,mn≥1

ϕ(m1 · · ·mn)

ms1
1 · · ·msn

n

is given by M =

{
(s1, . . . , sn) ∈ C

n | ∀ I ⊆ {1, . . . , n},
∑

i∈I

σi > −1 + #I

}
. In particular, if (s01, . . . , s

0
n) ∈

∂M, then there does not exist any meromorphic continuation of Zring(s1, . . . , sn;Z[T, T
−1]) to a

domain containing an open ball B of dimension n centered in (s01, . . . , s
0
n).

3 Proof of Theorem 1.

3.1 Meromorphic continuation of Z(s1, . . . , sn).

The pseudo-uniform Euler product (s1, . . . , sn) 7−→ Z(s1, . . . , sn), absolutely convergent in Wc(1),
admits a meromorphic continuation to Wc(0). This fact follows directly from the meromorphic
continuation of the uniform product (s1, . . . , sn, sn+1) 7−→

∏
p h(p

−s1 , . . . , p−sn , p−sn+1) to W(0)
as it is proved in [6] (see [6], Theorem 1). Furthermore, we are able to give an expression of the
meromorphic extension of Zn+1(s1, . . . , sn+1) in W(δ) for all δ > 0, and hence an expression of
the continuation of Z(s1, . . . , sn) in Wc(δ) for all δ > 0.

The key point of the continuation of Zn+1 is the writing of h(X) as an infinite product a
cyclotomic factors:
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Proposition 1. Consider the quantity:

C := C(h) =
1

|a1|+ · · ·+ |ar|
. (3)

If |Xα·j | < C for j ∈ {1, . . . , r}, then:

h(X) = 1 + a1X
α·1 + · · ·+ arX

α·r =
∏

β=(β1,...,βr)∈Nr\{0}

(
1−

n+1∏

ℓ=1

Xαℓ··
tβ

ℓ

)γ(β)

=
∏

β∈Nr\{0}

(
1−X

α·tβ
)γ(β)

;

where the right side converges absolutely and

γ(β) =
∑

b∈Nr\{0}
m∈N
mb=β

(
(−1)‖b‖

µ (m)

m

(‖b‖ − 1)!

b1!...br !
ab1
1 ...abr

r

)
∈ Z.

Proof. See [6], Lemma 2 and Corollary 2.2.

Theorem 4. Zn+1 (s1, . . . , sn+1) is meromorphic in W(0).

Moreover if we write for all δ > 0 Mδ =
[
C− 1

δ

]
+ 1 (Mδ ∈ N), the following relation holds in

W(δ):

Zn+1 (s1, . . . , sn+1) =
∏

p≤Mδ

h
(
p−s1 , ..., p−sn+1

) ∏

β∈Nr\{0}

ζMδ

(
s · α · tβ

)−γ(β)
;

where ζMδ(z) = ζ(z)
∏

p≤Mδ

(
1− p−z

)
(ζ being the classical Riemann zeta function) has exactly

the same zeros and poles as the classical Riemann zeta function with the same multiplicities. In

addition, the possible zeros or poles of
∏

β∈Nr\{0} ζMδ

(
s ·α · tβ

)−γ(β)
, which is meromorphic in

W(δ), belong to the set:

Φδ =
{
s ∈ W(δ),∃β ∈ N

r, s · α · tβ = ρ, ρ zero or pole of ζ (.)
}
.

Proof. See [6], Theorem 1.

3.2 Determination of the natural boundary of Z(s1, . . . , sn).

Consider a point s0 = (s0(n), c) with s0(n) ∈ ∂Wc(0) lying on a non-degenerate face F(α·e) of ∂W(0)

(which exists by hypothesis) of real part σ0 = (σ0
(n), c) and of imaginary part τ 0 = (τ 0

(n), 0).

Consequently, we have for all j ∈ {1, ..., r}, σ0 · α·j ≥ 0 and σ0 · α·e = 0. Consider an open ball
B of dimension n and of arbitrarily small radius around the point s0(n). Let us start by giving the
definition of the notion of generic set which is fundamental in whole this paper:

Definition 6. A subset G of a set E is said to be generic in E if the complement of G in E has
empty interior.

Remark 2. In the following when we will use the term “generic point” in a set E, it will be
understood that we consider any point belonging to some generic set in E.

To begin with, let us check that it is possible we can choose s0(n) in a generic set inside B such

that s0 = (s01, . . . , s
0
n, c) = (s0(n), c) ∈ ∂W(0) in a way to have:

(σ0
(n), c) ·α·j = 0 ⇐⇒ α·j ∈ Qα·e. (4)

For this assume that we have the existence of j1 and of j2 such that Qα·j1 6= Qα·j2 and such
that (σ0

(n), c) ·α·j1 = (σ0
(n), c) · α·j2 = 0. Then we have:

6



1. The equality (σ0
(n), c) · α·j1 =

n∑

ℓ=1

σ0
ℓαℓ,j1 + c αn+1,j1 = 0 defines an affine real space A1 of

dimension n− 1 > 0 according to σ0
(n).

2. The equality (σ0
(n), c) ·α·j2 =

n∑

ℓ=1

σ0
ℓαℓ,j2 +c αn+1,j2 = 0 defines an affine real space A2 6= A1

of dimension n − 1 > 0 according to σ0
(n) because if α(n)j2 ∈ Qα(n)j1 we would have

necessarily α·j2 ∈ Qα·j1 since c 6= 0.

Consequently we have necessarily σ0
(n) ∈ A1

⋂
A2; and hence it belongs to an affine subspace of

dimension less than or equal to n− 2 of empty interior in Rn−1; so we have (4) by choosing σ0
(n)

in a generic set such that s0(n) ∈ ∂Wc(0) ∩ B.
In the same way, we can suppose (by moving σ0

(n) if necessary such that (σ0
(n), c) ∈ ∂W(0)

by avoiding a countable union of closed sets of empty interior which remains of empty interior
according to Baire’s theorem) that for λ = (λ1, . . . , λn+1) ∈ Qn+1:

(σ0
(n), c) · tλ = 0 ⇐⇒ λ ∈ Qα·e; (5)

Note: the previous argument is the simplest illustration of a recurring principle appearing
throughout this paper; a principle briefly presented above (see Remark 1 page 3) which consists
in moving the point s0(n) on the boundary by avoiding a “bad” set. And the crucial point is to
verify that this “bad” set has an empty interior in order to prove that the “good” points are
generic in the set {(s1, . . . , sn) ∈ Cn : (s1, . . . , sn, c) ∈ F(α·e)} ⊆ ∂Wc(0) so that all this set
{(s1, . . . , sn) ∈ Cn : (s1, . . . , sn, c) ∈ F(α·e)} is a natural boundary of meromorphy.

From now on, we will also suppose without loss of generality (rearranging the indexes if neces-
sary) that αn,e 6= 0.

We fix a direction θ = (θ1, . . . , θn, 0) := (θ(n), 0) ∈ Qn+1 with θn+1 = 0 and consider the one
variable function in t complex:

t 7−→ Zn+1(s01+ tθ1, . . . , s
0
n+ tθn, c) = Zn+1(s0+ tθ) = Z(s01+ tθ1, . . . , s

0
n+ tθn) = Z(s0(n) + tθ(n));

for t lying inside a rectangle (for u ∈ R, η > 0 ):

Ξu,η : 0 < ℜ (t) < 1
0 < u < ℑ (t) < u+ η.

We suppose that θ satisfies the following conditions:

θ · α·j = θ(n) · α(n)j ≥ 1 for all j ∈ {1, . . . , r}. (6)

We assume also that

θ(n) · α̂(n)e ∈ N
∗; (7)

(where α̂·e is the vector collinear with α·e whose components are relatively prime).
In this way, since for j ∈ Λe we have seen (see Definition 3) that there exists qj ∈ N∗ such that

α·j = qjα̂·e, we have necessarily for all j ∈ Λe θ(n) ·α(n)j ∈ N∗.

The aim of what follows is to prove the existence of an accumulation of zeros or poles of the
one variable function t 7−→ Z(s0(n) + tθ(n)) inside the bounded rectangle Ξu,η for any u ∈ R, η > 0.

By putting sn+1 = c in Theorem 4, we have an expression for Z(s1, . . . , sn) inside Wc(δ) for
all δ > 0. According to the condition (6) satisfied by θ, this expression remains well-defined for all
δ > 0 for ℜ(t) > δ if we put s(n) := s0(n)+tθ(n) since ℜ(t) > δ implies s0+tθ = (s0(n), c)+t(θ(n), 0) ∈

7



Wc(δ). This allows to characterize the eventual zeros or poles of t 7−→ Z(s0(n) + tθ(n)). Indeed
the poles necessarily come from ζ-factors and hence belong to Φδ (with sn+1 = c) for some δ > 0
whereas the zeros of t 7−→ Z(s0(n) + tθ(n)) are provided by the ζ-factors and by the zeros of

t 7−→ h(p−s01−tθ1 , . . . , p−s0n−tθn , p−c).
For the sake of presentation, consider the following triplet of parameters

µ = (p, τ 0
(n), θ(n)).

When this parameter will be put in index, this will mean a dependence according to the prime
number p, the imaginary part τ 0

(n) of s0(n) and the direction θ(n).

Definition 7. We define the generalized polynomial Wµ,σ0(X,Y ) of h depending on s0(n),θ(n)

and p for X ∈ C \R− and Y ∈ C deprived of an half-line (i.e. Y ∈ C \ eibR+ for some b ∈ [0, 2π[)

as Wµ,σ0(X,Y ) = 1 +

r∑

j=1

ajp
−iτ0

(n)·α(n)jX
σ0

(n)·α(n)j+cαn+1,jY θ(n)·α(n)j .

Since s0 =
(
σ0

(n), c
)
+i
(
τ 0

(n), 0
)
, then for all p prime and t ∈ Ξu,η such that ℑ(t) log(p)+b /∈ 2πZ

we have Wµ,σ0(p−1, p−t) = h
(
p−s01−tθ1 , . . . , p−s0n−tθn , p−c

)
.

The aim of what follows is to characterize the zeros of these generalized polynomials Wµ,σ0(X,Y ) =
0 by expressing Y = Ω(X) as a function of X such that Wµ,σ0(X,Ω(X)) = 0. The problem is
that we cannot apply the classical Puiseux theorem to find these solutions because Wµ,σ0(X,Y ) is
not a real polynomial and in particular is not well-defined for X in a neighbourhood of 0. This is
the reason why here we need the hypothesis that the face F(α·e) is non-degenerate; which allows
us to prove the existence of the solutions and equally to have a good control on the convergence
(particularly on the dependence on p). This result is given by the following proposition:

Proposition 2. (Puiseux theorem for Wµ,σ0 (X,Y )).
Let q ∈ N∗ be the smallest positive integer verifying qθ(n) ·α(n)j ∈ N∗ for all j = 1, . . . , r. Consider
the finite set:

pµ :=
{
cµ ∈ C; ∃r root of [̃h]e(T ) such that c

qθ(n)·α̂(n)e
µ = rp

iτ0
(n)·α̂(n)e

}
;

(where α̂·e is the vector collinear with α·e whose components are relatively prime).
There exists ǫ1 > 0 (not depending on p nor on τ 0

(n)) such that for all X ∈ H := {X ∈
C\R−, |X| < ǫ1} the equation Wµ,σ0(X,Y ) = 0 admits the set of solutions Y = Ωµ,cµ,σ0(X) (cµ ∈
pµ); where for all cµ ∈ pµ, X 7−→ Ωµ,cµ,σ0(X) is an holomorphic function on H and satisfies for

all X ∈ H : Ωµ,cµ,σ0(X) =
∑κcµ

k=0 ck(cµ,µ)X
ϑ(σ0

(n))k with:

1. κcµ ∈ N ∪ {+∞};
2. ϑ(σ0

(n))0 = 0 < ϑ(σ0
(n))1 < · · · is a stricly increasing sequence (independent of τ 0

(n));

3. limk→+∞ ϑk = +∞ if κcµ = +∞;

4. there exist two constants Dǫ0 > 1 and A(σ0
(n)) > 0 (independent of p, τ 0

(n) and k) such that

|ck(cµ,µ)| ≪ D
A(σ0

(n))ϑ(σ
0
(n))k

ǫ0 uniformly in p prime and in k;

5. c0(cµ,µ) = cqµ, in particular |c0(cµ,µ)| = |c|
1

θ(n)·α̂(n)e .

Moreover {c0(cµ,µ); cµ ∈ pµ} = {u ∈ C; ∃r root of [̃h]e(T ) such that uqθ(n)·α̂(n)e = rp
iτ0

(n)·α̂(n)e}.
Proof. See [6], Proposition 2. �
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Now the aim is to find a Puiseux series Y = Ωµ,σ0(X) in a neighbourhood ofX = 0 (X ∈ C\R−)
such that Wµ,σ0(X,Ωµ,σ0(X)) = 0 and verifying |Ωµ,σ0(X)| < 1 for X > 0 small enough.

In this way we will have infinitely many zeros tm,µ,σ0 (m ∈ Z, p prime large enough) of the
form

tm,µ,σ0 = − log
(
Ωµ,σ0(p−1)

)

log(p)
+

2πmi

log(p)
(8)

of strictly positive real part inside Ξu,η for p large enough.
So now consider any solution Ωµ,σ0(X) of Wµ,σ0(X,Y ) = 0 (in finite number) that we will

write as follows:

Ωµ,σ0 (X) = cµ,0 + cµ,1X
ϑ1 + · · ·+ cµ,NXϑN + Ωµ,σ0,N+1 (X) , (N ≥ 1) (9)

where cµ,m ∈ C; ϑN = ϑ(σ0
(n))N > · · · > ϑ1 = ϑ(σ0

(n))1 ∈ N∗; Ωµ,σ0,N+1 (X) = o
(
XϑN

)
; and we

have ∀k ∈ {1, . . . , f} ,Wµ,σ0

(
X,Ωµ,σ0 (X)

)
= 0.

We have to notice that, according to Proposition 2 (claim 5.), the main term cµ,0 of a Puiseux
branch is a root of the one variable polynomial:

[Wµ,σ0 ]e(T ) := 1 +
∑

j∈Λe

ajp
−iτ0

(n)·α(n)jT θ(n)·α(n)j = [̃h]e(p
−iτ0

(n)·α̂(n)eT θ(n)·α̂(n)e).

Moreover, if to each root cµ,0 of [Wµ,σ0 ]e(T ) we associate

cθ,0 := cµ,0p
−i

τ0
(n)

·α(n)e

θ(n)·α(n)e . (10)

Then |cθ,0| = |cµ,0| and cθ,0 is a root of the polynomial (not depending on p nor on τ 0):

1 +
∑

j∈Λe

ajT
θ(n)·α(n)j . (11)

Note that the expression (11) is really a polynomial according to the property (7) on θ(n).

Remark 3. For p large enough Wµ,σ0(X,Y ) is well-defined by putting X = p−1 and Y =

p
−t

m,µ,σ0 for τ 0
(n) ∈ Rn generically chosen by avoiding a countable closed sets of empty interior if

necessary. Indeed p−1 ∈ C \R− and if p
−t

m,µ,σ0 ∈ eibR+ we would have the existence of mp ∈ N∗

such that:

ℑ(tm,µ,σ0) = ℑ
(
− log

(
Ωµ,σ0(p−1)

)

log(p)
+

2iπm

log(p)

)

=
− arg(cµ,0) +O

(
p−ϑ1

)
+ 2πm

log(p)

=
− arg(cθ,0) +O

(
p−ϑ1

)
+ 2πm

log(p)
−

τ 0
(n) ·α(n)e

θ(n) ·α(n)e

=
−b+ 2mpπ

log(p)
.

(12)

So, for m fixed, if the equality (12) was satisfied for infinitely many prime numbers p, we could

write
τ0
(n)·α(n)e

θ(n)·α(n)e
as a limit of a sequence (Sm)p according to p.

But the set L of all the limits of these countable sequences is a countable set. Consequently, if we

choose τ 0
(n) ∈ Rn generically so that

τ0
(n)·α(n)e

θ(n)·α(n)e
/∈ L by avoiding a countable union of hypersurfaces

of dimension n − 1 of empty interior, we may assume that p
−t

m,µ,σ0 for all m and for p large
enough.
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Notice that if [Wµ,σ0 ]e(T ) is not cyclotomic, then there exists at least one root cµ,0 of modulus
stricly less than 1 which will provide a Puiseux branch Ωµ,σ0(X) satisfying |Ωµ,σ0(X)| < 1 for
|X| small enough.

So now let us deal entirely this particular case where [Wµ,σ0 ]e(T ) is not cyclotomic: we will
prove that there are, among the two factors of t 7−→ Z(s0(n) + tθ(n)) which appear in the writ-

ing of Theorem 4, many more zeros coming from the factor t 7−→ ∏
p≤M 1

ν+1

Wµ,σ0

(
p−1, p−t

)
=

∏
p≤M 1

ν+1

h
(
p−s01+tθ1 , . . . , p−s0n+tθn , p−c

)
(for ν >> 0) than poles coming from

t 7−→∏
β∈Nr\{0} ζM 1

ν+1

(
(s0(n) + tθ(n), c) · α · tβ

)−γ(β)
for t lying inside a region ∆u,ν,η in a neigh-

bourhood on the right of ℜ(t) = 0 determined by (for ν, η, u > 0):

∆u,ν,η : 1
ν+1

< ℜ (t) < 1
ν

0 < u < ℑ (t) < u+ η.

In this way we will show the accumulation of zeros tm,µ,σ0 (m ∈ Z, p prime) of Z
(
s0(n) + tθ(n)

)
=

Zn+1
((
s0(n), c

)
+ t
(
θ(n), 0

))
inside Ξu,η =

⋃
ν≥1 ∆u,ν,η.

By the way, we could note that this particular case does not require the use of generic arguments
which consist in moving if necessary the parameters σ0

(n) or θ(n). Moreover, we can also give an
estimation (in function of ν and η) of the number of zeros tm,µ,σ0 inside ∆u,ν,η. It is in this sense
that this case is more simple than the case where [Wµ,σ0 ]e is cyclotomic – the case which will be
dealt with later.

Lemma 1. We suppose that [Wµ,σ0 ]e is not cyclotomic.
The edge ∂Wc(0) of Wc(0) is a natural boundary for Z (s) = Zn+1(s1, . . . , sn, c).
In particular, the number S(ν, η) of zeros tm,µ,σ0 of the form (8) (counted without their mul-

tiplicity) inside the region ∆ν,η (for ν, η, u > 0) is such that for all N ∈ N:

S (ν, η) ≥ η (C0 − 1)

KN4π
νN ,

where KN is a constant depending on N and C0 =
∣∣cµ,0

−1
∣∣ > 1 is the modulus of the inverse of a

root cµ,0 of [Wµ,σ0 ]e of modulus strictly less than 1.

Proof. To begin with, let us notice that for ℜ (t) > δ, we have according to (4):

Z
(
s0(n) + tθ(n)

)
=
∏

p≤Mδ

h
(
p−s01−tθ1 , . . . , p−s0n−tθn , p−c

) ∏

β∈Nr\{0}

ζMδ

(
(s0(n) + tθ(n), c) ·α · tβ

)−γ(β)
.

Indeed this writing makes sense because for all j ∈ {1 . . . , r}, (σ0
(n) + ℜ(t)θ(n), c) · α·j ≥

ℜ(t)θ(n) · α(n)j ≥ δ according to (6).
Consider the zeros and the poles of Z

(
s0(n) + tθ(n)

)
inside the rectangle (for ν, η, u > 0):

∆u,ν,η : 1
ν+1

< ℜ (t) < 1
ν

0 < u < ℑ (t) < u+ η.

Firstly let us estimate the number of possible poles inside ∆ν,η coming from the factor∏

β∈Nr\{0}

ζM 1
ν+1

(
(s0(n) + tθ(n), c) · α · tβ

)−γ(β)
. Recall (see Theorem 4) that ζM 1

ν+1

has exactly the

same zeros and poles as the Riemann zeta function ζ.
If t0 is such a pole inside ∆u,ν,η, then there exists β ∈ Nr \ {0} such that (s0(n) + t0θ(n), c) ·

α · tβ is a zero or a pole of the Riemann zeta function ζ; and this quantity satisfies necessarily
ℜ (t0)

(
(θ(n), 0) ·α · tβ

)
≤ ℜ

(
(s0(n) + t0θ(n), c) · α · tβ

)
≤ 1.
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Consequently we have 1
ν+1

< ℜ (t0) ≤ 1
(θ(n),0)·α·tβ

; which provides (θ(n), 0) · α · tβ ≤ (ν + 1) .

Furthermore the inequality (θ(n), 0) · α · tβ =
∑r

j=1 βj

(
θ(n) ·α(n)j

)
≥ ‖β‖ (by (6)) gives:

‖β‖ ≤ (ν + 1) . (13)

Moreover ℑ (t0) < u+ η gives ℑ
(
(s0(n) + t0θ(n), c) · α · tβ

)
= O ((ν + 1) (u+ η)) .

After having fixed η > 0, the number of zeros or poles of one ζ-factor of∏

β∈Nr\{0}

ζM 1
ν+1

(
(s0(n) + tθ(n), c) · α · tβ

)−γ(β)
is given by O ((ν + 1) log (ν + 1)) , according to a

classical result concerning the estimation of the number of nontrivial zeros of the Riemann zeta
function of imaginary part less than (ν + 1).

In addition, the same pole can, by (13), appear in at most (ν + 1)r terms; which gives at most
O
(
(ν + 1)r+1 log (ν + 1)

)
poles inside ∆ν,η (counted without their multiplicity).

On the other hand, let us estimate the number of zeros S (ν, η) coming from
∏

p≤M 1
ν+1

h
(
p−s01−tθ1 , . . . , p−s0n−tθn , p−c

)
=
∏

p≤M 1
ν+1

Wµ,σ0

(
p−1, p−t

)
inside ∆ν,η.

We consider for this the Puiseux branches of Wµ,σ0(X,Y ) in the neighbourhood of X = 0
(X ∈ C\R−) of the form (9). We know that the first term cµ,0 of a branch is a root of [Wµ,σ0 ]e(T )
and that reciprocally each root of this polynomial determines the main term of a Puiseux branch
(see Proposition 2 page 8). And since by hypothesis [Wµ,σ0 ]e(T ) is not cyclotomic, then there
exists a root cµ,0 of modulus stricly less than 1.

Then consider in particular a Puiseux branch Ωµ,σ0(X) having this first term cµ,0 with |cµ,0| <
1 and put C0 = |cµ,0|−1 > 1.

For p prime we write Ωµ,σ0

(
p−1) = cµ,0 + cµ,1p

−ϑ1 + Ωµ,σ0,2

(
p−1) . Thus, some zeros of

t 7−→ Wµ,σ0

(
p−1, p−t

)
for p prime can be expressed as follows:

tm,µ,σ0 = − log
(
cµ,0 + cµ,1p

−ϑ1 + Ωµ,σ0,2

(
p−1
))

log (p)
+

2πmi

log (p)
(14)

where m ∈ Z. To have tm,µ,σ0 ∈ ∆ν,η, we must have:

1

ν + 1
< − log

∣∣cµ,0 + cµ,1p
−ϑ1 + Ωµ,σ0,2

(
p−1
)∣∣

log (p)
<

1

ν
. (15)

Let us prove that this inequality is well satisfied for p lying in a suitable interval.

Firstly we can assume that ℜ
(

cµ,1

cµ,0

)
6= 0 : this property which exploits

the genericity in τ 0
(n) ∈ Rn will be proved in Lemma 3 page 19.

(16)

Thus there exists p0 ∈ N such that for p > p0 we have either:
∣∣∣∣∣1 +

cµ,1

cµ,0
p−ϑ1 +

Ωµ,σ0,2

(
p−1
)

cµ,0

∣∣∣∣∣ > 1 if ℜ
(
cµ,1

cµ,0

)
> 0; (17)

or: ∣∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ωµ,σ0,2

(
p−1
)

cµ,0

∣∣∣∣∣ < 1 if ℜ
(
cµ,1

cµ,0

)
< 0. (18)
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In (17) or (18) for ν large enough and

p > max



[
4ν
∣∣∣ℜ
(

cµ,1

cµ,0

)∣∣∣
(
C

ϑ1
2

0

)ν] 1
ϑ1

,

[
4 (ν + 1)

∣∣∣ℜ
(

cµ,1

cµ,0

)∣∣∣
(
C

ϑ1
2

0

)ν+1
] 1

ϑ1




=

[
4 (ν + 1)

∣∣∣ℜ
(

cµ,1

cµ,0

)∣∣∣
(
C

ϑ1
2

0

)ν+1
] 1

ϑ1

(which is possible according to Proposition 2 page 8 because
|cµ,0| = |cθ,0| > 0 and |cµ,1| is bounded independently of p),
we obtain :

(−1)ε

∣∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ωµ,σ0,2

(
p−1

)

cµ,0

∣∣∣∣∣

−ν−ε

<

1 + (−1)ε
(
C

ϑ1
2

0

)ν+ε

(
C

ϑ1
2

0

)ν+ε (19)

where ε ∈ {0, 1}.
Indeed, the inequality (17) gives:

1. for ε = 0 :

∣∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ωµ,σ0,2

(
p−1
)

cµ,0

∣∣∣∣∣

−ν

< 1 <

1 +

(
C

ϑ1
2

0

)ν

(
C

ϑ1
2

0

)ν ;

2. for ε = 1, since p >

[
4 (ν + 1)ℜ

(
cµ,1

cµ,0

)(
C

ϑ1
2

0

)ν+1
] 1

ϑ1

:

log

∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p

−1)
cµ,0

∣∣∣∣
−ν−1

=

((
1 +

cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p

−1)
cµ,0

)(
1 +

cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p−1)

cµ,0

))−ν−1
2

= log
(
1 + 2ℜ

(
cµ,1

cµ,0

)
p−ϑ1 + o

(
p−ϑ1

))−ν−1
2

= −ν−1
2

(
2ℜ
(

cµ,1

cµ,0

)
p−ϑ1 + o

(
p−ϑ1

))

> −2 (ν + 1)ℜ
(

cµ,1

cµ,0

)
p−ϑ1 for ν large enough (ν ≥ ν0)

> − 1
2

1

C

ϑ1
2

(ν+1)

0

> log

(
1− 1

C

ϑ1
2

(ν+1)

0

)
= − 1

C

ϑ1
2

(ν+1)

0

+ o

(
1

C

ϑ1
2

(ν+1)

0

)
;

which provides the inequality desired (for ν ≥ ν0):

∣∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ωµ,σ0,2

(
p−1
)

cµ,0

∣∣∣∣∣

−ν−1

> 1−
(
C

ϑ1
2

0

)−1−ν

=

−1 +

(
C

ϑ1
2

0

)1+ν

(
C

ϑ1
2

0

)1+ν
.

Similarly, the inequality (18) gives:

1. for ε = 0, since p >

[
−4νℜ

(
cµ,1

cµ,0

)(
C

ϑ1
2

0

)ν] 1
ϑ1

:
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log

∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p

−1)
cµ,0

∣∣∣∣
−ν

= ν
2

(
−2ℜ

(
cµ,1

cµ,0

)
p−ϑ1 + o

(
p−ϑ1

))

< 2ν
(
−ℜ

(
cµ,1

cµ,0

)
p−ϑ1

)
for ν large enough (ν ≥ ν1)

< 1

2C

ϑ1
2

ν

0

< log

(
1 + 1

C

ϑ1
2

ν

0

)
= 1

C

ϑ1
2

ν

0

+ o

(
1

C

ϑ1
2

ν

0

)
;

which guarantees (for ν ≥ ν1)

∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p

−1)
cµ,0

∣∣∣∣
−ν

< 1 + 1

C

ϑ1
2

ν

0

.

2. for ε = 1 :

∣∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ωµ,σ0,2

(
p−1
)

cµ,0

∣∣∣∣∣

−ν−1

> 1 > 1− 1

C
ϑ1
2

(ν+1)

0

=
C

ϑ1
2

(ν+1)

0 − 1

C
ϑ1
2

(ν+1)

0

.

Now if we choose Cν
0


1 +

1

C
ν

ϑ1
2

0


 ≤ p ≤ Cν+1

0


1− 1

C
(ν+1)

ϑ1
2

0


 , (which is compatible with

the previous condition on p to have (19)) then (15) occurs since according to (19) we have:

Cν
0

∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p

−1)
cµ,0

∣∣∣∣
−ν

< Cν
0

(
1 + 1

C
ν

ϑ1
2

0

)

≤ p

≤ Cν+1
0

(
1− 1

C
(ν+1)

ϑ1
2

0

)

< Cν+1
0

∣∣∣∣1 +
cµ,1

cµ,0
p−ϑ1 +

Ω
µ,σ0,2(p

−1)
cµ,0

∣∣∣∣
−ν−1

;

and finally by taking the logarithm of both sides we deduce (15).
Now, η > 0 being fixed, if we choose ν as a positive integer such that 2π

log(Cν
0 +1)

< η, then

for all prime number p such that Cν
0


1 +

1

C
ν

ϑ1
2

0


 ≤ p ≤ Cν+1

0


1− 1

C
(ν+1)

ϑ1
2

0


 , we will have

tm,µ,σ0 ∈ ∆ν,η if and only if u <
2πm

log (p)
− arg

(
Ωµ,σ0

(
p−1
))

log (p)
< u+ η, which is equivalent to:

u log (p)

2π
+

arg
(
Ωµ,σ0

(
p−1
))

2π
< m <

(u+ η) log (p)

2π
+

arg
(
Ωµ,σ0

(
p−1
))

2π
. (20)

Hence, for a fixed p, we will have η log(p)
2π

+̟ zeros tm,µ,σ0 of Wµ,σ0

(
p−1, p−t

)
inside ∆ν,η where

|̟| ≤ 1.

Finally, if S∗ (ν, η) denotes the number of zeros of
∏

p≤M 1
ν+1

h
(
p−s01−tθ1 , . . . , p−s0n−tθn , p−c

)

inside ∆ν,η a priori counted with their multiplicity, we will have:

S∗ (ν, η) ≥
∑

Cν
0


1+ 1

C
ν

ϑ1
2

0


≤p≤Cν+1

0


1− 1

C
(ν+1)

ϑ1
2

0




(
η log (p)

2π
+̟

)
. (21)
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By taking ν large enough so that C
−ν

ϑ1
2

0 < C0−1

2

(
C

1−
ϑ1
2

0 +1

) and by using the prime number

theorem (i.e.
∑

p≤x

log (p) ∼ x), the estimation (21) gives:

S∗ (ν, η) ≥ Cν
0 η (C0 − 1)

4π
−

∑

Cν
0


1+ 1

C
ν

ϑ1
2

0


≤p≤C

ν+1
0


1− 1

C
(ν+1)

ϑ1
2

0




1

≥ Cν
0 η (C0 − 1)

4π
− Cν+1

0

log
(
Cν+1

0

)

∼ Cν
0 η (C0 − 1)

4π
.

For being able to minorate S (ν, η), we want to majorate the multiplicity of a zero or a pole
tm,µ,σ0 . Thus given a prime number p and an integer m, we want to majorate:

M (m, p) = #
{(

m′, p′
)
| m′ ∈ Z, p′ prime, tm,µ,σ0 = tm′,µ′,σ0 with µ

′ = (p′, τ 0
(n),θ(n))

}
.

Notice that we can suppose without loss of generality that if p′ is such that there exists an
integer m such that tm,µ,σ0 = tm′,µ′,σ0 , then p′ ≥ p.

In addition we have:

− log Ωµ,σ0

(
p−1
)
= − log (cµ,0) +O

(
p−ϑ1

)
;

− log Ωµ′,σ0

(
p′−1

)
= − log (cµ′,0) +O

(
p−ϑ1

)
.

(22)

Furthermore by (10) we can write, for all prime number p, cµ,0 = cθ,0p
i
τ0
(n)

·α(n)e

θ(n)·α(n)e , where cθ,0 does
not depend on p. We remark also that ℜ (log (cθ,0)) = log |cθ,0| 6= 0 because |cθ,0| = |cµ,0| < 1.
According to (22), the equality tm,µ,σ0 = tm′,µ′,σ0 provides:

− log (cθ,0) +O
(
p−ϑ1

)

log (p)
+

2iπm

log (p)
=

− log (cθ,0) +O
(
p−ϑ1

)

log (p′)
+

2iπm′

log (p′)
. (23)

By identifying the real and the imaginary parts of (23), we obtain the estimations:




− log |cθ,0|
(

1

log (p)
− 1

log (p′)

)
= O

(
1

pϑ1 log (p)

)
,

− arg (cθ,0)

(
1

log (p)
− 1

log (p′)

)
+ 2π

(
m

log (p)
− m′

log (p′)

)
= O

(
1

pϑ1 log (p)

)
.

And since log |cθ,0| 6= 0, we have:




1

log (p)
− 1

log (p′)
= O

(
1

pϑ1 log (p)

)
,

m

log (p)
− m′

log (p′)
= O

(
1

pϑ1 log (p)

)
.

(24)

The first line of (24) permits to claim that log (p′)− log (p) = O

(
log(p′)
pϑ1

)
. Consequently there

exists an absolute constant A1 such that if p′ is such that there exists m′ verifying tm′,µ′,σ0 =

tm,µ,σ0 then log (p′) − log (p) ≤ A1
log(p′)
pϑ1

. So we have log
(
p′
)
≤ log (p)

1− A1

pϑ1

≤ log (p)

(
1 +

A2

pϑ1

)
;

14



where A2 is an absolute constant (we can for example choose A2 = 2A1). If there exists m′ such
that tm′,µ′,σ0 = tm,µ,σ0 , then p′ satisfies necessarily

p′ ≤ p
1+

A2

pϑ1 . (25)

For a fixed p, let us count the number M′ (p) of p′ satisfying (25). For this we use the prime

number theorem which gives the following estimation π (x) =
∫ x

2
dt

log(t)
+O

(
xe−m

√
log(x)

)
(where

m is an explicit absolute constant) for the number of prime numbers π (x) less than x. Hence we
obtain:

M′ (p) = π
(
p1+A2p

−ϑ1
)
− π (p) =

∫ p1+A2p−ϑ1

2

dt

log (t)
+O

(
pe−m

√
log(p)

)
.

But we have uniformly in t ∈
[
p, p1+A2p

−ϑ1
]
log (t) = log (p) + O

(
log (p) p−ϑ1

)
; which pro-

vides:

M′ (p) =
1

log (p) +O (log (p) p−ϑ1)

(
p1+A2p

−ϑ1 − p
)
+O

(
pe−m

√
log(p)

)

= O

(
p

log (p)

(
pA2p

−ϑ1 − 1
))

+O
(
pe−m

√
log(p)

)

= O

(
p

log (p)

(
eA2 log(p)p−ϑ1 − 1

))
+O

(
pe−m

√
log(p)

)

= O
(
p1−ϑ1

)
+O

(
pe−m

√
log(p)

)

= O
(
pe−m

√
log(p)

)
.

Now, having fixed an integer m ∈ Z and a prime number p, let us consider a prime number p′

verifying (25) and let us estimate the number of integers m′ such that tm,µ,σ0 = tm′,µ′,σ0 .

According to (24), we have
m

log (p)
− m′

log (p′)
= O

(
1

pϑ1 log (p)

)
. But since p′ verifies (25), we

have log
(
p′
)
= log (p) +O

(
log (p) p−ϑ1

)
; and consequently:

m−m′ log (p)

log (p′)
= O

(
p−ϑ1

)

m−m′

(
1

1 +O (p−ϑ1)

)
= O

(
p−ϑ1

)

m−m′
(
1 +O

(
p−ϑ1

))
= O

(
p−ϑ1

)

m−m′ = O
(
p−ϑ1

)
+O

(
m′p−ϑ1

)
.

Moreover, if tm′,µ′,σ0 ∈ ∆ν,η, then by (20) m′ must verify m′ = O
(
log
(
p′
))

= O (log (p)) ; and

hence m−m′ = O
(
log (p) p−ϑ1

)
. In particular, for p large enough, p > p1 (p1 being an absolute

constant), we deduce |m−m′| < 1

2
; and then m = m′. Hence if p > p1, the couples (m′, p′) such

that tm′,µ′,σ0 = tm,µ,σ0 are necessarily such that m = m′. And finally M (m, p) = M′ (p) =

O
(
pe−m

√
log(p)

)
.

As a conclusion, if p is such that Cν
0

(
1 + 1

C
ν

ϑ1
2

0

)
≤ p ≤ Cν+1

0

(
1− 1

C
(ν+1)

ϑ1
2

0

)
, then for all

N ∈ N, there exists in particular a constant KN which depends on N such that for all m ∈ N,

15



M (m, p) ≤ KN
Cν

0

νN
. Thus for all N ∈ N, we have finally

S (ν, η) ≥ S∗ (ν, η)

KN
Cν

0

νN

∼ η (C0 − 1)

KN4π
νN .

For N > r + 1, we have in particular (ν + 1)r+1 log (ν + 1) = o (S (ν, η)) when ν tends to infinity;
which completes the proof of this lemma. �

The case where [Wµ,σ0 ]e(T ) is not cyclotomic being now completely dealt with, we assume from
now on that [Wµ,σ0 ]e(T ) is cyclotomic.

The problem is more complicated when the polynomial [Wµ,σ0 ]e(T ) is cyclotomic.
In this case, it is necessary to consider the second term of the Puiseux branches to prove that

there exists at least one satisfying the desired condition |Ωµ,σ0(X)| < 1. Moreover, to have this
condition, it is also necessary to refine our choice of direction θ. Indeed, by choosing a suitable θ,
we will see that we can find two Puiseux series of opposite initial term ±cµ,0 with the same second
term cµ,1X

ϑ1 . In this way, although it is not possible to have |cµ,0| < 1 since here [Wµ,σ0 ]e is
cyclotomic, one of these two branches will be of modulus stricly less than 1 for X > 0 small enough

whenever arg
(

cµ,1

cµ,0

)
6= π

2
mod (π). And we use an argument of genericity in the imaginary part

τ 0 =
(
τ 0

(n), 0
)
of s0 to ensure arg

(
cµ,1

cµ,0

)
6= π

2
mod (π).

We will use later the following lemma to justify the existence of a particular index e′ ∈ {1, . . . , r}
which will be crucial in the computation of the second term of the Puiseux branches.

Lemma 2. Consider an half-line eibR+ and a corresponding determination of the logarithm so
that Wµ,σ0 |τ0=0 (X,Y ) is defined for X ∈ C \ R− and Y ∈ C \ eibR+. Suppose that there exists
c ∈ C \ eibR+ such that for all X ∈ C \R− and for s0(n) generically chosen in B ∩ ∂Wc(0) we have
Wµ,σ0 |τ0=0 (X, c) = 0. Then necessarily |c| 6= 1.

Proof. Suppose that there exists c ∈ C \ eibR+ such that for all X ∈ C \ R− :

Wµ,σ0 |τ0=0 (X, c) = 0.

Then we will have:

Wµ,σ0 |τ0=0 (X, c) = 1 +
r∑

j=1

ajX
σ0·α·j c

θ·α·j

= h
(
Xσ0

1 c
θ1 , . . . , Xσ0

nc
θn
)
= 0.

(26)

Moreover, the generic choice of σ0
(n) (see (5)) means that the only constraint its components

must verify is σ0 · α·e = 0.
Consequently, since we have supposed without loss of generality that αn,e 6= 0 (see page 7), we

can consider σ0
(n) ∈ Rn as a (n− 1)-tuple σ̃0 = (σ̃0

1 , . . . , σ̃
0
n−1) ∈ U ⊆ Rn−1 (U being an open set

of Rn−1) by putting:





σ0
ℓ = σ̃0

ℓ (ℓ ∈ {1, . . . , n− 1}),

σ0
n = − 1

αn,e

(
n−1∑

i=1

αi,eσ̃
0
i + c αn+1,e

)
.

Then for all x ∈ R>0 (x 6= 1) let us define:

16



U −→ Rn

Φx :

σ̃
0 = (σ̃0

1 , . . . , σ̃
0
n−1) 7−→

(
xσ̃0

1 , . . . , xσ̃0
n−1 , xc

)
.

It is clear that
⋃

x>0 Φx(U) describes a nonempty open set (0,∞)n.
Moreover, there exists a nonempty open set U ′ ⊆ Rn−1 × (R>0 \ {1}) such that for all

(y1, . . . , yn) ∈ U ′ there exists (σ̃0
1 , . . . , σ̃

0
n−1) ∈ U and x > 0 (x 6= 1) such that

(y
αn,e

1 , . . . , y
αn,e
n ) = Φ

exp(
αn,e

c
log(yn))

(
c
log(y1)

log(yn)
, . . . , c

log(yn−1)

log(yn)

)
∈ Im

(
Φ

exp(
αn,e

c
log(yn))

)
.

Thus for all (y1, . . . , yn) ∈ U ′ we have:

h

(
y
αn,e

1 c
θ1 , . . . , y

αn,e

n−1 c
θn−1 , cθny

−αn+1,e
n

n−1∏

ℓ=1

y
−αℓ,e

ℓ , y
αn,e
n

)
= h

(
xσ0

1 c
θ1 , . . . , xσ0

nc
θn , xc

)

with x = exp
(αn,e

c
log(yn)

)

= 0 according to (26).

But the function (y1, . . . , yn) 7−→ h

(
y
αn,e

1 c
θ1 , . . . , y

αn,e

n−1 c
θn−1 , cθny

−αn+1,e
n

n−1∏

ℓ=1

y
−αℓ,e

ℓ , y
αn,e
n

)
is

holomorphic on (C∗)n. And since it vanishes on an open set U ′ of (0,∞)n, we have in fact

for all (y1, . . . , yn) ∈ (C∗)n, h

(
y
αn,e

1 c
θ1 , . . . , y

αn,e

n−1 c
θn−1 , cθny

−αn+1,e
n

n−1∏

ℓ=1

y
−αℓ,e

ℓ , y
αn,e
n

)
= 0.

Hence the polynomial h(X1, . . . , Xn+1) vanishes on H ∩ (C∗)n where H is the complex hypersur-

face defined by the equation c
−θ(n)·α(n)eXα·e − 1 =

n+1∏

ℓ=1

X
αℓ,e

ℓ c
−θℓαℓ,e − 1 = 0. We deduce that

the polynomial X1 · · ·Xnh(X1, . . . , Xn+1) vanishes on the whole hypersurface H and hence the
polynomial c−θ(n)·α(n)eXα·e − 1 divides a power of the polynomial X1 . . . Xn h(X1, . . . , Xn+1).
Since the polynomials c−θ(n)·α(n)eXα·e − 1 and X1 . . . Xn are relatively prime, we deduce that the
polynomial

Pc(X) := c
−θ(n)·α(n)eXα·e − 1 (27)

necessarily divides a power of h; and hence Pc(X) divides also h because all irreducible factors of
Pc(X) are of multiplicity 1.

And since h is with rational coefficients and c is an algebraic number, the polynomial

Q(X) :=
∏

c′

Pc′(X) ∈ Q[X]

(where the product is done over all the conjugates c′ of c) also divides h.
Remark that Q(X) can be reduced in fact to an one variable polynomial (by the change of

variable T := Xα·e).
Now, if we assume by absurd that |c| = 1, then the polynomial Q(X), having rational coeffi-

cients, is necessarily cyclotomic because all its roots would be of modulus 1; which is not possible
since by hypothesis h does not contain any cyclotomic factor. �
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Now consider a particular index e′ ∈ {1, . . . , r} verifying:

σ
0 · α·e′ > 0 is minimal (28)

among the indexes j0 such that σ0 ·α·j0 > 0 and which verify:

∑

{j:α·j−α·j0
∈Qα·e}

ajp
−iτ0

(n)·α(n)j cµ,0
θ(n)·α(n)j 6= 0.

The existence of such index e′ is ensured by the previous lemma.
Indeed, consider a set J made of representatives of each class of the following equivalence

relation ∼:
α·j ∼ α·j′ ⇐⇒ α·j −α·j′ ∈ Qα·e.

And write

Wµ,σ0(X,Y ) = [Wµ,σ0 ]e(Y ) +
∑

j0∈J;j0 6∼e

Xσ0·α·j0Rµ,j0(Y );

where
Rµ,j0(Y ) =

∑

j∼j0

ajp
−iτ0

(n)·α(n)jY θ(n)·α(n)j .

Recall that since we suppose here that [Wµ,σ0 ]e(Y ) is a cyclotomic polynomial, all its roots
are of modulus 1.

Now let cµ,0 be a root of [Wµ,σ0 ]e.
We have:

Rµ,j0(cµ,0) =
∑

j∼j0

ajp
−iτ0

(n)·

(
α(n)j−α(n)e

θ(n)·α(n)j
θ(n)·α(n)e

)

cθ,0
θ(n)·α(n)j according to (10).

But if α·j = α·j0 + qα·e, we obtain:

α(n)j −α(n)e
θ(n)·α(n)j

θ(n)·α(n)e
= α(n)j0 + qα(n)e −α(n)e

θ(n)·α(n)j0
+qθ(n)·α(n)e

θ(n)·α(n)e

= α(n)j0 −α(n)e
θ(n)·α(n)j0
θ(n)·α(n)e

.

Consequently since the α(n)j −α(n)e
θ(n)·α(n)j

θ(n)·α(n)e
are all equal for j ∼ j0 we have Rµ,j0(cµ,0) = 0

is equivalent to:

Rj0(cθ,0) :=
∑

j∼j0

ajcθ,0
θ(n)·α(n)j = 0. (29)

Thus if e′ does not exist, we would have for all X ∈ C \ R−:

Wµ,σ0 |τ0=0 (X, cθ,0) = [hθ ]e(cθ,0) +
∑

j0∈J;j0 6∼e

Xσ0·α·j0Rj0(cθ,0) = 0;

which is impossible according to Lemma 2 since here |cθ,0| = |cµ,0| = 1.
Obviously, it is possible to have some j0 such that

σ
0 · α·e′ = σ

0 ·α·j0 . (30)

However, if σ0 ∈ Rn is generically chosen so that s0 ∈ B ∩ ∂W(0), the equality (30) implies
necessarily that j0 ∼ e′.

Throughout what follows, we need the direction θ =
(
θ(n), 0

)
∈ Qn ×{0} to verify, in addition

of (6), the two following conditions:
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θ(n) · α̂(n)e ∈ Z+ is even;
θ(n) · α(n)e′ ∈ Z+ is odd.

(31)

Note that, although the vectors α·e and α·e′ are not collinear (according to (5) since σ0 ·α·e = 0
and σ0 · α·e′ > 0), it would be possible to have α(n)e′ ∈ Qα(n)e; and in this case it would not be
possible to choose such θ with θn+1 = 0 and verifying (31).

To escape this difficulty, we use the hypothesis (H) of Theorem 1 which, because we know that
α·e and α·e′ are not collinear, ensures that α(n)e′ /∈ Qα(n)e; and consequently it is possible to find
θ =

(
θ(n), 0

)
verifying (31).

The two following lemmas are crucial to prove the existence of an accumulation of zeros
tm,µ,σ0 ∈ Ξu,η of positive real part.

Lemma 3. Let Ωµ,σ0(X) = cµ,0 + cµ,1X
ϑ1 + o

(
Xϑ1

)
be a Puiseux branch of initial term cµ,0,

root of [Wµ,σ0 ]e. Moving generically τ 0
(n) ∈ Rn so that s0(n) ∈ B ∩ ∂Wc(0) if necessary, we can

assume

arg

(
cµ,1

cµ,0

)
6= π

2
mod (π).

Remark 4. This lemma does not require the hypothesis that [Wµ,σ0 ]e(T ) is cyclotomic; moreover
this result is used in the proof of Lemma 1 page 10 (see (16) page 11).

This lemma will be proved just after the following lemma:

Lemma 4. Assume that [Wµ,σ0 ]e is a cyclotomic polynomial.
There exists a Puiseux series Ωµ,σ0(X), solution of Wµ,σ0(X,Y ) = 0 and verifying

|Ωµ,σ0(X)| < 1 for X > 0 small enough;

which provides an infinite number of zeros tm,µ,σ0 ∈ Ξu,η of
∏

p≤Mδ
h(p−s01−tθ1 , . . . , p−s0n−tθn , p−c)

as δ tends to 0.

Proof. Consider a Puiseux branch that we will write:

Ω+
µ,σ0 (X) = cµ,0 + c+µ,1X

ϑ+
1 + o

(
Xϑ+

1

)
;

of main term the root cµ,0 of [Wµ,σ0 ]e introduced previously which is of multiplicity m0 = 1 since
F(α·e) is non-degenerate in the sense of Definition 5.

According to Lemma 3, moving τ 0
(n) if necessary, we can suppose that arg

(
c+µ,1

cµ,0

)
6= π

2

mod (π). Thus we have π
2

< arg

(
c+µ,1

cµ,0

)
< 3π

2
or π

2
< arg

(
− c+µ,1

cµ,0

)
< 3π

2
. Since [Wµ,σ0 ]e is

supposed to be cyclotomic, the main term of Ω+
µ,σ0 is of modulus |cµ,0| = 1.

But if we assume firstly that π
2
< arg

(
c+µ,1

cµ,0

)
< 3π

2
, we have:

∣∣∣Ω+
µ,σ0(X)

∣∣∣ =
∣∣∣∣∣1 +

c+µ,1

cµ,0
Xϑ+

1 + o(Xϑ+
1 )

∣∣∣∣∣ < 1 for X > 0 small.

Hence Ωµ,σ0(X) = Ω+
µ,σ0(X) suits and it is the Puiseux series that we have looked for.

Now assume that
π

2
< arg

(
−
c+µ,1

cµ,0

)
<

3π

2
.

We will show that the particular choice of θ (see (31) page 19) permits to find a Puiseux series
with initial term −cµ,0 and with the same second term as that of Ω+

µ,σ0 and which hence will be
the series we have looked for.
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Firstly, since θ(n) ∈ Qn has been chosen so that, for j ∈ Λe, θ · α·j is even, we know that
−cµ,0 is also a root of [Wµ,σ0 ]e; furthermore notice that this root −cµ,0 provides a corresponding
Puiseux series solution of Wµ,σ0(X,Y ) = 0 according to Proposition 2.

So consider the following Puiseux branch that we will write:

Ω−
µ,σ0 (X) = −cµ,0 + c−µ,1X

ϑ−
1 + o

(
Xϑ−

1

)
;

and whose initial term is this root −cµ,0. Let us compare the two terms c−µ,1X
ϑ−
1 and c+µ,1X

ϑ+
1 .

We use for this the fact that the terms of lowest degree in X of Wµ,σ0

(
X,Ω±

µ,σ0(X)
)
cancel each

other; and these terms coincide with those of Wµ,σ0

(
X,±cµ,0 + c±µ,1X

ϑ±
1

)
. And these terms of

lowest degree are also those of the following expression:

c±µ,1[Wµ,σ0 ]′e (±cµ,0)X
ϑ±
1 +Xσ0·α·e′Rµ,e′ (±cµ,0) . (32)

Then on one hand concerning the branch Ω+
µ,σ0 we have:

c+µ,1 = − Rµ,e′(cµ,0)

[Wµ,σ0 ]′e(cµ,0)
; (33)

and on the other hand concerning the branch Ω−
µ,σ0 we have:

c−µ,1 = − Rµ,e′(−cµ,0)

[Wµ,σ0 ]′e(−cµ,0)
= − (−1)θ(n)·α(n)e′Rµ,e′(cµ,0)

−[Wµ,σ0 ]′e(cµ,0)
. (34)

And since θ(n) · α(n)e′ is an odd integer we obtain c+µ,1 = c−µ,1.
Hence finally there exists a Puiseux series:

Ωµ,σ0(X) = −cµ,0 + c+µ,1X
ϑ+
1 + o

(
Xϑ+

1

)
;

which is such that |Ωµ,σ0(X)| < 1 for X > 0 small enough. This series provides some zeros:

tm,µ,σ0 = − log
(
Ωµ,σ0

(
p−1
))

log(p)
+

2πmi

log(p)
;

where m ∈ Z and p is a prime number. And we will have tm,µ,σ0 ∈ Ξu,η if u < ℑ(tm,µ,σ0) < u+η;
meaning that if:

u <
2πm

log (p)
− arg

(
Ωµ,σ0

(
p−1
))

log (p)
< u+ η,

which is equivalent to:

u log (p)

2π
+

arg
(
Ωµ,σ0

(
p−1
))

2π
< m <

(u+ η) log (p)

2π
+

arg
(
Ωµ,σ0

(
p−1
))

2π
. (35)

Hence we will have for p large enough some zeros of t → Wµ,σ0(p−1, p−t) inside Ξu,η. And there

exists infinitely many zeros tm,µ,σ0 ∈ Ξu,η of
∏

p≤Mδ

h(p−s01−tθ1 , . . . , p−s0n−tθn , p−c) when δ tends to

0; which completes the proof of this lemma. �

Now let us prove Lemma 3:
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Proof (of Lemma 3). To begin with, we identify the dependence on p and τ 0
(n) of cµ,1.

According to Lemma 4 we have:

cµ,1 =
−∑j|α·j−α·e′∈Qα·e

ajp
−iτ0

(n)·α(n)j (cµ,0)
θ(n)·α(n)j

[Wµ,σ0 ]′e (cµ,0)
.

Recall that by (10) we have cµ,0 = cθ,0p
i
τ0
(n)

·α(n)e

θ(n)·α(n)e ; which permits to identify clearly the dependence
on p and τ 0

(n) of cµ,0. Let us observe in particular the denominator cµ,0[Wµ,σ0 ]′e (cµ,0) of
cµ,1

cµ,0
and

let us prove that it does not depend neither on τ 0
(n), nor on p. Indeed:

cµ,0[Wµ,σ0 ]′e (cµ,0) = cθ,0p
i
τ0
(n)

·α(n)e

θ(n)·α(n)e

∑

j∈Λe

aj(θ · α·j)c
θ(n)·α(n)j−1

θ,0 p
i

(
τ0
(n)

·α(n)e

θ(n)·α(n)e
(θ(n)·α(n)j−1)−τ0

(n)·α(n)j

)

=
∑

j∈Λe

aj(θ · α·j)c
θ(n)·α(n)j

θ,0 ,

since j ∈ Λe implies that
τ0
(n)·α(n)e

θ(n)·α(n)e
(θ(n) ·α(n)j) = τ 0

(n) ·α(n)j .

Now assume by absurd that for all τ 0
(n) in some open ball so that s0(n) ∈ B ∩ ∂Wc(0) and for

all prime number p arg
(

cµ,1

cµ,0

)
= π

2
mod (π). Then we would have

arg

(
cµ,1

cµ,0

)
∈
{
π

2
;
3π

2

}
.

Put for k such that α·k ∈ α·e′ +Qα·e:

λk,θ,β,ρ :=
− ak c

θ(n)·α(n)k

θ,0
∑

j∈Λe
aj(θ · α·j)c

θ(n)·α(n)j

θ,0

∈ C

not depending neither on p nor on τ 0
(n). Then we have:

cµ,1

cµ,0
=

∑

{k:α·k−α·e′∈Qα·e}

λk,θ,β,ρp
i

(
τ0
(n)·α(n)e

θ(n)·α(n)k
θ(n)·α(n)e

−τ0
(n)·α(n)k

)

=
∑

{k:α·k−α·e′∈Qα·e}

λk,θ,β,ρp
iτ0

(n)·wk ,

if we write wk :=
θ(n)·α(n)k

θ(n)·α(n)e
α(n)e −α(n)k.

Remark that these wk are all equal. Indeed if k and k′ are such that α·k − α·e′ ∈ Qα·e and
α·k′ − α·e′ ∈ Qα·e, then α·k − α·k′ ∈ Qα·e and hence there exists q ∈ Q such that α·k − α·k′ =

qα·e. In particular we also have α(n)k −α(n)k′ = qα(n)e; consequently
θ(n)·(α(n)k−α(n)k′ )

θ(n)·α(n)e
α(n)e =

qα(n)e = α(n)k −α(n)k′ and hence wk = wk′ = we′ .

Let us prove that we′ 6= 0 : this property is crucial if we want to move arg
(

cµ,1

cµ,0

)
by choosing

τ 0
(n) generically. It is exactly here that we use again the hypothesis (H) of theorem 1.

Indeed, we′ = 0 is equivalent to α(n)e′ ∈ Qα(n)e. But we know that the vectors α·e and α·e′

are not collinear since σ0 · α·e′ > 0 and σ0 · α·j = 0 if and only if α·j ∈ Qα·e according to the
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property (4) on σ0 =
(
σ0

(n), c
)
. And consequently the hypothesis (H) ensures α(n)e′ /∈ Qα(n)e and

hence we′ 6= 0.

Finally we have
cµ,1

cµ,0
= p

iτ0
(n)·we′

∑

k|α·k−α·e′∈Qα·e

λk,θ,β,ρ. Now if we put:

ϕ := arg


 ∑

k|α·k−α·e′∈Qα·e

λk,θ,β,ρ


 ;

(ϕ not depending neither on p nor on τ 0
(n)), then we obtain:

τ
0
(n) ∈ M :=

⋃

p

⋃

m∈Z

{
(τ 0

(n) ·we′) log(p) + ϕ =
π

2
+mπ

}
.

But M is a countable union of affine hyperplanes in τ 0
(n) which are of empty interior inside Rn

(because we′ 6= 0); and according to Baire’s theorem the countable union of these hyperplanes is
also of empty interior inside Rn. Consequently these previous conditions cannot be satisfied for
all τ 0

(n) inside an open ball of Rn; and we obtain a contradiction to the hypothesis above, which
completes the proof of this lemma. �

At this stage we have proved the existence of infinitely many zeros tm,µ,σ0 ∈ Ξu,η of t 7−→
∏

p≤Mδ
h
(
p−s01−tθ1 , . . . , p−s0n−tθn , p−c

)
as δ tends to 0. To prove Theorem 1 it remains to verify

that the accumulation of these zeros tm,µ,σ0 lying inside Ξu,η is not cancelled by possible poles

coming from the ζ-factors of
∏

β∈Nr\{0} ζMδ

(
(s0(n) + tθ(n), c) · α · tβ

)−γ(β)
which appear in the

writing of Theorem 4.
To start with, let us remark that, since ζMδ has exactly the same zeros and pole as the Riemann

zeta function, the possible poles which could cancel the previous zeros tm,µ,σ0 are of the form:

t (β, ρ) =
ρ−∑r

j=1 βj(s
0 · α·j)∑r

j=1 βj(θ ·α·j)
,

where β ∈ Nr \ {0} and ρ is a zero or a pole of ζ.
In what follows we will prove that, by moving s0(n) ∈ B ∩ ∂Wc(0) if necessary, there is

at most a finite number of such t(β, ρ) inside the region Ξu,η which vanish the factors t 7−→
h
(
p−s01−tθ1 , . . . , p−s0n−tθn , p−c

)
(p being any prime number); and consequently they cannot can-

cel the accumulation of tm,µ,σ0 ∈ Ξu,η.
Then for all β ∈ Nr \{0}, for all prime number p and for all ρ zero or pole of ζ, we will consider

the following quantity:

h
(
p−s01−t(β,ρ)θ1 , . . . , p−s0n−t(β,ρ)θn , p−c

)
;

and we will prove that for almost all the t(β, ρ) ∈ Ξu,η (all except a finite number) and for all
prime number p large enough (p > p0 where p0 is an absolute constant) we have:

h
(
p−s01−t(β,ρ)θ1 , . . . , p−s0n−t(β,ρ)θn , p−c

)
6= 0.

Write:

h
(
p−s01−t(β,ρ)θ1 , ..., p−s0n−t(β,ρ)θn , p−c

)
= 1 +

r∑

k=1

akp
−s0·α·k−θ(n)·α(n)k

(
ρ−
∑r

j=1 βj(s
0·α·j)∑r

j=1
βj(θ(n)·α(n)j )

)

= 1 +
r∑

k=1

akp
λk,θ,β,ρ(σ

0)
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where
λk,θ,β,ρ(σ

0) = −uk,θ,β(σ
0)− vk,θ,β,ρ;

with

uk,θ,β(σ
0) = σ

0 ·α·k − θ(n) ·α(n)k

∑r
j=1 βj(σ

0 · α·j)∑r
j=1 βj(θ(n) · α(n)j)

and

vk,θ,β,ρ = θ(n) ·α(n)k

(
ρ− i

∑r
j=1 βj(τ

0
(n),α(n)j)∑r

j=1 βj(θ(n) ·α(n)j)

)
+ iτ 0

(n) ·α(n)k; (36)

is independent of σ0. Let us precise the dependence of uk,θ,β(σ
0) on σ0. Indeed, the (n+1)-uple

σ0 has here two constraints: σ0
n+1 = c and σ0 · α·e = 0. As in Lemma 2, we can consider this

(n+ 1)-uple as a (n− 1)-uple σ̃0 =
(
σ̃0
1 , . . . , σ̃

0
n−1

)
without constraint by putting:





σ0
ℓ = σ̃0

ℓ (ℓ ∈ {1, . . . , n− 1}),

σ0
n = − 1

αn,e

(
n−1∑

i=1

αi,eσ̃
0
i + c αn+1,e

)
.

In this way we obtain:

uk,θ,β(σ̃0) =

n−1∑

i=1

σ̃
0
i



αi,k −

r∑

j=1

βjαi,j

θ(n) · α(n)k∑
r
j=1 βj(θ(n) ·α(n)j)

−

αi,e

αn,e



αn,k −

r∑

j=1

βjαn,j

θ(n) · α(n)k∑
r
j=1 βj(θ(n) · α(n)j)









+c



αn+1,k −

r∑

j=1

βjαn+1,j

θ(n) · α(n)k∑r
j=1 βj(θ(n) · α(n)j)

−

αn+1,e

αn,e



αn,k −

r∑

j=1

βjαn,j

θ(n) · α(n)k∑r
j=1 βj(θ(n) · α(n)j)









= uk,θ,β(σ̃
0
)
vect

+ uk,θ,βaff
;

where

uk,θ,β(σ̃
0)

vect
:=

n−1∑

i=1

σ̃0
i


αi,k −

r∑

j=1

βjαi,j

θ(n) ·α(n)k∑r
j=1 βj(θ(n) ·α(n)j)

−
αi,e

αn,e


αn,k −

r∑

j=1

βjαn,j

θ(n) ·α(n)k∑r
j=1 βj(θ(n) · α(n)j)




 ;

(37)
and

uk,θ,βaff
:= c



αn+1,k −

r∑

j=1

βjαn+1,j

θ(n) · α(n)k∑r
j=1 βj(θ(n) · α(n)j)

−
αn+1,e

αn,e



αn,k −

r∑

j=1

βjαn,j

θ(n) ·α(n)k∑r
j=1 βj(θ(n) ·α(n)j)







 .

(38)

Then we define the following equivalence relation Rβ,θ on the αk

α·k Rβ,θ α·k′ ⇐⇒ for all σ̃0 such that s0(n) ∈ B
uk,θ,βvect(σ̃

0) = uk′,θ,βvect
(σ̃0)

Thus α·k Rβ,θ α·k′ if and only if for all i ∈ {1, . . . , n− 1}:

(αi,k − αi,k′)− αi,e

αn,e
(αn,k − αn,k′)− θ(n) · (α(n)k −α(n)k′)∑r

j=1 βj(θ(n) · α(n)j)

(
r∑

j=1

βj

(
αi,j − αi,e

αn,e
αn,j

))
= 0.

(39)
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Notice that
∑r

j=1 βj

(
αi,j − αi,e

αn,e
αn,j

)
=
∑

j /∈Λe
βj

(
αi,j − αi,e

αn,e
αn,j

)
. In addition, it is impor-

tant to observe that, although the set of β ∈ Nr \ {0} such that γ(β) 6= 0 is infinite (since here h
is supposed to be non cyclotomic), the set:

E := {βj | j /∈ Λe, γ(β) 6= 0,ℜ(t(β, ρ)) ≥ 0} is finite. (40)

Indeed, since the t(β, ρ) which could cancel the zeros tm,µ,σ0 are necessarily of positive real
part, we have

ℜ(t(β, ρ)) =
ℜ(ρ)−∑j /∈Λe

βj(σ
0 · α·j)∑r

j=1 βj(θ ·α·j)
≥ 0; (41)

and hence
∑

j /∈Λe
βj(σ

0 · α·j) ≤ ℜ(ρ) < 1; which implies that (40) is a finite set since for all

j /∈ Λe, σ
0 ·α·j > 0. Consequently the quantity

∑
j /∈Λe

βj

(
αi,j − αi,e

αn,e
αn,j

)
can take only finitely

many values when β moves.

Let us give some precisions concerning the relation Rβ,θ.
If we assume that

∑r
j=1 βjα(n)j /∈ Qα(n)e, then there exists i ∈ {1, . . . , n − 1} such that

∑
j /∈Λe

βj

(
αi,j − αi,e

αn,e
αn,j

)
6= 0 and the equality (39) is possible only if

θ(n) · (α(n)k −α(n)k′)∑r
j=1 βj(θ(n) · α(n)j)

=
(αi,k − αi,k′)− αi,e

αn,e
(αn,k − αn,k′)

∑
j /∈Λe

βj

(
αi,j − αi,e

αn,e
αn,j

) . (42)

Since the set

{
(αi,k−αi,k′)−

αi,e
αn,e

(αn,k−αn,k′)
∑

j /∈Λe
βj

(
αi,j−

αi,e
αn,e

αn,j

) | β ∈ Nr \ {0}
}

is finite by (40) and θ(n) ·α(n)j >

0 for all j ∈ {1, . . . , r}, the identity (42) cannot be satisfied for ‖β‖ large enough (i.e. for
‖β‖> B0 where B0 is an absolute constant) if θ(n) · (α(n)k − α(n)k′) 6= 0 or (αi,k − αi,k′) −
αi,e

αn,e
(αn,k − αn,k′) 6= 0 because the member on the left is not zero and tends to 0 when ‖β‖ tends

to infinity.
For ‖β‖> B0, we have necessarily θ(n)·(α(n)k−α(n)k′) = 0 and (αi,k − αi,k′)− αi,e

αn,e
(αn,k − αn,k′) =

0 for the indexes i ∈ {1, . . . , n− 1} such that
∑

j /∈Λe
βj

(
αi,j − αi,e

αn,e
αn,j

)
6= 0.

For the other indexes i such that
∑

j /∈Λe
βj

(
αi,j − αi,e

αn,e
αn,j

)
= 0, the identity (39) also pro-

vides (αi,k − αi,k′)− αi,e

αn,e
(αn,k − αn,k′) = 0; thus we obtain α(n)k −α(n)k′ ∈ Qα(n)e. And if we

write α(n)k − α(n)k′ = qα(n)e (q ∈ Q), the identity θ(n) · (α(n)k − α(n)k′) = 0 gives immediately
q = 0 since θ(n) ·α(n)e 6= 0; and hence α(n)k = α(n)k′ .

Now if
∑r

j=1 βjα(n)j ∈ Qα(n)e, the equality (39) becomes:

∀i ∈ {1, . . . , n− 1}, (αi,k − αi,k′)− αi,e

αn,e
(αn,k − αn,k′) = 0. (43)

But then (43) gives α(n)k −α(n)k′ ∈ Qα(n)e. Thus, for β large enough (‖β‖> B0), we have:

α·k Rβ,θ α·k′ =⇒




α(n)k −α(n)k′ ∈ Q

r∑

j=1

βjα(n)j

α(n)k −α(n)k′ ∈ Qα(n)e.

We write [k0] the equivalence class of k0 for the relation Rβ,θ and we consider a set V whose
elements are a representative of each equivalence class.

Now if we consider σ0 7−→ h
(
p−s01−t(β,ρ)θ1 , ..., p−s0n−t(β,ρ)θn , p−c

)
as a function of (n − 1)

variables fµ,β,ρ(σ̃
0
1 , . . . , σ̃

0
n−1), we can write:
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fµ,β,ρ(σ̃
0
1 , . . . , σ̃

0
n−1) = 1 +

∑

k0∈V


 ∑

k∈[k0]

akp
−vk,θ,β,ρ−uk,θ,βaff


 p−uk0,θ,β(σ̃0)

vect ;

where the linear forms uk0,θ,β(σ̃
0)vect are two at a time distinct.

Lemma 5. We have for |Xα·j | < C (j ∈ Λe) (C being the constant defined in Proposition 1), the
following equality:

[h]e(X) =
∏

β∈Be

(
1−X

∑
j∈Λe

βjα·j

)γ(β)

,

where the right side converges absolutely, and each γ(β) is the integral exponent for the factor
indexed by β inside the cyclotomic expansion of h(X) which is given by Proposition 1 page 6.

Proof. Firstly put de = #Λe, and note the corresponding set Λe = {j1 < j2 < · · · < jde}. Then
we apply Proposition 1 to the polynomial [h]e. For the same constant C defined in (3) we have
the absolute convergence of the infinite cyclotomic expansion corresponding to [h]e(X) whenever
each |Xα·j | < C. Notice that here the product of this expansion is taken on all the β̃ ∈ Nde −{0}.
To each of these β̃ we can associate a unique β = (β1, . . . , βr) ∈ Be such that ji ∈ Λe implies
βji = β̃i, for each i. Consequently,

∑r
j=1 βjα·j =

∑de
i=1 β̃iα·ji if β ∈ Be. Concerning the exponents,

we conclude that
γ(β̃) = γ(β) for each β ∈ Be,

since the expression of γ(β̃) of Proposition 1 page 6 coincides with that of γ(β) because the β ∈ Be

correspond exactly to the β̃ with the reindexation that we have just defined. This completes the
proof. �

Remark 5. Since we suppose here that [Wµ,σ0 ]e and hence that [h]e is cyclotomic, Lemma 5
permits to conclude that there is only a finite number of exponents γ(β) 6= 0 such that β ∈ Be.

Now recall a classical result that we will use later and which is a consequence of the Weierstrass
Preparation Theorem whose proof can be found in [1]:

Lemma 6. Let f : U → C be a nonzero holomorphic function defined on an open set U ⊆ Cn.
Then the zero locus f−1(0) has empty interior inside Cn.

Now we can state the last lemma which will allow us to finish the proof of Theorem 1:

Lemma 7. Moving s0(n) ∈ B ∩ ∂Wc(0) if necessary, for almost all t(β, ρ) ∈ Ξu,η (i.e. all except
a finite number):

h
(
p−s01−t(β,ρ)θ1 , ..., p−s0n−t(β,ρ)θn , p−c

)
6= 0 for all prime number p.

Proof. Firstly, since the β ∈ Be such that γ(β) 6= 0 are in finite number according to Remark 5,
and since the ρ such that: {

t(β, ρ) ∈ Ξu,η

β ∈ Be,

are necessarily also in finite number, the t(β, ρ) such that β ∈ Be and γ(β) 6= 0 are in finite
number. So it suffices to consider from now on the β /∈ Be. Now we want to show that moving
s0(n) if necessary, the function fµ,β,ρ(σ̃

0) is nonzero for all p. Write:

fµ,β,ρ(σ̃
0
1 , . . . , σ̃

0
n−1) = 1 +

∑

k0∈V


 ∑

k∈[k0]

akp
−vk,θ,β,ρ−uk,θ,βaff


 p−uk0,θ,β(σ̃0)

vect ;

where the linear forms uk0,θ,β(σ̃
0)vect are two at a time distinct. Now prove that no uk0,θ,β(σ̃

0)vect
for k0 ∈ V is zero for β /∈ Be large enough.
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So let k0 ∈ V. According to the expression of uk0,θ,β(σ̃
0)vect given in (37), we have

uk0,θ,β(σ̃
0)vect = 0 ⇐⇒ α(n)k0

−
r∑

j=1

βjα(n)j

θ(n) ·α(n)k0∑r
j=1 βj(θ(n) ·α(n)j)

∈ Qα(n)e. (44)

Assume that there exists a sequence (βm)m∈N (βm /∈ Be) with ‖βm‖ → +∞ when m → +∞
so that for all m there exists ρm such that t(βm, ρm) ∈ Ξu,η and verifying for all m:

α(n)k0
−

r∑

j=1

βmjα(n)j

θ(n) · α(n)k0∑r
j=1 βmj(θ(n) ·α(n)j)

∈ Qα(n)e. (45)

Since (40) is a finite set we have:

lim
m→+∞

∑r
j=1 βmjα(n)j∑r

j=1 βmj(θ(n) · α(n)j)
= lim

m→+∞

∑
j∈Λe

βmjα(n)j∑
j∈Λe

βmj(θ(n) ·α(n)j)
=

α(n)e

θ(n) ·α(n)e
.

By passing to the limit inside (45) we obtain necessarily α(n)k0
∈ Qα(n)e.

Consequently, again by (45), we have that for all m:

r∑

j=1

βmjα(n)j ∈ Qα(n)e.

Hence there exists qm ∈ N∗ such that
∑r

j=1 βmjα(n)j = qmα̂(n)e.
As c ∈ Z \ {0} we have on one hand:

σ0 ·
(∑r

j=1 βmjα·j

)
= σ

0
(n) ·

(
r∑

j=1

βmjα(n)j

)
+ c

r∑

j=1

βmjαn+1,j

= −cqm

r∑

j=1

βmj α̂n+1,e + c
r∑

j=1

βmjαn+1,j ∈ Z.

On the other hand we know that for all j, σ0 ·α·j ≥ 0 with a strict inequality for j /∈ Λe. We also
know that βm /∈ Be implies that there exists j /∈ Λe such that βmj > 0. We deduce that

σ
0 ·
(

r∑

j=1

βmjα·j

)
=

r∑

j=1

βmj

(
σ

0 ·α·j

)
=
∑

j /∈Λe

βmj

(
σ

0 ·α·j

)
> 0.

Consequently we have σ0 ·
(∑r

j=1 βmjα·j

)
≥ 1. But since t(βm, ρm) ∈ Ξu,η we must have:

0 < ℜ(t(βm, ρm)) =
ℜ(ρm)− σ0 ·

(∑r
j=1 βmjα·j

)

∑r
j=1 βmj(θ(n) ·α·j)

;

and hence ℜ(ρm) > 1; which is impossible and proves that uk0,θ,β(σ̃
0)vect for k0 ∈ V is nonzero

for β /∈ Be large enough.
Let us consider now fµ,β,ρ(σ̃

0
1 , . . . , σ̃

0
n−1) and let us prove that fµ,β,ρ(σ̃

0
1 , . . . , σ̃

0
n−1) is nonzero

by moving σ̃
0 if necessary.

Firstly, if all the
∑

k∈[k0]
akp

−vk,θ,β,ρ−uk,θ,βaff are zero for k0 ∈ V, then we obtain that

fµ,β,ρ(σ̃
0
1 , . . . , σ̃

0
n−1) is a constant function equal to 1 6= 0 and satisfies the assertion of the lemma.

Otherwise, there exists at least one k0 ∈ V such that
∑

k∈[k0]
akp

−vk,θ,β,ρ−uk,θ,βaff 6= 0.
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Now prove that for all ρ and β ∈ Nr \ {0} fixed, the function σ̃0 7−→ fµ,β,ρ(σ̃
0
1 , . . . , σ̃

0
n−1)

is nonzero; and this in a way to ensure the fact that its zeros define a thin set of Rn (i.e. of
empty interior). It suffices for this to consider φ ∈ Rn−1, for example of components Q-linearly
independent, so that the uk0,θ,β(φ)vect are two at a time distinct for k0 ∈ V. And we put σ̃0 = tφ.
Since uk0,θ,β(tφ)vect = tuk0,θ,β(φ)vect we obtain:

fµ,β,ρ(tφ) = 1 +
∑

k0∈V


 ∑

k∈[k0]

akp
−vk,θ,β,ρ−uk,θ,βaff


 exp

(
−t log(p)uk0,θ,β(φ)vect

)
.

Then it suffices to use the fact that the functions {t 7−→ exp
(
−t log(p)uk0,θ,β(φ)vect

)
}k0∈V are

linearly independent since the uk0,θ,β(φ)vect ∈ R are two at a time distinct; and consequently the
function t 7−→ fµ,β,ρ(tφ) is nonzero and the function σ̃0 7−→ fµ,β,ρ(σ̃

0
1 , . . . , σ̃

0
n−1) is also nonzero.

Now it suffices to use Lemma 6 to deduce that, since fµ,β,ρ(σ̃
0
1 , . . . , σ̃

0
n−1) is nonzero, the set

f−1
µ,β,ρ(0) is of empty interior inside Cn−1 and even inside Rn−1 (because any function holomorphic
on an open set U ⊆ Cn and zero on U ∩ Rn is necessarily zero on U).

Then we put:

M :=
⋃

β∈Nr\{0},p,ρ|ζ(ρ)=0

f−1
µ,β,ρ(0).

This set M, being a countable union of closed sets of empty interior inside Rn−1, is also of
empty interior inside Rn−1 according to Baire’s theorem.

As a conclusion, it is possible to choose σ̃
0 /∈ M so that the function t 7−→ Z

(
s0(n) + tθ(n)

)

admits an accumulation of zeros tm,µ,σ0 inside Ξu,η whithout being cancelled by poles t(β, ρ);
which completes the proof of this lemma and the proof of Theorem 1. �

4 Proof of Theorem 2.

To prove Theorem 2, we must localize in the previous proof of Theorem 1 the use of the hypothesis
(H).

In section 3 we have considered a vector α·e (e ∈ {1, . . . , r}) such that α(n)e determines the
polar vector of a face F(α(n)e) ⊆ ∂Wc(0). Notice that each face of ∂Wc(0) is determined by a
polar vector of the form α(n)j for a certain j; and if in particular α(n)j ∈ Qα(n)e, then the vector
α·j determines a face of ∂Wc(0) only if α·j = α·e. And, having fixed this vector α·e, we have
considered a point s0(n) lying on this face F(α(n)e) (i.e. such that σ0 · α·e = 0 and σ0 · α·j ≥ 0

for all j ∈ {1, . . . , r}). Then we needed the fact that the vector α·e′ , chosen so that σ0 · α·e′

is minimal among the σ0 · α·j0 > 0 verifying
∑

{j:α·j−α·j0
∈Qα·e}

ajp
−iτ0

(n)·α(n)j cµ,0
θ(n)·α(n)j 6= 0

(see (28) page 18), verifies the following condition:

α(n)e′ /∈ Qα(n)e.

It is only to ensure this property that we have used the hypothesis (H) in the proof of Theorem
1. Obviously, this condition is not a priori satisfied if we do not assume the hypothesis (H). But
the result we want to prove here is weaker than Theorem 1. Indeed, we want to prove the fact
that we cannot translate globally the boundary ∂Wc(0) until ∂Wc(δ) for all δ < 0 if h is not
cyclotomic. And consequently the point s0(n) is not constrained to stay in a neighbourhood of a
point of F(α(n)e) contrary to the previous section 3.

In addition, we know according to the hypothesis (1) that the set

Ee := {α·j | α(n)j /∈ α(n)e} 6= ∅.
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Now let us prove that it is possible to have α·e′ ∈ Ee by moving the point s0(n) if necessary on
the face F(α(n)e).

To begin with, let us consider the quantity σ0 ·α·j for all the vectors α·j /∈ Ee (i.e. such that
α(n)j ∈ Qα(n)e). For these α·j , there exists qj ∈ Q such that α(n)j = qjα(n)e, and consequently:

0 < σ0 · α·j = σ0
(n) · α(n)j + c αn+1,j

= qjσ
0
(n) · α(n)e + c αn+1,j

= c (αn+1,j − qjαn+1,e) because σ0 ·α·e = σ0
(n) · α(n)e + c αn+1,e = 0.

Thus we observe that σ0 · α·j for αj /∈ Ee does not depend on σ0
(n) ∈ F(α(n)e). Then we put

ǫ0 := minα·j /∈Ee

(
σ

0 ·α·j

)
= minα·j /∈Ee (c (αn+1,j − qjαn+1,e)) > 0

(ǫ0 does not depend on σ0
(n) ∈ F(α(n)e)). According to the hypothesis (1) we know that ∂Wc(0)

does not admit only one face because the α·j 6= α·e such that α(n)j ∈ Qα(n)e do not define
any face of ∂Wc(0). Thus there exists necessarily a vector α·j1 ∈ Ee such that F(α(n)j1 ) is a
face of ∂Wc(0) of nonempty intersection with F(α(n)e). In particular F(α(n)e) ∩ F(α(n)j1 ) is
also a face of ∂Wc(0) of dimension strictly inferior. And the hypothesis (2) ensures the fact

that
∑

{j:α·j−α·j1
∈Qα·e}

ajp
−iτ0

(n)·α(n)j cµ,0
θ(n)·α(n)j 6= 0. So for all ǫ > 0, we can find a point

s0(n) ∈ F(α(n)e) verifying (5) such that

0 < σ
0 ·α·j1 < ǫ.

And this is in particular true if ǫ < ǫ0.
Now, e′ being chosen so that σ0 · α·e′ > 0 is minimal among the σ0 · α·j0 > 0 verifying

∑
{j:α·j−α·j0

∈Qα·e}
ajp

−iτ0
(n)·α(n)j cµ,0

θ(n)·α(n)j 6= 0, we have:

σ
0 ·α·e′ ≤ σ

0 · α·j1 < ǫ0 = minαj /∈Ee

(
σ

0 · α·j

)
.

Hence we have necessarily α(n)e′ /∈ Qα(n)e; which permits to use again the arguments presented
in the section 3 to prove Theorem 2. �

Remark 6. We have to notice that the hypothesis (1) is absolutely necessary to ensure as the
previous argumentation the existence of a direction θ in which the zeros or poles of Z(s1, . . . , sn)
accumulate. Indeed, consider the following example: h(X,Y, Z) = 1+XY +X2Y 2Z = 1+Xα·1 +
Xα·2 ∈ Z[X,Y, Z]; where α·1 = (1, 1, 0) and α·2 = (2, 2, 1); and the corresponding Euler product
(by putting here c = 1): Z(s1, s2) =

∏
p h(p

−s1 , p−s2 , p−1). Let us observe in particular t 7−→
Z(s0(n) + tθ(n)) with s0 = (1,−1, 1) ∈ ∂W(0)∩{s3 = 1} verifying s0 ·α·1 = 0 and θ = (θ1, θ2, 0) ∈
Q3 ∩ {θ3 = 0}. Then we have Wµ,σ0(X, Y ) = 1 + Xs0·α·1Y θ(n)·α·1 + Xs0·α·2Y θ(n)·α·2 = 1 +

Y θ1+θ2 +XY 2θ1+2θ2 and Wµ,σ0(p−1, p−t) = h
(
p−s01−tθ1 , p−s02−tθ2 , p−1

)
. By taking up again the

previous notations, the Puiseux series Ωµ,σ0(X) verifying Wµ,σ0(p−1,Ωµ,σ0(p−1)) = 0 correspond

to the branches of 1 + T + XT 2 by putting T := Y θ1+θ2 . But we check without difficulty that
there does not exist any branch which verifies |Ωµ,σ0(X)| < 1 for |X| small. So there is not

any accumulation of zeros of t 7−→ h
(
p−s01−tθ1 , p−s02−tθ2 , p−1

)
(necessarily of the form tm,µ,σ0 =

− log
(
Ω

µ,σ0 (p−1)
)

log(p)
+ 2πmi

log(p)
; m ∈ Z, p prime) of positive real part in a neighbourhood of ℜ(t) = 0.

Moreover, there is not any accumulation of zeros or poles coming from the factor t 7−→∏
β∈Nr\{0} ζMδ

(
(s0(n) + tθ(n), c) · α · tβ

)−γ(β)
for all δ > 0. Indeed, these zeros or poles are of

the form: t(β, ρ) = ρ−β1s
0·α·1−β2〈s

0,α·2〉
β1θ(n)·α·1+β2θ(n)·α·2

= ρ−β2
(β1+2β2)(θ1+θ2)

, where β = (β1, β2) ∈ N2 and ρ is a
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zero or a pole of the Riemann zeta function. So if β2 > 0 we will have ℜ(t(β, ρ)) ≤ 0; hence the
t(β, ρ) of positive real part are such that β2 = 0. But we know (see Lemma 5) that these zeros or

poles come only from a finite number of ζ-factors of
∏

β∈Nr\{0} ζMδ

(
(s0(n) + tθ(n), c) ·α · tβ

)−γ(β)

(which correspond to the cyclotomic factorization of the cyclotomic polynomial 1 + Y θ1+θ2); and
consequently these zeros or poles are isolated and do not accumulate in a neighbourhood on the
right of ∂W(0).

5 Proof of Theorem 3.

To establish Theorem 3, it suffices to rewrite the Igusa zeta function under the form of a pseudo-
uniform Euler product associated to a certain polynomial; and we will check that this polynomial
satisfies the conditions of Theorem 1. For σi > 1 (i = 1, . . . , n), let us write:

Zring(s1, . . . , sn;Z[T, T
−1]) =

∑

m1,...,mn≥1

ϕ(m1 · · ·mn)

ms1
1 · · ·msn

n

=
∏

p

(∑

ν∈Nn

ϕ(p‖ν‖)

ps·tν

)

=
∏

p


1 +

∑

ν∈Nn\{0}

(
p‖ν‖ − p‖ν‖−1

)

ps·tν




=
∏

p


1 +


 ∑

ν∈Nn\{0}

p‖ν‖

ps·tν



(
1− 1

p

)
 .

But for σi > 2 (i = 1, . . . , n), we have:

∑

ν∈Nn

p‖ν‖

ps·tν
=

∑

ν∈Nn

1∏n
i=1 p

νi(si−1)

=
∑

ν∈Nn

n∏

i=1

(
1

p(si−1)

)νi

=
n∏

i=1

(
+∞∑

νi=0

(
1

p(si−1)

)νi
)

=

n∏

i=1

(
1− 1

p(si−1)

)−1

.
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Consequently, for σi > 2 (i = 1, . . . , n) we obtain:

Zring(s1, . . . , sn;Z[T, T
−1]) =

∏

p

(
1 +

(
n∏

i=1

(
1− 1

p(si−1)

)−1

− 1

)(
1− 1

p

))

=
∏

p

n∏

i=1

(
1− 1

p(si−1)

)−1

(
n∏

i=1

(
1− 1

p(si−1)

)
+

(
1−

n∏

i=1

(
1− 1

p(si−1)

))(
1− 1

p

))

=
n∏

i=1

ζ (si − 1)
∏

p

(
1− 1

p
+

1

p

n∏

i=1

(
1− 1

p(si−1)

))

=

n∏

i=1

ζ (si − 1)
∏

p


1 +

n∑

k=1

∑

I⊆{1,...,n},
#I=k

(−1)k

p(
∑

ℓ∈I sℓ)−k+1


 .

Since the finite product of zeta functions
n∏

i=1

ζ (si − 1) is meromorphic to whole Cn, it suffices to

determine the maximal domain of meromorphy of the product:

s 7−→
∏

p


1 +

n∑

k=1

∑

I⊆{1,...,n},
#I=k

(−1)k

p(
∑

ℓ∈I sℓ)−k+1


 .

By establishing the change of variable w = s− 1 = (s1 − 1, . . . , sn − 1), we are led to consider the
product:

w 7−→
∏

p


1 +

n∑

k=1

∑

I⊆{1,...,n},
#I=k

(−1)k

p(
∑

ℓ∈I wl)+1


 ;

which is equal to: ∏

p

h(p−w1 , . . . , p−wn , p−1),

with
h(X1, . . . , Xn+1) = 1 +

∑

I⊆{1,...,n}

(−1)#IXα·I ,

by putting for all I ⊆ {1, . . . , n}, αn+1,I = 1 and for ℓ ∈ {1, . . . , n}:
{
αℓ,I = 1 if ℓ ∈ I

αℓ,I = 0 otherwise.

To finish, we can easily check that h satisfies the conditions of Theorem 1; which completes
the proof of Theorem 3. �
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