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On the domain of meromorphy of a multivariate Euler product
of Igusa type.
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Abstract

This work is an answer to a problem posed by N. Kurokawa and H. Ochiai concerning the
natural boundary of meromorphy of a multivariate Euler product of Igusa type. More generally,
we introduce and determine the maximal domain of meromorphy of a class of multivariate pseudo-
uniform Euler products.
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1 Introduction.

The aim of this work is to study the domain of meromorphy of some pseudo-uniform Euler
products of many variables of the form: (si,...,8n) —> H h(p™®t,...,p"°",p ), where
p prime
h(X1,. .., Xn, Xnt1) € Z[X1,. .., Xn, Xnt1] and c € Z\ {0}1.
When n = 1, the following conjectures formulated by Z. Rudnick and M. du Sautoy (see for
example [9], 1.4 ; [8], 1.11) predicts the maximal domain of meromorphy of products of the form

Z(8) =11, prime P (p*,p), where h (X1, X2) € Z[X1, Xa].
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1Here “pseudo-uniform” means that the coefficients of h do not depend on p, but the expression h(p~51,...,p~ 5", p~°)
depends both on p~%i (i =1,...,n) and on p.
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Conjecture 1. Z(s) = Hp primch(pfﬁp) can be meromorphically continued to the whole
complex plane if and only if there exist cyclotomic polynomials ¢; (U) (i =1,...,m) (mean-
ing divisors of (1 — U””)"i for a certain n; and a certain m;) and integers wu;,v; such that:
h(X1, X2) = g1 (X{" X5h) -+ gm (X7 X5™)

Conjecture 2. Let h(X1,X2) =1+ (a0 + an X1 + -+ + amiXI”)X?j € Z[X1, X2] which
is not a finite product of cyclotomic polynomials as in Conjecture [Il and suppose that all cy-
clotomic factors of h(X1,X2) have been removed. Let 8 = max{Z% :i€ {1,...,7}}. Then
Z(s) = Hp prime It (pfs,p) admits R(s) = B as natural boundary of meromorphy; meaning that
Z(s) can be meromorphically continued to {s € C : R(s) > B} but there does not exist any
meromorphic continuation beyond the line (s) = S.

Eighty years ago, Theodor Estermann ([I0]) determined completely the exact domain of mero-
morphy of the uniform Euler products of one variable [T h(p~*) (h(X) € Z[X]): if h is a finite
product of cyclotomic polynomials then the corresponding product has a meromorphic continua-
tion to whole C whereas if h is not then the line R(s) = 0 is a natural boundary of meromorphy.

Many years later, some results, obtained by Bhowmik, Essouabri and Lichtin in [2] then com-
pleted by the author in [6], have generalized Estermann’s theorem to uniform Euler product of
many variables.

In this paper, we are interested in a multivariate analogue of the class of products considered
in Conjecture [[] and 2] and we consider the maximal domain of meromorphy of a pseudo-uniform
Euler product of the following form:

Z(817 c '78n) = H h (p7517 cee 7p737l7p76) = Z7l+1(817 .. .787“0)7

where n > 1, ¢ € Z\ {0} is a fixed nonzero integer and h(X1,..., Xn4+1) € Z[X1,...,Xnt1] is a
polynomial with integral coefficients of constant coefficient equal to 1.

What has mainly motivated this study is the resolution of a problem posed by N. Kurokawa
and H. Ochiai (see [I7] page 12).

If A is a ring, the multivariate global Igusa zeta function is defined as follows (for n > 1):

Zring(817...7Sn;A) = Z

mi,...,mp>1

7 s _
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By the Chinese remainder theorem, we know that this zeta function can be expressed as an
Euler product:

Z“"g(sl7 ey S A) = H Z;i“g(sl7 ey Sy A)
p
where

Z{,ing(sl,...,sn;A) = Z

k1o kn >0

7 —kisi——knsn
Homing <A7 m) ‘p '

In particular the problem posed in [I7] page 12 consists in establishing the maximal domain of
meromorphy of
i - my--- My
ZM(s1, s LT T ) = > tp(175)7

S1 n
m i 'mn
my,...,mp>1 1

where ¢ designates the classical Euler function.

As it is pointed out in [17] (page 12), the analytic behavior of this product is complicated;
nevertheless we manage to determine here its domain of meromorphy by taking full advantage of
methods which have been developped in [6] to describe the maximal domain of meromorphy of
multivariable uniform Euler products of the form Hp h(p™®1,...,p~°™).



Notation:
In what follows we will use these notations:
For r > 1 and n > 1 we write:

WX) =h(X1,. ., Xpp1) =1+ Y a; X0 - X1
j=1

with a.; = ((n);, Ont1,5) = (15, ., O, angr,y) € NI\ {0} for j € {1,...,7} and a; € Z.

We put o := (ow,5) ¢ jyeq1,...nt13x41,....r} € Mnt1,-(N) the matrix encoding the exponents of
h.

For £ € {1,...,n+ 1}, the ¢-th row of this matrix will be written a. = (a1, ..., ).

For j € {1,...,r}, the j-th column of o will be written a.; = Ya1,,...,Qn,j,0nt1,;) =
(*ot(n);, Otnt1,5), where ‘o) = (@1, ..., a5n) denotes the first n components of the vector a.;.
By setting, for j € {1,...,7}, X*9 = X7 X,/ - X, 77" we obtain:

MX) = h(Xi,...,Xop1) = 1+ a;X*9
j=1

T
L Dy (X Xa) 500 X070,
j=1

For m = (ma,...,my) € N", we put ||m| = >77_, m;.
For s € C""', s = (8(n), Sn41) = (81, ..., Sn41) and for £ € {1,...,n + 1} we write:

or = R(se); Te = S (s0);
g = 8:E(S) = (a(n)7gn+1) = (0'17. ..7O'7L+1) ;
T = S(S) = (T(n)yTn+1) = (7'1,. ..,Tn+1) .

Finally we recall for v = (v1,...,vm) and w = {wn,...,wn) the classical matrix product

between v and w:

m
V-w = E Viw;.
=1

We must underline the natural appearing of a supplementary hypothesis which permits to
distinguish Conjectures [[land 2] from their multivariate analogues since a priori these multivariate
analogues contain the conjectures themselves.

So from now on we will suppose that

Rank (ouny;, 5 € {1,...,7}) > L. (1)
Indeed, if this hypothesis is not satisfied, we would have the existence of e such that for all j €
{1,...,7}, (n); = Gy (¢; € Q); which would give h(X) = 1+3°7_; aj (X1 -+ Xp)*(me )% X 07
And we would be led to study a one variable product of the form Hp h(p~™®,p™°).
The aim of this work is to establish the maximal domain of meromorphy of products Hp h(p™®t,...,p ", p %)
(n > 1) which cannot be reduced to a one variable product.

We also suppose that for all j € {1,...,7}, @) = (@1j,...,an,;) #0.

Remark 1. We must notice that, contrary to the one variable case, the multivariate case permits
to take full advantage of methods developped in [6]. These methods consist in considering the
product in a suitable direction in a neighbourhood of a point of the supposed natural boundary.
The multivariate framework allows to move a point lying on the boundary if necessary and thus
it is possible to restrict our attention to “good” points (i.e. points for which we are able to prove
that no meromorphic continuation is possible beyond) provided that (and it is crucial) these points
are generic points (see Definition [6] and Remark [2)) on the boundary.



Definition 1. We will say that h (X1,..., Xn+1) is cyclotomic if there exists a finite subset I of
N
N"T!\ {0} such that we have h (X1,..., Xnt1) = [T, (1 — XM -X?L"“)ﬂ/ , where

the v (M) for A € I are positive or negative integers.

An)€T

If h is cyclotomic, it is easy to see that the corresponding Euler product is a finite product of
classical Riemann zeta function; and consequently it can be meromorphically continued to whole
C?’L

So from now on, we will suppose that h is not cyclotomic and does not contain any
cyclotomic factor.

Definition 2. For all § > 0 write W(§) = {s € C"*" : 0 -a; > 6,Vj € {1,...,r}}; and W,(6) =
{S(n) eC™ | O(n) On)j +C Qny1,5 > 6,Vj € {17 .. .77“}} .

2 Statements of main results.

It is straightforward to check that Z(s1, ..., sn) is holomorphic on W,(1). Moreover, we will prove
(see Theorem []) that one can continue meromorphically Z(s1, ..., sn) to W(0). The main result
of this paper consists in verifying, in most cases, that the edge OW.(0) of W,(0) is a natural
boundary of meromorphy.

Before announcing the results, firstly we introduce a definition.

Since W(0) = {s € C""' : R(s - aj) > 0,Vj = 1,...,r}, then the edge OW(0) of W(0) is
a polyhedron whose faces are of the form F(a..) = {s € W(0) : R(s - a..) = 0}; for a vector
a. €{ai,...,ar}. We will say by abuse of language that F(e..) is a face of polar vector c.c.

Now let F(a..) be a face of the edge OW(0) of W(0) as above and consider in particular
a. € N" a. € Qa.. the vector collinear with .. whose nonzero components are relatively
prime.

Definition 3. Given e € {1,...,7r} we denote by (a..) the line connecting 0 and the integer point
a.. in R", and then define the e-th main part of h [hle(X) = Z a; X%,
a.jE(ae)

Definition 4. Given e € {1,...,r} we set

Ae ={je{l,....;r}:a; € (o)}
Be ={BeN:B;=0 if j¢A.}.

It is clear that for all j € A. there exists ¢g; € N* such that a.; = gj&... Then we define
(We(T) =1+ Y a;T% € Z[T] verifying [h]e(X**) = [h]e(X).
J€Ne
Definition 5. We will say that the face F(a..) is a non-degenerate face if the one variable
polynomial [/l;]:(T) has no multiple root.

We suppose here that h is such that 9W(0) contains at least one non-degenerate face F(cx.c)
in the sense of Definition

The aim of this article is essentially to prove two complementary results concerning the natural
boundary (meaning the boundary beyond which there does not exist any meromorphic continua-
tion) of Hp h(p™®',...,p~°",p~¢) which depend on the validation of an hypothesis that we will
note (H) (see Theorem [I).

We will see that if this property (H) is satisfied we are able to determine the natural boundary in
a strong sense (see Theorem[I]) whereas if it is not verified, we still obtain the natural boundary but
in a weaker sense (see Theorem [2): we will see that it cannot exist any meromorphic continuation
by translating the boundary to the left.



Theorem 1. Letc € Z\{0} and Z(s1,...,sn) =[], h(p~°*,...,p" ", p™°). The product (s1,...,sn) —>
Z(81,...,8n) converges absolutely in the domain Wc(1) and admits a meromorphic continuation

to Wc(0). Moreover, assume that the polynomial h(X1, ..., Xn, Xnt1) is not cyclotomic, does not
contain any cyclotomic factors, admits at least one non-degenerate face F(cv..), verifies () and
satisfies in addition the following property (H):

forallj € {1,...,r} such that o.; & Qov.e, ct(ny; € Qa(ne-

Then the set {(s1,...,8n) € C" : (s1,...,5n,¢) € Flae)} C OWc(0) is a natural boundary (in
the strong sense): there does not exist any continuation of Z(s1,...,sn) to a domain containing
an open ball B (of dimension n) centered in a point s(()n) such that (s(()n)7 c) € Flae).

Theorem 2. Letc € Z\{0} and Z(s1,...,sn) =[], h(p™"*,...,p""",p"°). The product (s1,...,sn) —>
Z(s1,...,8n) converges absolutely in the domain Wc(1) and admits a meromorphic continuation

to Wc(0). Moreover, assume that the polynomial h(X1,. .., Xn, Xnt1) is not cyclotomic, does not
contain any cyclotomic factors, verifies {d) and admits at least one non-degenerate face F(cx.c)

but does not satisfy the property (H) of Theorem [l Suppose in addition the following property:

if o(n) 4, ¢ Qayn)e then the polynomials 1+ Z a; X*J and Z a; X*9 are relatively prime.
a.;€EQa.c Jiovj—o o €EQae

2)

Then the edge OW (0) of W.(0) is a natural boundary (in the weak sense): Z(s1,...,sn) does
not admit a meromorphic extension to W¢(8) for any § < 0. In particular, Z(s1,...,sn) does not
admit any meromorphic continuation to C".

As an application, we will see that we can determine the natural boundary (in the strong sense)
of Igusa’s zeta function Z"™8(sy, ..., sn; Z[T,T7']) by obtaining the following result:

Theorem 3. The mazximal domain of meromorphy M of Igusa’s zeta function:

Zm‘ng e S =11y — So(ml ce mn)
(817 ;S 7Z[T7T ]) Z miel mil/n
mi,...,mn>1

is given by M = {(517...7sn) eC"|VIC {L...JLLZ(H > —1 -l-#l} . In particular, if (s7,...,s)) €
iel

OM, then there does not exist any meromorphic continuation of Z™"(sy,...,sn; Z[T,T7]) to a

domain containing an open ball B of dimension n centered in (5(1), . ,32).

3 Proof of Theorem (1.

3.1 Meromorphic continuation of Z(sq,...,s,).

The pseudo-uniform Euler product (s1,...,sn) —> Z(s1,..., Sn), absolutely convergent in W.(1),
admits a meromorphic continuation to W.(0). This fact follows directly from the meromorphic
continuation of the uniform product (s1,...,sn,snt+1) = [, h(p™"*,...,p7 ", p7""+1) to W(0)
as it is proved in [6] (see [6], Theorem 1). Furthermore, we are able to give an expression of the
meromorphic extension of Z" ! (sy,...,s,11) in W(8) for all § > 0, and hence an expression of
the continuation of Z(s1,...,s,) in W,(6) for all § > 0.

The key point of the continuation of Z™*! is the writing of h(X) as an infinite product a
cyclotomic factors:



Proposition 1. Consider the quantity:

1
C:=C(h)= PRk (3)
If | X*i| < C forj € {1,...,r}, then:
n+1 ¥(B)
MX)=1+ar X+ +a, X" = 11 (1 -1 X;”"tﬁ>
B=(B1,---,Br)ENT\{0} =1
_ H (1 _ Xa,nﬁ)w(ﬂ) ;
BeNT\{0}

where the right side converges absolutely and

w(m) (]|b]| — 1)! .
v = 3 <(_1)Hbu 7(n ) (|l‘71|!‘...br!) Qo ..a? ) cz
beEN"\{0}

meN

mb=p3
Proof. See [6], Lemma 2 and Corollary 2.2.
Theorem 4. Z"! (81, .., 8n+1) s meromorphic in W(0).

Moreover if we write for all 6 >0 Ms = [Cf%] + 1 (Ms € N), the following relation holds in
W(J):
Z7L+1 (817...7Sn+1) = H h(pfs17‘”7pfsn+l) H Cl\fs (S.a.tﬁ)*"/(ﬁ);

p<M; BeNT\{0}
where s (2) = ((2) HP<M& (1 — pfz) (C being the classical Riemann zeta function) has exactly
the same zeros and poles as the classical Riemann zeta function with the same multiplicities. In

addition, the possible zeros or poles of HBEN’”\{D} Cns (s “o- tﬂ) *W(ﬁ)) which is meromorphic in
W (4), belong to the set:

Ps={seW(),3BeN s -a- ‘8 =p, pzero or pole of ¢}
Proof. See [6], Theorem 1.

3.2 Determination of the natural boundary of Z(si,...,s,).

Consider a point s° = (s?n)7 c¢) with s(()n) € OW,(0) lying on a non-degenerate face F(ot..) of 9W(0)
(which exists by hypothesis) of real part a° = (a(()n)m) and of imaginary part 7° = (T(()n)70).
Consequently, we have for all j € {1,...,7}, ol a.; >0 and o’ a.. = 0. Consider an open ball
B of dimension n and of arbitrarily small radius around the point s(()n). Let us start by giving the
definition of the notion of generic set which is fundamental in whole this paper:

Definition 6. A subset G of a set E is said to be generic in E if the complement of G in E has
empty interior.
Remark 2. In the following when we will use the term “generic point” in a set F, it will be
understood that we consider any point belonging to some generic set in E.

To begin with, let us check that it is possible we can choose s(()n) in a generic set inside B such
that s% = (s%,...,5%,¢) = (s(()n)7 c) € OW(0) in a way to have:

(U(()n)7c) ra; =0 <= a; € Qae. (4)

For this assume that we have the existence of j; and of jz such that Qa.;, # Qa.j, and such
that (0'(()”), ¢) oy, = (0'(()”), ¢) - a.j, = 0. Then we have:



1. The equality (a'?n)7c) S0y, = Zagae,jl + ¢ ant1,5; = 0 defines an affine real space A; of
=1
dimension n — 1 > 0 according to 0'(()”).

n
2. The equality (o(()n), ), = Z ofa jy +¢ any1,j, = 0 defines an affine real space A # A,
=1
of dimension n — 1 > 0 according to a?n) because if o ,);, € Qony;; we would have
necessarily oc.j, € Qa.j, since ¢ # 0.
Consequently we have necessarily 0'(()”) € A1) Az; and hence it belongs to an affine subspace of
dimension less than or equal to n — 2 of empty interior in R"~*; so we have @) by choosing a?n)
in a generic set such that S(()n) € OW.(0) N B.
In the same way, we can suppose (by moving o{,, if necessary such that (O‘?n), c) € OW(0)

by avoiding a countable union of closed sets of empty interior which remains of empty interior
according to Baire’s theorem) that for A = (A1,..., Apy1) € Qntt.

(a'(()n)7c) “A=0 <= A€Qa.; (5)

Note: the previous argument is the simplest illustration of a recurring principle appearing
throughout this paper; a principle briefly presented above (see Remark [l page [B) which consists
in moving the point s?n) on the boundary by avoiding a “bad” set. And the crucial point is to
verify that this “bad” set has an empty interior in order to prove that the “good” points are
generic in the set {(s1,...,5n) € C" : (s1,...,8n,¢) € Fla.e)} € IW,(0) so that all this set
{(s1,---,8n) €C" : (81,...,8n,¢) € F(a.c)} is a natural boundary of meromorphy.

From now on, we will also suppose without loss of generality (rearranging the indexes if neces-
sary) that an,. # 0.

We fix a direction 8 = (01, ...,0,,0) := (6(n),0) € Q""" with 0,41 = 0 and consider the one
variable function in ¢ complex:

t—r Z"TN (Y 101, .., sh A tOn,0) = Z"TH (8 +10) = Z(s) + 101, . .., s +t0n) = Z(S{y + 10 );

for ¢ lying inside a rectangle (for u € R,n > 0 ):

wn: O0<R() <1
O<u<S(t)<u+n.

=)
=

We suppose that 0 satisfies the following conditions:

0-0j =00 ay),;>1foralje{l,...,r} (6)

We assume also that

O(n) O nye €N (7)

(where a.. is the vector collinear with a... whose components are relatively prime).
In this way, since for j € A. we have seen (see Definition [3]) that there exists ¢; € N* such that
a.j = g;jQ.., we have necessarily for all j € A. 0, - 0); € N*.

The aim of what follows is to prove the existence of an accumulation of zeros or poles of the
one variable function ¢ — Z(s(()n) +1t6(,)) inside the bounded rectangle Z, , for any v € R,n > 0.
By putting s,+1 = ¢ in Theorem [ we have an expression for Z(s1,...,s,) inside W.(d) for
all § > 0. According to the condition (6] satisfied by 0, this expression remains well-defined for all
d > 0 for N(t) > § if we put s(,,y := s(()n) +t6(,y since R(¢) > & implies s°+t0 = (s(()n), c)+t(0(n),0) €



W,(d). This allows to characterize the eventual zeros or poles of ¢t — Z(s?n) +10()). Indeed
the poles necessarily come from (-factors and hence belong to ®5 (with sn4+1 = ¢) for some 6 > 0
whereas the zeros of t — Z(s(()n) + t0,) are provided by the (-factors and by the zeros of
t— h(pfs[l)fwl,. .. ,pfsgfte",pfc).

For the sake of presentation, consider the following triplet of parameters

M= (p7 T(()n)7 0(,”)).

When this parameter will be put in index, this will mean a dependence according to the prime
number p, the imaginary part ‘r?n) of s(()n) and the direction 6.

Definition 7. We define the generalized polynomial W, ,0(X,Y’) of h depending on s?n)70(n)
and p for X € C\R_ and Y € C deprived of an half-line (i.e. Y € C\ ¢’®R; for some b € [0, 2])

.0 0
as W, -0(X,Y) =1+ Zajp*“'m)"’(n)j X% (n) ¥(n)iteont1,5y0(n) x(n);

j=1
Since s’ = (o(()n), c)+i (‘r(()n), 0), then for all p prime and ¢ € E,, ,, such that $(¢) log(p)+b ¢ 2nZ
we have W, .o (p717p*t) =h <p7597t01 e 71075971&9”7p70) .

The aim of what follows is to characterize the zeros of these generalized polynomials W, ,0(X,Y) =
0 by expressing ¥ = Q(X) as a function of X such that W, ,0(X,Q(X)) = 0. The problem is
that we cannot apply the classical Puiseux theorem to find these solutions because W, ,0(X,Y) is
not a real polynomial and in particular is not well-defined for X in a neighbourhood of 0. This is
the reason why here we need the hypothesis that the face F(e..) is non-degenerate; which allows
us to prove the existence of the solutions and equally to have a good control on the convergence
(particularly on the dependence on p). This result is given by the following proposition:

Proposition 2. (Puiseux theorem for W, ,o (X,Y)).
Let g € N* be the smallest positive integer verifying q0 () - cun); € N* forallj =1,...,r. Consider
the finite set:

— 0, & o0
Pu = {cu € C; 3t root of [h].(T) such that c;, ™ < = ¢p'™(m a(”)e};

(where . is the vector collinear with c.. whose components are relatively prime).

There exists e > 0 (not depending on p nor on ‘r?n)) such that for all X € H = {X €
C\R—, |X| < e1} the equation W, 50 (X,Y) = 0 admits the set of solutions Y = Q, ., 50(X) (cu €
pu); where for all ¢y € pu, X — Qe 00 (X) is an holomorphic function on H and satisfies for

all X € H: Qo 00 (X) = S0 cicp, ) X0 with:

1. ke, € NU{400};
2. 19(0'(()”))0 =0< 19(0'?”))1 < -+ 1is a stricly increasing sequence (independent of ‘r(()n));
8. limg—s 400 I = +00 if Ke, = +00;
. there exist two constants Dey, > 1 an o) > 0 (independent of p, T(,, an such tha
th ist ¢ tants D¢, > 1 and A(a?(,)) > 0 (independent (ny and k) such that
A(e? H)o(e?
[ek(cu, 1) < Deo( ()2 )k uniformly in p prime and in k;
1
5. colcp, p) = cb, in particular |co(cp, p)| = |e ) Sve

Moreover {co(cu, p); ¢ € pu} = {u € C; It root of [/l;]:(T) such that u?®m Eee = tp”?n)'a(")e}.
Proof. See [6], Proposition 2. O



Now the aim is to find a Puiseux series Y = €, ,0(X) in a neighbourhood of X = 0 (X € C\R_)
such that W, ,0(X,Q, ,0(X)) = 0 and verifying |Q,, ,0(X)| < 1 for X > 0 small enough.

In this way we will have infinitely many zeros t,, ,, ;o (m € Z, p prime large enough) of the
form

B log (Qp.,o'o (pil)) 2rmi S

mee? =T og(p) log(p) ®

of strictly positive real part inside =,,, for p large enough.

So now consider any solution €, ,0(X) of W, ,0(X,Y) = 0 (in finite number) that we will
write as follows:

t

Qoo (X) = cpo +cp1 X+ eun X"V + Qo g1 (X), (N >1) 9)

where cym € C; In = ﬁ(a?n))N > > = 19(0'(()”))1 €N* Q50 ni1 (X) =0(X"V); and we
have Vk € {1,..., f}, W, o0 (X,Q, 50 (X)) =0.

We have to notice that, according to Proposition [2] (claim 5.), the main term ¢,,o of a Puiseux
branch is a root of the one variable polynomial:

(W,,.00]e =1+ Z ajp T E I O X = [R], (p T om Eme PO Enye ),
JEAe

Moreover, if to each root cu0 of [W, s0]e(T) we associate

(n) F(n)e

€6,0 := Cu,0P T F e (10)
Then |cg,0| = |cu.0| and ce o is a root of the polynomial (not depending on p nor on 7°):
1+ > a;T00m @i, (11)

JEAe
Note that the expression () is really a polynomial according to the property (@) on 6.

Remark 3. For p large enough W, ,0(X,Y) is well-defined by putting X = p~!and Y =
ptmane® for ‘r(()n) € R" generically chosen by avoiding a countable closed sets of empty interior if
—t

necessary. Indeed p~* € C\R_ and if p~*mm.c® € R, we would have the existence of m, € N*

such that:

S(t'rrL,u,,A:rU)

S < log ( w00 (p )) 2iTm, )

log(p) log(p)
. —arg(cu,o) —|—O(p ) + 2mm (12)
log(p)
= arg(ce,0) + O piﬂl) + 2m™m B T(()n) "Qnye  —b+2mym
a log(p) 0(n) - Amye  log(p)

So, for m fixed, if the equality (I2]) was satisfied for infinitely many prime numbers p, we could

(n) X(n)e
O(n) x(n)e
But the set £ of all the limits of these countable sequences is a countable set. Consequently, if we
"-[()71)'0L(71)<3
O(n) @ (nye
of dimension n — 1 of empty interior, we may assume that p
enough.

as a limit of a sequence (Sn,)p according to p.

choose T(()n) € R™ generically so that ¢ £ by avoiding a countable union of hypersurfaces

“'mone® for all m and for p large



Notice that if [W,, 50]e(T) is not cyclotomic, then there exists at least one root ¢, 0 of modulus
stricly less than 1 which will provide a Puiseux branch €, ,0(X) satisfying [Q, ,0(X)| < 1 for
| X| small enough.

So now let us deal entirely this particular case where [W,, ,o0]e(T) is not cyclotomic: we will
prove that there are, among the two factors of ¢t —— Z(s(()n) + t0(,)) which appear in the writ-
ing of Theorem 4] many more zeros coming from the factor ¢ — HP<M L Whoo (pil,p*t) =

My

HpSM R (pfs[l)“el7 e 7107595”59"@76) (for v >> 0) than poles coming from
v+I

t— Tlgenm 1oy SM_4 ((s(()n) + 10y, c) - - ‘B) B for ¢ lying inside a region Ay ., in a neigh-
v+T
bourhood on the right of #(¢) = 0 determined by (for v,n,u > 0):

Aupn: 77 <R@H) <+

0<u<S{)<u+n.

In this way we will show the accumulation of zeros t,, ,, o0 (m € Z, p prime) of Z (s(()n) +10(n)) =
A ((s?n), ¢) +t(0n),0)) inside Ey , = Uus1 Buwn-

By the way, we could note that this particular case does not require the use of generic arguments
which consist in moving if necessary the parameters 0'(()”) or 8(,). Moreover, we can also give an
estimation (in function of v and 7)) of the number of zeros t,, ,, ;o inside Ay .. It is in this sense
that this case is more simple than the case where [, ,o]e is cyclotomic — the case which will be
dealt with later.

Lemma 1. We suppose that [W,, sole is not cyclotomic.
The edge OW(0) of W.(0) is a natural boundary for Z (s) = Z" T (s1,...,8n,¢).
In particular, the number S(v,n) of zeros t,, ,, -0 of the form (8) (counted without their mul-

tiplicity) inside the region Ay, (for v,n,u > 0) is such that for all N € N:

n(Co—1) ~
L A
S z = 7 —=v,
where KKn is a constant depending on N and Co = ’cu,ofl‘ > 1 is the modulus of the inverse of a
100t o of (W, ole of modulus strictly less than 1.

Proof. To begin with, let us notice that for R (¢) > §, we have according to ({@):

_0_ _g0_ _ _
Z (st +1060) = TL 0 (47" op™0 7 p7) T oty () + 1000y,0) - 18) 7.
P pern\(0)

Indeed this writing makes sense because for all j € {1...,r}, (U(()n) + R(t)O(n),c) - 00y >
R()O(n) - (n); > ¢ according to ().
Consider the zeros and the poles of Z (s(()n) + t0(n)) inside the rectangle (for v, n,u > 0):

Au,u,n : VL‘H < ﬁ?(t) < %

O0<u<S(t)<u+n.
Firstly let us estimate the number of possible poles inside A, , coming from the factor

H SV ((s?n) +10(n,c) - - tﬁ)fw(ﬁ). Recall (see Theorem M) that s , has exactly the
ﬁENT\{O} v+1 v+1
same zeros and poles as the Riemann zeta function (.

If to is such a pole inside Ay .., then there exists 3 € N” \ {0} such that (s(()n) + t0Ony, ) -
o - B is a zero or a pole of the Riemann zeta function ¢; and this quantity satisfies necessarily
R (to) ((O(n),0) - - 'B) < R ((s{,) + t0O(n), 0) - - 'B) < 1.

10



Consequently we have < R(to) < =55 Which provides (6(,),0) - a - B<(v+1).

1 1
v+1 = (0(n),0)
Furthermore the inequality (6(,),0) - a -8 = i Bi (O(n) - ;) = 18]l (by @) gives:

18Il < (v +1). (13)

Moreover S (to) < u+n gives & ((s?n) +t00(n),c) - a-B) =0 (v+1)(u+n)).

After having fixed n > 0, the number of zeros or poles of one (-factor of

H SV ((s(()n) +10(ny,0) - - tﬁ)iy(ﬂ) is given by O ((v + 1)log (v + 1)), according to a
penr\fop "M
classical result concerning the estimation of the number of nontrivial zeros of the Riemann zeta
function of imaginary part less than (v + 1).

In addition, the same pole can, by ([3)), appear in at most (v + 1)" terms; which gives at most
O(wv+ 1" log (v + 1)) poles inside A, ., (counted without their multiplicity).

On the other hand, let us estimate the number of zeros S (v,7) coming from
0 0 _ 1ty e
[lo<rs , B (p st pTee e g C) =1Ly , Waoo (P L,p7") inside A, .
7T 7T

We consider for this the Puiseux branches of W, ,0(X,Y) in the neighbourhood of X = 0
(X € C\R-) of the form (@)). We know that the first term c,,0 of a branch is a root of [W), ,ole(T)
and that reciprocally each root of this polynomial determines the main term of a Puiseux branch
(see Proposition 2] page §). And since by hypothesis [W,, 50]e(T) is not cyclotomic, then there
exists a root cp,0 of modulus stricly less than 1.

Then consider in particular a Puiseux branch €, ,o0(X) having this first term cy,0 with |cu 0] <
1 and put Co = |cpol ™" > 1.

For p prime we write 2, 5o (pil) = cuo + c,mp*191 + Q000 (pil) . Thus, some zeros of
t— W, 50 (p717p7t) for p prime can be expressed as follows:

. . _log (cu0 + cuap” "+ Qo002 (")) + 2mmi (14)
m,p,o log (p) Tog (p)

where m € Z. To have t,, ,, ;0 € Ay, we must have:

1 < _log |Cu,0 + Cu,1p701 + Qu,tf“ﬂ (pil)‘

<
v+1 log (p)

R =
—
i
ot
=

Let us prove that this inequality is well satisfied for p lying in a suitable interval.

Firstly we can assume that R (c“—l) # 0 : this property which exploits

(16)
the genericity in T(()n) € R™ will be proved in Lemma [3] page 19
Thus there exists po € N such that for p > po we have either:
Q 1

14 Selpy=dr g Zwet2 () >1 ifR (—C‘“) > 0; (17)

Cp,0 Cp,0 Cp,0

or:

Ly ety et @) <—C“’1> <0 (18)

Cu,0 Cu,0 Cp,0

11



In (IT) or (AY) for v large enough and
1
. 21\ "] 71
p > max [4V‘§R(“—l)‘ <C()2 ) ] ,
Cu,0

— [4(u+1)‘ére(j:;)‘ <C:71>VH} *

(which is possible according to Proposition 2] page [l because

|ep,0] = |co,0] > 0 and |cy,1] is bounded independently of p),
we obtain :
91 v+e
1y |V 1+ (-1)° (C 2 )
Q 1 ¢ 0
(_1)5 14+ Cuylp*ﬁl + n,09,2 (p ) <
Cp,0 Cp,0

where € € {0, 1}.
Indeed, the inequality ([I7) gives:

_y 1

-1
Cul — Q, 502 (P
14+ uylp 191_|_ , ,2( )
Cp,0 Cp,0

9y v+1 19_11
4(1/-1-1)?]?(2:[1)) <6’02 ) :

—v—1

Q -0
-9 =0 2(p )

1 Cp.1 1 w0,

+ cu,()p + p,0

1. fore =0:

2. for e = 1, since p >

log

1+ (22)] (c—)] "

v—1

log (1 + 2R (C”—l) p "1 +o (piﬂl))%i1

Cp,0

<2 (] w00

> 2w+ 1R (Z“—;) p~ "t for v large enough (v > vo)
S 11 "
2 B

0

> log|1— — = ——7 +o T )
Y1 Y1 Y1
o2 vty o2 vt o2 Y

which provides the inequality desired (for v > vp):

9y 14v
_ —v—1 —1— -1 + Cy?
Q 1 91 1—v 0 >
1+ Cu,lp—ﬂl + L(p) >1-— <002 ) = PN
Cp,0 Cp,0 CTI>
0

Similarly, the inequality (8] gives:
9

¢ 1\ Y1 91
1. for € = 0, since p > {—41/?]? (“—1) (002 ) } :

Cp,0

12
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—v

c — Q o0 P71
log |1+ c‘;—jép V14 o2l ) cf,é )

oot

= (o (s
Cu,l

< 2w (—?R (c:‘o)p*m) for v large enough (v > v1)
< 12Lu<log<1+ ﬁlll,>_ illu+o< zllu>?
2C,2 c,y? c,y? cy2
c Q HI
which guarantees (for v > v1) ‘1 + ﬁp*ﬁl + %{Ep) <1+ Wll—
e, (=3} -V
Cy2
—v—1 91
Q D1 1 R
2. forfs:l:l—i—cu—’lp*ﬁl—i— “’60’2(1) ) >1>1-—5 = 0191 .
Cu,0 Cu,0 COT(VJrl) COT(VJFU
. v 1 v+1 1 . . . .
Now if we choose Cy | 1+ 7 | <Sp< Cy 1-— oI | (which is compatible with
v+ 5

Cy % Co
the previous condition on p to have ([[9)) then (I3 occurs since according to ([I9) we have:

_ Q, jo,(p7t v v
1+ 2tp ﬁ1+7“’c;j§ ) <Co<1+ f@)
CO
<p

v+1 1
<G <1 e >
0

o

_ —v—1
< vl 1+ Cy,_,lp—ﬂl + Qu,ao,z(p 1) .
0 .0 .0 ’
and finally by taking the logarithm of both sides we deduce (I3).
Now, n > 0 being fixed, if we choose v as a positive integer such that 1g(é++1) < 7, then
o 0
for all prime number p such that Cgy | 1+ <p<cyttli- % , we will have
CVTI C(V+1)Tl
0 0
arg (2 -1
tinop,o0 € Ay,y if and only if u < 2mm 18 ( L. (p )) < u+ n, which is equivalent to:
. log (p) log (p)
ulog (p) | arg (oo (p7)) (u+mn)log(p)  arg (oo (p~))
+ <m< + . (20)
27 2 2 2

Hence, for a fixed p, we will have % + @ zeros t,, ,, ;0 of W, 5o (p717p7t) inside A,,, where
o] < 1.
Finally, if S* (v,n) denotes the number of zeros of HpSM L h (p*S?*t017. .. 7p*59ﬁt9n7p*0)
v+I

inside A, , a priori counted with their multiplicity, we will have:
S (v,m) > Z M—!—w . (21)
- 2

crl1 L <p<cytili——1
o1t JI1 | SP=%% BT
5 (v+1) 5

o Co

13



Co—1

9
2(0[1)771+1)
theorem (i.e. E log (p) ~ ), the estimation (IZD) gives:

p<z

AT
By taking v large enough so that C|, < and by using the prime number

Cign (Co = 1) ) 1

4
oy | 1+ Yy | <psoptt | 1-—L
v (u+1)7
Co Co

Cin(Co—1) __ Cg"
- 4 log (Cy+h)
Con(Co—1)
47 '

S (v,m)

%

For being able to minorate S (v,7n), we want to majorate the multiplicity of a zero or a pole
i, p,00- Thus given a prime number p and an integer m, we want to majorate:

M (m7p) = # {(m,7pl) | m € Z7pl prime7 tm,p.,ao = tm’,u’,ao with I"" = (p,7T(()n)7 g(n))} .

Notice that we can suppose without loss of generality that if p’ is such that there exists an
integer m such that ¢, , ;o =t,, ,,/ -0, then p’ > p.
In addition we have:

—log Qoo (p~') = —log (cu0) + O (P ; (22)
—log Q”/’ao (p’fl) = —log (Culyo) +0 (p*ﬁl) .

0
. T(n) *(n)e
Furthermore by ([I0) we can write, for all prime number p, cpu,0 = ca,ople(m'"‘(")e , where cg,9 does
not depend on p. We remark also that R (log (ce,0)) = log|ce,0] # 0 because |cg,0| = |cu,0] < 1.
According to ([22)), the equality t,, , 50 = t;s 4/ o0 Provides:

—log(co0) +O(p ")  2imm _ —log(con) + O (p ")  2imm’ (23)
log (p) log (p) log (p') log (p')
By identifying the real and the imaginary parts of (23), we obtain the estimations:
1 1 1
—log |ce, (———,) =0
00!\ 1og ()~ log (p) , P log (7)
m m
—arg (ce, — = +27T<———/> =0 ———
00\ 1og &) ~ Tog @) log () log () PP 108 ()
And since log |ce,0| # 0, we have:
N 1
- 291 loe (n) /|’
log (p)  log (p') p”tlog (p) (24)
m m 1

- ol —
log (p) log(p') p?1 log (p)

The first line of (24) permits to claim that log (p’) — log (p) = O (%) . Consequently there

exists an absolute constant A; such that if p’ is such that there exists m’ verifying Cint o0 =
log(p’ log (p Ao

tm o0 then log (p') —log (p) < Al%. So we have log (p) < 1_7(14_3 < log (p) (1 + oo ;

pUl
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where Az is an absolute constant (we can for example choose A2 = 2A;). If there exists m’ such

that ¢,/ ./ 50 = t,, 4.0, then p’ satisfies necessarily

Ag

1422
p<p (25)

For a fixed p, let us count the number M’ (p) of p’ satisfying (I?H) For this we use the prime
number theorem which gives the following estimation 7 ( f2 log(t) +0 (me v log(”)) (where

m is an explicit absolute constant) for the number of prime numbers 7 () less than z. Hence we
obtain:

/ 1+Aqp~ Y1 pHAQpﬂgl di —my/log(p)
M (p) =7 (p )= | e +0 (ve ).
But we have uniformly in ¢ € [pmHAzpiﬁl} log (t) = log (p) + O <log (p) piﬂl) ; which pro-
vides:
M) = B0 (110g< D (17" =) .0 (pe V)

- S ) ol
_ log = (eAg log(p)p~ Y1 1) +0 (peim\/m)
- o o)

= 0 (peimm) .

Now, having fixed an integer m € Z and a prime number p, let us consider a prime number p’
verifying (25)) and let us estimate the number of integers m’ such that Cipn,00 = Uit p? 60

m’ 1
According to , we have =0 . But since p’ verifies , we
gto (20) lo g( ) log(p)) (pﬂl log (p)> g &

have log (p) = log (p) + O (log (p)p~"1) ; and consequently:
» log (p) _ —91

" Tog () X - <p )
_ / o — —U

m m(l—&—Op*ﬁl) 0(p )
m—m' (1 + 0 piﬁl) = O 107191

m—m' = O p7ﬁ1 +O( '7191).

Moreover, if ¢,/ v 70 € Ay, then by @0) m’ must verify m’ = O (log (p')) = O (log (p)) ; and
hence m —m’ = O (log (p) piﬁl) . In particular, for p large enough, p > p1 (p1 being an absolute

1
constant), we deduce |m —m’'| < o and then m = m’. Hence if p > p1, the couples (m',p’) such

that ¢, 1 00 = t,, .00 are necessarily such that m = m’. And finally M (m,p) = M (p) =

(0] (pefm\/m)

As a conclusion, if p is such that Cy <1 + —ﬂr) <p< C"’Jr1 (1 — ﬁ) then for all
CO

N € N, there exists in particular a constant n which depends on N such that for all m € N,

15



v

M (m,p) < ]CNS_I(\)f' Thus for all N € N, we have finally

S(Vﬂ]) > S* (V777) ~ 77(00—1)”1\7.

]CNS_}S Kndnr

For N > 7+ 1, we have in particular (v 4 1)" " log (v + 1) = 0 (S (v,77)) when v tends to infinity;
which completes the proof of this lemma. O

The case where [W,, 50]e(T) is not cyclotomic being now completely dealt with, we assume from
now on that [W,, 5ole(T) is cyclotomic.

The problem is more complicated when the polynomial [Wmao]e(T) is cyclotomic.

In this case, it is necessary to consider the second term of the Puiseux branches to prove that
there exists at least one satisfying the desired condition |2, ,0(X)| < 1. Moreover, to have this
condition, it is also necessary to refine our choice of direction 6. Indeed, by choosing a suitable 6,
we will see that we can find two Puiseux series of opposite initial term +c,,0 with the same second
term ¢, 1 XY, In this way, although it is not possible to have |cu.0| < 1 since here (W, o0]e is
cyclotomic, one of these two branches will be of modulus stricly less than 1 for X > 0 small enough

whenever arg (Z“;) # % mod (7). And we use an argument of genericity in the imaginary part
©,

0 = (r(()n)70) of s to ensure arg <Z:—;> # g mod (7).

We will use later the following lemma to justify the existence of a particular index e’ € {1,...,r}
which will be crucial in the computation of the second term of the Puiseux branches.

Lemma 2. Consider an half-line e®Ry and a corresponding determination of the logarithm so
that W, so |ro—g (X,Y) is defined for X € C\R_ and Y € C\ e”’Ry. Suppose that there exists
¢ € C\ e Ry such that for all X € C\R_ and for s(()n) generically chosen in BN OW_.(0) we have
W00 |r0=p (X,¢) = 0. Then necessarily |¢| # 1.

Proof. Suppose that there exists ¢ € C\ e""R; such that for all X € C\ R_ :
Wu,o'o |1'0:0 (X7 C) =0.

Then we will have:

W‘L’o’[) |1-0:0 (X,0) = 1 +Zana-0.a.j O
i=1 (26)

= h (X"?c"l, .. ,X"‘%c"n) -0

Moreover, the generic choice of cr(()n) (see (@) means that the only constraint its components
must verify is o’ a.=0.

Consequently, since we have supposed without loss of generality that a, . # 0 (see page[d), we
can consider o?n) €R" as a (n — 1)-tuple &° = (59,...,6%_,) € U CR"! (U being an open set
of R"™!) by putting:

of =5y (Led{1,...,n—1}),
1 n—1
USL = — Zai,ea»? +c Ontle
Gne \ i35

Then for all z € Rsg (z # 1) let us define:
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U — R™
[OJ
& =(,...,5%_) — (xa(l), .. .,xagfl,xc) .
It is clear that J ., ®=(U) describes a nonempty open set (0, c0)".
Moreover, there exists a nonempty open set U’ C R™™' x (Rso\ {1}) such that for all
(Y1, .-+ yn) € U’ there exists (57,...,59_1) € U and = > 0 (x # 1) such that

an.e aney _ log(y1) 10g(yn—1)
(yl yeeesYn ) - q)exp( QZ’C IOg(yn)) (Clog(yn) B CW € Im (q)e’{p(o(Lc,C log(yn))) ’

Thus for all (y1,...,yn) € U’ we have:

n—1
an,e 01 an,e 0,1 0 —Qn4tle —Qpe Qpe _ A 61 o0 0 c
h<y1 O Y1 T, Y ||ye , Yn ) = h(m Ttz
=1

with @ = exp (2= log(yn))

C

= 0 according to (26).

n—1

. « 0 « ) 0, —a —a a .

But the function (y1,...,yn) — h <y1 e i e B AT TR | | Yy 'Z’e,yn"’e> is
=1

holomorphic on (C*)™. And since it vanishes on an open set U’ of (0,00)", we have in fact

n—1
ne 0 nve On_1 On —Onile —age ane | _
for all (y1,...,yn) € (C)", h<yf e yameOnt (O bt Hylae S Un >—0.
=1

Hence the polynomial hA(X1,..., Xn+1) vanishes on H N (C*)™ where H is the complex hypersur-
n+1

face defined by the equation ¢ () *meX®e _ 1 = H )('2)"5"3c76)’-70"5’c — 1 = 0. We deduce that
=1

the polynomial Xi--- Xph(X1,...,Xnt+1) vanishes on the whole hypersurface # and hence the
polynomial ¢~ *meX>e _ 1 divides a power of the polynomial X ...X, h(X1,...,Xni1).
Since the polynomials ¢ =8 ®meX*e — 1 and X ... X, are relatively prime, we deduce that the
polynomial

Pi(X) = ¢ P ®mex®e (27)
necessarily divides a power of h; and hence P.(X) divides also h because all irreducible factors of
P.(X) are of multiplicity 1.

And since h is with rational coefficients and ¢ is an algebraic number, the polynomial

QX) =[] Pr(X) € QX]

(where the product is done over all the conjugates ¢’ of ¢) also divides h.

Remark that Q(X) can be reduced in fact to an one variable polynomial (by the change of
variable T' := X%¢).

Now, if we assume by absurd that [¢|] = 1, then the polynomial Q(X), having rational coeffi-
cients, is necessarily cyclotomic because all its roots would be of modulus 1; which is not possible
since by hypothesis h does not contain any cyclotomic factor. O
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Now consider a particular index e’ € {1,...,r} verifying:

" a.. > 0 is minimal (28)

among the indexes jo such that ¢ - a.j, > 0 and which verify:

—ir0 . . . .
Z a;p” T ey, (O Em £,

{j:a,jfot.jo €Qax.c }

The existence of such index €’ is ensured by the previous lemma.
Indeed, consider a set J made of representatives of each class of the following equivalence

relation ~:
aj~ oy = o —ajy €Qa..
And write
O'O'a.'
Wi,o0 (X,Y) = [Wu,do]e(y) + Z X 0 Ry jo (Y);
Jo€J3jorte
where

Ry (Y) = Z ajpfiT%‘)'a(””Yo(")""<">J'.
Jj~Jjo

Recall that since we suppose here that [W,, 50]e(Y") is a cyclotomic polynomial, all its roots
are of modulus 1.

Now let cy.0 be a root of [W,, sole.

We have:

e =1 .
71“’-0 (a n)j —%(n)e (n) (n)]) .
Ry jo (cp0) = Z ajp "\ S e ) gg 080 ¥ (i according to ().
Jj~Jjo
But if a.; = a5, + gov.c, we obtain:

] Y% . ] Y% . +q6 Y%
() *(n)j (n) *(n)jo (n) ¥(n)e
An)j ~ Xmeq, .~ Xmio TI%(m)e T X(ne B ) O (mye
— O(m) X(m)jg

= Qo ~ Ame P aime

. 0(n)" ; o
Consequently since the ou,,); — a(n)ew are all equal for j ~ jo we have R, j,(cu,0) =0

is equivalent to:
Rj,(co.0) := Z a;ce,0% M *mi = 0. (29)
J~Jo
Thus if €’ does not exist, we would have for all X € C\ R_:
o
W00 lr020 (X, co0) = [hole(co0) + D X7 %90 R (co0) = 0;
Jo€J3jorte
which is impossible according to Lemma [2] since here |co,0| = |cu,0| = 1.
Obviously, it is possible to have some jo such that
0 0 (30)

O e =0 -Ojgy-
However, if 6 € R™ is generically chosen so that s° € BN AW (0), the equality B0) implies
necessarily that jo ~ €’

Throughout what follows, we need the direction 8 = (0(7”70) € Q" x {0} to verify, in addition

of (@), the two following conditions:
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0(,) - O(n)e € Zy is even;

0(n) - C(n)er € Z4 is odd. (31)

Note that, although the vectors a.. and .., are not collinear (according to (ﬂ) since 6% -at.e =0
and 6° - .. > 0), it would be possible to have cun)er € Qar(nye; and in this case it would not be
possible to choose such 8 with 6,41 = 0 and verifying (3I)).

To escape this difficulty, we use the hypothesis (H) of Theorem [I] which, because we know that
a.. and a..s are not collinear, ensures that o (,)er € Qoy(y)e; and consequently it is possible to find

0= (9(n)7 0) verifying (B1I).

The two following lemmas are crucial to prove the existence of an accumulation of zeros
Ly p,00 € Zu,y of positive real part.

Lemma 3. Let Q, ,0(X) = cp,0 + cu1 X" 4o (Xﬂl) be a Puiseux branch of initial term cp o,
root of (W, s0le. Moving generically ‘r(()n) € R™ so that s?n) € BN OW_,(0) if necessary, we can
assume

arg (EZ—;) #* g mod (7).
Remark 4. This lemma does not require the hypothesis that [W), ,o]e(T') is cyclotomic; moreover
this result is used in the proof of Lemma [l page [I0l (see ([I6) page [II)).

This lemma will be proved just after the following lemma:

Lemma 4. Assume that [W,, yole is a cyclotomic polynomial.
There exists a Puiseur series Q, ,0(X), solution of W, ,o(X,Y) =0 and verifying

|Q (X)| <1 for X >0 small enough,;

p,o0

7sfl)7t01 7sgft0n
g

which provides an infinite number of zeros t,, , -0 € Zuy of HpSMs h(p P ,p~ )

as 0 tends to 0.

Proof. Consider a Puiseux branch that we will write:

+ +
Q:,GO (X) = cuo+ C:)lXﬂl to (Xﬂl ) ;

of main term the root ¢y 0 of [W”)ao]e introduced previously which is of multiplicity mo = 1 since

F(o.e) is non-degenerate in the sense of Definition

+
According to Lemma [3] moving ‘r(()n) if necessary, we can suppose that arg (Z“—;) #*
©,

NE]

wn

+ +
Cp.1 3 Cp.1 3 ; ;
mod (7). Thus we have Z < arg (c‘;—o> < 5 or § < arg <—c“—> < 5. Since [W, ,o]e i

2 1,0

supposed to be cyclotomic, the main term of Q: 4o is of modulus lew, 0| = 1.

+
But if we assume firstly that 7 < arg <Z”;> < 37”, we have:
M
Qo0 = |14 E2xol 4 oo X U
o0 (X) 71+c”_0 + o )| < 1 for X >0 small.
Hence Q,, ,0(X) = Q: o0 (X) suits and it is the Puiseux series that we have looked for.
g CI 1 3
Now assume that — < arg | ——— —.
2 Cu,0 2

We will show that the particular choice of 6 (see ([BI) page [[9) permits to find a Puiseux series
with initial term —cp,0 and with the same second term as that of Q: -0 and which hence will be
the series we have looked for.
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Firstly, since 8(,y € Q" has been chosen so that, for j € Ac, 6 - a.; is even, we know that
—cp,0 is also a root of [W,, o]e; furthermore notice that this root —c,,0 provides a corresponding
Puiseux series solution of W, ,0(X,Y’) = 0 according to Proposition

So consider the following Puiseux branch that we will write:

O o (X) = —cuo+ i X1 40 (X”f) ;

p,o0 (

P . . — - +
and whose initial term is this root —cy,,0. Let us compare the two terms cu’lXﬂl and c::’lXﬁl .

We use for this the fact that the terms of lowest degree in X of W, ;0 (X, of (X)) cancel each

w00
+
other; and these terms coincide with those of W, ;o (X7 +cu0 + cilXﬂl ) And these terms of

lowest degree are also those of the following expression:

+
E W ol (o) X7 + X%/ Ry, o (Fep0) (32)

w1 ©w

Then on one hand concerning the branch QZ -0 we have:

R / (C 0)
+ € 5 .
M, - = = (33)

C bl
! [Wu,ao]é(cﬂuo)

and on the other hand concerning the branch Q; o0 we have:

6 Y% ’
o Ruolcan) (D00 Ry (o) )
Ho [Wu,ao],e(_clluo) _[Wu,o-o],e(cllwo)
And since 0y, - an)er is an odd integer we obtain C:,1 =cp1-

Hence finally there exists a Puiseux series:
+ +
Q,.00(X) = —cpo+ c::leﬂl +o0 <X191 ) ;

which is such that |Q, ,0(X)| < 1 for X > 0 small enough. This series provides some zeros:

p,o0

_log (Q‘M,o (pil)) 2mmi
log(p) log(p)’

m,p,e0 =

t

where m € Z and p is a prime number. And we will have t,, ,, ;0 € Eup if u < 3(t,, 4, 00) < u+mn;
meaning that if:

2rm arg (00 (7))

u < - <u-+ m,
log (p) log (p)
which is equivalent to:
ulog (p) | arg (oo (p7)) (u+m)log(p)  arg (oo (p~))
+ <m < + . (35)
2w 2 2 2

Hence we will have for p large enough some zeros of t — W,, ;o (p~',p~") inside = ,. And there
7szft0n

0_ _
exists infinitely many zeros t,, ,, ;0 € Zu,, of H h(p~*t 1. ,D ,p_°) when ¢ tends to

p<M;
0; which completes the proof of this lemma. O

Now let us prove Lemma [3t
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Proof (of Lemmal[3). To begin with, we identify the dependence on p and ‘r(()n) of cp,1.
According to Lemma [4] we have:
Tl 5 (y.0) 0

_ Zj\a,jfa.e,eQa,e a;p Cp,0

c =
pot [Wu,ao]/e (CM,O)

0
. T(n) ®(n)e
Recall that by ([Q) we have c,,0 = cg,op ° (e ; which permits to identify clearly the dependence

0 . . . ’ [T
on p and T, of cu0. Let us observe in particular the denominator cy,0[W,, so]e (cu,0) of oo and

let us prove that it does not depend neither on ‘r(()n), nor on p. Indeed:

cp0[W, ol (cu0) = coop “m) e
. - 2] o
> aj(g,a.j)cafg) )i~ \ P F e
J€Ne o
_ (n)"®(n)j
= Z aj(0~a.j)ce’0 J,
J€Ne

6y a(ny; *1)*T?n)'a<n>j>

0
T(n) *(nje 0
() (n)ye (O(n) - a(ny;) = T(n)  X(n)j-

Now assume by absurd that for all ‘r?n) in some open ball so that s(()n) € BNoW,(0) and for

since j € A. implies that

all prime number p arg (C“*l) = 2 mod (7). Then we would have

.0 2
Cud T 3m
o(32) e (55}
Put for k such that a.p € a.o.r + Qav.e:

O (n) (nyk
6,0

) 0, o
D jen, (0 a.j)cefg> ()i

not depending neither on p nor on T(()n). Then we have:

— Qg C

Ak,0,8,p 1=

e =1
(0 (n) *(m)k __0 )
C il T o T ey
o1 § Ak,a,ﬁ,ﬂp < (n) H(n)e 9(n)~o¢(n)e (n) H(n)k

Cu,0
Hs {kia.y—a 1 €EQa.c }

.0
= ST Aeesp 0™,

{k:a.p—a 1 €Qa.c}
Oy x(n)k
O(n) x(n)e

Remark that these wy are all equal. Indeed if k and k" are such that ., — a..r € Qa.. and
a — g € Qae, then a, — oy € Qa.e and hence there exists ¢ € Q such that a.x — .y =
0(n) () = (n)p!)

O(n) x(n)e

if we write wy, := Q(nye — An)k-

qo... In particular we also have q(n)x — Q(n)x’ = qOt(n)e; consequently An)e =

qQ(n)ye = Q(n)k — )k and hence Wy = Wi/ = Wer.

Let us prove that w., # 0 : this property is crucial if we want to move arg (Z“;) by choosing
M

‘r?n) generically. It is exactly here that we use again the hypothesis (H) of theorem [1l

Indeed, w., = 0 is equivalent to c(n)er € Qo). But we know that the vectors a.. and ov..s

are not collinear since 6 - a..r > 0 and o - a; = 0 if and only if a.; € Qav.. according to the
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property (%)é on o’ = (0'?7”7 c). And consequently the hypothesis (H) ensures o (,)er & Qat(n)e and
hence w., # 0.

.0
Finally we have Cul = p“—(”)'wel Z Ak,0,8,p- Now if we put:

C
w0 kla.p—a. . €Qa.e

@ = arg > Ak0.8.0 | 3

kla.p—a s €EQax.e

(¢ not depending neither on p nor on ‘r?n))7 then we obtain:

TO,.LGM:: {‘ron-we/ lo + :E—me}.
) LPJWQZ(() )log(p) + ¢ = 3

But M is a countable union of affine hyperplanes in T(()n) which are of empty interior inside R™
(because w.s # 0); and according to Baire’s theorem the countable union of these hyperplanes is
also of empty interior inside R™. Consequently these previous conditions cannot be satisfied for
all ‘r?n) inside an open ball of R"; and we obtain a contradiction to the hypothesis above, which
completes the proof of this lemma. O

At this stage we have proved the existence of infinitely many zeros t¢ 60 € By of t —>

m.u,
0 0 . . . .
HP<M§ h (pfslfwl . 7Qrfsnf’fgﬁp*‘) as § tends to 0. To prove Theorem [ it remains to verify

that the accumulation of these zeros t,, , o0 lying inside Zy,, is not cancelled by possible poles

~7®) Which appear in the

coming from the (-factors of HBGNT\{O} Qg ((s(()n) +1t0n,0) - - tﬂ)
writing of Theorem [l
To start with, let us remark that, since (as; has exactly the same zeros and pole as the Riemann

zeta function, the possible poles which could cancel the previous zeros t,, ,, o0 are of the form:

By = P S Bi(s% - ay)
’ Y1 Bi(0-ay)
where 3 € N" \ {0} and p is a zero or a pole of ¢.
In what follows we will prove that, by moving s(()n) € BN OW,(0) if necessary, there is

at most a finite number of such ¢(8, p) inside the region Z,, which vanish the factors t —

0 0 . . .
h (pfslfwl - 7Qrfsnfwﬁp%) (p being any prime number); and consequently they cannot can-
cel the accumulation of ¢,,, , ;0 € Zu .

Then for all 3 € N"\ {0}, for all prime number p and for all p zero or pole of ¢, we will consider
the following quantity:

h (p—s?—t<3,p>017 . 7p—s2—t<3,p>0n7p—c) :

and we will prove that for almost all the ¢(3,p) € Zu,, (all except a finite number) and for all
prime number p large enough (p > po where po is an absolute constant) we have:

0 0 .
h (pﬂl HBPOL pTEn Tt B0 gy c) #0.
Write:
P*Z?Zl 5]'(50'0&]') >

r —s0.a k—0 et (—
. (n) X (n)k T B (0. o
1+Zakp =1 @m) e (n)j)
k=1
T

o
1+ ZakpAk,G,ﬁ,p(o )
k=1

h (p—s?—t(ﬁ,p)el7 ”'7p—s2—t(ﬁ,p)en7p—c)
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where

Ae0.8.0(0") = —ur.0.8(0°) — vk.0.8,0}
with , 0
Uk,e,ﬂ(ao) _ 00 oy — e(n) . a(n)k - j=1 ﬂﬂ (O' . aj)
> i1 B0y - any;)
and

p—=iX iy Bi(Tlhyamy;)\ o
Vk,0,8,p = O(n) - O(n)k G + 4T (n) - Ak (36)
p (n) (n) < Zj:l B; (e(n) 'a(n)j) (n) (n)

is independent of . Let us precise the dependence of ux,g,5(c”) on ¢°. Indeed, the (n + 1)-uple
o has here two constraints: 0'2+1 =cand 6 - a.. = 0. As in Lemma ] we can consider this

)

(n + 1)-uple as a (n — 1)-uple &° = (5(1), e, 52,1) without constraint by putting:
0_ ~0
0y =0y (Led{1,...,n—1}),
n—1
oy, = —an’e <Z§_:1 Qje0; +C an+1,e>
In this way we obtain:
ubon(E) = "il;o a'xwiﬁ'a» . O(n) - A(n)k e [ xriﬁ'a . 0(n) - O(n)k
,0,, - 3 2, 1y 3 n, n, -
= ST BBy anyy) e T Bi (O - enyy)
r r
Oy - Xk Qntle On) - A(n)k
Fe | @ntie =D Bijantii=r - = | ome — D Bian =
" ; ’ T B0y amy)  ane " ; TS 1 Bi (B - @(n);)

~0
Uk,0,8(0 ) yecs T Uk,0.Bags

where
n—1 T T
7] e ) 2] e
~0 ~0 (n) (n)k Qe (n) (n)k
Uk,0,8(0 )yeer = Q00 | @ik — D Bi%iier ——= | ank — D Bionj=s ;
et ; ( 3; Y1850 s any)  ame 3; T 1 BBy - ;)
(37)
and
™ ™
O(n) - )k Antle On) - ()t
Uk,0,8,5 = C | ont1,e — Bjn+1,5 - — | ok — Bjan,j
: ( J; ’ T8Oy amy;)  ame 321 S 1 Bi(O(n) - ;)

(38)
Then we define the following equivalence relation Rg,¢ on the ay

o, Rpe oy < forall & such that s(()n) cB

~0 0
uk,gyﬂvcct(a ) = uk,,eyﬁvect(a )

Thus a.x, Rg,e a.p if and only if for all ¢ € {1,...,n — 1}:

Qe e(n) : (a(n)k a(n)k’) a Qe
ik — Q) — Qnk — Oy it ) — ) E B + — Uy —0.
( K ik ) e ( 2k n,k ) Z; L /Bj (e(n) i (n)]) J ¥ e n,J

j=1
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Notice that >27_, 5; (am» - %an’j) = an. Bi (am» - %an’j) . In addition, it is impor-

tant to observe that, although the set of 8 € N" \ {0} such that v(3) # 0 is infinite (since here h
is supposed to be non cyclotomic), the set:

E:={B; | j & Ae,v(B) # 0, R(¢(B, p)) = 0} is finite. (40)

Indeed, since the (3, p) which could cancel the zeros t
part, we have

m,u,o0 are necessarily of positive real

R(p) —> . (0% o
(p) TX:J%A& Bi( i) >0, (41)
21 Bi(0 - a)
and hence 7., B; (6 - a.j) < R(p) < 1; which implies that [@Q) is a finite set since for all

R(L(B, p)) =

j & Ae, °-a.; > 0. Consequently the quantity >ien, Bi (O‘m‘ _ e Oén,j) can take only finitely

QAn,e

many values when 8 moves.

Let us give some precisions concerning the relation Rg,e.
If we assume that Z;zl Bicny; & Qaqn)e, then there exists ¢ € {1,...,n — 1} such that

@

> jen, Bi (am» - ﬁan’j) # 0 and the equality (39)) is possible only if

Qe
O(n) . (a(n)k — a(n)k/) (ai,k - ai,k’) T Qn.e (Oén,k - O‘n,k’)

T (0 = — . (42)
Zj:l Bi(O(n) - Q(n);) Zﬂ/\e B (ai,j — = an,j)

Qn,e

(ai,k*ai,k/)*% (an,k*an,k/)

> B o e )
j@gNe Pi\ Xij Qn,j

an,e

Since the set { | BN\ {0}} is finite by {@Q) and 0 ,,) - a(n); >

0 for all j € {1,...,7}, the identity (@2) cannot be satisfied for ||3| large enough (i.e. for
|1B][> Bo where By is an absolute constant) if 6,) - (Q(nye — @) # 0 or (aur — ;) —
aﬁ,e (Gtn,k — @p k) # 0 because the member on the left is not zero and tends to 0 when ||3]| tends
to infinity.

For ||8||> Bo, we have necessarily 0 (,) (0t (n)r— () = 0 and (i k — 0 )= 2= (Qnk — Qp i) =

0 for the indexes i € {1,...,n — 1} such that > ., B; (ai’j — 5”6 an,j) #0.

i,e

n,

For the other indexes i such that }°.,, B; (Oéi’j - %Oén’j) = 0, the identity (39)) also pro-

Qo

vides (i — i pr) — z:lee
write an)x — Qe = q0(n)e (¢ € Q), the identity 0,y - (a(n)x — nyrr) = 0 gives immediately
q = 0 since O, - () # 0; and hence o (n)r = Q(n)i-

Now if >77_, Bjct(n); € Qax(n)e, the equality (39) becomes:

(0n,k — Qi) = 05 thus we obtain oy — ) € Qa(n)e. And if we

. Qe
Vi€ {17 s, — 1}7 (ai,k - ai,k/) - - (anyk - an,k/) =0. (43)
Ane

But then @3)) gives a(n)r — (s € Qaynye. Thus, for B large enough (||B||> Bo), we have:

-
Ak — Xy € Q Z Biat(ny;
j=1
Q(n)k — X(n)k! € Qa(n)e-
We write [ko] the equivalence class of ko for the relation Rg e and we consider a set V whose
elements are a representative of each equivalence class.
Now if we consider ¢° — h (pfs[l)ft(ﬂ’p)eh...7p7327t(ﬂ’p)9"7p76) as a function of (n — 1)

Qg 'Rg’g o —

variables fy g,,(7Y,...,09_1), we can write:
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~0 ~0 —v —u —u 5’0
Fugp(@ly . 0q_1) =1+ Z Z app R OB TURO Bar | p kg.0,8( )Vcct;
koeV \ k€lko]

where the linear forms wu,,0,5(5") are two at a time distinct.

vect

Lemma 5. We have for | X*7| < C (j € Ae) (C being the constant defined in Proposition[), the

following equality:
mex) = T (1- xZsene i),
BEB.
where the right side converges absolutely, and each v(B) is the integral exponent for the factor
indexed by B inside the cyclotomic expansion of h(X) which is given by Proposition [l page [6l
Proof. Firstly put de = #A., and note the corresponding set Ac = {j1 < j2 < -+ < jaq, }. Then
we apply Proposition [l to the polynomial [h].. For the same constant C' defined in (@) we have
the absolute convergence of the infinite cyclotomic expansion corresponding to [hle(X) whenever
each |X®i| < C. Notice that here the product of this expansion is taken on all the 8 € N% — {0}.
To each of these /@ we can associate a unique 8 = (f1,...,8r) € Be such that j; € A. implies
B, = Bi, for each i. Consequently, Z;:l Bjo; = Zfil Bia.ji if 3 € Be. Concerning the exponents,
we conclude that R
v(B)=~(8)  for cach B € B,

since the expression of v(3) of Proposition [l page @] coincides with that of v(3) because the 3 € B.
correspond exactly to the 3 with the reindexation that we have just defined. This completes the
proof. a

Remark 5. Since we suppose here that [, ,ole and hence that [h]e is cyclotomic, Lemma

permits to conclude that there is only a finite number of exponents y(3) # 0 such that 3 € B..

Now recall a classical result that we will use later and which is a consequence of the Weierstrass
Preparation Theorem whose proof can be found in [1]:

Lemma 6. Let f : U — C be a nonzero holomorphic function defined on an open set U C C".
Then the zero locus f~(0) has empty interior inside C™.

Now we can state the last lemma which will allow us to finish the proof of Theorem [Tt

Lemma 7. Moving s(()n) € BNOW_(0) if necessary, for almost all t(B3,p) € Eu,y (i-e. all except
a finite number):

h (pis(l)*t(ﬁ’p)el, ...,pis%ft(ﬁ’p)e",pﬂ) # 0 for all prime number p.

Proof. Firstly, since the 3 € B such that v(8) # 0 are in finite number according to Remark [
and since the p such that:

t(IB7 p) € Eu,n
B € B,
are necessarily also in finite number, the t(3, p) such that 8 € B. and v(8) # 0 are in finite

number. So it suffices to consider from now on the 8 ¢ B.. Now we want to show that moving
s(()n) if necessary, the function f,, g,,(6°) is nonzero for all p. Write:

~0 ~0 —v —u —u Ea
fu,B,p(015- - 0n1) =1+ Z Z app” KO TR0 Bagt | k0.0.8( )vecc;
koeV \ kelko]

where the linear forms uy,,0,8(6°), .., are two at a time distinct. Now prove that no ux,e,5(5°)
for ko € V is zero for 8 ¢ B. large enough.

vect
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So let ko € V. According to the expression of ux,,6,8(F"), .., given in (B7), we have

vec

- [ "
~0 2 : (n) (n)ko
Uk, Ygyg(O' )V =0<= a(n)k — ,Bja(n)»
0 oct ¢ o I3 B0y - vy

) S Qa(n)e. (44)
Assume that there exists a sequence (3,,,)men (8,, ¢ Be) with [|3,,]] = +00 when m — 400
so that for all m there exists pm such that ¢(3,,, pm) € Eu,, and verifying for all m:

- 8(n) - C(n)ko
ot ;ﬂmja(n)j >y Bm (O - ;) € Qagoye.

Jj=1

(45)

Since (@Q) is a finite set we have:

lim 2j=1 P Oy lim 2jen, BmiQm) X(n)e

motoo 330 Bmj(Om) - @ny;)  motee Do in B (Om) - @my;) Oy - Anye

By passing to the limit inside (@3] we obtain necessarily ct(,)k, € Qt(n)e-
Consequently, again by (@5]), we have that for all m:

D By € Qo
j=1

Hence there exists ¢ € N* such that Z;:l ija(n)j = gmO(n)e-
As c € Z\ {0} we have on one hand:

ol . (Z;:1 ,ija.j) = U(()n) . <Z [3mja(n)j> + CZﬁmjan+1,j
j=1 j=1

T T
—CQm Zﬂmjavwrl,e + CZﬂmjan+1,j € Z.

j=1 Jj=1

On the other hand we know that for all j, ¢° - a.; > 0 with a strict inequality for j ¢ A.. We also
know that 3,, ¢ B. implies that there exists j ¢ Ac such that $,,; > 0. We deduce that

ol . <Zﬁmja.j> = Zﬂmj (0'0 cog) = Z Bm (cr0 couj) > 0.
j=1 j=1

J¢Ae

Consequently we have o - (Z;Zl ,ija.j) > 1. But since t(8,,, pm) € Zu,n we must have:

R(pm) = 0+ (- Byers)
> B0y - ag)

and hence R(pm) > 1; which is impossible and proves that ug,,6,8(6°),.., for ko € V is nonzero
for 8 ¢ Be large enough.

Let us consider now f,. 5,,(3%,...,59_1) and let us prove that f,, g,,(5%,...,59_1) is nonzero
by moving 0 if necessary.

Firstly, if all the Zke[ko] agp” Uk0.B.pTUk.0.Bast are zero for kg € V, then we obtain that
Fup.p(@),...,3%_1) is a constant function equal to 1 # 0 and satisfies the assertion of the lemma.

Otherwise, there exists at least one ko € V such that Zke[ko] agp” Uk0:Bp T Uk.0.Bagr £ ().

0 <R(E(Bm, pm)) =
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Now prove that for all p and 8 € N” \ {0} fixed, the function &° — fu. 3,,(3),...,009_1)
is nonzero; and this in a way to ensure the fact that its zeros define a thin set of R™ (i.e. of
empty interior). It suffices for this to consider ¢ € R™™!, for example of components Q-linearly
independent, so that the uky,0,6(®),.., are two at a time distinct for ko € V. And we put 6° = t¢.
Since Ury,0,8(tP) ooy = tUkg,0,8(P) 0oy We Obtain:

Fupot®) =1+ > | D axp k0mr k08t | exp (—t1og(p)iky,0,8(®) et )

koeV \ k€[ko]

Then it suffices to use the fact that the functions {t — exp (—tlog(p)ury,0,8(®)ecs) thocv are

linearly independent since the uk,,0,8(¢) ., € R are two at a time distinct; and consequently the

function t — f,, ,,(t®) is nonzero and the function &° — f,. 5,(5%,...,59_1) is also nonzero.
Now it suffices to use Lemma [6] to deduce that, since fuﬁ,p(gﬁ), .. .,52,1) is nonzero, the set

f;’}a’p(O) is of empty interior inside C"~* and even inside R"™' (because any function holomorphic
on an open set U C C" and zero on U NR" is necessarily zero on U).
Then we put:

M := U frit.(0).
BENT\{0},p,p|¢(p)=0
This set 9, being a countable union of closed sets of empty interior inside R}, is also of
empty interior inside R" ™! according to Baire’s theorem.
As a conclusion, it is possible to choose & ¢ 9 so that the function ¢t —s Z (s?n) +t0(n))
admits an accumulation of zeros t,, , ,o inside Z., whithout being cancelled by poles t(3, p);
which completes the proof of this lemma and the proof of Theorem [Il |

4 Proof of Theorem 2.

To prove Theorem [2] we must localize in the previous proof of Theorem [Il the use of the hypothesis
(H).

In section Bl we have considered a vector a.. (e € {1,...,r}) such that o,). determines the
polar vector of a face F(a(n)e) C OW,(0). Notice that each face of 9W.(0) is determined by a
polar vector of the form a,); for a certain j; and if in particular a(,); € Qa(n)e, then the vector
a.; determines a face of OW,(0) only if o.; = ... And, having fixed this vector a.., we have
considered a point s?n) lying on this face F(c(,.) (i-e. such that 0 -c.. =0and o - a; >0
for all j € {1,...,7}). Then we needed the fact that the vector c../, chosen so that o° - ../

.0
is minimal among the ° - a.j, > 0 verifying Z{j:a,j—a.jo cQoe} ajp T ¥mic, (O @m0
(see (28)) page [I]), verifies the following condition:

Q(n)e’ ¢ Qa(n)e'

It is only to ensure this property that we have used the hypothesis (H) in the proof of Theorem
@ Obviously, this condition is not a priori satisfied if we do not assume the hypothesis (H). But
the result we want to prove here is weaker than Theorem [l Indeed, we want to prove the fact
that we cannot translate globally the boundary OW.(0) until 9W.(d) for all § < 0 if h is not
cyclotomic. And consequently the point s(()n) is not constrained to stay in a neighbourhood of a
point of F(cx(n).) contrary to the previous section Bl

In addition, we know according to the hypothesis () that the set

Eei=A{oj | amy; & ame} # 0.
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Now let us prove that it is possible to have a.., € £ by moving the point s(()n) if necessary on
the face F(a(n)e)-

To begin with, let us consider the quantity o - cc.; for all the vectors a.; ¢ . (i.e. such that
amy; € Qoyyye). For these a.j, there exists ¢; € Q such that o (,); = gjQ(n)e, and consequently:

0 < o a; = O'(()n) T O(p); T C Qntl,j

= 4jO(n) X(n)e + ¢ ant1,j
_ . b 0, — 50 . =0
= c¢(Qn+1,j — ¢jOn+1,e) because o - e = O () " An)e + € Angi1,e = 0.

Thus we observe that o - a.; for a; ¢ & does not depend on 0'(()”) € F(anye)- Then we put
€0 = ming ge, (67 a ;) =ming ge, (c(@ni1,; — Ganiie)) >0

(eo does not depend on a?n) € F(o(nye)). According to the hypothesis () we know that OW.(0)
does not admit only one face because the a.; # .. such that a,); € Qo). do not define
any face of OW.(0). Thus there exists necessarily a vector a.;; € &, such that F(o,);,) is a
face of OW(0) of nonempty intersection with F(an)e). In particular F(aye) N F(onyj,) is
also a face of OW,(0) of dimension strictly inferior. And the hypothesis (2) ensures the fact
that Z{j:a,j—a,jl €Qa.c} ‘ljpiif?")'a(”)jc”,oe(”)'a(")j # 0. So for all € > 0, we can find a point

Stn) € F((n)e) verifying (B) such that
0
0<o -aj <e

And this is in particular true if € < €.
Now, ¢’ being chosen so that ¢ - at..r > 0 is minimal among the ¢° - a.j, > 0 verifying

> T ) () O(n)®(n)j £ () have:
(i j e j, €Qar.c} WP Cu,0 # 0, we have:
o’ coe < o’ o, <€ = minaj¢ge (crO . a.j) .

Hence we have necessarily a(nyer & Qa(n)e; which permits to use again the arguments presented
in the section [3 to prove Theorem d

Remark 6. We have to notice that the hypothesis () is absolutely necessary to ensure as the
previous argumentation the existence of a direction @ in which the zeros or poles of Z(s1,...,sn)
accumulate. Indeed, consider the following example: h(X,Y,Z) =1+ XY +X?Y2Z=1+X>1 4
X*2 € Z[X,Y, Z]; where a.1 = (1,1,0) and a.o = (2,2,1); and the corresponding Euler product
(by putting here ¢ = 1): Z(s1,s2) = Hp h(p™5t,p~°2,p~'). Let us observe in particular ¢t —
Z(s(()n) +10(n)) with s° = (1,-1,1) € OW(0) N {s3 = 1} verifying s’ - cv.; = 0 and 0 = (61, 6,0) €
Q*N {63 = 0}. Then we have W, ,0(X,Y) = 1 + X* @1y®m et 4 xS aoydm ez = 1 4
YO0 4 Xy 201+ and W, o(p~t,p ) = h (p’s(f’w%p’sg’w%p’l)- By taking up again the

previous notations, the Puiseux series Q,, 50(X) verifying W,, 0(p™", 2, 0(p™")) = 0 correspond
to the branches of 1 + 7T + XT? by putting T := Y19 But we check without difficulty that
there does not exist any branch which verifies [Q, ,0(X)| < 1 for |X| small. So there is not

0 0
—s7—t0) , —s5—thy , —1
1 D2 )

any accumulation of zeros of t — h (p P ) (necessarily of the form t,, , ;o =

log( Q2 -1 .
- g( ﬁ)’g([;()p )) + 120’;(%; m € Z, p prime) of positive real part in a neighbourhood of R(t) = 0.

Moreover, there is not any accumulation of zeros or poles coming from the factor t ——
HﬁEN’”\{O} (s ((s?n) +t0(n),0) o tﬁ)iw(ﬁ) for all § > 0. Indeed, these zeros or poles are of

. _ p=B15% a1 —Ba(s% ) _ p—p - 2 i
the form: ¢(83,p) = Ble(ln)-a,11+ﬁ226(n)-a,22 = Gt where 8 = (81,82) € N" and pis a
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zero or a pole of the Riemann zeta function. So if 82 > 0 we will have R(¢(3, p)) < 0; hence the
t(B, p) of positive real part are such that 82 = 0. But we know (see Lemma[5]) that these zeros or

poles come only from a finite number of ¢-factors of []genr 10} Cas ((s(()n) +t0ny,c) - - tﬁ)fﬂ/(ﬁ)

(which correspond to the cyclotomic factorization of the cyclotomic polynomial 1 + Y91+92); and
consequently these zeros or poles are isolated and do not accumulate in a neighbourhood on the

right of OW(0).

5 Proof of Theorem 3.

To establish Theorem [3] it suffices to rewrite the Igusa zeta function under the form of a pseudo-
uniform Euler product associated to a certain polynomial; and we will check that this polynomial

satisfies the conditions of Theorem [0l For o; > 1 (i =1,...,n), let us write:
i _ SO M1 Mnp
Zrng(517...78n;Z[T7T 1]) = Z W
My,...,mp>1
- 1I < 3 <P(P“"”)>
- st
» \wenn P
( vl — Huu—l)
p p
= H 1L+ Z ps-tu
P veNm\{0}
v 1
-+ X =) (-3)
P venm {03 P p
But for 0; >2 (i =1,...,n), we have:
I~
O
s-tu - n i(si—1
venn P veNn [Tz, pritse=V
S ()
= (s;—1
veNT =1 p )
(S )
i=1 \v;=0 p
()
= — T
il p(s )
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Consequently, for o; > 2 (i = 1,...,n) we obtain:

o = T (v (- ) ) (1)

1=1 P
S VR 11 EED Sl S
=1 p k=1r1C{1,..., n} p(ziel S£)7k+1
#I=k

Since the finite product of zeta functions H ¢ (s; — 1) is meromorphic to whole C", it suffices to

i=1
determine the maximal domain of meromorphy of the product:

—1)*
s—11 Y Y el
k”}p

By establishing the change of variable w =s—1 = (s1 — 1,..., 8, — 1), we are led to consider the
product:

—1)*
W>—>H 1+Z Z 7(2(&211)“1)“ ;

k=171C{1,...,n}, P
#I1=

which is equal to:

[Tre Y,
P

with
h(X17... X7L+1)_ 1+ Z (_1)#1)(04_17

by putting for all I C {1,...,n}, ant1,r =1 and for £ € {1,...,n}:

ay,; = 0 otherwise.

{auzliféel

To finish, we can easily check that h satisfies the conditions of Theorem [I} which completes
the proof of Theorem [3 d
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