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EVEN UNIMODULAR LORENTZIAN LATTICES AND

HYPERBOLIC VOLUME

VINCENT EMERY

Abstract. We compute the hyperbolic covolume of the automorphism
group of each even unimodular Lorentzian lattice. The result is ob-
tained as a consequence of a previous work with Belolipetsky, which
uses Prasad’s volume to compute the volumes of the smallest hyper-
bolic arithmetic orbifolds.

1. Introduction

Let Hn be the hyperbolic n-space, of constant curvature −1. We denote
by Isom(Hn) the group of isometries of Hn. One way to construct a lattice
in Isom(Hn) is to consider the automorphism group O(L) of a Lorentzian
lattice L ⊂ Rn,1. Of particular interest are the unimodular Lorentzian lat-
tices. There exist two such types of lattices: the odd unimodular Lorentzian
lattice In,1 and the even unimodular Lorentzian lattice IIn,1. Their study
appears in connection with the study of Euclidean lattices, as shown in the
book of Conway and Sloane [4]. While In,1 exists for every dimension n, the
even lattice IIn,1 exists only when n ≡ 1 mod 8.

In [2] (see also [5]) the following theorem was proved.

Theorem 0. For each odd dimension n = 2r −1 ≥ 5, there is a unique ori-
entable non-compact arithmetic hyperbolic n-orbifold ∆n\Hn of the smallest
volume (with ∆n an arithmetic lattice of Isom(Hn)). Its volume is given by:

1

2r−2
ζ(r)

r−1∏

j=1

(2j − 1)!

(2π)2j
ζ(2j) if n ≡ 1 mod 8;(1)

(2r − 1)(2r−1 − 1)

3 · 2r−1
ζ(r)

r−1∏

j=1

(2j − 1)!

(2π)2j
ζ(2j) if n ≡ 5 mod 8;(2)

3r−1/2

2r−1
LQ(

√
−3)|Q(r)

r−1∏

j=1

(2j − 1)!

(2π)2j
ζ(2j) if n ≡ 3 mod 4.(3)

It is remarkable that the smallest volume has the simplest form (1) exactly
for the dimensions n where the even unimodular Lorentzian lattice IIn,1

exists. The main purpose of this article is to show that for these n the
arithmetic group ∆n of Theorem 0 is actually given by the group SO(IIn,1)
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of special automorphisms of IIn,1 (cf. Theorem 1). In particular, this allows
to deduce in Corollary 2 the hyperbolic covolume of the automorphism group
O(IIn,1). This complements the work of Ratcliffe and Tschantz [8], where
the covolume of O(In,1) was determined for every n.

In §3–4 we discuss some interesting consequences of our main result. Fi-
nally, in §5 we discuss the case of Formulas (2)–(3). In particular, we state in
Proposition 4 the exact relation between ∆n and O(In,1) when n ≡ 5 mod 8.

Acknowledgements. I would like to thank Curtis McMullen for the inter-
esting discussions that are at the origin of this article. I thank Jiu-Kang Yu
for his help concerning Bruhat-Tits theory, Steve Tschantz for the numer-
ical computation mentioned in §3, Anna Felikson and Pavel Tumarkin for
helpful discussions, and Ruth Kellerhals, John Ratcliffe and the referee for
helpful comments. I am thankful to the MPIM in Bonn for the hospitality
and the financial support.

2. Main result and its proof

For n ≡ 1 mod 8, we consider the even unimodular lattice IIn,1 embedded
in the real quadratic space equipped with the standard rational quadratic
form:

q(x) = −x2
0 + x2

1 + · · ·+ x2
n.(4)

The group of automorphisms of this quadratic space acts then isometri-
cally on Hn, via an identification of Hn with its projective model. The
group O(IIn,1) (resp. SO(IIn,1)) of automorphisms (resp. special auto-
morphisms) preserving q and the lattice IIn,1 acts discontinuously on Hn.
More precisely, the group PO(IIn,1) = O(IIn,1)/{±I} (resp. PSO(IIn,1) =
SO(IIn,1)/{±I}), where I is the identity matrix, can be seen as a discrete
subgroup of Isom(Hn).

Theorem 1. For n ≡ 1 mod 8, the group ∆n is conjugate in Isom(Hn) to
PSO(IIn,1).

Proof. We denote by V the quadratic space over Q equipped with quadratic
form 1

2q, where q is given in (4). Let G be the algebraic group defined over

Q with G(Q) = Spin(V ), the group of spinors of V . Let G be the adjoint
form of G. Then G(R) is isomorphic to Isom(Hn). For each prime p we
consider the quadratic space Vp = V ⊗QQp, and the Bruhat-Tits building

Bp associated with Spin(Vp) and SO(Vp). Note that G and G are split over
Qp, for every prime p (cf. [2, Prop. 3.9]).

Let L be the lattice in V that identifies to IIn,1 via the embedding in
the quadratic space (V ⊗QR, q). For each prime p, we consider the lattice
Lp = L ⊗Zp, which is a maximal lattice in Vp [3, §5]. Bruhat-Tits theory
allows to identify the lattice Lp as an hyperspecial point of the building Bp

(cf. [3, §5]), whose stabilizer in SO(Vp) is SO(Lp).
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Let us denote by Kp the hyperspecial parahoric subgroup of Spin(Vp) that
stabilizes Lp ∈ Bp. The set of all these Kp for p prime is a coherent collection
of parahoric subgroups, and this defines a principal arithmetic subgroup of
G(Q) (see [2, §2.2] for details):

Λ = G(Q)∩
∏

p

Kp ,(5)

which by construction maps into SO(L) = SO(IIn,1). But Λ corresponds

exactly to the group Λ1 in [2], whose image in G(R) gives the group ∆n. It
was proved in [2] that Λ1 is maximal, and that up to conjugacy its construc-
tion does not depend on the choice of a coherent collection of hyperspecial
subgroups. It follows that PSO(IIn,1) is conjugate to ∆n in Isom(Hn). �

From Theorem 0 and 1 we obtain the covolume of the group PO(IIn,1),
which contains PSO(IIn,1) as a subgroup of index two. In order to simplify
even more the volume formula, we use the well-known expression of ζ(2j)
in terms of the Bernoulli number B2j .

Corollary 2. The covolume of the action of PO(IIn,1) on Hn equals

ζ(r)
r−1∏

j=1

|B2j |

8j
,(6)

where Bk is the k-th Bernoulli number.

3. Volume of Coxeter polytopes

Corollary 2 was already known in dimension n = 9 (see §5), where PO(II9,1)
is the Coxeter group generated by reflections through the faces of a simplex.
The only other group PO(IIn,1) that is reflective is PO(II17,1), as it follows
form the work of Conway and Vinberg (cf. [4, Ch. 27] and [11, Part II Ch. 6
§2.1]). It contains as a subgroup of index two the following Coxeter group:

• •

• • • • • • • • • • • • • • • • •
(7)

Corollary 3. Let P ⊂ H17 be a Coxeter polytope corresponding to the dia-
gram (7). Then

volH(P ) =
691 · 3617

238 · 310 · 54 · 72 · 11 · 13 · 17
ζ(9)

≈ 2.072451981 · 10−18 .

It is not clear how one could compute precisely the volume of such an
high- and odd-dimensional hyperbolic polytope without an identification
with the fundamental domain of an arithmetic group. Steve Tschantz was
able to compute the following numerical approximation, which agrees with
the result of Corollary 3.

volH(P ) = 2.069 · 10−18 ± 2.4 · 10−20.(8)
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The computation took about 60 hours, showing that for this kind of poly-
topes even numerical computation is not an easy task.

It is most likely that P realizes the smallest volume among all hyperbolic
Coxeter polytopes (non-compact or not), independently of the dimension.
The results of [5, 2] (odd dimensions) and [1] (even dimensions) determine
the smallest possible arithmetic orientable hyperbolic orbifolds. From them
we see that a Coxeter polytope smaller than P and being the fundamental
domain of an arithmetic group must necessarily lie in H17, be commensu-
rable to P , and have exactly half of the volume of P . We don’t know if such
a Coxeter polytope could exist.

The small size of P can also be explained by Schläfli differential formula
for the volume of polytopes (see [11, Part I Ch. 7 §2.2]). According to this
formula, the volume of Coxeter polytopes tends to be smaller for polytopes
having large dihedral angles. The small size of P results then from the
combination of two factors: the only dihedral angles in P are π/2 and π/3;
and relatively to its dimension, P is determined by few hyperplanes (actually
the smallest possible number in H17). These two conditions are a very rare
occurrence in high dimensions.

4. Comparison with the mass formula

The lattice II25,1 plays an important role in connection with the study
of even unimodular Euclidean lattices in dimension 24 (see [4, Theorem 5,
Ch. 26]). For n ≡ 1 mod 8, let Ln−1 denotes the set (up to isomorphism) of
(n−1)-dimensional even unimodular Euclidean lattices. This is a finite set,
and an important invariant is its mass, defined as

mass(Ln−1) =
∑

L∈Ln−1

1

|O(L)|
.(9)

For n = 9,17 and 25 each group O(L) (with L ∈ Ln−1) appears as a subgroup
of O(IIn,1) as the stabilizer of a point at infinity of Hn. Therefore, the groups
O(L) correspond to cusps of the hyperbolic orbifold defined by O(IIn,1), and
mass(Ln−1) could be regarded as a measurement of the contribution from
these cusps to the volume. It is then quite natural to consider the ratio
“covolume of O(IIn,1) divided by mass(Ln−1)”. From the mass formula [4,
Theorem 2, Ch.16] we obtain the rather simple formula:

covolume of O(IIn,1)

mass(Ln−1)
= 2−r |B2r−2|

|Br−1|
ζ(r).(10)

Note that this ratio goes quickly to ∞ when r grows.
We refer to [10] for more precise results on the behaviour of cusps of

arithmetic orbifolds with respect to the dimension.
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5. The case of the other odd dimensions

The covolume of PO(In,1) was computed by Ratcliffe and Tschantz in all
dimensions n > 1 [8]. They obtain the result by evaluating a formula due to
Siegel. Note that Prasad’s volume formula, the main ingredient to obtain
Theorem 0, may be considered as a far-reaching extension of this formula
of Siegel. Using the fact that PO(IIn,1) and PO(In,1) are commensurable,
Ratcliffe and Tschantz could also deduce the covolume of PO(II9,1) (cf. [6, p.
345]). By the work of Vinberg and Kaplinskaya, the group PO(In,1) is known
to be reflective for n ≤ 19, and combining this fact with the work of Ratcliffe
and Tschantz one can obtain the volume of several Coxeter polytopes.

By its construction in [2], it is clear that for n ≡ 5 mod 8 the arithmetic
group ∆n of Theorem 0 is commensurable to PSO(In,1). Moreover, we can
see that the ratio of the covolumes of these two groups is equal to 3. In
fact, using [3, Prop. 5.9] and the same kind of argument as in the proof of
Theorem 1, we get the following result. It agrees with known facts about
simplices in dimension 5 (cf. [6, §5]).

Proposition 4. For n ≡ 5 mod 8, the group PSO(In,1) is conjugate in
Isom(Hn) to a subgroup of index 3 in ∆n.

For n ≡ 3 mod 4, the group ∆n is not commensurable to PSO(In,1). In-
stead, it is commensurable to the group PO(f,Z) given by the integral au-
tomorphisms of the following quadratic form:

f = −3x2
0 + x2

1 + · · ·+ x2
n.(11)

McLeod showed that the group PO(f,Z) is reflective when n ≤ 13 [7]. Re-
cently, elaborating on their earlier work on Siegel’s formula (cf. [6, pp. 344–
345]), Ratcliffe and Tschantz determined the covolume of PO(f,Z) (thus
obtaining the covolumes of McLeod’s polytopes) [9]. For n ≡ 3 mod 4, the
ratio between the covolumes of PO(f,Z) and ∆n is then computed to be
equal to a(n)/4, where a(n) is some odd integer tending to ∞ when n → ∞
(see [9, (35)]). An alternative way to obtain the covolume of McLeod’s poly-
topes would be to determine the relation between PO(f,Z) and ∆n in terms
of subgroup inclusions, using the same kind of arguments as for Theorem 1
and Proposition 4.
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